27 Al

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date

18 October 2001 (18.10.2001)

(10) International Publication Number

WO 01/77827 Al

(51) International Patent Classification’: GOG6F 9/54

(21) International Application Number: PCT/US01/11275

(22) International Filing Date: 6 April 2001 (06.04.2001)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
60/195,879
60/230,661

Us
Us

7 April 2000 (07.04.2000)
7 September 2000 (07.09.2000)

(71) Applicant: TELCORDIA TECHNOLOGIES, INC.
[US/US]; 445 South Street, Morristown, NJ 07960-6438
(US).

(72) Inventors: APPENZELLER, James, Edward; 224
Newman Street, Metuchen, NJ 08840 (US). DALAL,
Siddhartha, Ramanlal; 592 Cabot Hill Road, Bridge-
water, NJ 08807 (US). JAIN, Ashish; 20 Heinrick Way,

Bridgewater, NJ 08807 (US). LONG, Michael, James;
Apartment 1, 14 Myra Place, Edison, NJ 08817 (US).
PATTON, Gardner, C.; 497 Stony Brook Drive, Bridge-
water, NJ 08807 (US). RATHI, Manish, Ramesh; 44
Center Grove Road, #N29, Randolph, NJ 07869 (US).
(74) Agents: GIORDANO, Joseph et al.; c/o International Co-

ordinator, Telcordia Technologies, Inc., Room 1G112R,
445 South Street, Morristown, NJ 07960-6438 (US).

(81) Designated States (national): CA, JP.

(84) Designated States (regional): European patent (AT, BE,
CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC,
NL, PT, SE, TR).

Published:
with international search report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: METHODS AND SYSTEMS FOR MONITORING QUALITY ASSURANCE

130

Client

Client Monitor

Monitoring
System

Server
Monitor

130

Client

Server

120

Server

(57) Abstract: Methods and systems are provided for monitoring a loosely coupled system, such as a web-based system and a busi-
ness-to-business (B2B) system. In the case of a web-based system, exchanges between a web client (130) and a web server (120) may
be monitored to determine quality and performance of the web-based system (100). The exchanges may include objects, attributes
and actions, communicated from the web server (120) to the web client (130). For example, when the user selects a hyperlink, the
~~ monitoring system (101) may recognize the hyperlink as an action. Accordingly, the actions along with the objects and their associ-
ated attributes may be recorded. The objects and their associated attributes may then be retrieved from the web server (120) and the
recorded actions may be played back against the retrieved objects based on the recorded attributes and the retrieved attributes. The
results of the play back may be compared with the expected results to monitor the quality and performance of the web server (120).
Additional actions may also be generated based on user defined rules and played against the retrieved objects to monitor alternate

aspects of the web server (120).

10

15

20

25

30

WO 01/77827 PCT/US01/11275

METHODS AND SYSTEMS FOR MONITORING QUALITY ASSURANCE
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Application No. 60/195,879,
filed April 7, 2000 and U.S. Provisional Application No. 60/230,661, filed September 7, 2000,

the contents of both of which are hereby incorporated by reference.

BACKGROUND OF THE INVENTION

The present invention relates generally to the field of computer software, and more
particularly, methods and systems for testing and monitoring quality. and performance of
systems. The systems may include loosely coupled systems, such as web-based systems and
business-to-business (B2B) systems.

The advent of the Internet has led to the proliferation of loosely coupled systems. These
systems use the connectivity provided by the Internet to collaborate to achieve a common
business goal. Many businesses rely on such systems to make their products available to
existing as well as potential customers over the Internet. For example, web-based systems offer
businesses the ability to reach a large audience and offer new services with reduced time-to-
market, while B2B systems allow several businesses to collaborate to achieve common
business objectives. To stay competitive, businesses strive to develop and offer new services
faster than their competitors. As the time-to-faarket for these businesses shorten, the data as
well as the software that implements these systems may change frequently. Unfortunately,
such frequent changes may introduce new defects or software bugs. These defects or software
bugs may cause certain services to be inaccessible or fail, resulting in loss of sales and revenue
for businesses.

To verify the quality and stability of these loosely coupled systems, it is essential to

. monitor the systems on a periodic basis or wait until an end user experiences a failure with a

system and reports the failure. Accordingly, there is a need to monitor and periodically test
such systems to reduce downtime as well as testing costs.

One known method for testing a Graphical User Interface (GUI) of a system is
described in U.S. Patent No. 5,600,789 ("the "789 patent") and U.S. Patent No. 5,781,720 ("the
720 patent"), both of which are titled “Automated GUI interface testing.” The method
simulates in the GUI user events that are predefined in the form of test scripts written in a high

level language. Some of the disadvantages of this method are that it is only applicable to

-1-

10

15

20

25

30

WO 01/77827 PCT/US01/11275

testing the GUI of a system, and the testing is based on predefined events. Further, the method
does not continuously monitor the system and notify an administrator of any detected changes
in the system.

Another known method for testing a web-based system is described in U.S. Patent No.
6,144,962 ("the 962 patent), titled “Visualization of web sites and hierarchical data structures.”
A similar method is also described in U.S. Patent No. 5,958,008 ("the '008 patent), titled
“Software System and associated methods for scanning and mapping dynamically-generated
web documents.” Both methods graphically map a topology of a web site and detect changes
in the web site by comparing a current graphical map of the web site with a previously captured
graphical map. One disadvantage of these methods is that they detect only limited changes to
the overall topology of the web site.

SUMMARY OF THE INVENTION

To overcome the above and other disadvantages of the prior art, methods and systems
are provided for monitoring the quality and performance of loosely coupled systems. In
accordance with an embodiment of the present invention, a loosely coupled system, which may
include objects and associated information about the objects, may be monitored as follows:
One or more actions performed on one or more of the objects may be detected and recorded
along with the objects and the associated information. The recorded actions may then be
played back by retrieving from the system the objects and the associated information
cotresponding to the recorded objects, and if the retrieved information corresponding to the
recorded objects on which the recorded actions are performed match the corresponding
recorded information, performing the recorded actions on the corresponding retrieved objects.
The results of the play back may then be used to detect one or more changes, if any, in the
system.

