
US007584155B1

(12) United States Patent (10) Patent No.: US 7.584,155 B1
Carter, III et al. (45) Date of Patent: Sep. 1, 2009

(54) METHOD AND APPARATUS FOR EFFICIENT 7,188,075 B1* 3/2007 Smirnov 70.5/10
DELTA PRCNG 7,353,192 B1 * 4/2008 Ellis et al. 705/27

7,369,970 B2 * 5/2008 Shimizu et al. TO3/1

(75) Inventors: Thomas J. Carter, III, Austin, TX (US); SE A. 1929 McMaher et al. 70.9
ara Cal.

SE As T S. 2005, 0102199 A1 5/2005 Lee 705/27
Boris Motik, Karlsruhe (DE); FOREIGN PATENT DOCUMENTS
Ramanathan Ramadass, Dublin, CA
(US); Reuben Swartz, Austin, TX (US) WO WOO175729 A2 * 10/2001

OTHER PUBLICATIONS
(73) Assignee: Trilogy Development Group, Inc.,

Austin, TX (US) Dewan et al., “Adoption of Internet-Based Product Customization
s and Pricing Strategies”. Fall 2000, vol. 17. No. 2, pp. 9-28, (21 pgs.).*

(*) Notice: Subject to any disclaimer, the term of this Ely site Route'. May 13, 1996, Information Week, in
patent is extended or adjusted under 35 p. Og
U.S.C. 154(b) by 772 days. * cited by examiner

Primary Examiner—John W. Haves 21) Appl. No.: 10/061,896 y y (21) Appl. No 9 Assistant Examiner Freda A. Nelson

(22) Filed: Feb. 1, 2002 (74) Attorney, Agent, or Firm Hamilton & Terrile, LLP:
Kent B. Chambers

(51) Int. Cl.
G06Q 99/00 (2006.01) (57) ABSTRACT

(52) U.S. Cl. 7.05490, 705; 70519 A method includes generating a delta price and generating a
705/26: 705/27; 703/1707/2 final price using the delta price. A process and system provide

(58) Field of Classification Search 705/1, an ability to determine a products final price with a selected
705/400, 10, 26; 703/ 1: 707/2 set of features in which multiple configurations are to be

See application file for complete search history. generated. The ability to determine such final prices can be
(56) References Cited based on the ability to determine the change in price between

U.S. PATENT DOCUMENTS
one configuration of a product and that of another product
configuration (e.g. the product configured with the desired
feature(s)). A customer is able to select one or more features, ck

E. ck A.G. SR al - - - - - - - - - - - - - - - - - - - 70. and so view the effect on the products final price, as well as
6. 67.383 A 12/2000 Henson - 705/26 compare the prices (and incremental price differences)

6.453.255 B 92003 Smorodinsky etal - - - - - - - - - - TO2/81 between various configurations of a given product. This
6.675,294 B1 1/2004 Gupta et al. T13/1 increases the likelihood of the purchase being made, because
6,898, 580 B1* 5, 2005 Curranet al. TOS/400 it provides the potential purchaser with the final price earlier
7,035,815 B1 * 4/2006 Henson 705/26 in the sales cycle.
7,035,816 B2 * 4/2006 Jankelewitz TOS/26
7,130,821 B1 * 10/2006 Connors et al. 705/27 34 Claims, 11 Drawing Sheets

Sat

10

z

ldentify item(s) to
bapticed

-X 18

Select desired

E.
20

or.
base price
and pricing
saf

configured
product(s)

2s

on
pricing information

Yes

U.S. Patent Sep. 1, 2009 Sheet 1 of 11

1O

ldentify item(s) to
be priced

15

Select desired
features, products,
services or the like

2O

Determine
base price
and pricing
delta of

configured
product(s)

25

Display desired
pricing information

Yes

30

Further
changes
desired?

Fig. 1A

US 7.584,155 B1

U.S. Patent Sep. 1, 2009 Sheet 2 of 11 US 7.584,155 B1

ldentify configured
product or service

Price configured
product or service

Return final price
for given

configuration of
product or service

Fig. 1B

U.S. Patent Sep. 1, 2009

2OO

identify item(s) to
be priced

Get catalog
module

205

210

Get pricing module

Price item(s)

22O

230

Generate SP to
present pricing
data to user

Fig. 2

Sheet 4 of 11 US 7.584,155 B1

U.S. Patent Sep. 1, 2009 Sheet 5 of 11 US 7.584,155 B1

{ Start

Build superquote

Call pricing
service (SQ,

QP)

31

Fig. 3

U.S. Patent Sep. 1, 2009 Sheet 6 of 11 US 7.584,155 B1

OO

410

case
415

list of prices

42O

Return results

Fig. 4

U.S. Patent Sep. 1, 2009 Sheet 7 of 11

Gather data
by calling

pricing engine

No. Price configuration

A
Configurations

priced?

Yes

Package results

End

510

530

Fig. 5A

US 7.584,155 B1

U.S. Patent Sep. 1, 2009 Sheet 8 of 11 US 7.584,155 B1

Bit Wector
550

560(1,1) 560(1,2) 560(1,3) 560(1,4) O O. O. O. O. 560(N)
-

560(2,1) 560(2,2) 560(2,3) 560(2,4) O O. O. O. O.

560(3,1) 560(32) 560(3,3) o O O. O. O. O. 560(3,N)

O O. O. O. O. 560(4...N) 560(4,1) 560(4,2) 560(4,3) 560(4,4)

-

o onale o O O. O. O. O. sign

Fig. 5B

U.S. Patent Sep. 1, 2009 Sheet 9 of 11 US 7.584,155 B1

Gather data from
database

Erd

Fig. 6

US 7.584,155 B1 Sheet 10 of 11 Sep. 1, 2009 U.S. Patent

00L ,

SØL SSL
Z fil

HOSSE OO}}d

US 7.584,155 B1 Sheet 11 of 11 Sep. 1, 2009 U.S. Patent

008 X?JONA19N

US 7.584, 155 B1
1.

METHOD AND APPARATUS FOREFFICIENT
DELTA PRCNG

BACKGROUND OF THE INVENTION

1. Field of the Invention
The present invention relates to transacting commerce over

a network and, more particularly, to a method and apparatus
for processing information related to Such commercial trans
actions.

2. Description of the Related Art
Historically, information regarding commercially avail

able products has been disseminated using various types of
well-known media, including print, radio, television, and the
like. With the advent of the Internet, a wide array of product
information has become even more accessible to the average
person. Entities providing Such product information have
been assisted in their endeavor by networking and client/
server technology that has become available inapproximately
the last ten to fifteen years. Such technology typically allows
a number of users employing client terminals to communicate
with a remote server computer in order to transfer information
therebetween. This information may include text, data in any
one of a number of formats, graphical information, streaming
audio and video, and other such information. To facilitate
such transfers, client terminals can employ a “web browser
that provides access to a server via a graphical user interface
(GUI). The server responds to requests from the client by
providing information in the form of a “web page.” One
popular collection of servers uses Hypertext Transfer Proto
col (HTTP) to provide information. This network of servers
and web pages is commonly known as the “WorldWideWeb”
(WWW). A collection of related web pages is often referred
to as a “website' or more simply a “site.” Information in the
WWW is typically presented as web pages which contain text
along with standardized formatting and control symbols such
as those present in mark-up languages such as Hypertext
Mark-up Language (HTML). HTML provides basic hyper
text document formatting and allows a server to specify
“links' to other servers and files. Use of an HTML-compliant
browser involves specification of a link via a Uniform
Resource Locator (URL). Upon such specification, the user's
client terminal makes a TCP/IP request to the server identified
in the link and receives an HTML file that is interpreted by the
browser so that an electronic HTML document made up of
one or more web pages may be displayed on the clients
terminal.

Unfortunately, however, the use of the functionality pro
vided by technologies that allow the selection and purchase of
products (e.g., e-commerce websites) is less than ideal. Cli
ent-side performance is a significant factor in Such a network
environment, especially in an e-commerce context, and fac
tors that degrade website performance likewise degrade the
purchasing experience. Fundamentally, a website that is slow
(and therefore aggravating to use) can result in lost sales.
Thus, factors that degrade client-side performance should be
avoided if the user's buying experience is to be a pleasant one.
An example of such a factor is the time involved in accessing
a product information database, especially where the data
base access is performed over a network of some sort (e.g., a
storage area network (SAN)). Such effects can depend on
several factors, with certain of these factors being quite intui
tive in nature.

In the case where a customer desires pricing information
for various configurations of a selected product, pricing of a
base configuration of a product or a product with a pre-set,
“standard” feature set is relatively straightforward. However,

10

15

25

30

35

40

45

50

55

60

65

2
as the customer adds features to and removes features from
the selected product, the product’s final price may change
according to not only the features added or removed, but also
according to any package pricing, discounts, variations in
taxes and/or shipping charges, and other such adjustments.
Moreover, the selection of one feature may change the price
of another selected feature, require other upgrades, obviate
the need for certain features, and/or may change the classifi
cation of the current package altogether. There may also be
differences in pricing for a given feature based on the cus
tomer (e.g., the customer's status, location, contractual agree
ment or the like), product-specific discounting schemes, and
other Such criteria. Further, other factors such as shipping
may change relative to the configuration, number of items,
and so on.

