UK Patent Application .,GB ,2560749 .,A

(43) Date of A Publication

26.09.2018

(21) Application No: 1704675.6

(22) Date of Filing: 24.03.2017

(71) Applicant(s):
ARM Limited
(Incorporated in the United Kingdom)
110 Fulbourn Road, Cherry Hinton, CAMBRIDGE,
CB1 9NJ, United Kingdom

(72) Inventor(s):
Alasdair Grant

(74) Agent and/or Address for Service:
D Young & Co LLP
120 Holborn, LONDON, EC1N 2DY, United Kingdom

(51) INT

CL:

GOG6F 11/34 (2006.01)

(56) Documents Cited:
US 6351844 B1

(58) Field of Search:
INT CL GO6F
Other: EPODOC, WPI, Patent fulltext

GO6F 11/36 (2006.01)

(54) Title of the Invention: Trace data representation
Abstract Title: Trace data representation

(57) Trace circuitry forms trace objects 34 representing a
sequence of executed program instructions. Each trace
object comprises a start address indicator indicating a
start address of a sequence of executed program
instructions, a branch outcome indicator indicating a
sequence of branch outcomes (taken or not taken) within
the sequence of executed program instructions starting
from the start address, and a count indicator indicating a
count of the number of times the path of branch
outcomes was detected. The trace circuitry may be on-
chip or off-chip. A trace object may include an indicator of
a start address of a next sequence of program
instructions to be followed. The trace object may be
represented as a tree with each branch point being
represented by an intermediate node, and each leaf node
having a count value indicating the total number of times
execution of the program instructions completed on that
leaf node.

34

—=— [addr0]

N, N, N

N, N, N

) EEN

path0
path1

L [addr1]

{pach}
U

{faddr 0], N, N, E, #2; N, N, N, E, #1}

[addr 1],

VY 6¥.099¢ 99

1/4

Aninoan

| Ol

aoel| -
diyn-4o

’
9

suononsu|
weibo.d

¢l

L
Eeled -
Josinoald | =1 a10p 0 8109
1| aloid
Aninoan - -
a081] 91 14
diyn-uo 1$ 0$
7 7 7
¢c 0¢ 3l
suonoNASy|
¢l weiboy
LNOIVEN
/ 303
[-
oL ¥

UONBWI0S

Eled
TOSTTO8Ig
a0 - U0

2/4

10sInd8ld
9|40id

BIE(

¢ 9ld

elepN/3
[1ppe]

A

Anauin) adel|
diyo-4o

’
9

¢l

suononsu|
weibo.d

Tem=

oy | aion| o a0n
- ooel]
diyd-uo = ~
9l vl
\
22 1§ 0%
_ _
suonoNAsuy|
weliboid
INEN
203
-~
1% _
U004
Eleg
TOSIO31g

a0 -#0

3/4

24~ - [addr0]
|
patho\
28~ g N, N, N
path1\|
—
|
30~ N, N, N
pathzzes/l y—'| EEN
\B /) :7]]
|
|
L+ [addr]

34

N

th0
{thm} {pa2]

{laddr O], N, N, E, #2 N, N, N, E, #1}

4/4

0 = leaf
node
[addr]
intermediate
node
[Aaddr]
[Aaddr]

FIG. 4

TRACE DATA REPRESENTATION

This disclosure relates to the field of data processing systems. More particularly, this
disclosure relates to the representation of trace data corresponding to sequences of executed

program instructions within a data processing system.

It is known to provide data processing systems with trace mechanisms to enable the
execution of sequences of program instructions to be analyzed by generating trace data
indicative of the execution path through the program instructions followed by the data
processing system. Such trace mechanisms are useful, for example, in debug and diagnostic
operations performed on increasingly complex data processing systems and their associated

programs.

