发明名称：一种氧化铝载体的制备方法

摘要

本发明公开了一种氧化铝载体的制备方法，将两种不同的拟薄水铝石干胶粉均匀混合，然后进行胶溶、成型、干燥，焙烧制得本发明氧化铝。所述的两种不同的拟薄水铝石，其中第一种拟薄水铝石的孔容在0.50ml/g～0.80ml/g之间，加入比例占投料Al₂O₃的5w％～50w％；第二种拟薄水铝石的孔容在0.85ml/g～1.50ml/g之间。采用本发明方法，拟薄水铝石干胶的制备过程中无特殊的环境污染；所制备的氧化铝载体孔直径分别集中在6nm～35nm和100nm～2000nm范围内，载体的强度高，磨损率低。按本发明方法制备出的氧化铝载体可作为生产重油加氢保护剂、脱金属催化剂及扩散控制的反应过程催化剂的载体。
1、一种氧化铝载体的制备方法，其特征在于将两种不同的拟薄水铝石干胶粉均匀混合，然后进行胶溶、成型、干燥、焙烧制得所述的氧化铝载体；所述的两种不同的拟薄水铝石，其中第一种拟薄水铝石的孔容在 0.50ml/g～0.80ml/g 之间，加入比例占投料 Al₂O₃ 的 5w%～50w%；第二种拟薄水铝石的孔容在 0.85ml/g～1.50ml/g 之间。

2、根据权利要求 1 所述的氧化铝载体的制备方法，其特征在于所述的第一种拟薄水铝石加入比例占投料 Al₂O₃ 的 10w%～40w%。

3、根据权利要求 1 所述的氧化铝载体的制备方法，其特征在于所述的第一种拟薄水铝石的相对结晶度为 65%～100%，0.04 μm～15.65 μm 颗粒占 75%～100%。

4、根据权利要求 1 所述的氧化铝载体的制备方法，其特征在于所述的第一种拟薄水铝石的相对结晶度为 70%～90%，0.04 μm～15.65 μm 颗粒占 85%～98%，孔容在 0.60ml/g～0.75ml/g 之间。

5、根据权利要求 1 所述的氧化铝载体的制备方法，其特征在于所述的第二种拟薄水铝石的相对结晶度为 45%～60%，15.65 μm～61.00 μm 颗粒占 10%～40%。

6、根据权利要求 1 所述的氧化铝载体的制备方法，其特征在于所述的第二种拟薄水铝石的相对结晶度为 50%～60%，15.65 μm～61.00 μm 颗粒占 15%～35%，孔容在 0.90ml/g～1.30 ml/g 之间。

7、根据权利要求 1 所述的氧化铝载体的制备方法，其特征在于所述的两种不同的拟薄水铝石干胶粉，均选自铝酸钠与二氧化碳、硫酸铝、硝酸或硝酸铝中和反应得到的拟薄水铝石。
8. 根据权利要求1所述的氧化铝载体的制备方法，其特征在于两种不同的拟薄水铝石干胶粉的混合物用硝酸和/或醋酸水溶液胶溶成型，酸的用量为Al_2O_3投料量的0.1w%～10.0w%。

9. 根据权利要求1的方法制备的氧化铝载体，其特征在于其小孔直径集中在6nm～35nm，大孔直径集中在100nm～2000nm。

10. 根据权利要求1的方法制备的氧化铝载体，其特征在于其表面积在50m2/g～300m2/g之间，孔容在0.55ml/g～1.50ml/g之间，孔直径在100nm～2000nm的孔容占总孔容的15%～60%。
一种氧化铝载体的制备方法