For example, in an e-commerce scenario, if the price of a
single product configuration is desired, various factors (e.g.,
user identity, geographical location, promotions, Volume and
the like) can be taken into account when pricing the product
(or service) for purchase (e.g., via an e-commerce website).
This pricing request results in a database access that gathers
the requisite pricing information. An example of Such a pric
ing system (or pricing engine) is described in U.S. Pat. No.
5,878,400, issued Mar. 2, 1999, by Carter and entitled
“Method and Apparatus for Pricing Products in Multi-Level
Product and Organizational Groups. Thus, pricing on a com
ponent-by-component level is generally available.

In the situation where a product is available in a number of
configurations (each of which represent a given set of fea
tures), however, each product configuration will typically
include different combinations of the available features. Each
such configuration needs to be priced accordingly. This
requires multiple accesses, typically over a network, to
retrieve the necessary data and generate the desired pricing
information. The problem is compounded when the pricing
information for a given feature (or other cost) depends upon
the features selected in a given configuration. In an e-com
merce system such as that described previously, this is espe
cially problematic if the user desires to compare pricing
between a number of configurations simultaneously. This is
because the user is forced to wait for all the database accesses
to complete before a complete comparison can be made.
Thus, delays are particularly evident in the situation where a
user desires pricing information for a number of product
configurations simultaneously.

For example, as noted, a prospective purchaser may desire
to configure and price an automobile. The prospective pur
chaser does not want to wait until they have specified all the
possible options in order to view a price. In fact, the prospec
tive purchaser may desire to view both a running total price,
as well as the incremental price of each item that the prospec
tive purchaser is currently considering. For example, the pro
spective purchaser may have already configured a base
vehicle, but is provided the option of selecting a “CD Player
or a "High-End Stereo System.” The decision on which to
purchase is typically based on, among other criteria, on the
change in price caused by each option. One option is to
display the S500 price of the CD Player and the S750 price of
the High-End System. However, the currently configured
base vehicle already has the standard stereo (costing $200).
The manufacturer would prefer that the prospective purchaser
realize that the CD Player only costs S300 additionally and
the High-End System only costs S550 additionally. This is
effectively an upsell opportunity.

Similar to seeing the choice for radio options, a potential
purchaser might also see the option of purchasing leather
seats. Though the leather seats only cost S1500, the leather

US 7.584, 155 B1
3

seats are simply not offered on the base vehicle and are
instead offered only on the Luxury model. The Luxury pack
age costs S2000, bringing the cost of the current configuration
to S3500. To make the example more complete, consider that
the currently priced base vehicle costs S19,000, but a pur
chaser receives a S1000 rebate check if the vehicle costs
S20,000 or more. Even though the Luxury package and
leather seats add S3500 to the current price, in fact a S1,000
rebate is given (resulting in a net difference of only $2500).

In light of the variations presented in the foregoing
example, and the myriad other possible variations and com
binations thereof, incremental differences in price (i.e., the
difference between the price of the currently configured
vehicle and another configuration) need to be calculated, and
the price of the vehicle configured with the various options
presented. The example demonstrates that this requires some
configuration integration (i.e., to know the base radio needs to
be removed, or the Luxury package needs to be added). A
configuration with the leather seats, combined with the
rebate, illustrates that the old product price cannot simply be
manipulated by adding/subtracting the prices of the indi
vidual options. To get the true price, the pricing engine must
calculate the products total price with each desired set of
options. As will be apparent to one of skill in the art, when
Such operations must be performed for every option presented
to a prospective purchaser, tens or even hundreds of Such
operations must be performed every time the information is
redisplayed, which should occur every time the potential
purchaser adds or removes an option from the given configu
ration.
One method of addressing this need is to call a pricing

engine (through the pricing service or using the methods
directly), and so create a collection of items and price all the
items together in the context of a quote. To perform pricing
operations using Such an approach, a separate quote with all
of the base items must be individually created, with the quote
including the options being added to the base configuration
(e.g., a new radio, or leather seats and the luxury package
together) and excluding the options to be removed (e.g., the
stock radio). Each quote is priced separately with no benefit
from having already retrieved the appropriate adjustments
from the database or the previously-calculated base price.
This creates a multitude of database accesses, with the atten
dant problems discussed earlier.

Another alternative is to simply price all possible (or allow
able) combinations of features, and then save the pricing and
feature information thus generated in a database accessible by
the web server presenting the information to the customer.
While conceptually simple, this solution suffers from several
infirmities. Such a database would be quite large by a relative
measure, increasing retrieval time, as well as the cost of
maintaining Such information. Also, the database would need
to be accessed each time a new quote was required, entailing
the aforementioned increase in retrieval time for each such
quote. Each access, in turn, would necessitate the regenera
tion of the web page to display the results of each Such access,
further delaying the display of pricing information. Also,
because of the large number of potential configurations, gen
eration of this pricing data is often impractical.

Thus, the list price of a given feature may not reflect the
price to actually be paid by the customer for a variety of
reasons, and so determination of a products final price can be
a complex, and time-consuming, exercise. By contrast, when
investigating the costs associated with various combinations
of features, and when employing web-based technology in
general, providing the desired pricing information quickly
and accurately improves a customer's buying experience, as

10

15

25

30

35

40

45

50

55

60

65

4
well as increasing the likelihood that the customer will actu
ally make a purchase. Moreover, the earlier in the navigation
of the e-commerce website this information can be provided
to the prospective purchaser, the more likely the prospective
purchaser is to complete the purchase.

Furthermore, prospective purchasers are also more likely
to make a purchase in the scenario where the prospective
purchaser sees a given combination of features (products,
services or the like) as costing only an incremental amount
over a “base' (or given) configuration. By making the incre
ment the focus of the prospective purchaser's attention,
emphasis on the total outlay is minimized in the user's mind.
This can encompass any costs associated with a given pur
chase.

SUMMARY OF THE INVENTION

The inventors have thus effected the ability to generate
delta pricing information, and so price features (products,
services or the like) incrementally in an e-commerce environ
ment. Moreover, described herein is a software architecture
capable of generating such delta pricing information in a fast,
efficient manner, to provide the purchaser with an enjoyable
buying experience. Sales by the seller of Such products, Ser
vices or the like are increased thereby, as well as by shifting
the prospective purchaser's focus to any additional incremen
tal cost (or lack thereof, and, optionally, by comparison to the
feature’s actual cost).

In one embodiment of the present invention, a method of
generating a price is disclosed. The method includes gener
ating a delta price and generating a final price using the delta
price.

In another embodiment of the present invention, a software
architecture is disclosed. The software architecture includes a
quote processor configured to process a Super-quote. The
Super-quote is configured to cause a number of database
aCCCSSCS.

In yet another embodiment of the present invention, a
method of retrieving information is disclosed. The method
includes performing a plurality of queries on a database,
receiving a number of data at a pricing engine in response to
the queries, and providing at least one of the data without
accessing said database.
The foregoing is a Summary and thus contains, by neces

sity, simplifications, generalizations and omissions of detail;
consequently, those skilled in the art will appreciate that the
Summary is illustrative only and is not intended to be in any
way limiting. As will also be apparent to one of skill in the art,
the operations disclosed herein may be implemented in a
number of ways, and Such changes and modifications may be
made without departing from this invention and its broader
aspects. Other aspects, inventive features, and advantages of
the present invention, as defined solely by the claims, will
become apparent in the non-limiting detailed description set
forth below.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention may be better understood, and its
numerous objects, features, and advantages made apparent to
those skilled in the art by referencing the accompanying
drawings.

FIG. 1A is a flow diagram illustrating an example of opera
tions performed in providing delta pricing information.

FIG. 1B is a flow diagram illustrating the determination of
pricing for a given configuration.

US 7.584, 155 B1
5

FIG. 1C is a block diagram illustrating the software archi
tecture used to support the processes depicted in FIGS. 1A
and 1B.

FIG. 2 is a first flow diagram illustrating a process in which
pricing for one or more items is determined.

FIG. 3 is a second flow diagram illustrating a process in
which pricing for one or more items is determined.

FIG. 4 is a third flow diagram illustrating a process in
which pricing for one or more items is determined.

FIG. 5A is a fourth flow diagram illustrating a process in
which pricing for one or more items is determined.

FIG. 5B is a diagram illustrating an example data structure
of a Super-quote.

FIG. 6 is a fifth flow diagram illustrating a process in which
pricing for one or more items is determined.

FIG. 7 is a block diagram illustrating a computer system
Suitable for implementing embodiments of the present inven
tion.