A challenge arising in the provision of trace mechanisms is that they can produce
large volumes of trace data that can be difficult to manage/handle. The amount of trace data
may be reduced in a variety of different ways. In some forms of trace mechanisms the trace
data merely gives that information required to follow the execution path through the program
when the program itself is available, e.g. indications of executed or not executed outcomes
for conditional branch instructions, data dependent changes of program flow and periodic
synchronizing address data. Furthermore, the trace data may be subject to compression using
a variety of compression techniques to reduce the data volume and ease the handling of the
trace data. Such compression techniques may be improved in efficiency if the trace data is
divided into streams representing different threads of execution (e.g different threads
executed by different processors within a multi-core processor) as there tends to be a higher
degree of correlation within a thread enabling a higher degree of compression to be achieved

compared with compressing trace data from different interleaved threads.

At least some example embodiments of the present disclosure provide apparatus for
processing data comprising:
processing circuitry to execute program instructions of a program; and
trace circuitry to generate a plurality of trace objects, wherein
a trace object represents a sequence of executed program instructions as:
a start address indicator to indicate a start address of said sequence of executed

program instructions;

a branch outcome indicator to indicate a sequence of branch outcomes within
said sequence of executed program instructions starting from said start
address; and

a count indicator to indicate a count of times said sequence of branch

outcomes was detected.

At least some example embodiments of the present disclosure provide trace circuitry
for coupling to processing circuitry executing program instructions of a program to generate a
plurality of trace objects, wherein
a trace object represents a sequence of executed program instructions as:
a start address indicator to indicate a start address of said sequence of executed
program instructions;
a branch outcome indicator to indicate a sequence of branch outcomes within
said sequence of executed program instructions starting from said start
address; and
a count indicator to indicate a count of times said sequence of executed

program instructions was executed.

At least some example embodiments of the present disclosure provide a method of
processing data comprising:

executing program instructions of a program; and

generating a plurality of trace objects, wherein

a trace object represents a sequence of executed program instructions as:
a start address indicator to indicate a start address of said sequence of executed
program instructions;
a branch outcome indicator to indicate a sequence of branch outcomes within
said sequence of executed program instructions starting from said start
address; and
a count indicator to indicate a count of times said sequence of executed

program instructions was executed.

At least some embodiments of the present disclosure provide a method of analyzing
execution of a program comprising:

receiving data specifying program instructions of said program;

receiving data specifying trace objects representing a sequence of executed program
instructions as:

a start address indicator to indicate a start address of said sequence of executed
program instructions;
a branch outcome indicator to indicate a sequence of branch outcomes within
said sequence of executed program instructions starting from said start
address; and
a count indicator to indicate a count of times said sequence of executed
program instructions was executed; and

analyzing said data specifying program instructions and said data specifying trace

objects to determine at least how many times a given program instruction was executed.

Further aspects, features and advantages of the present technique will be apparent
from the following description of examples, which is to be read in conjunction with the

accompanying drawings, in which:

Figure 1 schematically illustrates a data processing system using on-chip precursor
data formation;

Figure 2 schematically illustrates a data processing system using off-chip precursor
data formation;

Figure 3 schematically illustrates a sequence of executed program instructions and
associated trace objects representing that sequence; and

Figure 4 schematically illustrates a further example of trace objects representing

sequences of executed program instructions.

Figure 1 schematically illustrates a data processing system 2 using on-chip precursor
data formation. The data processing system 2 includes a system-on-chip integrated circuitry
4 connected via off-chip trace circuitry 6 to a general purpose programmable computer 8.
The integrated circuit 4 includes a memory 10 storing program instructions 12 to be executed
by processor cores 14, 16. Respective cache memories 18, 20 associated with the processor

cores 14, 16 store program instructions 12 and data to be manipulated.

On-chip trace circuitry 22 is coupled to the processor cores 14, 16 and monitors their

execution of program instructions. The processor cores 14, 16, which serve as processing

circuitry to execute program instructions, provide the on-chip trace circuitry 22 with data
indicative of branch instruction outcomes for conditional branch instructions executed by the
core 14, 16 and program instruction addresses for non-static branch targets followed by the
cores 14, 16. Furthermore, the processor cores 14, 16 may provide data indicative of
program instruction addresses of program instructions executed by the cores 14, 16 as
synchronization points, such as providing synchronization point addresses on a periodic
basis. The on-chip trace circuitry 22 serves to buffer the data received from the cores 14, 16,
and, in this example embodiment, use it to perform on-chip generation of profile precursor

data comprising trace objects as will be discussed further below.