Furthermore, additional actions may be generated based on the recorded objects on
which the recorded actions are performed and the associated recorded information. These
additional actions may be generated in accordance with information provided by, for example,
auser. If the retrieved information corresponding to the recorded objects on which the
recorded actions are pAerformed match the corresponding recorded information, the additional
actions may then be played by performing the additional actions on the corresponding retrieved
objects. The results of the play back may then be used to detect one or more changes, if any, in

the system.

10

15

20

25

30

WO 01/77827 PCT/US01/11275

The description of the invention and the following description for carrying out the best
mode of the invention should not restrict the scope of the claimed invention. Both provide
examples and explanations to enable others to practice the invention. The accompanying
drawings, which form part of the description for carrying out the best mode of the invention,
show an embodiment of the invention, and together with the description, explain the principles

of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS
In the Figures:

Figure 1 is a block diagram of a system, in accordance with an embodiment of
the invention;

Figure 2 is a block diagram of a client monitor, in accordance with an
embodiment of the invention;

Figure 3 is a block diagram of a server monitor, in accordance with an
embodiment of the invention;

Figure 4 is a diagram of a FlowTemplateObject, in accordance with an
embodiment of the invention;

Figure 5 is a flow chart of the steps performed by a recorder program to record
objects and their associated attributes and the actions performed on those objects, in accordance
with an embodiment of the invention;

Figure 6 is a flow chart of the steps performed by an active player program to
play back recorded actions, in accordance with an embodiment of the invention;

Figure 7 is a flow chart of the steps performed by a clone controller program to
generate additional actions, in accordance with an embodiment of the invention;

Figure 8 shows a user interface from which a user may define rules for
generating additional actions, in accordance with an embodiment of the invention;

Figure 9 is a flow chart of the steps performed by an auto discover program to
automatically determine attribute values for objects, in accordance with an embodiment of the
invention; and

Figure 10 is a flow chart of the steps performed by a transaction manager

program, in accordance with an embodiment of the invention.

10

15

20

25

30

WO 01/77827 PCT/US01/11275

BEST MODE FOR CARRYING OUT THE INVENTION

Reference will now be made in detail to the preferred embodiment of the invention,
examples of which are illustrated in the accompanying drawings. Wherever possible, the same
reference numbers will be used throughout the drawings to refer to the same or like parts.

In accordance with an embodiment of the present invention, a monitoring system is
provided for monitoring a loosely coupled system, such as a web-based system and/or a
business-to-business (B2B) system. The loosely coupled system may include, for example, a
first process running on a first computer and a second process running on a second computer.
The first and second processes may communicate with each other by exchanging hierarchically
structured data (HSD) using a predefined protocol. An example of a web-based system may
include a web server and a web browser exchanging HyperText Markup Language (HTML)
messages using a HyperText Transfer Protocol (HI'TP). An example of a B2B-based system
may include two business processes exchanging Extensible Markup Language (XML)
messages via a direct Transmission Control Protocol/Internet Protocol (TCP/IP) socket. An
example of a wireless-based system may include a wireless application server and a wireless
client exchanging Wireless Markup Language (WML) messages using a Wireless Application
Protocol (WAP).

The monitoring system may include a client monitor and a server monitor, which may
communicate with each other over a network to monitor the loosely coupled system. In the
case of a web-based system, the monitoring system may monitor exchanges between a web
client and a web server to determine quality and performance of the web-based system. The
exchanges may include objects and other associated information about the objects, such as
attributes of the objects along with information about actions performed on the objects. An
object may include any item that may be selected and/or manipulated, such as text, shapes,
pictures, books, documents, software, etc. In a web-based system, an object may include, for
example, a link displayed on a web page, a search field in a form, a radio list in a form, a check
box in a form, a form, text on a web page, or an entire web page.

An attribute may describe the characteristics of an object and one or more data values
associated with the object. For example, a link on a web page may include one or more of the
following attributes: destination Uniform Resource Locator (URL), image source, text string
associated with the link, and a link number. As another example, a text field in a form may
include one or more of the following: the name of the text field, the value entered into the text

field, the maximum and minimum length of the text field, the format of the text field, and the

-4-

10

15

20

25

30

WO 01/77827 PCT/US01/11275

form to which the text field belongs. The format of the field may include, for example, the
format of a telephone number, date, or credit card number.

In the case of a B2B system, the monitoring system may monitor, for example, XML
messages exchanged between two or more business systems. In such a system, an object may
include a message communicated from one business process to another business process. An
attribute may include the content of the message, such as the name of the message, one or more
tag names, and one or more values for each tag name. For a web-based system, the
monitoring system may monitor exchanges between the web client and the web server as
follows: The monitoring system may monitor actions performed on objects as a user navigates
through web pages displayed by the web client and record the actions and the objects displayed
on the web pages and their associated attributes. For example, when the user clicks on a link
displayed on a web page, the monitoring system may identify the link as an action and record
the link and the attributes of the link. The monitoring system may then retrieve the objects and
their associated attributes from the web server and play back the recorded actions against the
retrieved objects. The monitoring system may compare the results of the play back with the
expected results to monitor the quality and performance of the web server. The expected
results may be based on the recorded objects, the recorded attributes, and the recorded actions.
Moreover, before playing back the recorded actions against the retrieved objects, the
monitoring system may automatically generate values, for those attributes that do not have a
value, based on the attribute values of other matching recorded objects. Also, the monitoring
system may generate additional actions to monitor additional aspects of the web server.

In addition, while monitoring the communications between the web client and the web
server, the monitoring system may also simultaneously monitor communications between one
or more business processes and the web server.

Figure 1 is a block diagram of a system 100, in accordance with an embodiment of the
invention. System 100 may include a monitoring system 101, a network 110, a plurality of
servers 120, and a plurality of clients 130. Monitoring system 101 may include a client monitor
102 and a server monitor 103, which may communicate with each other over network 110.
Client monitor 102 and server monitor 103 may each include any computer or processor, such
as a personal computer, hand held computer, laptop computer, and wireless telephone.

Client 130 may include a first process, such as a web browser running on a computer or
processor, such as a personal computer, laptop computer, hand held computer, and wireless

telephone. Server 120 may include a second process, such as a web server running on a

-5-

10

15

20

25

30

WO 01/77827 PCT/US01/11275

computer or processor, such as a personal computer, laptop computer, hand held computer, and
wireless telephone. Alternatively, client 130 and server 120 may each include a business
process, which may also communicate with each other over network 110.