FIG. 8 is a block diagram illustrating the interconnection of
the computer system of FIG. 7 to client and host systems.

The use of the same reference symbols in different draw
ings indicates identical items, unless otherwise indicated.

DETAILED DESCRIPTION OF THE INVENTION

The following is intended to provide a detailed description
of one or more example embodiments of the invention and
should not be taken to be limiting of the invention itself.
Rather, any number of variations may fall within the scope of
the invention which is defined in the claims following the
description.
Introduction
The present invention provides a process and a Supporting

software architecture that provide the ability to quickly and
efficiently determine a products final price with a selected set
of features, particularly in a situation in which changes in
configuration (e.g., made by a potential purchaser) are to be
immediately reflected in the product’s final price, in which
multiple such configurations are to be generated (e.g., and
presented to a prospective buyer, typically simultaneously),
and the like. The ability to determine such final prices can be
based on the ability to determine the change in price between
one configuration of a product (e.g., the price of the products
base configuration) and that of another product configuration
(e.g., the product configured with the desired feature(s)). The
term “final price.” as used herein, refers to the ultimate price
to be paid by the consumer, whether that be in the form of a
static value for only that product without consideration of any
other product or criteria, or the incremental (delta) price of
that product when selected in addition to any number of other
products or criteria.
A customer can access this functionality using, for

example, a network (e.g., the Internet) using a WWW inter
face (e.g., a web browser). Using a website employing Such a
software architecture (also referred to herein as a website
architecture), a customer is able to select one or more fea
tures, and so view the effect on the product’s final price, as
well as compare the prices (and incremental price differ
ences) between various configurations of a given product.
This increases the likelihood of the purchase being made,
because it provides the potential purchaser with the final price
earlier in the sales cycle.
The selected features determine, at least in part, the final

price of the product with the given product configuration.
Additionally, such product configurations can be predefined
(e.g., a stored product configuration, a product configuration

10

15

25

30

35

40

45

50

55

60

65

6
generated based on general criteria provided by the customer,
or other such sources). Once the desired features are selected,
the selected product configuration and final price can be dis
played for the given configuration. Moreover, the configura
tion’s final price can include peripheral costs and effects
thereon by the selected features of the given configuration.
The foregoing functionalities can be provided, for example,
by Software referred to herein as a quote processor, which
enables the efficient pricing of a product based on the prod
uct’s features.
A pricing methodology according to the present invention

addresses the shortcomings of various possible alternatives
through the use of a Super-quote (a quote containing Sufficient
information to permit the generation of a number of quotes)
and persistence of the data thus retrieved. For example, in the
case where multiple quotes must be generated to address
various configurations of a product desired by a customer, a
number of products must be priced (e.g., displaying an entire
catalog page for a customer or other such multiple pricing
situation), a Software architecture according to the present
invention combines those multiple quotes into a Super-quote.
The use of a Super-quote allows the necessary information to
be retrieved from a pricing database using fewer accesses than
would be required using separate accesses for each quote
(typically, a single access). This reduces the number of times
a database containing the desired information must be
accessed. As a result, the time spent accessing the database is
reduced. This is of importance because accessing the data
base can be a relatively slow operation, especially in configu
rations where the database is accessed over a communications
link Such as a network. In fact, the results generated by the
query for the Super-quote can be stored in memory (referred
to hereinas memory pricing), which speeds the pricing opera
tions considerably in comparison to the time required to
access the database (typically stored on Some sort of fixed
media). Moreover, because the data retrieved in response to a
request for a Super-quote persists in memory, that data
remains available for Subsequent queries, thus further elimi
nating the need to access the database. These increases in
speed provide the potential purchaser with a more pleasant
purchasing experience, increasing the likelihood of the pur
chase actually being made.

In effect, a software architecture Supporting delta pricing
Such as that described herein breaks the pricing operation into
two parts: a query operation and an operation which calcu
lates the price of the desired configuration. The query opera
tion, as a result of using a Super-quote, is typically a single
event, with the attendant benefits discussed herein. Because
the information thus retrieved is persisted, the latter is sim
plified, as the data needed for the calculations is readily
available.

Delta Pricing
AS has been noted, the earlier in the purchasing experience

a potential purchaser can be shown a final price, the more
likely the potential purchaser is to actually purchase the prod
uct(s) (or services or the like) being considered. The final
price will reflect the features (or combination of products/
services, or similar effects) selected by the potential pur
chaser. The final price can also be made to reflect other param
eters, such as special pricing based on any one of a number of
parameters (e.g., the purchaser's identity, geographic loca
tion and the like), peripheral costs (e.g., taxes, shipping
charges, handling charges and the like), time of the purchase
(e.g., time-based discounts, on-?off-season rates, and the
like), and other such parameters. It should be noted that delta
pricing techniques need not comprehend all inputs to a final

US 7.584, 155 B1
7

price. For example, while the selected features of a product
may be employed in arriving at a final price for the given
product configuration, peripheral costs may be excluded from
such calculations. Alternatively, not all the features selected
by a potential purchaser need be included in Such calcula
tions. It will be apparent to one of skill in the art that delta
pricing techniques can be applied to any appropriate Subset of
price inputs can be considered when arriving at a final price
for a product.

FIG. 1A is a flow diagram illustrating an example of the
operation of a user interface that provides functionality
according to embodiments of the present invention. First, the
potential purchaser identifies the item(s) that the potential
purchaser desires to purchase (step 10). This item (or items)
can be a product, a service or some other item available for
purchase (or, in fact, for lease or by Some other commercial
arrangement). Next, the potential purchaser selects the fea
tures they desire (step 15). It should be noted that this action
can also be directed to (or additionally include) the selection
of other products, services or the like. Any Such actions can be
made to alter the final price of the selected features, products,
services or the like, including effects on peripheral costs. A
determination is then made as to the pricing of the desired
product/service configuration, product/service combination
or the like (step 20). As noted previously, a product’s final
price can be altered based on any number of effects. Once
determined, final pricing information is then displayed (step
25). This can be, for example, the display of pricing informa
tion on a WWW page generated by an e-commerce website.
Next, the user is given the option of altering their selections
(step 30), which if taken allows the user to change the prod
lucts/service's configuration, the products/services selected
and to make other changes, as appropriate to the situation. It
will be noted that this process can easily be modified to
address the situation in which the potential purchaser desires
to enter a number of configurations at one time, in order to
have a number of configurations (and their corresponding
final prices) generated and displayed for comparison therebe
tWeen.

FIG. 1B is a flow diagram illustrating an example of the
operations performed in pricing one or more configurations
of a product, Service or the like when employing a user inter
face that provides functionality according to embodiments of
the present invention. First, the item to be priced (e.g., the
product configuration (feature set)) is determined from infor
mation provided by the potential purchaser (step 50). This can
include, for example, generating a list of possible features,
and then determining which of those features are desired.
Given this information, a determination is made as to the final
price of the item (e.g., the configured product) (step 55). Once
this determination is made, the final price (e.g., for the given
configuration of the product) is returned (step 60).
The need for delta pricing, and certain of its advantages,

can best be understood in the context of an example, similar to
that previously discussed. In the context of a vehicle offered
for sale, it will be noted that, for example, vehicle manufac
turers may not sella car without an audio system of some sort.
To upgrade from a standard AM radio (costing S200, as a
“base' configuration) to an FM radio (costing S600), the user
will typically not be charged the full price of the FM radio, but
instead will incur the incremental cost of that feature. In fact,
the purchaser need never be concerned with the fact that the
absolute price of the FM radio is S600, because the FM radio
will always have been Swapped for another option (e.g., the
AM radio). This is true of any situation in which a product
feature is mandatory, and one alternative is Swapped for
another. Thus, where the category of product is mandatory,

10

15

25

30

35

40

45

50

55

60

65

8
the purchaser is simply trying to decide which product feature
is the desired one. The problem changes from a question of
“what is the price of the product” to “what is the difference in
price, because one of the alternatives will have to be pur
chased.” This is a complex pricing situation in which a base
product provides some minimum price, and alternatives are
Swapped for one another, altering the price as Such changes
are made.

This kind of general situation, and the problem addressed
by embodiments of the present invention, demonstrates that
there is substantial market value in being able to provide the
incremental price at a number of points in the purchasing
process, as well as being able to provide Such information
even before the potential purchaser has committed to their
current selection (e.g., selected feature set), which provides
the marketing advantages discussed herein. If the potential
purchaser must go through and indicate they desire “A” and
“B” to learn the price of that combination, and then indicate
that they desire 'A' and “C” to learn the price of that combi
nation, the process becomestedious and repetitive. Determin
ing the price differential then requires the user to perform
calculations, further complicating the process and making a
sale less likely.