The on-chip trace circuitry 22 receives separate streams of execution characterizing
data from the respective cores 14, 16 and these may be separately processed to form
respective profile precursor data, i.e. one set of profile precursor data for core 14 and a set of

profile precursor data for core 16.

The on-chip trace circuitry 22 processes the buffered data received from the cores 14,
16 to form trace objects. Each trace object represents a sequence of executed program
instructions using a start address indicator to indicate a start address of that sequence of
executed program instructions, a branch outcome indicator to indicate a sequence of branch
outcomes within that sequence of executed program instruction starting from the start address
and a count indicator to indicate a count of times the sequence of branch outcomes was
detected within the window of execution of program instructions being monitored by the on-
chip trace circuitry 22 and represented by the profile precursor data generated. The profile
precursor data which is generated comprises a plurality of trace objects each representing a

sequence of executed program instructions which were observed.

The trace objects of the profile precursor data may be considered in combination with
the program instructions 12 in order that the particular program instructions executed within
the sequence of executed program instructions may be identified. In other example
embodiments when the trace objects include the next-address indicator, the profile precursor
data alone can be used to give a use count of taken branch instructions their respective branch

target addresses.

The profile precursor data comprising such trace objects permits a compact
representation of the execution behaviour to be achieved but may not permit the precise end-
to-end flow of execution through the entire window to be determined - rather it generates a
more statistically based view of the execution whereby sequences of executed program
instructions can be identified together with the number of times such sequences were

detected.

In some example embodiments where the aim is to test code coverage, i.e. check
which program instructions have or have not been executed within an entire program the
count indicator may saturate at one thereby giving an indication of whether a particular code

sequence has or has not executed at least once.

In at least some example embodiments, a trace object may also include a next address
indicator to indicate a starting address of a next sequence of program instructions to be
executed following the sequence of executed program instructions of the trace object
including that next address indicator. Thus, a trace object may effectively include link
information indicating a following trace object. This can enable recovery of at least some of
the information regarding how trace object link together and give a more comprehensive

view of the program execution flow.

The on-chip trace circuitry 22 when analyzing the buffered data received from the
cores 14, 16 may serve to break this received data into sequences to be associated with trace
objects by using received program instruction address data (e.g. data dependent branch target
data, synchronization point data, etc.) to indicate the boundary between trace objects to be
formed, thereby triggering the termination of tracking of a currently tracked sequence of
program instructions and the starting of the tracking of a next track sequence of program

instructions.

As previously mentioned the profile precursor data comprising the trace objects
formed by the on-chip trace circuitry 22 in the example of Figure 1 may be analyzed in
combination with the program instructions 12 which were executed in order to understand the
actual flow of program execution. This may be achieved by transferring the profile precursor
data, which is now in a compact representation, to off-chip trace circuitry 6 from which it can

be read by a general purpose computer 8. The general purpose computer 8 also may access a

separate copy of the program instructions 12 executed by the integrated circuit 4 and in
combination with the profile precursor data thereby identify the particular program
instructions within the various sequences of program instructions corresponding to the trace

objects identified in the profile precursor data.

The profile precursor data comprising the trace objects may have a variety of different
forms. In some example forms the start addresses of trace objects forming the profile
precursor data may be represented as address offsets from start addresses of other trace
objects within the profile precursor data. Thus, relatively few absolute addresses need be
specified within the profile precursor data and the addresses of other trace objects derived
using offsets from these relatively few start addresses specified absolutely. This can make

the profile precursor data more compact.