Network 110 may include, for example, a Local Area Network (LAN), a Wide Area
Network (WAN), a wireless network, the Internet, and/or any other communication medium.

Figure 2 is a block diagram of client monitor 102, in accordance with an embodiment of
the invention. Client monitor 102 may include a processor 200, which connects over bus 210
to a memory 220, a secondary storage 230, a network interface module 240, and an
input/output interface module 250.

Memory 220 may include a recorder program 211, an active player program 212, a
reporter program 213, a clone controller program 214, an auto discover program 215, a user
interface program 216, and an operating system 219. Alternatively recorder program 211,
active player program 212, reporter program 213, clone controller program 214, and auto
discover program 215 may each run on separate computers and communicate with each other
over network 110. Recorder program 211 may record exchanges between the web browser and
the web server. The exchanges may include objects and their associated attributes along with
information about actions performed on one or more of the objects. Active player program 212
may play and/or play back the actions against objects retrieved from the server 120. Clone
controller program 214 may generate additional actions based on information provided by a
user, which may then be played by the active player program 212. Auto discover program 215
may automatically determine attribute values for those retrieved objects that have no attribute
values based on the attribute values of other matching recorded objects. Reporter program 213
may generate reports about changes detected in the web server. User interface program 216
may provide, for example, a graphical user interface (GUI) through which the user may interact
with client monitor 102. Alternatively, user interface program 216 may provide an
alphanumeric or character based interface.

Secondary storage 230 may include a computer readable medium, such as a disk drive
and a CD drive or a read/write CD drive. From the CD drive or the read/write CD drive,
software and data may be loaded onto the disk drive, which may then be copied into memory
220. Similarly, software and data in memory 220 may be copied onto the disk drive, which
may then be loaded onto a read/write CD drive.

Network interface module 240 may include hardware and software for sending and

receiving data over network 110.

10

15

20

25

30

WO 01/77827 PCT/US01/11275

Input/Output module 250 may include, for example, a key board, a pointing device, or a
key pad and a display unit or a printing device.

Figure 3 is a block diagram of server monitor 103, in accordance with an embodiment
of the invention. Server monitor 103 may include a processor 300, which connects via bus 350
to a memory 310, a secondary storage 320, a network interface module 330, an input/output
interface module 340.

Memory 310 may include a batch player program 311, an auto discover program 312, a
transaction manager program 313, and an efficient test generator program 314. Memory 310
may also include an operating system 315 and a data storage module 319, such as, a database.

Secondary storage 320 may include a computer readable medium, such as a disk drive
and a CD drive or a read/write CD drive. From the CD drive or the read/write CD drive,
software and data may be loaded onto the disk drive, which may then be copied into memory
310. Similarly, software and data in memory 310 may be copied onto the disk drive, which
may then be loaded onto the read/write CD drive.

Network interface module 330 may include hardware and software for sending and
receiving data over network 110.

“ Input/Output module 340 may include, for example, a key board, a pointing device, or
a key pad and a display unit or a printer device.

Figure 4 is a diagram of a FlowTemplateObject 400, in accordance with an embodiment
of the invention. FlowTemplateObject 400 may include a high level object oriented data
structure for storing information about exchanges between, for example, client 130 and server
120. Those of ordinary skill in the art will recognize that such data structures may be
implemented in any object oriented programming language, such as C++, Java, etc.
FlowTemplateObject 400 may include three primary sub-objects, ActionBlock 430,
PageModelSet 410, and an OutputPageSet 420. ActionBlock 430 may include information
about recorded actions and the corresponding objects on which the actions are performed.
PageModelSet 410 may include information about web pages downloaded into client 130 and
displayed using a web browser. OutputPageSet 420 may include information about the
expected results when the recorded actions are played back against objects retrieved from
server 120.

Figure 5 is a flow chart of the steps performed by recorder program 211, in accordance
with an embodiment of the invention. Recorder program 211 may receive in memory 220 an

address of a web page as a starting point for recording (step 500). The address may include a

-7-

10

15

20

25

30

WO 01/77827 PCT/US01/11275

URL, an Internet Protocol (“IP”) address, or a wireless protocol address. Next, recorder
program 211 may create a FlowTemplateObject 400, which may include an instance of an
ActionBlock 430. Recorder program 211 may then store the address in the ActionBlock 430 as
an implicit action, thereby recording the action (step 510).

Recorder program 211 may call a Microsoft Internet Explorer application programming
interface (API) running on client 130 to monitor exchanges between a web browser running on
client 130 and a web server running on server 120. Furthermore, recorder program 211 may
also call the Microsoft Internet Explorer API to communicate with the web server via the web
browser. The Microsoft Internet Explorer API is described in the "Programming the Internet
Explorer 5," Microsoft Press, ISBN:0-7356-0781-8, which is incorporated herein by reference
in its entirety. Alternatively, other web browsers and tools may be used instead.

Recorder program 211 may send the address in a request to the web browser via the
Microsoft Internet Explorer API, requesting the web browser to download the starting web
page from the web server onto client 130 and to display the web page. The web browser may
in turn send to the web server the request to download the web page.

‘When the web browser receives from the web server a response, such as an HTML
page, recorder program 211 may then receive from the Microsoft Internet Explorer API a
notification of the response (step 520). Upon receiving the notification, recorder program 211
may create in PageModelSet 410 an instance of PageModel object 415, which may include
information about the downloaded HTML page. Recorder program 211 may store a copy of
the HTML page in the PageModel object 415, which may be parsed to determine the objects
and attributes of the HTML page (step 530).

Recorder program 211 may also receive a notification when a user performs an action
on an object displayed on a web page. An action may include any user interaction with an
object, such as the user clicking on a hyperlink displayed on a web page. For example,
recorder program 211 may receive a notification from the Microsoft Internet Explorer API
when the web browser requests from the web server the HTML page corresponding to the
hyperlink clicked by the user.