In another example, using a 'shopping cart' paradigm, the
potential purchaser might have a shopping cart that contains
a number of products (typically displayed as a list of selected
products). Typically, the list of products will be just that for
example, a list of the products “A”, “B”, and “C”, with some
stated price (e.g., “A” is S1, “B” is S2, and “C” is S3). Now if
there is another product (or feature), “F”, that is available, “F”
might be available for only $0.20 more, rather than the full $1
usually charged for “F” alone. Knowing that “F” will be
placed in the shopping cart along with 'A' implies that the
delta in price between “F”, and “F” with “A”, is only $0.20
(rather than S1). The net effect is that for only S0.20 more, the
potential purchaser can add 'A' to their purchase. Alterna
tively, if other products (or features) are to be added to the
shopping cart (e.g., “F”, “G”, and “H”), there may be a sub
stantial reduction in price of the “A”/“B”/“C” combination
(e.g., because “G” includes “C”, and so “C” is basically free
at that point). It is these incremental changes in price that need
to be captured and presented to the potential purchaser to
motivate the potential purchaser to make the more extensive
purchase, by presenting the product(s) as a whole (as opposed
to a collection of items), from a pricing perspective.

With regard to the automobile example, the potential pur
chaser is presented with the price of the base model (e.g.,
S20,000). The potential purchaser desires the FM radio. The
price of the automobile is not now S20,600, but is instead
S20,400. Thus, the sales entity is able to tout that for only
S400 more, the potential purchaser can purchase the automo
bile with an FM radio. Moreover, a comparison to the full
price of the FM radio can be made, and characterized as
selling a S600 FM radio for $400.

Moreover, delta pricing can be performed such that periph
eral costs are included in the final price. As noted, peripheral
costs include shipping, handling, taxes, and the like. For
example, in the purchase of a toy using an e-commerce web
site, the shipping for a product might be a certain amount. The
shipping for a second toy might be the same or only slightly
more. This is attractive from a marketing perspective because,
in Such a scenario, the potential purchaser perceives they will
be receiving extra value without extra cost. In the preceding
example, the potential purchaser is presented with the impres
sion that they are receiving free shipping, as long as the final
price presented reflects this.

US 7.584, 155 B1
9

Delta pricing can be used as a powerful marketing tool
because delta pricing allows the purchaser to easily learn the
incremental difference in price cause by adding (or removing)
a given selection, when compared to a base price. This is
particularly important in an industry where a base configura
tion is mandatory. Such a marketing approach (and So, func
tionality) is particularly attractive, for example, in the
example given with regard to the purchase of an automobile
which includes a radio as a mandatory feature. The use of
delta pricing then becomes a powerful marketing tool because
the delta in prices is typically going to be less than the abso
lute price of the given feature. There is typically no case
where the potential purchaser will have to pay the full abso
lute value of a given feature. The use of delta pricing allows
the seller to focus the potential purchaser's attention on the
incremental difference in price, and to heighten the potential
purchaser's awareness of the fact that they will not pay the
absolute price of the feature, but only the incremental differ
ence in price.
An application programming interface (API) that is

capable of Supporting delta pricing according to embodi
ments of the present invention can be in the form of for
example, the following:

deltaPricing(sessionObject, <pricing types/result/delta to
return>, base(ConfigurationObject, <items to addd, <items
to deletes, <items to addi>, <items to deletes. . .)
where

sessionObject: This Supports the pricing service "caching
described herein. This is described as an object because it is
beneficial to be able to pass multiple values (properties) on
the object rather than using a single value (although that
approach can be used as well).

<pricing types/result/delta to returnd: This relates to what
values are to be returned. In the examples herein, only the
delta price is discussed, but any piece of the price calculation
can be returned, if so desired. For example, for an upsell, it is
desirable to return the delta price and other values, to dem
onstrate the cost advantage provided by the delta price.

base(ConfigurationObject: This is used to relate the current
(base) state, to which the other items will be added or deleted
when pricing.

<items to addd, <items to deletes. This is where the items
for delta pricing are specified. In the previous example relat
ing to the purchase of a vehicle, one pairing of add/deletes
would be <CD Players.<Stock Radio>, another would be
<High-End Stereo Systems.<Stock Radio>, and another
would be <Leather Seats, Luxury Packaged.<nonex. It is
desirable to be able to omit such parameters entirely or add a
potentially infinite number of such items. It will be noted that
if no add/delete items are specified, the deltaPricing() will
typically function in a manner similar to a basic quote/price
method.

There are several options with regard to the type of object
(s) to be used to specify the base configuration and items for
addition/deletion. The simplest solution is to specify a con
catenation or collection of part numbers (strings). While
simple, Such a solution can limit the functionality made avail
able to the programmer. Items may be priced differently in a
configuration. For example, a standalone CD Player will typi
cally cost more than a pre-installed CD Player, and if the part
numbers are the same, another way is needed to indicate that
information. This is most commonly done with the use of a
structure. Preferably, the structure is related with the param
eter objects. This can would allow greater backward compat
ibility with any preceding, simpler functionality. The quote
object allows the specification of all the header information

10

15

25

30

35

40

45

50

55

60

65

10
(date, org, pricing sequence, and so on), while the line items
allow the specification of quantities, part numbers, and struc
ture (though ID and parentlDs).
From a technical standpoint, as the number of features (or

product combinations or the like) increase, the amount of
information that needs to be aggregated increases exponen
tially. For example, if a product has fifty features and the
potential purchaser is interested in four configurations, each
feature must be priced (50 operations) and this must be done
four times (for a total of 200 operations). The complexity of
Such situations now becomes clear, and the cost, even given
the marketing value of such capabilities, can be an obstacle. A
Software architecture that allows delta pricing information to
be generated quickly and efficiently, as well as one that Sup
ports the implementation of the API described above, is now
described.

An Example Software Architecture Supporting Efficient
Delta Pricing

FIG. 1C is a block diagram illustrating an example of a
software architecture 100 that includes various layers and
modules which Support embodiments of the present inven
tion. Software architecture 100 is made up of a processing
system 101 (e.g., a server (e.g., a website server) configured
to Support an e-commerce website), which is configured to
process and present pricing information to a potential pur
chaser access processing system 101 using, for example, a
browser. In turn, processing system 101 includes an applica
tions module 102, which in turn includes a pricing module
103.

Processing system 101 includes a scripts layer 105 and a
controls layer 110, which together form a JSP layer 111, as
well as applications module 102. Applications module 102
includes a modules layer 115, a services layer 120. Process
ing system 101 also includes a database layer 125. Scripts
layer 105 includes a set of presentation scripts 130, which
may be implemented using a scripting language, for example.
Similarly, controls layer 110 includes a set of presentation
controls 135. Presentation controls 135 provide functionality
that interoperates with presentation scripts 130 to generate
the user interface presented to a customer accessing a website
supported by software architecture 100. The functionality
provided by presentation controls 135 includes management
of HTML controls, lists, links and buttons that provide the
functionality presented by such a website.

Typically, controls have no state, except for that which is
needed for the actual control itself (e.g., identity). Modules
layer 115 includes a catalog module 140 and a pricing module
141 (which is also included as part of pricing module 103),
among other modules. Catalog module 140 communicates
with pricing module 141 to access pricing information via
services layer 120. In general, modules are used for tasks Such
as cross-module communication and management of com
munications with the various services to which the given
module belongs. Modules are generally stateless, with the
user's state typically residing in JSP layer 111. As its name
implies, catalog module 140 provides the requisite catalog
functionality, and, by communicating with other elements
described Subsequently, allows a customer to obtain pricing
information regarding one or more products having one or
more selected features (i.e., one or more selected configura
tions). This can be, for example, a single product, or a number
of products (e.g., the products displayed on a page of a cata
log). Applications module 102 resides below JSP layer 111 in
processing system 101.

Services layer 120 includes a pricing service 145 and a
quote processor 150. Quote processor 150 is coupled to a

US 7.584, 155 B1
11

pricing engine 151. Services layer 120 acts as an interface
between modules layer 115 and database layer 125, and pro
vides functionality Such as data persistence and data prepa
ration, allowing interaction with other functions within the
architecture. Such as remote resources. A services layer Such 5
as services layer 120 also allows for the persistence of the
respective information for each of the separate functionalities
represented by each service therein, as well as control and
management of the given service's data, as well as being able
to perform at least some of the more intensive calculations.
Typically, a service has no state associated therewith.

In Supporting the functionality provided by catalog module
140 and pricing module 141, pricing module 103 (including
pricing service 145, quote processor 150 and pricing engine
151) responds to requests for pricing information from pric- 15
ing module 141 based on information provided by catalog
module 140. Such information is provided from the one or
more databases of database layer 125 (exemplified by a data
base 160, which is also referred to herein as a product infor
mation database). Database layer 125 (via database 160)
effects the actual storage of the data employed by the various
functions provided by software architecture 100. In providing
such support, database 160 provides pricing service 145 and
quote processor 150 with the data necessary for these services
to respond to requests from pricing module 141 (and catalog
module 140).