The form of the trace objects may in some embodiments be such as they each specify
a single execution path. In other embodiments a trace object may specify a plurality of
branching execution paths corresponding to respective sequences of branch outcomes starting
from a common start address and passing through shared intermediate branching nodes until
individually terminating at a respective leaf node. Such an arrangement may provide a more
compact representation of the execution paths and so reduce the data volume of the profile
precursor data. Within such embodiments, each leaf node may have an associated count
indicator indicating a count of times the execution path terminating at that leaf node was
executed as represented in the set of profile precursor data concerned. Within such an
arrangement, a given intermediate node of a trace object may have the count of how many
times a sequence of program instructions extending between the common start address and
passing through that given intermediate node was executed represented by a sum of the count
values associated with the leaf nodes of execution paths that include that given intermediate
node. Thus, tracing forward from each intermediate node to the eventual leaf nodes enables a
sum of the respective leaf node counts to be obtained thereby obtaining a count for the

intermediate node concerned.

The leaf nodes may have an associated next address indicator indicating the address
of a next program instruction executed by the processing circuitry following a branching
execution path terminating at that leaf node. It may be that not all of the leaf nodes have such

a next address value associated with them as this might not always be available. As

previously discussed, the trace objects include a branch outcome indicating a sequence of
branch outcomes within the sequence of executed program instructions starting from the start
address for that trace object. The data volume of the profile precursor data may be reduced

by using a branch outcome indicator which runlength encodes sequence of branch outcomes.

Figure 1 illustrates an example embodiment in which the on-chip trace circuitry 22
forms the profile precursor data including the trace objects. Figure 2 illustrates an example
embodiment in which it is the off-chip trace circuitry 6 which serves to form the profile
precursor data containing the trace objects. In the Figure 2 example embodiment the on-chip
trace circuitry 22 passes data indicating branch instruction outcomes (E/N data) for branch
instructions executed by the processing circuitry (cores 14, 16) to the off-chip trace circuitry
6. The on-chip trace circuitry 22 further passes address data (Jaddr]) to the off-chip trace
circuitry 6 indicating program addresses of non-static branch targets (e.g. data dependent
branch targets) of branch instructions executed as well as program instruction addresses or

program instructions serving as periodic synchronization points.

In this example embodiment of Figure 2, the off-chip trace circuitry 6 forms the trace
objects from the data sent to it by the on-chip trace circuitry 22. The profile precursor data
formed by the off-chip trace circuitry is then sent to the general purpose computer 8 where it
is analyzed in combination with the program instructions 12 to provide debug and diagnostic
information (as well as other, information concerning the program instructions 12 and the

operation of the integrated circuit 4).

The trace circuitry which forms the target objects may be special purpose hardware
provided within the on-chip trace circuitry 22 or the off-chip trace circuitry 6. It may
alternatively be more general purpose hardware, such as a dedicated small processor core,
which serves to form the trace objects by executing its own program code (e.g. firmware
which serves to generate the trace objects). It might also be possible in other example
embodiments that the trace circuitry be provided by the processing circuitry of the general
purpose computer 8 executing under program control to form the profile precursor data which
is then sent elsewhere for analysis with the benefit that such a profile precursor data formed

by the general purpose computer 8 has a more compact representation for sending elsewhere.

Figure 3 schematically illustrates a sequence of program instructions including branch
instructions B and instructions I which are not branch instructions and accordingly cannot
form points at which the program flow changes. In the example shown, the sequence of
program instructions is entered at addrO corresponding to instruction 24. Program flow then
passes from program instruction 24 to a conditional branch instruction 26 three times. When
executing the sequence of program instructions following start address addrO two further
conditional branch instructions 28, 30 are passed and are not executed and then an executed
(taken) branch instruction 26 is reached. Whether a branch instruction 26, 28, 30 is executed

or not executed is indicated by an E or an N in Figure 3.

The third time at which the branch instruction 26 is encountered it is not executed and
accordingly a jump back to the start address addrO of this instruction 24 is not made.
Accordingly, the sequence of branch outcomes for the branch instruction 26 is executed,
executed, not-executed (E, E, N). The branch instructions 28, 30 within the loop illustrated
are each not executed on all three occasions and accordingly their branch outcomes are not-

executed, not-executed, not-executed (N, N, N).

Following the non-execution of the branch instruction 26 on its third occurrence,
program flow proceeds to branch instruction 32 which is executed (taken) and triggers a

branch to a new starting address addr1.