技术领域

本发明涉及一种氧化铝载体的制备方法，特别是重油加氢保护剂和脱金属催化剂及扩散控制的反应过程双峰孔结构催化剂用氧化铝载体的制备方法。

背景技术

目前，制备加氢保护剂和脱金属催化剂及扩散控制的反应过程用催化剂多采用大孔容、大孔径的双峰孔结构氧化铝为载体，使其既具有用于金属氧化物分子迁移的大孔，又具有提供催化作用的小孔。如 CN1129606A、CN1103009A 等介绍氧化铝制备方法，均采用不同的氧化铝干胶为原料，大孔部分通过加入各种造孔剂来得到，小孔部分由氧化铝的前身物性质所决定。所谓的小孔孔直径在 6nm～35nm，其作用是提供催化和金属沉积所需的表面；所谓的大孔孔直径多在 100nm 以上，用于反应物分子迅速迁移的通道和杂质沉积的场所，它对催化不提供较多的表面，这样的孔结构有利于反应物的扩散和催化剂保持长寿命。

CN 1047957C 通过了双峰孔结构氧化铝载体的制备方法，该方法采用两种或两种以上不同原料路线制备的拟薄水铝石干胶，其中至少含有一种氧化铝—氨水和法制备的拟薄水铝石干胶粉。该干胶粉在制备过程中使用盐酸、氨水等有腐蚀性和有毒物质，盐酸对设备腐蚀性非常严重，洗涤液中，NH₄⁺ 含量极高，对水体污染相当厉害；该方法采用多次打浆洗涤，导致产品收率较低、用水量大，滤饼中氯离子含量达 1% 左右。用该法制备的铝干胶工艺过程复杂、成本较高，采用该法制备的铝干胶为原料制备的氧化铝载体的价格也较高。重油脱金属催化剂为一次性产品，使用周期较短，不可再生利用，要求其制备成本相当低廉，而采用该方法制备的氧化铝载体生产的催化剂成本会比较高。

发明内容
为了克服现有技术的不足，本发明目的在于提供一种制备具有双峰孔结构氧化铝载体的方法。采用该方法制备出的氧化铝载体具有大孔容、大孔径、高强度、低磨损率及低成本的特点。

本发明的氧化铝载体可以选用两种拟薄水铝石为原料，加入适量的无机酸、有机酸或两种酸的混合溶液，在搅拌状态下，制成流动性较好的糊状浆液，然后通过常规的成型工艺路线制备出本发明氧化铝载体。

本发明所用的拟薄水铝石可以是通过碱性物质主要是偏铝酸钠，酸性物主要是硝酸铝、硫酸铝、二氧化碳或硝酸，通过合适的配比进行中和反应，制得拟薄水铝石，本发明所采用的中和反应是：硝酸铝＋偏铝酸钠、硫酸铝＋偏铝酸钠、硝酸＋偏铝酸钠，二氧化碳＋偏铝酸钠等。最好选用硫酸铝＋偏铝酸钠、二氧化碳＋偏铝酸钠方法制备的拟薄水铝石。本发明所用的拟薄水铝石是通过相对结晶度、孔容、粒度分布等指标来确定的。拟薄水铝石的相对结晶度是以美国 Condia 公司生产的 SB 干胶粉为参照定为 100%，测试粉与之对比得到结果。

将以上两种方法制备的拟薄水铝石分成两种，其性质如表 1 所示。

<table>
<thead>
<tr>
<th></th>
<th>第一种拟薄水铝石</th>
<th>第二种拟薄水铝石</th>
</tr>
</thead>
<tbody>
<tr>
<td>相对结晶度，%</td>
<td>65～100</td>
<td>45～60</td>
</tr>
<tr>
<td>颗粒分布，%</td>
<td>0.04～15.65 μm 颗粒占 75%～100%</td>
<td>15.65～61.00 μm 颗粒占 10%～40%</td>
</tr>
<tr>
<td>孔容，ml/g</td>
<td>0.50～0.80</td>
<td>0.85～1.50</td>
</tr>
<tr>
<td>三水铝石含量，m%</td>
<td>≤3</td>
<td>≤3</td>
</tr>
</tbody>
</table>