For example, pricing module 141 can provide pricing Ser
vice 145 with a request for price(s) 165 to begin the process of
generating the requisite pricing information for display to the
customer (e.g., a quote, or in Software architecture 100, a
Super-quote). Pricing service 145 then instantiates quote pro
cessor 150 (typically, in response to request for price(s) 165).
A gather data call (an indication that pricing engine 151 is to
gather data from database layer 125) is then made to pricing
engine 151 (depicted in FIG. 1C as a gather data call 170) to
indicate to pricing module 151 that pricing data (which, for
example, can be in the form of a final price or a pricing delta)
is to be requested from database 160. Pricing engine 151 then
queries database 160 by sending a data request 175 to data
base 160, in order to identify a set of data that satisfies the
pricing requested. Database 160 responds to data request 175
by providing requested pricing data 180. This process of
requesting data from database 160 and database providing
Such data is more generically referred to herein as accessing
database 160.

It will be noted that, in a preferred embodiment, once quote
processor 150 is instantiated by pricing service 145, quote
processor 150 is also passed to pricing engine 151, in addition
to gather data call 170. In this scenario, quote processor 150
is essentially a “plug-in' that is executed within the context of 50
pricing service 145. It will also be noted that, in a preferred
embodiment, two calls are actually made to pricing engine
151. Pricing service 145 passes quote processor 150 to pric
ing engine 151, then makes the two calls to pricing engine
151. In the first call, quote processor 150 is passed as part of 55
gather data call 170, which causes the caching of data (e.g., in
pricing engine 151). A second call, a pricing data call 182,
actually prices the quote and so returns the price(s) of item(s)
in the quote.

In traditional approaches, only a data call (somewhat simi- 60
lar to pricing data call 182) is Supported, allowing only single
data requests to be made. In embodiments of the present
invention, however, the use of gather data call 170 allows all
the data required to satisfy all the quotes contained in the
given Super-quote in one operation, and so permits pricing 65
engine 151 to load the requisite data from database 160 only
OCC.

10

25

30

35

40

45

12
In a more general sense, each layer of a computer archi

tecture, peripheral storage (e.g., a hard disk) is approximately
an order of magnitude slower than the computer's memory.
Memory, in turn, is still approximately an order of magnitude
slower than off-chip cache, and off-chip cache is approxi
mately an order of magnitude slower than on-chip cache.
Thus, there is roughly an order of magnitude at each one of
those layers. This is also true outside a single-computerarchi
tecture. If the processing is contained within the one com
puter (e.g., entirely at the web browser), that scenario is going
to be approximately an order of magnitude faster than making
a call into the applications server. Operations that involve
only an applications server are going to be approximately an
order of magnitude faster than operations that involve access
ing a database. Thus, Subsequent pricing data calls (e.g.,
pricing data call 182), which do not require the performance
of database accesses, are processed significantly faster, and so
make delta pricing a practical reality.
Once pricing engine 151 receives requested pricing data

180, pricing engine 151 uses this information to generate
pricing data 185. A pricing data call 182 is made to pricing
engine 151. In response, pricing engine 151 passes pricing
data 185 to quote processor 150 (and so pricing service 145).
Pricing service 145 then passes this information to pricing
module 141 as a quote 190. It will be noted that this and other
requests discussed herein are in response to customeractions
presented via scripts layer 105 (e.g., presentation scripts 130)
and controls layer 110 (e.g., presentation controls 135). It will
also be noted that, in Some embodiments, the quote object
(representing the quote) is actually passed between elements
of software architecture 100 during gather data call 170,
pricing data call 182, the return of pricing data 195, and the
return of quote 190, as previously noted.

Using a Super-quote, quote processor 150 is able to include
the requests necessary for multiple quotes in gather data call
170. Once pricing engine 151 queries database 160, the pric
ing data retrieved from database 160 (i.e., requested pricing
data 180) includes the pricing data necessary to satisfy the
multiple quotes included in the Super-quote. The pricing data
in requested pricing data 180 is maintained in quote processor
150. Thus, once a Super-quote has been processed, the pricing
data maintained in pricing engine 151 allows quote processor
150 to generate pricing data for the multiple quotes by simply
calling the pricing engine with various of the items in the
Super-quote marked as inactive (or active) (i.e., using multiple
pricing data calls (e.g., pricing data call 182)).

Thus, in the situation where a product has a number of
features, variations of the basic product (having varying fea
ture sets) can be priced by marking the desired features (in
allowable combinations, possibly) as active, while marking
other features inactive. In the catalog scenario, a single page
of pricing data might be retrieved, and so the items on that
page would be marked active. Alternatively, pricing data for
several pages might be retrieved (e.g., the preceding and
following catalog pages, as well as the current catalog page),
allowing quick presentation of pricing data as a customer
paged through a catalog. It will be noted that the pricing rules
(actually, configuration rules), are typically implemented in
XML, and are used by the configuration engine, which
executes in modules layer 115. The pricing rules can be, for
example, of the form “if the car includes leather upholstery,
the price for the premium stereo is Sprice.”

FIG. 2 is a flow diagram illustrating the actions performed
in scripts layer 105 and controls layer 110 in generating a
price quote using software architecture 100. The process
begins with the customers inputting information, using
scripts layer 105 and controls layer 110, that will allow cata

US 7.584, 155 B1
13

log module 140 to identify one or more items to be priced
(step 200). It will be noted that the use of catalog module 140
is merely exemplary, as any one of a number of module types
could employ, and be employed in, a Software architecture
such as that described herein. This may consist of, for
example, a customer identifying a base configuration of a
product (from which various other possible configurations
may be generated) or a request for one or more items from a
catalog (e.g., a page of a catalog). Using the latter scenario as
an example, controls layer 110 initiates a get catalog module
operation (step 205) and a get pricing module operation (step
210). Next, the items are priced, which entails one or more
calls from controls layer 110 through modules layer 115 to
services layer 120 (step 220). Once the requisite prices are
thus generated, the pricing data is presented to the customer
(e.g., using JSP) (step 230). It will be noted that the use of JSP
information in presenting the pricing information to the cus
tomer is merely an example of one way in which the pricing
data can be displayed. It will also be noted that, in certain
embodiments (such as that shown), catalog module 140
employs pricing module 141 to price the items.
As noted, FIG. 2 depicts a flow diagram illustrating the

process of generating a price quote according to one embodi
ment of the present invention. It is appreciated that operations
discussed herein may consist of directly entered commands
by a computer system user or by steps executed by application
specific hardware modules, but the preferred embodiment
includes steps executed by software modules. The function
ality of steps referred to herein may correspond to the func
tionality of modules or portions of modules.

The operations referred to herein may be modules or por
tions of modules (e.g., software, firmware or hardware mod
ules). For example, although the described embodiment
includes Software modules and/or includes manually entered
user commands, the various example modules may be appli
cation specific hardware modules. The software modules dis
cussed herein may include Script, batch or other executable
files, or combinations and/or portions of such files. The soft
ware modules may include a computer program or Subrou
tines thereof encoded on computer-readable media.

Additionally, those skilled in the art will recognize that the
boundaries between modules are merely illustrative and alter
native embodiments may merge modules or impose an alter
native decomposition of functionality of modules. For
example, the modules discussed herein may be decomposed
into Submodules to be executed as multiple computer pro
cesses, and, optionally, on multiple computers. Moreover,
alternative embodiments may combine multiple instances of
a particular module or submodule. Furthermore, those skilled
in the art will recognize that the operations described in
example embodiment are for illustration only. Operations
may be combined or the functionality of the operations may
be distributed in additional operations in accordance with the
invention.

Alternatively, Such actions may be embodied in the struc
ture of circuitry that implements such functionality, such as
the micro-code of a complex instruction set computer (CISC),
firmware programmed into programmable or erasable/pro
grammable devices, the configuration of a field-program
mable gate array (FPGA), the design of a gate array or full
custom application-specific integrated circuit (ASIC), or the
like.

Each of the blocks of FIG. 2, as with other of the processes
described herein, may be executed by a module (e.g., a soft
ware module) or a portion of a module or a computer system
user using, for example, a computer system Such as the Stor
age router previously mentioned, or a similar network ele

10

15

25

30

35

40

45

50

55

60

65

14
ment, as well as a computer system such as that described
subsequently herein. Thus, the above described method, the
operations thereof and modules therefor may be executed on
a computer system configured to execute the operations of the
method and/or may be executed from computer-readable
media. The method may be embodied in a machine-readable
and/or computer-readable medium for configuring a com
puter system to execute the method. Thus, the software mod
ules may be stored within and/or transmitted to a computer
system memory to configure the computer system to perform
the functions of the module.

Such a computer system normally processes information
according to a program (a list of internally stored instructions
Such as a particular application program and/or an operating
system) and produces resultant output information via I/O
devices. A computer process typically includes an executing
(running) program or portion of a program, current program
values and state information, and the resources used by the
operating system to manage the execution of the process. A
parent process may spawn other, child processes to help per
form the overall functionality of the parent process. Because
the parent process specifically spawns the child processes to
perform a portion of the overall functionality of the parent
process, the functions performed by child processes (and
grandchild processes, etc.) may sometimes be described as
being performed by the parent process.