Figure 3 also schematically illustrates a trace object 34 corresponding to the sequence
of execution paths shown in Figure 3. In particular, the trace object 34 comprises a start
address indicator [addrO] indicating the start address of the sequence corresponding to the
instruction address of instruction 24. A branch outcome indicator indicating a sequence of
branch outcomes corresponding to the branch instructions 28, 30 and 26 on the first two
traverses of the sequence (pathO, pathl) is indicated by N, N, E, indicating not-executed, not-
executed, executed. A count indicator #2 serves to indicate that this sequence of branch
outcomes, i.e. N, N, E was detected as occurring twice. The trace object 34 further indicates
another execution path which starts at the start address addrO, namely the one extending
between instruction 24 and the branch instruction 32. The branch outcome indicator for this
path is not-executed, not-executed, not-executed, executed corresponding to the outcomes for
branch instructions 28, 30, 26 and 32 as followed along this path. This path is followed once

as indicated by the count indicator #1. This execution path corresponds to path2.

Although not shown in the trace object 34, it is possible in some embodiments that the
trace objects may serve to indicate a starting address of the next sequence of program
instructions to be executed following a sequence of program instructions represented by the
trace object concerned, e.g. the trace object 34 may additionally include a pointer to the
starting address addr2 of the sequence of program instructions to be executed following the

execution of the branch instruction 32.

The following pseudocode gives a programing representation of processing which
may be performed upon received branch outcome specifying data and received address data
in order to generate example trace objects. Such pseudocode may correspond to code
executed as firmware by, for example, the on-chip trace circuitry 22 of Figure 1 or the off-
chip trace circuitry of Figure 2. The comments within this pseudocode also make reference
to a possible form of trace object using a leaf and branch representation of multiple execution

paths within each trace object such as is illustrated in Figure 4.

Pseudocode for constructing a pre-decode profile.
The input is a sequence of events:

ADDR(address) - abranch to a specific address
BRANCH(E) - the next branch was taken

BRANCH(N) - the next branch was not taken

Sequence = {
start_addr: address
branches: LIST OF (E or N)

next_addr: address

Start off with no trace objects

MAP (Sequence -> integer) objects = []

The sequence we're currently building

Sequence current_seq = None

Process each event
for Event evt in trace:
if evt is ADDR(addr):
if current_seq:
This branch terminates the sequence we're working on
current_seq.next_addr = addr
if current_seq in objects:
there's already an object for this sequence
objects[current_seq] += 1
else:
new sequence, add it to objects with count 1
objects[current_seq] =1
Start a new sequence
current_seq = {start addr: addr, [], None}
elseif evtis E or N:

current_seq.branches.append(evt)

Wrap up by processing the last sequence
if current_seq in objects:

objects[current _seq] +=1
else:

objects[current _seq] =1

The 'objects' map now consists of a set of sequences, each of which is
- astart address

- asequence of E/N indicators

- afinal address

-acount

Note that a given start address will in general map to several sequences.

To later convert this data structure into a program profile,

once the program images are available:

10

for Sequence s in objects:
pc = s.start_addr
for b in s.branches:
inspect image to find address pc' of next branch
add s.count to each instruction from pc to pc'
ifb==E:
pc = target of b
add s.count to count of banches from b to target of b
else:
pc =pc'

add s.count to each instruction from pc to s.end addr

The data can be more compactly represented by merging common prefixes,
creating a new array with one entry per start address, and the sequences

starting at that address represented as a branching data structure.

This more compact structure could be built directly.

#

To create a program profile from this compact data structure it could either

be decompressed into the original flat data structure, or processed directly.

Figure 4 shows a plurality of trace objects using a leaf and branch representation of
multiple execution paths within each trace object. The first trace object specifies an absolute
address [addr]. The following trace objects specifying their starting address by virtue of an
offset value from the starting address of the first trace object, namely [Aaddr]. The individual
trace objects represent execution paths which pass through branch instructions extending
from the starting address and which correspond to either intermediate nodes or leaf nodes. A
leaf node terminates an observed/detected sequence of branch outcomes and is indicated by
“0” in the representation of Figure 4. An intermediate node represents a branch outcome
which does not terminate an observed execution path and is indicated by “#” in Figure 4. A
leaf node has a count indicator associated with it and optionally a next address indicator of a
next address of a sequence of program instructions executed following the branch instruction
corresponding to that leaf node. The number of times the branch instruction corresponding to

an intermediate node was executed may be determined by summing the count values

11

associated with each of the leaf nodes following that intermediate node within the branching
paths represented.