所述的拟薄水铝石的最佳物化性质如表 2 所示。
表 2 拟薄水铝石的最佳物化性质

<table>
<thead>
<tr>
<th></th>
<th>第一种拟薄水铝石</th>
<th>第二种拟薄水铝石</th>
</tr>
</thead>
<tbody>
<tr>
<td>相对结晶度，%</td>
<td>70〜90</td>
<td>50〜60</td>
</tr>
<tr>
<td>颗粒分布，%</td>
<td>0. 04〜15. 65 μm 颗粒占 85%〜98%</td>
<td>15. 65〜61. 00 μm 颗粒占 15%〜35%</td>
</tr>
<tr>
<td>孔容，ml/g</td>
<td>0. 60〜0. 75</td>
<td>0. 90〜1. 30</td>
</tr>
<tr>
<td>三水铝石含量，m%</td>
<td>≤3</td>
<td>≤3</td>
</tr>
</tbody>
</table>

本发明的氧化铝载体选用两种成本低廉、环境污染小的拟薄水铝石为原料。将两种不同的拟薄水铝石混合，加入酸性溶液，如硝酸和/或乙酸的水溶液，经胶溶变成流动性糊状混合物，然后再经油碳柱成型方法成球或者挤出成型法成条，再经干燥、焙烧则可制得本发明氧化铝载体。

第一种拟薄水铝石具有较好的成型性，同时能提供一定量孔直径在 6nm〜35nm 之间的小孔；第二种拟薄水铝石型性较差，但能同时提供孔直径在 6nm〜35nm 之间的小孔，重要的是还有较多孔直径在 100nm〜2000nm 之间的大孔。通过调整第一种拟薄水铝石与第二种拟薄水铝石的混合比例，可以制出具有较高机械强度、磨损率低，适合孔分布的双峰孔氧化铝载体。并且该种氧化铝载体的堆密度大，小孔比例等物化性质可以在较大范围内灵活调变。随着第一种拟薄水铝石加入量的增加，载体的小孔比例、堆比重、强度增大，磨损率降低。

本发明氧化铝载体的制备方法为：称取一定量的第一种拟薄水铝石干胶粉和余量相应比例第二种拟薄水铝石干胶粉。在胶溶罐中加入硝酸和/或醋酸水溶液，搅拌将称好的干胶粉加入，在胶溶罐中混合均匀呈糊状浆液，然后在油柱中成球或在挤条机中挤条，再经干燥、焙烧则可制得氧化铝载体。

在本发明的制备过程中：
(1) 第一种拟薄水铝石干胶粉的加入量为 Al₂O₃ 投料量的 5w%〜50w%，最好在 10w%〜40w%，余量为第二种拟薄水铝石干胶粉。
（2）胶溶用酸选用硝酸和/或醋酸，用量为 Al₂O₃ 投料量的 0.1%～10%。
（3）胶溶时间（即搅拌时间）为 0.5～3 小时。
（4）干燥时间和温度：在 60～120℃条件下干燥 8～12 小时。
（5）焙烧时间及温度：在马弗炉中升温速度为 100～240℃/小时，在 550～
1200℃恒温 1～5 小时。

按本发明方法制得的氧化铝载体，其比表面积为 50m²/g～300m²/g，孔容
为 0.55 ml/g～1.50 ml/g，压碎强度 25N/粒～110N/粒，磨损率为 0.15%～
1.0%。双峰孔直径分别集中在 6nm～35nm 和 100 nm～2000nm 两个区域，
100 nm～2000nm 的大孔占总孔容 15%～60%。

按本发明方法制备的氧化铝载体具有如下优点：
（1）不需使用干胶的制备过程中无特殊的环境要求；
（2）双峰孔直径分别集中在 6nm～35nm 和 100 nm～2000nm 两个区域；
（3）载体物化性质可灵活调整，有利于制出合适的氧化铝载体；
（4）不需使用干胶的制备成本低廉；
（5）氧化铝载体强度高，磨耗率低，适合重油加氢保护剂和脱金属催化
剂及扩散控制的反应过程双峰孔结构催化剂用氧化铝载体。