Such a computer system typically includes multiple com
puter processes executing "concurrently.” Often, a computer
system includes a single processing unit which is capable of
Supporting many active processes alternately. Although mul
tiple processes may appear to be executing concurrently, at
any given point in time only one process is actually executed
by the single processing unit. By rapidly changing the process
executing, a computer system gives the appearance of con
current process execution. The ability of a computer system to
multiplex the computer system's resources among multiple
processes in various stages of execution is called multitask
ing. Systems with multiple processing units, which by defi
nition can Support true concurrent processing, are called mul
tiprocessing systems. Active processes are often referred to as
executing concurrently when such processes are executed in
a multitasking and/or a multiprocessing environment.
The software modules described herein may be received by

Such a computer system, for example, from computer read
able media. The computer readable media may be perma
nently, removably or remotely coupled to the computer sys
tem. The computer readable media may non-exclusively
include, for example, any number of the following: magnetic
storage media including disk and tape storage media. optical
storage media Such as compact disk media (e.g., CD-ROM,
CD-R, etc.) and digital video disk storage media. nonvolatile
memory storage memory including semiconductor-based
memory units such as FLASH memory, EEPROM, EPROM,
ROM or application specific integrated circuits. Volatile stor
age media including registers, buffers or caches, main
memory, RAM, etc. and data transmission media including
computer network, point-to-point telecommunication, and
carrier wave transmission media. In a UNIX-based embodi
ment, the software modules may be embodied in a file which
may be a device, a terminal, a local or remote file, a socket, a
network connection, a signal, or other expedient of commu
nication or state change. Other new and various types of
computer-readable media may be used to store and/or trans
mit the software modules discussed herein.
FIG.3 is a flow diagram illustrating the actions performed

by pricing module 141 (in communication with catalog mod
ule 140, and, e.g., within modules layer 115) in response to a

US 7.584, 155 B1
15

request to price one or more items (which appears in FIG. 2 as
step 220). The process begins with the instantiation of a quote
processor within services layer 120 (step 300). Next, a super
quote is built by pricing module 141 for servicing by services
residing in services layer 120 (e.g., quote processor 150 and
pricing service 145) (step 310). The super-quote contains
Sufficient information to permit the generation of a number of
quotes. Thus, for example, the Super-quote may contain all
the information required to present the customer with pricing
information for all the products on the page of a catalog.
Pricing module 141 then calls pricing service 145 by sending
request for price(s) 165 (containing, for example, a Super
quote and an identifier identifying the instance of quote pro
cessor 150 to be employed) to pricing service 145 (step 320).
The identifier can be used, for example, to identify which one
of a number of quote processors to which the Super-quote is to
be sent. Thus, each quote processor can have its own defini
tion of the bits in a given data structure (e.g., bit vector
(described subsequently)). This allows the same infrastruc
ture to be used to process a variety of Super-quotes, simply by
enlisting the services of the quote processor configured to
process the given Super-quote. Pricing service 145 responds
to catalog module 140 with quote 190 that contains the pric
ing data requested. Pricing module 141 receives the results for
presentation to the customer via JSP layer 111.

FIG. 4 is a flow diagram illustrating the actions performed
within services layer 120 by pricing service 145 in response to
being called by pricing module 141 (which appears in FIG. 3
as step 320, a call to pricing service 145). The process begins
with the deserialization of request for price(s) 165, which
contains, for example, a Super-quote and an identifier identi
fying a quote processor to be employed (e.g., quote processor
150) (step 400). Next, pricing service 145 calls quote proces
sor 150 (step 410). Pricing service 145 passes pricing data
185 to quote processor 150 to enable quote processor 150 to
gather the requisite data and thus provide the requisite pric
ing. Once pricing service 145 receives pricing data 185 from
quote processor 150, the results are converted to a list of one
or more prices (step 415). It will be noted that the use of a list
is only a specific example—the price(s) thus retrieved can be
returned in any appropriate or desirable format. Typically, a
catalog will employ price lists, for example. Pricing service
145 then returns the requested information (e.g., quote 190) to
pricing module 141 (step 420). It will be noted that, in return
ing the requested information, the results are packaged and
serialized in a process that is essentially the mirror image of
that just noted.

FIG. 5A is a flow diagram illustrating the actions per
formed by quote processor 150 in gathering pricing data and
pricing one or more items in response to a request from
pricing service 145. The process begins with quote processor
gathering data by calling pricing engine 151 (step 500). This
call is depicted as gather data call 170 in FIG. 1. This call
causes pricing engine 151 to access database 160. Once the
requisite pricing data has been gathered, quote processor 150
proceeds with pricing the one or more configurations to be
priced (e.g., via a pricing data call Such as pricing data call
182). This method of accessing database 160 (multiple
accesses generated in response to one Super-quote) allows the
pricing of multiple products, multiple configurations of a
single product and other such multiple pricing scenarios, in
response to a single Super-quote. The aforementioned advan
tages are thus provided, including fewer database accesses
and faster response times. Quote processor 150 first prices a
configuration (step 510), then determines whether all con
figurations requiring pricing have been thus priced (step 520).
Once this iterative portion of the process completes, the

5

10

15

25

30

35

40

45

50

55

60

65

16
results of these operations are packaged for provision to pric
ing service 145 as pricing data 185, and So, on to pricing
module 141 as quote 190 (step 530). It will be noted that
pricing data 185 can be a specific price (e.g., the price of the
given configuration) or a pricing delta (e.g., the difference in
price between a base configuration and another configura
tion).

FIG. 5B is a diagram illustrating an example of a data
structure that can be used to implement portions of a Super
quote. The data structure depicted in FIG. 5B is a set of bit
vectors (bit vectors 550). Bit vectors 550 include a number of
bits (bits 560(1,1)-(N.N)) that indicate whether a given con
figuration of a given product includes one or more of the
features available for that product. For example, a column in
bit vectors 550 (e.g., bits 560(1,2)-(N-2)) can be used to
represent the presence or absence of a given feature in the
product configuration corresponding to each row of bit vec
tors 550. This might be the case where a customer requests the
base configuration of a given product (e.g., represented by the
first row of bit vectors 550, bits 560(1,1)-(1,N)), and the most
popular (most likely to be requested) configurations are also
retrieved. In that case, the presence or absence of the relevant
features would be indicated by bits 560(1,1)-(NN). Thus,
when pricing service 145 requests further pricing data (or
other data) (e.g., on other configurations of the product
reflected in bit vectors 550), quote processor 150 is able to
respond without database 160 having to be queried.

In fact, the use of a Super-quote also allows a customer to
price multiple configurations simultaneously. For example, in
the case where a user desires to compare a number of con
figurations of a given vehicle, a Super-quote that retrieves
pricing data for each such configurations can be constructed.
In that case, bit vector 550 contains values that reflect the
various configurations to be priced.

Alternatively, a catalog page might be requested. In that
scenario, each column of bit vectors 550 represents a corre
sponding product on the given catalog page. Thus, each row
of bit vector 550 contains a single affirmative value (e.g., a
one), for the given product represented thereby. Bit vector 550
thus might contain a diagonal filled with affirmative values,
with the rest of the values being negative (e.g., Zeroes). To
generate the prices (or other information) needed for a catalog
page, pricing service 145 simply requests the necessary infor
mation for each product on the catalog page, to which quote
processor 150 responds with data for each product, again
without resort to database 160.

Thus, a Super-quote achieves at least two objectives. First,
the Super-quote allows data for multiple quotes to be gathered
using fewer accesses than would typically be used in gather
ing Such information. Second, the use of a Super-quote in a
Software architecture according to embodiments of the
present invention decouples the quote (or Super-quote) from
the processing of that quote. Pre-processing and post-pro
cessing of a quote can be performed at any time, once the
information (e.g., pricing data) has been retrieved. This is
due, in part, to the persisting of data in memory post-pro
cessing can occur at any time, once the data has been per
sisted. This persistence can be effected by caching the infor
mation in memory, for example. Moreover, the use of a bit
vector such as bit vector 550 (or similar data structure) allows
for the efficient representation of such information.