29

In the present application, the words “configured to...” are used to mean that an
element of an apparatus has a configuration able to carry out the defined operation. In this
context, a “configuration” means an arrangement or manner of interconnection of hardware
or software. For example, the apparatus may have dedicated hardware which provides the
defined operation, or a processor or other processing device may be programmed to perform
the function. “Configured to” does not imply that the apparatus element needs to be changed

in any way in order to provide the defined operation.

Although illustrative embodiments of the invention have been described in detail
herein with reference to the accompanying drawings, it is to be understood that the invention
is not limited to those precise embodiments, and that various changes and modifications can
be effected therein by one skilled in the art without departing from the scope and spirit of the

invention as defined by the appended claims.

12

CLAIMS

1. Apparatus for processing data comprising:

processing circuitry to execute program instructions of a program; and

trace circuitry to generate a plurality of trace objects, wherein

a trace object represents a sequence of executed program instructions as:
a start address indicator to indicate a start address of said sequence of executed
program instructions;
a branch outcome indicator to indicate a sequence of branch outcomes within
said sequence of executed program instructions starting from said start
address; and
a count indicator to indicate a count of times said sequence of branch

outcomes was detected.

2. Apparatus as claimed in claim 1, wherein said trace object comprises a next address
indicator to indicate a starting address of a next sequence of program instructions to be

executed following said sequence of executed program instructions.

3. Apparatus as claimed in any one of claims 1 and 2, wherein said count indicator
saturates at one and said trace objects provide coverage data indicative of whether or not

program instructions have been executed.

4. Apparatus as claimed in any one of claims 1, 2 and 3, wherein said processing
circuitry comprises a plurality of processors executing respective streams of program
instructions and said trace circuitry is configured to generate said trace objects to represent

separately said streams of program instructions.

5. Apparatus as claimed in any one of the preceding claims, wherein processing circuitry
is configured to provide said trace circuitry with data indicative of branch instruction
outcomes for branch instructions executed by said processing circuitry and program
instruction addresses of non-static branch targets of branch instructions executed by said

processing circuitry.

13

6. Apparatus as claimed in claim 5, wherein said processing circuitry is configured to
provide said trace circuitry with data indicative of program instruction addresses of program

instructions executed by said processing circuitry as synchronization points.

7. Apparatus as claimed in any one of claims 5 and 6, wherein said trace circuitry is
configured to respond to program instruction address data received from said processing
circuitry to terminate tracking a currently tracked sequence of program instructions and to

start tracking a next tracked sequence of program instructions.

8. Apparatus as claimed in any one of the preceding claims, wherein said trace circuitry
collects together said trace objects to form profile precursor data, and said profile precursor
data in combination with said program represents how many times given sequences of

program instructions were executed by said processing circuitry.

0. Apparatus as claimed in claim 2, wherein said trace circuitry collects together said
trace objects to form profile precursor data, and said profile precursor data represents a count

of pairs of branch instruction addresses with respective branch target addresses.

10 Apparatus as claimed in claim 9, wherein said profile precursor data comprises data

representing said trace objects ordered by respective represented start addresses.

111 Apparatus as claimed in claim 10, wherein at least some of said start addresses of
trace objects forming said profile precursor data are represented as address offsets from start

addresses of other trace objects forming said profile precursor data.

12. Apparatus as claimed in any one of the preceding claims wherein said trace object
specifies a plurality of branching execution paths corresponding to respective sequences of
branch outcomes starting from a common start address passing through shared intermediate

branching nodes and individually terminating in an leaf node.

13. Apparatus as claimed in claim 12, wherein each of said leaf nodes has an associated
count indicator indicating a count of times a branching execution path terminating at said leaf

node was executed by said processing circuitry.