具体实施方式

实验所用的几种拟薄水铝石的物化性质如表 3 所示。

表 3 几种拟薄水铝石的物化性质

<table>
<thead>
<tr>
<th>干胶粉</th>
<th>A</th>
<th>B-1</th>
<th>B-2</th>
<th>B-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>相对结晶度，%</td>
<td>82</td>
<td>61</td>
<td>58</td>
<td>52</td>
</tr>
<tr>
<td>颗粒分布</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.04～15.65 μm</td>
<td>91.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.65～61.0 μm</td>
<td>19</td>
<td>24</td>
<td>14.6</td>
<td></td>
</tr>
<tr>
<td>孔容，ml/g</td>
<td>0.76</td>
<td>0.98</td>
<td>1.40</td>
<td>0.97</td>
</tr>
<tr>
<td>三水铝石含量，m%</td>
<td>2.6</td>
<td>0.6</td>
<td>0.9</td>
<td>2.8</td>
</tr>
</tbody>
</table>

实验所用的几种拟薄水铝石的制备过程如下：
将硫酸铝溶液和偏铝酸钠溶液（以氧化铝计浓度为26g/100ml），并流加入100立升搅拌釜中，调整釜内pH值为7.5，维持温度、pH值不变，45分钟后，停止硫酸铝溶液进料，用偏铝酸钠溶液调整釜内pH值至10.0；然后将浆液泵入可洗式板框压滤机中，滤去母液使滤饼充满板框，再用工业净水洗涤拟薄水铝石滤饼，除去杂质离子；最后将滤饼置于115℃的烘箱中干燥20小时，即可制得B-1拟薄水铝石干胶粉。

将硫酸铝溶液和偏铝酸钠溶液（以氧化铝计浓度为19g/100ml），并流加入100立升搅拌釜中，调整釜内pH值为7.2，维持温度、pH值不变，45分钟后，停止硫酸铝溶液进料，用偏铝酸钠溶液调整釜内pH值至10.0；然后将浆液泵入可洗式板框压滤机中，滤去母液使滤饼充满板框，再用工业净水洗涤拟薄水铝石滤饼，除去杂质离子；最后将滤饼置于115℃的烘箱中干燥20小时，即可制得B-2拟薄水铝石干胶粉。

拟薄水铝石B-3是按中国专利CN98110593.9中的实施例10的方法制备的。

拟薄水铝石A是按中国专利CN98110593.9中的实施例1的方法制备的。

下面结合实施例对本发明进一步详细描述。

实施例1

称取拟薄水铝石A干胶粉142.8g，拟薄水铝石B-1干胶粉571.2g，加入1.5m%的硝酸水溶液820ml和冰醋酸40g，搅拌成浆液，在油氨柱成型装置上滴球，将湿凝胶球在100℃下干燥4小时，然后在焙烧炉中以200℃/小时升温速度达到1000℃，恒温2小时，即得成品。