FIG. 6 is a flow diagram illustrating the actions performed
by pricing engine 151 in accessing database 160. The process
consists of pricing engine 151 gathering data from database
160 by sending data request 175 and receiving requested
pricing data 180 in response (step 600). It is this operation that
the present invention minimizes through the use of a Super

US 7.584, 155 B1
17

quote, by making a request that includes multiple queries. By
including a request for the data necessary to satisfy all Such
queries in the given Super-quote, software architecture 100
avoids the need to make Such queries separately, and so the
overhead associated with Such multiple queries.
An Example Computing and Network Environment

FIG. 7 depicts a block diagram of a general-purpose com
puter 700 suitable for implementing embodiments of the
present invention, for example, clients and/or servers in a
client/server architecture. General-purpose computer 700 is
typically a data processing system designed to provide com
puting power to one or more users, either locally or remotely.
Input user device(s) 710. Such as a keyboard and/or mouse, as
well as other input/output (I/O) devices 715 (via I/O interface
(I/F) 716) are coupled to a bi-directional system bus 720. The
input user device(s) 710 permit user input to the computer
system and communicating that user input to processor 730.
General-purpose computer 700 also includes a video memory
735, a main memory 740 and a mass storage unit 750, all
coupled to bi-directional system bus 720 along with input
user device(s) 710 and processor 730. Mass storage unit 750
may include both fixed and removable media, such as floppy
disk(s), hard disk(s), tape drive(s), CD-ROM drive(s), CD
RW drive(s) and the like. Bus 720 may contain, for example,
732 address lines for addressing video memory 735, main
memory 740, controllers for mass storage unit 750 and the
like. System bus 720 also includes, for example, a 82-bit data
bus for transferring data between and among the components,
such as mass storage unit 750, processor 730, video memory
735 and main memory 740. Alternatively, multiplex data/
address lines may be used instead of separate data and address
lines.

Computer programs and data are generally stored as
instructions and data in mass storage unit 750 until loaded
into main memory 740 for execution. Computer programs
may also be in the form of electronic signals modulated in
accordance with the computer program and data communi
cation technology when transferred via a network. The
method and functions relating to the present invention may be
implemented in a computer program alone or in conjunction
with combinations of hardware and software. Furthermore,
context Subsystem data structures can be implemented in and
utilized by general-purpose computer 700, or by other data
processing systems that have access to the data structures.

In an embodiment of this invention, processor 730 is a
82-bit microprocessor manufactured by Motorola (e.g., an
680x0 microprocessor) or by Intel (e.g., an 80x86 or Pentium
microprocessor). However, any other Suitable microproces
sor or microcontroller may be utilized. Main memory 740 is
preferably comprised of dynamic random access memory
(DRAM). Video memory 735 is preferably a dual-ported
Video random access memory. One port of the video memory
735 is coupled to video amplifier 755. The video amplifier
755 is used to drive the display 760. Video amplifier 755 is
well known in the art and may be implemented by any suitable
means. This circuitry converts pixel data stored in video
memory 735 to a raster signal suitable for use by display 760.
Display 760 is a type of monitor suitable for displaying
graphical images.
The computer system described above is depicted for pur

poses of example only. The present invention may be imple
mented in any type of computer system or programming or
processing environment. It is contemplated that the present
invention might be run on a stand-alone computer system,
such as the one described above. The present invention might
also be run from a server system that can be accessed by a

10

15

25

30

35

40

45

50

55

60

65

18
plurality of client computer systems interconnected over an
intranet network. Finally, the present invention may be run
from a server that is accessible to clients over a wide-area
network (WAN) such as the Internet, as is described with
regard to FIG. 8.
Many other devices or subsystems (not shown) may be

connected in a similar manner (e.g., bar code readers, docu
ment Scanners, digital cameras and so on). Conversely, it is
not necessary for all of the devices shown in FIG. 7 to be
present to practice the present invention. The devices and
subsystems may be interconnected in different ways from that
shown in FIG. 7. The operation of a computer system such as
that shown in FIG. 7 is readily known in the art and is not
discussed in detail in this application.

FIG. 8 is a block diagram depicting a network 800 in which
general-purpose computer 700 is coupled to an internetwork
805, which is coupled, in turn, to client systems 810 and 820,
as well as servers 830 and 835. Internetwork 805 (e.g., the
Internet) is also capable of coupling client systems 810 and
820, and servers 830 and 835 to one another. With reference
to general-purpose computer 700, modem 747, network inter
face 748 or some other method can be used to provide con
nectivity from general-purpose computer 700 to internetwork
805. General-purpose computer 700, client system 810 and
client system 820 are able to access information on one or
both of servers 830 and 835 using, for example, a web
browser (not shown). Such a web browser allows general
purpose computer 700, as well as client systems 810 and 820,
to access data on servers 830 and 835 representing the pages
ofa website hosted by a respective one of servers 830 and 835.
Protocols for exchanging data via the Internet are well known
to those skilled in the art. Although FIG. 8 depicts the use of
the Internet for exchanging data, the present invention is not
limited to the Internet or any particular network-based envi
rOnment.

Referring to FIGS. 7 and 8, a browser running on a com
puter system (e.g., computer system 700) can employ a TCP/
IP connection to pass a request to a server (e.g., server 830),
which can run an HTTP “service” (e.g., under the WIN
DOWSR) operating system; also referred to herein as an
HTTP server) or a “daemon” (e.g., under the UNIX(R) oper
ating system), for example. Such a request can be processed
by contacting such an HTTP server using a protocol that can
be used to communicate between the computer and the server
(i.e., HTTP). The HTTP server then responds to the protocol,
typically by sending a “web page' formatted as an HTML
file. The browser interprets the HTML file and may form a
visual representation of the same using local resources (e.g.,
fonts and colors).

Referring again to FIGS. 7 and 8, server 830 (which
includes an HTTP server, as previously noted) can further
include a web server (not shown), an application server (also
not shown) and a database server operating with an open
distributed object computing infrastructure Such as Common
Object Request Broker Architecture (CORBA) (also not
shown). The web server can include a user interface layer and
a centralized dispatch mechanism, both of which can be
implemented employing Java Server Pages (JSP), for
example.
One advantage of employing JSP is that the use of JSP

facilitates organization of a website as a state machine. In this
manner, the logical organization of a website can be arranged
in categories, for example: Controls, States and Transitions.
Controls include a Java class of elements that manage the
active elements of a page such as render control text or inter
pret user's action with respect to a page. Examples of controls
would be the management of a virtual button on a web page or

US 7.584, 155 B1
19

login management that could include providing a number of
dialog boxes containing textanda virtual button. States define
a user's current location on the website (e.g., in a state
machine). Such as the web page that a user is presently view
ing. States also define the relationship of a user with respect to 5
a web page being viewed. Transitions define the new state of
a user and are a function of a users interaction with a page.
Specifically, a transition is defined by the user's current state
and the actions taken by the user while in that state (e.g., the
result of user operation on a control alters the user's state). 10
Simply put, the user's new state is simply defined as the user's
current state, as modified by the transition selected. The tran
sitions are located in a transition module that is responsible
for all transitions.

Advantages of the state machine model of the website are 15
that it is has maintainability to facilitate update flow or pages
very easily and per user state machine. Service different users
with maximum code reuse. It is also consistent in that most or
all server logic is handled under the same paradigm. Login
control, record and display controls cause transitions which 20
update state. Typically, XML/XSL defines the state machine,
page content and layout. Such a methodology can also be
compatible with the Wireless Application Protocol (WAP).
This can extend an existing web site to provide alternative
state machines for WAP users. 25

While particular embodiments of the present invention
have been shown and described, it will be obvious to those
skilled in the art that, based upon the teachings herein,
changes and modifications may be made without departing
from this invention and its broader aspects and, therefore, the 30
appended claims are to encompass within their scope all Such
changes and modifications as are within the true spirit and
scope of this invention. Furthermore, it is to be understood
that the invention is solely defined by the appended claims.

35

What is claimed is:
1. A method for generating prices of one or more configu

rations of features of a product, the method comprising:
using a computer system configured to perform each of the

following:
receiving at least a modification of one or more of features

of a first configuration of the product;
generating a first delta price for a second configuration of

the product after receiving the modification of the one or
more features of the first configuration, wherein the sec
ond configuration is the first configuration as modified
by the received modification, the modification of the one
or more features of the first configuration results in a
price change between the first and second configurations
of the product, and the first delta price comprises the
price change;

generating a price of the second configuration using the
first delta price and the price of the first configuration;
and 55

providing the first delta price and the price of the second
configuration of the product to a computer system of a
user to indicate to the user a pricing impact associated
with the modification of the one or more features of the
first configuration of the product. 60

2. The method of claim 1 wherein the price of the first
configuration prior to the modification of one or more fea
tures of the first configuration represents a base price of the
first configuration, the method further comprising: using the
computer system to perform: 65

generating a final price of the second configuration using
the base price and the first delta price.

40

45

50

20
3. The method of claim 2, wherein generating the final

price of the second configuration comprises adjusting the
base price by the delta price.

4. The method of claim 2, further comprising:
using the computer system to perform:
receiving a selection of an additional feature, wherein:
the modification of the one or more features of the first

configuration comprises adding an additional feature to
the first configuration;

the final price is associated with the product; and
a second delta price is generated in response to the selec

tion of the additional feature for the product.
5. The method of claim 2, further comprising:
using the computer system to perform:
receiving a selection removing a feature from the first

configuration, wherein:
the modification of the one or more features of the first

configuration comprises removing the feature from the
first configuration;

the final price is associated with the product; and
the final price is generated in response to the selection

removing the feature from the product first configura
tion.