Recorder program 211 may then create an instance of the ActionBlock 430 and may
record the action by storing in ActionBlock 430 information about the action and the particular
object on which the action is performed (step 540). For example, if the action includes the
user's act of clicking on a submit button on a form, recorder program 211 may store in

ActionBlock 430 information about the form. Furthermore, recorder program 211 may create

_8-

10

15

20

25

30

WO 01/77827 PCT/US01/11275

an instance of an eFormElements object 450 and store in the eFormElements 450 information
about the objects on that form and their associated attributes. The attributes may include, for
example, values entered by the user onto the form. Recorder program 211 may also create an
instance of an eFormElement object 470 for each individual object on the form, including the
submit button clicked by the user. The recorder program 211 may store in each eFormElement
470 information about the individual objects on the form, such as the name of each object as it
appears in the HTML page.

As another example, if the action includes the user’s act of clicking on a hyperlink
displayed on the web page, recorder program 211 may store in ActionBlock 430 information
about the hyperlink. The hyperlink information may indicate that a particular HTML link is
clicked. The hyperlink information may include the destination URL and the text that is
located on the hyperlink. A

When the web browser receives from the web server a response, such as the HTML
page corresponding to the hyperlink, recorder program 211 may then receive from the
Microsoft Internet Explorer API a notification of the response (step 550). Upon receiving the
notification, recorder program 211 may create in PageModelSet 410 an instance of PageModel
object 415. Recorder program 211 may then store a copy of the HTML page in the PageModel
object 415, thereby recording the objects and attributes in the HITML page (step 560).

For each subsequent action, if any, recorder program 211 may repeat steps 520 through
560 until no more actions are detected by the recorder program 211. The series of recorded
HTML pages and the recorded actions performed on the objects in the HTML pages are
collectively herein referred to as a "recorded flow" or a "flow." Recorder program 211 may
repeat the above steps to record one or more additional flows. Finally, recorder program 211
may send the resulting FlowTemplateObject 400 over network 110 to transaction manager 313
for storage in database 319.

Figure 6 is a flow chart of the steps performed by active player program 212, in
accordance with an embodiment of the invention. Active player program 212 may receive a
request from a user to play back a recorded flow (step 600). For each of the recorded actions in
the flow, active player program 212 may retrieve from the web server objects corresponding to
the recorded actions. For example, active player program 212 may send the address stored in
an instance of ActionBlock 430 that corresponds to the first recorded action to the web browser
requesting it to download a web page corresponding to the address from the web server and to

display the web page. The web browser may in turn send the request to the web server.

-9.

10

15

20

25

30

WO 01/77827 PCT/US01/11275

The web browser may receive from the web server a response, such as an HTML page
corresponding to the address, and display a web page based on the response. For each
subsequent recorded action, if any, active player program 212 may receive from the Microsoft
Internet Explorer API a notification of the response (step 610). Upon receiving the notification,
active player program 212 may then parse the HTML page to identify a retrieved object that
corresponds to the recorded object on which the subsequent recorded action was previously
performed. If a corresponding retrieved object is identified, active player program 212 may
send a request to the web browser to perform the subsequent recorded action on the
corresponding retrieved object (step 620). The web browser may in turn send the request to the
web server. The web browser may receive from the web server a response, such as an HTML
page corresponding to the address, and display a web page based on the response.

If a corresponding retrieved object is not identified, then active player program 212 may
determine a result of "failed" for the recorded action as well as an explanation for the failure. If
each of the recorded actions can be performed on a retrieved object, active player program 212
may determine a result of "passed" for the recorded actions. Active player program 212 may
monitor the web server based on the results. Active player program 212 may display the results
to the user.

Active player program 212 may also monitor performance information, such as server
delay and network delay. Server delay may include a measure of time taken by the web server
to respond to the web browser. Network delay may include a measure of time taken by the web
browser to send a request to the web server through network 110.

Finally, active player program 212 may send the results and performance information
via network 110 to transaction manager 313 for storage in database 319. Active player
program 212 may repeat the above steps to play back other recorded flows.

Reporter program 213, in accordance with an embodiment of the invention, may
generate one or more reports based on the results from the steps performed by active player
program 212. User interface program 216 may allow a user to specify which results and
performance information to include in the reports. Once the user specifies the results and
performance information, reporter program 213 may retrieve those results and performance
information over network 110 from transaction manager program 313. Reporter program 213
may then generate the reports based on the retrieved results and performance information. In
addition, reporter program 213 may use statistical control chart analysis to infer trends in the

web server and identify instances which are not logically supported by the trends. The reports

-10 -

10

15

20

25

30

WO 01/77827 PCT/US01/11275

may include, for example, graphs and tables, which may provide a summary of the retrieved
results, performance information, and results of the trend analysis. Reporter program 213 may
display the reports to the user via user interface program 216. Alternatively, reporter program
213 may output the reports to an output device, such as a printer. The reports may be translated
by the transaction manager program 313 into XML as well as other formats supported by
existing management software such that other reporting software may be used to view and
output the reports.

Clone controller program 214 may generate one or more additional actions based on
information provided by a user to mionitor and test alternate aspects of the web server. The
information provided by the user may include one or more alternate values for one or more
recorded actions. As an illustration, consider recorder program 211 recording the following
flow: Using the web browser, the user may download onto client 130 a first web page from the
web server. The first web page may include a form with a pull down list that allows a single
selection from one of three categories, such as “Books,” “Music,” and “Computers.” If the user
selects the category "Music," the web browser may display a second web page that may include
a form with a title “Search Page,” a search field specifying a name of a musical composition,
and a "Submit" button. The user may then enter "Mozart Symphony No. 5" into the search
field and click the "Submit" button. In response to the user's action, the web browser may
display a third web page that may include a title “Search Results,” a selection list of musical
compositions that match the title, and an "Add to Shopping Cart" button.

Through user interface program 216, the user may provide one or more alternate values
for one or more of the actions recorded above by recorder program 211. For example, clone
controller program 214 may use the alternate values to generate a sequence of additional
actions including a first action ("al") that selects from the pull down list on the first web page
the category of "Books" instead of "Music." Clone controller program 214 may also use the
alternate values to generate a second action ("a2") that enters into the search field on the
second web page the value "War and Peace” instead of entering "Mozart Symphony No. 5" and
then clicking the "Submit" button.