14

14. Apparatus as claimed in claim 13, wherein a trace object comprising a given
intermediate node represents a count of how many times a sequence of program instruction
extending between said common start address and said given intermediate node was executed
by a sum of count values associated with leaf nodes of executing paths that include said given

intermediate node.

15. Apparatus as claimed in any one of claims 12, 13 and 14, wherein at least some of
leaf nodes have an associated next address indicator indicating an address of a next program
instruction executed by said processing circuitry following a branching execution path

terminating at said leaf node.

16. Apparatus as claimed in claim 8, wherein said profile precursor data runlength

encodes said sequences of branch outcomes.

17. Apparatus as claimed in any one of the preceding claims, wherein said processing
circuitry is a processor core of an integrated circuit and said trace circuitry is one of’

on-chip trace circuitry within said integrated circuit; and

off-chip trace circuitry coupled via a communication interface with said

integrated circuit.

18. Trace circuitry for coupling to processing circuitry executing program instructions of
a program to generate a plurality of trace objects, wherein
a trace object represents a sequence of executed program instructions as:

a start address indicator to indicate a start address of said sequence of executed
program instructions;
a branch outcome indicator to indicate a sequence of branch outcomes within
said sequence of executed program instructions starting from said start
address; and
a count indicator to indicate a count of times said sequence of executed

program instructions was executed.

19. A method of processing data comprising;

executing program instructions of a program; and

15

generating a plurality of trace objects, wherein

a trace object represents a sequence of executed program instructions as:
a start address indicator to indicate a start address of said sequence of executed
program instructions;
a branch outcome indicator to indicate a sequence of branch outcomes within
said sequence of executed program instructions starting from said start
address; and
a count indicator to indicate a count of times said sequence of executed

program instructions was executed.

20. A method of analyzing execution of a program comprising:
receiving data specifying program instructions of said program;
receiving data specifying trace objects representing a sequence of executed program
instructions as:
a start address indicator to indicate a start address of said sequence of executed
program instructions;
a branch outcome indicator to indicate a sequence of branch outcomes within
said sequence of executed program instructions starting from said start
address; and
a count indicator to indicate a count of times said sequence of executed
program instructions was executed; and
analyzing said data specifying program instructions and said data specifying trace

objects to determine at least how many times a given program instruction was executed.

21. A method as claimed in claim 19, wherein said analyzing determines in which

execution paths said given program instruction is included.

22. Apparatus for processing data substantially as hereinbefore described with reference

to the accompanying drawings.

23. A method of processing data substantially as hereinbefore described with reference to

the accompanying drawings.

16

Intellectual
Property
Office

Application No: GB1704675.6 Examiner: James Palmer
Claims searched: 1-23 Date of search: 22 September 2017

Patents Act 1977: Search Report under Section 17

Documents considered to be relevant:

Category |Relevant | Identity of document and passage or figure of particular relevance
to claims

X 1,2,4,5,| US6351844 B1
7,8,12- | (BALA) See fig. 3, column 7 line 60 to column 8 line 8

14, 16-20
Categories:

X Document indicating lack of novelty or inventive =~ A Document indicating technological background and/or state
step of the art.

Y Document indicating lack of inventive step it P Document published on or after the declared priority date but
combined with one or more other documents of before the filing date of this invention.
same category.

& Member of the same patent family E Patent document published on or after, but with priority date

earlier than, the filing date of this application.

Field of Search:
Search of GB, EP, WO & US patent documents classified in the following areas of the UKCX :

Worldwide search of patent documents classified in the following areas of the IPC
[GOGF |
The following online and other databases have been used in the preparation of this search report

[EPODOC, WP, Patent fulltext |

International Classification:

Subclass Subgroup Valid From

GO6F 0011/34 01/01/2006

GO6F 0011/36 01/01/2006
17

Intellectual Property Office is an operating name of the Patent Office www.gov.uk /ipo

	BIBLIOGRAPHY
	DRAWINGS
	DESCRIPTION
	CLAIMS
	SEARCH_REPORT