6. The method of claim 2, wherein:
the computer system of the user is a client computer sys

tem;
the first delta price is generated by a server computer sys

tem, the first delta price is generated in response to the
modification of one or more of features of the first con
figuration of the product at the client computer system,
and

the client computer system is communicatively coupled to
the server computer system.

7. The method of claim 6 further comprising:
using the computer system to perform:
providing the final price to the client computer system for

display by the client computer system.
8. The method of claim 2, wherein:
the base price is generated in response to a selection of the

first configuration of the product, and
the first delta price is generated in response to at least one
member of a group consisting of addition of one or more
features to the first configuration, removal of one or
more features of the first configuration, and Substitution
of one or more features of the first configuration with one
or more additional features of the first configuration.

9. The method of claim 8, wherein:
the product is a service.
10. The method of claim 1 further comprising:
using the computer system to perform:
receiving at least a modification of one or more features of

the second configuration of the product;
generating a second delta price for a third configuration of

the product after receiving the modification by changing
a number of the one or more features in the second
configuration, wherein the third configuration is the Sec
ond configuration as modified by the received modifica
tion of the one or more features of the second configu
ration, the modification of the one or more features of the
second configuration results in a price change between
the second configuration and the third configuration of
the product, and the second delta price comprises the
price change between the second and third configura
tions of the product;

generating a price of the third configuration using second
delta price and the price of the second configuration; and

US 7.584, 155 B1
21

providing the price of the third configuration and the sec
ond delta price to the computer system of the user to
indicate to the user a pricing impact associated with the
modification of the one or more features of the second
configuration of the product.

11. The method of claim 10, wherein:
the computer system of the user is a client computer sys

tem;
the first delta price and the second delta price are generated
by a server computer system;

the first delta price is generated in response to a first selec
tion of a first feature at the client computer system;

the second delta price is generated in response to a second
Selection of a second feature at the client computer sys
tem; and

the client computer system is communicatively coupled to
the server computer system.

12. The method of claim 11 further comprising:
using the computer system to perform:
generating a final price of the third configuration using a

base price of the first configuration and the second delta
price; and

providing the final price to the client computer system for
display by the client computer system to allow compari
son between the final price and the modified price of the
second configuration.

13. The method of claim 8 wherein modification of the one
or more features of the first configuration further comprises
adding multiple features to the first configuration.

14. The method of claim 8 wherein modification of the
second configuration further comprises at least one member
of a group consisting of: adding multiple features to the
second configuration and removing at least one of the features
of the second configuration.

15. The method of claim 1 wherein the modification of the
one or more features of the first configuration comprises at
least one member of a group consisting of addition of one or
more features to the first configuration, removal of one or
more features of the first configuration, and substitution of
one or more features of the first configuration with one or
more additional features of the first configuration.

16. The method of claim 1 wherein a unique feature is a
feature not common to both the first and second configura
tions of the product, each unique feature has an individual
price, and the price change does not equal an aggregate of
each individual price for each unique feature.

17. The method of claim 1 further comprising:
using a computer system to perform:
receiving modifications of one or more features of the

second configuration, wherein the modifications of the
one or more features of the first configuration and the
modification of the one or more features of the second
configuration are sent at one time by a user, and

providing a comparison between a price of the first con
figuration and the price of the second configuration of
the product.

18. A tangible computer storage medium comprising code
for generating prices of multiple configurations of features of
a product, wherein the code is executable by a processor of a
computer system, wherein when executed by the processor
the code causes the computer system to:

receive at least a first and second configurations modifica
tion of one or more of features of a first configuration of
the product;

generate a first delta price for a second configuration of the
product following after receiving the modification of the
one or more features of the first configuration, wherein

10

15

25

30

35

40

45

50

55

60

65

22
the second configuration is the first configuration as
modified by the received modification, the modification
of the one or more features of the first configuration
results in a price change between the first and second
configurations of the product, and the first delta price
comprises the price change;

generate a price of the second configuration using the first
delta price and the price of the first configuration; and

provide the first delta price and the price of the second
configuration of the product to a computer system of a
user to indicate to the user a pricing impact associated
with the modification of the one or more features of the
first configuration of the product.

19. The tangible computer storage medium of claim 18
wherein the price of the first configuration prior to the modi
fication of one or more features of the first configuration
represents a base price of the first configuration and wherein
the code further causes the computer system to:

generate a final price of the second configuration using the
base price and the first delta price.

20. The tangible computer storage medium of claim 19,
whereinto generate the final price of the second configuration
comprises adjusting the base price by the delta price.

21. The tangible computer storage medium of claim 19
wherein the code further causes the computer system to:

receive a selection of an additional feature, wherein:
the modification of the one or more features of the first

configuration comprises adding an additional feature to
the first configuration;

the final price is associated with the product; and
a second delta price is generated in response to the selec

tion of the additional feature for the product.
22. The tangible computer storage medium of claim 19

wherein the code further causes the computer system to:
receive a selection removing a feature from the first con

figuration, wherein:
the modification of the one or more features of the first

configuration comprises removing the feature from the
first configuration;

the final price is associated with the product; and
the final price is generated in response to the selection

removing the feature from the product first configura
tion.

23. The tangible computer storage medium of claim 19
wherein the code further causes the computer system to:

provide the final price to the computer system of the user
for display by the computer system of the user.

24. The tangible computer storage medium of claim 19,
wherein:

the base price is generated in response to a selection of the
first configuration of the product, and

the first delta price is generated in response to at least one
member of a group consisting of addition of one or more
features to the first configuration, removal of one or
more features of the first configuration, and Substitution
of one or more features of the first configuration with one
or more additional features of the first configuration.

25. The tangible computer storage medium of claim 24,
wherein: the product is a service.

26. The tangible computer storage medium of claim 18
further comprising code to:

receive at least a modification of one or more features of the
second configuration of the product;

generate a second delta price for a third configuration of the
product after receiving the modification by changing a
number of the one or more features in the second con
figuration, wherein the third configuration is the second

US 7.584, 155 B1
23

configuration as modified by the received modification
of the one or more features of the second configuration,
the modification of the one or more features of the sec
ond configuration results in a price change between the
second configuration and the third configuration of the
product, and the second delta price comprises the price
change between the second and third configurations of
the product;

generate a price of the third configuration using second
delta price and the price of the second configuration; and

provide the price of the third configuration and the second
delta price to the computer system of the user to indicate
to the user a pricing impact associated with the modifi
cation of the one or more features of the second configu
ration of the product.

27. The tangible computer storage medium of claim 26,
wherein the first delta price is generated in response to a first
selection of a first feature; and

the second delta price is generated in response to a second
Selection of a second feature.

28. The tangible computer storage medium of claim 19 the
tangible computer storage medium further comprising code
tO:

generate a final price of the third configuration using a base
price of the first configuration and the second delta price;
and

provide the final price of the third configuration to the
client computer system for display by the client com
puter.

29. The tangible computer storage medium of claim 18
wherein the modification of the first configuration comprises
adding an additional feature to the configuration.

30. The tangible computer storage medium of claim 18
wherein modification of the first configuration further com
prises adding multiple features to the configuration.

10

15

25

30

24
31. The tangible computer storage medium of claim 18

wherein modification of the first configuration further com
prises adding multiple features to the configuration and
removing at least one of the features of the configuration.

32. The tangible computer storage medium of claim 31
wherein the modification of the first configuration comprises
removing one of the features of the configuration.

33. The tangible computer storage medium of claim 31
wherein a unique feature is a feature not common to both the
first and second configurations of the product, each unique
feature has an individual price, and the price change does not
equal an aggregate of each individual price for each unique
feature.

34. An apparatus for generating prices of multiple configu
rations of features of a product, the apparatus comprising:

a receiver to receive at least a modification of one or more
of features of a first configuration of the product;

generating a first delta price for a second configuration of
the product after receiving the modification of the one or
more features of the first configuration, wherein the sec
ond configuration is the first configuration as modified
by the received modification, the modification of the one
or more features of the first configuration results in a
price change between the first and second configurations
of the product, and the first delta price comprises the
price change;

means for generating a price of the second configuration
using the first delta price and the price of the first con
figuration;

means for providing the first delta price and the price of the
second configuration of the product to a computer sys
tem of a user to indicate to the user a pricing impact
associated with the modification of the one or more
features of the first configuration of the product.

k k k k k

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION

PATENT NO. : 7,584, 155 B1 Page 1 of 1
APPLICATION NO. : 10/061896
DATED : September 1, 2009
INVENTOR(S) : Carter, III et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

On the Title Page:

The first or sole Notice should read --

Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b)
by 1443 days.

Signed and Sealed this

Fourteenth Day of December, 2010

David J. Kappos
Director of the United States Patent and Trademark Office