User interface program 216 may display the GUI shown in Figure 8 to the user. The
GUI may display a flowmap 850 object that may graphically represent a recorded flow. On
flowmap 850, rectangles may represent HTML pages, circles may represent actions, and
squares may represent form actions. As shown, the flowmap may include a link action "al," a

form action "a2," and another link action "a3." The user may click on an action on flowmap

~11 -

10

15

20

25

30

WO 01/77827 PCT/US01/11275

850 to select an action for which the user wishes to provide one or more alternate values. For

example, a user may click on a3 in flowmap 850 to view the web page 840 that corresponds to

_the address in a3.

The user may then provide alternate values for the link action a3 as follows: The user
may provide an alternate value for the link action a3 by clicking on the "Click Page" button.
User interface program 216 may then prompt the user to select a link on the web page 840.
When the user clicks on a link on the web page, user interface program 216 may add the link to
the contents of the properties page 820. As shown in properties page 820, two alternate values
for al, "Link_NGN_Solutions" and "Link_RIP_Solutions," are provided by the user. When the
user indicates to the user interface program 216 that the user is done providing the alternate
values for the actions, the user interface program 216 may send the alternate values to clone
controller program 214. Altematively, the alternate values may be automatically generated by
applying a heuristic method to information stored in a knowledge base. The heuristic method
may be applied by a separate program or process or by clone controller program 214.

Figure 7 is a flow chart of the steps performed by clone controller program 214, in
accordance with an embodiment of the invention. Clone controller program 214 may receive
from the user via the user interface program 216 one or more alternate values for one or more
of the recorded actions (step 700). For each alternate value, clone controller program 214 may
store information about the alternate value in the instance of the ActionBlock 430
corresponding to the particular recorded action for which the alternate value is provided. For
example, clone controller program 214 may store in the ActionBlock 430 corresponding to
action al information, such as the destination URL for the "Link NGN_Solutions" link, the
visible text of the link, and the numerical index of the link.

Accordingly, based on the alternate values provided by the user, the instance of the
ActionBlock 430 corresponding to the first action al may be extended to include information
about the category "Books." In addition, the instance of the ActionBlock 430 corresponding to
the second action a2 may be extended to include information about the selection of "War and
Peace" in the search field.

Clone controller 214 may generate a list of actions based on the recorded actions, which
may include the extended al and the extended a2 actions. Clone controller program 214 may
send the generated list of actions over network 110 to server monitor 103, where efficient test
generator program (AETG) 314 may receive the generated list of actions. The AETG program
314 is disclosed in United States Patent No. 5,542,043, titled “Method and System for

-12-

10

15

20

25

30

WO 01/77827 PCT/US01/11275

Automatically Generating Efficient Test Cases for Systems Having Interacting Elements,”
which is incorporated herein by reference. The AETG program 314 may generate one or more
sequences of actions for all possible combinations of the generated list of actions. For

example, the sequences of actions generated by AETG program 314 may include the following.

Sequence No. Category Search field

1. Music Mozart Symphony No. 5
2. Book War and Peace

3. Music War and Peace

4. Book - Mozart Symphony No. 5

The user may wish to exclude some of the sequences of actions generated by AETG program
314, such as sequences 3 and 4 because those sequences may not be relevant to the aspects of
the web server that the user desires to monitor.

Through the interface provided by user interface program 216, the user may define one
or more rules for constraining the AETG program 314 from generating such sequences of
actions. For example, the user may define a rule specifying that if the first action has a
category equal to "Books," then the second action must have a search field with a value of
"War and Peace." The user may also specify that if the first action has a category equal to
"Music," then the second action must have a search field with a value of "Mozart Symphony
No. 5."

To define such a rule, the user may select an action on the flowmap 850. The user may
now enter into the data constraint textbox 830 the following rule: "if al.category = "Books"
then a2.search_field = "War and Peace." The user may also define the following rule "if
al.category = "Music" then a2.search_field = "Mozart Symphony No. 5." User interface
program 216 may send the rules to the clone controller program 214.

Accordingly, based on the above rules, the AETG program 314 may exclude sequences

of actions 3 and 4 and instead only generate the following sequences 1 and 2:

Sequence No. Category Search field
1. Music Mozart Symphony No. 5
2. Book War and Peace

The server monitor 103 may send the generated sequences of actions via network 110 to
clone controller program 214. For each of the generated sequences of actions, clone controller
214 may generate sequences of ActionBlock 430. For example, for each of the actions in a

sequence, clone controller program 214 may create an instance of ActionBlock 430 and store

-13 -

10

15

20

25

30

WO 01/77827 PCT/US01/11275

information about the action into the instance of the ActionBlock 430 (step 710). For each
generated sequence of actions, active player 212 may then play the actions in the same manner
as the recorded actions are played back against the objects retrieved from the web server (step
720).

The user may also define one or more rules (also referred to as " page matching rules")
for comparing the retrieved objects with the objects in a recorded flow. The rules may include
one or more of the following: "match title"; "match URL"; "match text"; "verify an object
exists"; "match all forms"; and "match not text." For example, the user may select a web page
and define a rule for "match title" and specify the string "Search Page."

When playing back a recorded flow, active player program 212 may compare the
attributes of objects retrieved from the web server with those of the objects in the recorded
flow. If the comparison fails, then active player program 212 may indicate that a change to the
web page has occurred in the web server. For example, if a retrieved object includes the title of
a web page, active player program 212 may compare the attribute value of the retrieved object
with that of its corresponding recorded object. If the attribute value does not match, for
example, "Search Page," then active player program 212 may determine that the title of that
web page has changed.

Finally, the user may define one or more additional rules for disabling and/or enabling
one or more of the page matching rules based on the values of the particular recorded actions.
For example, the user may define a rule to verify that an object having an image of the book
"War and Peace" exists on the third web page. Recall that clone controller program 214 may
generate the sequences of actions 1 and 2, and that active player program 212 may play the
actions in sequences 1 and 2. While playing back the actions in sequence 1, active player
program 212 may apply the page matching rule to verify that an object having an image of the
book "War and Peace" exists on the third web page. In this example, active player program
212 may not locate an object on the third web page with an image of the book "War and
Peace." The user may instruct active player program 212 to limit the application of the page
matching rule to sequence 2 by providing an additional rule that disables the application of the
page matching rule to sequence 1. For example, the user may define an additional rule that
limits the application of the page matching rule to sequences of actions where "a2.search_field
="'War and Peace.™ In this example, only sequence 2 has an action a2 with a search_field
containing the value "War and Peace." Thus, active player program 212 may only apply the

page matching rule to the third web page when action a2 in sequence 2 is played.