实施例2

焙烧温度为600℃，其它同实施例1所述。

实施例3

焙烧温度为1150℃，其它同实施例1所述。

实施例4
在实施例 1 中将拟薄水铝石 B-1 干胶粉换成拟薄水铝石 B-3 干胶粉 588.2g。其它同实施例 1 所述。

实施例 5

在实施例 1 中，将拟薄水铝石 A 粉量变成 71.4g，拟薄水铝石 B-1 变为 642.6g。其它同实施例 1 所述。

实施例 6

在实施例 1 中，将拟薄水铝石 A 粉量变成 71.4g，拟薄水铝石 B-3 为 661.8g。其它同实施例 1 所述。

实施例 7

在实施例 1 中，将拟薄水铝石 A 粉量变成 214.3g，拟薄水铝石 B-1 为 499.7g。其它同实施例 1 所述。

实施例 8

在实施例 1 中，将拟薄水铝石 A 粉量变成 214.3g，拟薄水铝石 B-3 为 514.7g。其它同实施例 1 所述。

实施例 9

将实施例 1 中的 B-1 干胶粉改为 B-2 加入量为 588g。其它同实施例 1 所述。

实施例 10

在实施例 1 中，将拟薄水铝石 A 粉量变成 71.4g，拟薄水铝石 B-1 干胶粉改为 B-2 加入量为 688g。其它同实施例 1 所述。

实施例 11

在实施例 1 中，将拟薄水铝石 A 粉量变成 214.3g，拟薄水铝石 B-1 干胶粉改为 B-2 加入量为 534.8g。其它同实施例 1 所述。
表 4 氧化铝载体的物化性质

<table>
<thead>
<tr>
<th>项目</th>
<th>实施例</th>
<th>实施例</th>
<th>实施例</th>
<th>实施例</th>
<th>实施例</th>
<th>实施例</th>
</tr>
</thead>
<tbody>
<tr>
<td>编号</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>堆密度，g/ml</td>
<td>0.49</td>
<td>0.46</td>
<td>0.51</td>
<td>0.48</td>
<td>0.45</td>
<td>0.44</td>
</tr>
<tr>
<td>压碎强度，N/粒</td>
<td>48</td>
<td>44</td>
<td>48</td>
<td>44</td>
<td>37</td>
<td>35</td>
</tr>
<tr>
<td>磨损率，m%</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.5</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>比表面，m²/g(BET)</td>
<td>167</td>
<td>278</td>
<td>108</td>
<td>186</td>
<td>161</td>
<td>181</td>
</tr>
<tr>
<td>总孔容，ml/g（压汞法）</td>
<td>0.91</td>
<td>1.04</td>
<td>0.68</td>
<td>0.89</td>
<td>1.01</td>
<td>0.88</td>
</tr>
<tr>
<td>孔分布，%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6nm~35nm</td>
<td>58</td>
<td>76</td>
<td>61</td>
<td>51</td>
<td>57</td>
<td>59</td>
</tr>
<tr>
<td>100nm~2000nm</td>
<td>32</td>
<td>17</td>
<td>20</td>
<td>20</td>
<td>39</td>
<td>20</td>
</tr>
</tbody>
</table>

续表 4 氧化铝载体的物化性质

<table>
<thead>
<tr>
<th>项目</th>
<th>实施例</th>
<th>实施例</th>
<th>实施例</th>
<th>实施例</th>
<th>实施例</th>
</tr>
</thead>
<tbody>
<tr>
<td>堆密度，g/ml</td>
<td>0.54</td>
<td>0.51</td>
<td>0.46</td>
<td>0.42</td>
<td>0.51</td>
</tr>
<tr>
<td>压碎强度，N/粒</td>
<td>61</td>
<td>56</td>
<td>41</td>
<td>31</td>
<td>44</td>
</tr>
<tr>
<td>磨损率，m%</td>
<td>0.3</td>
<td>0.3</td>
<td>0.4</td>
<td>1.0</td>
<td>0.4</td>
</tr>
<tr>
<td>比表面，m²/g(BET)</td>
<td>171</td>
<td>178</td>
<td>161</td>
<td>166</td>
<td>1.62</td>
</tr>
<tr>
<td>总孔容，ml/g（压汞法）</td>
<td>0.88</td>
<td>0.91</td>
<td>1.02</td>
<td>1.31</td>
<td>0.94</td>
</tr>
<tr>
<td>孔分布，%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6nm~35nm</td>
<td>63</td>
<td>62</td>
<td>59</td>
<td>44</td>
<td>62</td>
</tr>
<tr>
<td>100nm~2000nm</td>
<td>30</td>
<td>21</td>
<td>37</td>
<td>48</td>
<td>24</td>
</tr>
</tbody>
</table>