-14 -

10

15

20

25

30

WO 01/77827 PCT/US01/11275

Figure 9 is a flow chart of the steps performed by an auto discover program 215 to
automatically determine attribute values for objects in recorded flows, in accordance with an
embodiment of the invention. Auto discover program 215 may invoke active player program
212 to play back a recorded flow such that recorded objects whose attributes do not have a
value are identified (step 900). For example, an object may include a field in a form, such as an
address field, for which a user has not supplied a value. For each identified object without an
attribute value, auto discover program 215 may search one or more recorded flows to identify a
matching recorded object whose attribute has a value (step 910). If a matching recorded object
is found, auto discover program 215 may use the attribute value of the matching recorded
object as the attribute value of the identified object by, for example, copying the attribute value
of the matching recorded object into the attribute field of the identified object (step 920). For
each identified object that auto discover program 215 does not identify a matching recorded
object, auto discover program 215 may ask the user to provide a value for the attribute (step
930). Upon the user providing the value, auto discover program 215 may store the value into
the attribute field of the identified object.

Active player program 212 may then continue the play back of the recorded flow (step 940).

Batch player program 311 may perform at a scheduled time the steps performed by
active player program 212 except without user interaction.

Batch auto discover program 312 may perform at a scheduled time the steps performed
by auto discover program 215 except without any user interaction.

Figure 10 is a flow chart of the steps performed by transaction manager 313, in
accordance with an embodiment of the invention. Transaction manager 313 may receive a
request to perform a transaction (step 1000). For example, the request may be to store/retrieve
a FlowTemplateObject 400 to/from data storage 319. Transaction manager 313 may determine
the type of request and may format one or more database commands to process the request
(step 1010). Transaction manager 313 may then send the database commands to data storage
319 for execution (step 1020). Finally, transaction manager 313 may return the results of the
executions to the requester (step 1030). '

In an alternative embodiment, the methods and systems described herein may be used to
monitor the quality and performance of a business-to-business (B2B) system. For example, the
monitoring system 101 may monitor exchanges between a first business process running on a
first computer and second business process running on a second computer. The exchanges may

include objects and attributes in Extensible Markup Language (XML) along with actions

-15-

10

15

20

25

30

WO 01/77827 PCT/US01/11275

performed on the objects. An action may include an XML message communicated from the
first process to the second process. An object may include an XML message communicated
from the second process to the first process. An attﬁbute may include the content of the
message, such as the name of the message, one or more tag names, and one or more values for
each tag name.

In yet another alternate embodiment, the methods and systems described herein may be
used to monitor the quality and performance of a web-based system communicating with a B2B
system. For example, the monitoring system 101 may monitor exchanges between the web
client and the web server while monitoring communications between a business process and the
web server.

While it has been illustrated and described what is at presently considered to be a
preferred embodiment and methods of the present invention, it will be understood by those
skilled in the art that various changes and modifications may be made, and equivalents may be
substituted for elements thereof without departing from the true scope of the invention.

In addition, many modifications may be made to adapt a particular element, technique
or implementation to the teachings of the present invention without departing from the central
scope of the invention. Therefore, it is intended that this invention not be limited to the
particular embodiments and methods disclosed herein, but that the invention include all

embodiments falling within the scope of the appended claims.

APPENDIX

In accordance with an embodiment of the invention, a FlowTemplateObject 400 may
include the following data structure: The m_StartURL field may include an initial URL that
begins a flow. The m_NumPages field may include information about the number of HTML
pages in the flow. The m_authinfo() field may include information about a username and a
password for each page in the flow. The m_constraints field may include rules constraining the
AFETG program 314 from generating undesired actions. The m_cookie() field may include
information about a cookie associated with an HTML page. The m_PageModelSet field may
include one or more PageModel 415 objects. The m_Steps() field may include an array of
instances of ActionBlock 430, where each instance represents one action. The

m_OutputPageSet object may include one or more OutputPage 440 objects.

-16 -

10

15

20

25

30

WO 01/77827 PCT/US01/11275

FlowTemplateObject

{
m_StartURL /I String
m_NumPages // Integer
m_authinfo() // ARRAY String
m_constraints // String
m_cookie() // ARRAY String
m_PageModelSet // PageModelSet
m_Steps() // ARRAY ActionBlock
m_OutputPageSet // OutputPageSet

In accordance with an embodiment of the invention, PageModel 415 may include the
following data structure: The m_PageName field may include the user specified name of an
HTML page. The m_URL field may include the URL of the HTML page. The m_HTML field
may include the HTML page. The m_bFrameSet may indicate whether an HTML page
includes frames. A frame may provide for nesting HTML pages. The m_Frame field may
include the number of the frame with which the user interacts.

PageModel
{

m_PageName // String

m_URL // String

m_HTML // String

m_bFrameSet // Boolean

m_Frame // String

In accordance with an embodiment of the invention, OutputPage 440 may include the
following data structure: The m_title field may include strings for matching a title in an HTML
page.‘ The m_ur] field may include strings for matching the URL in an HTML page. The
m_matchFormNum field may include an index to the form numbers in the recorded HTML
page for matching forms in an HTML page. The m_matchTextString field may include strings
for matching text in an HTML page. The m_matchNotTextString field may include strings for
which text in an HTML page should not match. The m_PageObjects object may include a

-17 -

10

15

20

25

30

WO 01/77827 PCT/US01/11275

collection of PageObject. The m_RuleConstraintSet object may include information for
enabling or disabling page matching rules.
OutputPage
{
m_title // ARRAY String
m_url // ARRAY String
m_matchFormNum // ARRAY Integer
m_matchTextString // ARRAY
m_matchNotTextString // ARRAY String
m_PageObjects // PageObjects

m_RuleConstraintSet //

In accordance with an embodiment of the invention, PageObject 460 may include the
following data structure: The m_identifier field may specify a "type" of an HTML object to be
matched in an HTML page received by active player 212. The "type" may include one of the
following types: link "Link;" image "IMG;" or image link "IMGLink." The m_alt field may
include alternate text, if any, that may appear when a cursor is positioned over a link, image, or
image link. The m_dest field may include the URL destination of the link. The m_number
field may include the number of the link in the HTML page. The m_src field may include the
URL source of the image of the link. The m_name field may include a user specified name for
the link.

PageObject
{

m_identifier // Integer

m_alt // String

m_dest // String

m_number // Integer

m_src // String

m_name // String

In accordance with an embodiment of the invention, ActionBlock 430 may store
information about a recorded action in the following data structure: The m_ActionType field

may include an enumerated identifier that may specify the type of the action. The valid action

~18 -

10

15

20

25

30

WO 01/77827 PCT/US01/11275

types may include, for example, the following: AT_UNKNOWN, the action type is unknown;
AT_FORM, the action was performed on a standard HTML Form; AT_LINK, the action was
performed on a standard HTML link; AT_LINKSUBMIT, the action was performed on a link
such that the form data is submitted by an html link; AT_REDIRECT, the web server may
cause a new page to be retrieved without any user interaction; AT_FORM_AUTO_SUBMIT, a
script in a form, such as a java script may perform an automatic submit of the form (i.e. form
submits itself); and AT_NAV_TO_URL, either the ActionType could not be discovered or the
user requested recording of static URLs. The m_FormNum field may include a number
associated with a form in a recorded HTML page. The m_ElapsedTime field may include the
amount of time taken to download a web page from the web server to the web browser. The
m_ClickCount field may be 0 if the recorded action doesn’t involve links, 1 if the recorded
action is a link, or more than 1 if the user has specified alternate values for the recorded action.
The m_ClickURLY() field may include the destination URL of a link that a user "clicked." The
m_ClickText() field may include the visible text of the link that the user "clicked." The
m_ClickNum() field may include a numerical index of the link in the HTML page. The
m_ClickName() field may include the user defined name for the action, such as "click." The
m_FormElements field may include information for identifying elements of a form and their
values.
ActionBlockO
{

m_ActionType

m_FormNum // INTEGER

m_ElapsedTime // Double

m_ClickCount // INTEGER

m_ClickURL() // ARRAY String

m_ClickText() / ARRAY String

m_ClickNum() // ARRAY int

m_ClickName() // ARRAY String

m_FormElements // eFormElements

The eFormElement 470 object may include information about an individual element on
a FORM. In accordance with an embodiment of the invention, eFormElement 470 may include

the following data structure: The m_htmIName field may include a name of a control in an

-19 -

10

15

20

25

30

WO 01/77827 PCT/US01/11275

HTML page. The m_uefvKey field may include a unique key that may be used to index form
values. The m_userDisplayedName field may include a user defined name for the control that
the user may see in place of the value specified in the m_htmIName. The
m_userEnteredValueList field may include the user entered values for the field. The
m_actionOrder field may include the order in which the user interacted with a particular object
on a form relative to the other objects on the form.
eFormElement
{

m_htmIName // String

m_uefvKey // String

m_userDisplayedName // String

m_userEnteredValueList // String

m_specialString // String

m_actionOrder // Integer

In accordance with an embodiment of the invention, RuleConstraintSet 490 object may
include information about page matching rules and may include the following data structure:
The m_logicalNames field may include information that maps each rule to a user defined name
for the rule. The m_RuleConstraints field may include a collection of RuleConstraints objects.
RuleConstraintSet
{

m_logicalNames // ARRAY of String

m_RuleConstraints //

In accordance with an embodiment of the invention, RuleConstraints 490 may include
the following data structure: The m_RuleConstraint object may include a collection of
RuleConstraint objects.

RuleConstraints

{

m_RuleConstraint //

In accordance with an embodiment of the invention, RuleConstraint 496 may include

the following data structure: The m_fieldCount field may indicate the number of entries in the

-20 -

WO 01/77827 PCT/US01/11275

m_fieldName() and the m_values() arrays. The m_fieldName field may include the names of
the fields that may be used to define the rules. The m_values field may include the values for
the fields corresponding to the m_fieldName field.
RuleConstraint
{

m_fieldCount // Integer

m_fieldName() // Array of String

m_values() // Array of String

-21 -

10

15

20

25

30

WO 01/77827 PCT/US01/11275

WHAT IS CLAIMED IS:

1. A method for monitoring a system that includes a first process running on a first
computer and a second process running on a second computer, said method comprising the
steps of:

monitoring communications between the first process and the second process;

detecting objects and attributes associated with the objects based on information
communicated from the second process to the first process;

detecting actions performed on the objects based on information communicated
from the first process to the second process;

recording the objects, the attributes, and the actions,

retrieving the objects and the attributes from the second process;

playing back the recorded actions against the retrieved objects based on the
recorded attributes and the retrieved attributes to identify one or more changes in the second

process.

2. The method of claim 1, further comprising the steps of:
generating additional actions based on information provided by a user; and
playing the additional actions against the retrieved objects based on the recorded

attributes and the retrieved attributes to identify the one or more changes in the second process.

3. The method of claim 2, wherein the generating step and the recording step are

performed on separate computers.

4. The method of claim 1, further comprising the steps of:
generating additional actions based on heuristically determined information; and
playing the additional actions against the retrieved objects based on the recorded

attributes and the retrieved attributes to identify the one or more changes in the second process.

5. The method of claim 4, wherein the generating step and the recording step are

performed on separate computers.

6. The method of claim 1, further comprising the steps of:

generating additional actions based on information provided by a user; and

_2D -

10

15

20

25

30

WO 01/77827 PCT/US01/11275

playing the additional actions against the retrieved objects based on the recorded
attributes and the retrieved attributes to identify one or more other changes in the second

process.

7. The method of claim 1, further comprising the steps of:
generating additional sequences of actions based on information provided by a
user; and
playing the additional sequences of actions against the retrieved objects based
on the recorded attributes and the retrieved attributes to identify one or more additional changes

in the second process.

8. The method of claim 1, further comprising the step of:

determining a value of at least one of the recorded attributes associated with one

of the recorded objects based on a value of another recorded attribute associated with another
one of the recorded objects.

9. The method of claim 1, wherein the first process includes a web browser.

10. The method of claim 1, wherein the second process includes a web server.

11. The method of claim 1, wherein the first process includes a business process.

12. The method of claim 1, wherein the second process includes a business process.

13. The method of claim1, wherein the first process communicates with the second

process using a HyperText Transfer Protocol (HT'TP).

14. The method of claiml, wherein the second process communicates with the first

process using a HyperText Markup Language (HTML).

15. The method of claim 1, wherein the first process communicates with the second

process using an Extensible Markup Language (XML).

293 -

10

15

20

25

30

WO 01/77827 PCT/US01/11275

16. The method of claim 1, wherein the second process communicates with the first

process using an Extensible Markup Language (XML).

17. The method of claim1, wherein the first process communicates with the second

process using a Wireless Application Protocol (WAP).

18. The method of claim1, wherein the second process communicates with the first

process using a Wireless Markup Language (WML).

19. An apparatus, comprising:

a monitor that monitors communications between a first process running on a
first computer and a second process running on a second coﬁ)puter, detects objects and
attributes associated with the objects based on information communicated from the second
process to the first process, and detects actions performed on the objects based on information
communicated from the first process to the second process;

a recorder that records the detected objects, attributes, and actions,

a player that retrieves the objects and the associated attributes from the server
and plays back the recorded actions against the retrieved objects based on the recorded

attributes and the retrieved attributes to identify one or more changes in the second process.

20. The apparatus of claim 19, further comprising:
a cloner that génerates additional actions based on information provided by a
user such that the additional actions are played by the player against the retrieved objects based
on the recorded attributes and the retrieved attributes to identify the one or more changes in the

second process.

21. The apparatus of claim 19, further comprising:
a cloner that generates additional actions based on information provided by a
user such that the additional actions are played by the player against the retrieved objects based
on the recorded attributes and the retrieved attributes to identify one or more other changes in

the second process.

“24 -

10

15

20

25

30

WO 01/77827 PCT/US01/11275

22. A method for monitoring a system that includes objects and information about

the objects, said method comprising the steps of:

recording one or more actions performed on one or more of the objects;

recording the objects and the information about the objects;

retrieving, from the system, the objects and the information about the objects;

performing the recorded one or more actions on the retrieved objects
corresponding to the one or more objects on which the recorded one or more actions are
performed, if the retrieved information about the retrieved objects corresponding to the one or
more objects on which the recorded one or more actions are performed match the recorded
information about the one or more objects on which the recorded one or more actions are
performed; and

monitoring the system based on one or more results of the step of performing the

recorded one or more actions on the retrieved objects.

23. The method of claim 22, further comprising the steps of:
determining one or more changes in the system when the retrieved information
about the retrieved objects is different from the recorded information about the recorded
objects; and

monitoring the system based on the determined one or more changes.

24. The method of claim 23, wherein the step of determining one or more changes
in the system comprises the step of determining the one or more changes based on one or more
predetermined rules that are used to compare the retrieved information about the retrieved

objects with the recorded information about the recorded objects.

25. The method of claim 24, wherein the one or more predetermined rules indicate a
method for comparing the retrieved information about the retrieved objects with the recorded

information about the recorded objects.

26. The method of claim 22, wherein the system includes one or more web sites.

27. The method of claim 22, wherein the step of recording the one or more actions

comprises the steps of:

-05 .

10

15

20

25

30

WO 01/77827 PCT/US01/11275

monitoring communications between a first process running on a first computer
and a second process running on a second computer;

identifying the one or more actions based on the monitored communications;
and

recording the identified one or more actions.

28. The method of claim 22, wherein the step of recording the objects and the
information about the objects comprises the step of recording the objects and the information
about the objects based on the one or more actions performed by a user on the one or more

recorded objects while the system is monitored.

29. The method of claim 22, wherein the step of recording the objects and the
information about the objects comprises the steps of:
monitoring communications between a first process running on a first computer
and a second process running on a second computer;
identifying in the monitored communications the objects and the information
about the objects; and

recording the identified objects and information about the objects.

30. The method of claim 22, wherein the step of recording the information about the

objects comprises the step of recording one or more attributes of each of the objects.

31. The method of claim 22, wherein the step of recording the objects and the
information about the objects further comprises the step of recording the objects and the

information about the objects on a web page basis.
32. The method of claim 22, wherein the step of retrieving comprises the step of

retrieving the objects and the information about the objects based on the recorded one or more

actions.

~26 -

10

15

20

25

WO 01/77827 PCT/US01/11275

33. The method of claim 22, further comprising the steps Qf:

generating one or more additional actions based on the one or more objects on
which the one or more actions are performed and based on the recorded information about the
one or more objects on which the recorded one or more actions are performed;

performing the generated one or more additional actions on the retrieved objects
corresponding to the one or more objects on which the one or more actions are performed, if
the retrieved information about the retrieved objects corresponding to the one or more objects
on which the recorded one or more actions are performed match the recorded information about
the one or more objects on which the recorded one or more actions are performed; and

monitoring the system based on one or more results of the step of performing the

generated one or more additional actions on the retrieved objects.

34, The method of claim 33, wherein the step of generating the one or more
additional actions comprises the step of generating the one or more additional actions based on

information provided by a user that defines the one or more additional actions.

35. The method of claim 33, further comprising the steps of:
generating additional information about one or more of the recorded objects; and
performing the generated one or more additional actions on one or more of the

recorded objects.

36. The method of claim 22, further comprising the steps of:
generating additional information about one or more of the recorded objects; and
performing the recorded one or more actions on one or more of the recorded

objects.

=27 -

PCT/US01/11275

WO 01/77827

/10

I 3dNOId

= e — m —— amm ————— — —

octL \

Jojuop JuLlD

0cl

_

_

|

IO}IUOIN “

BTN TS I

I

BEVNETS \ I

_

_

€0l _

i

. _

I

I

- —

walsAg "

. Bunoyuopy

Tror

I

_

_

_

Janeg _

I

[

_

_

_

I

_

I

I

I

!

usiln ... Juslo

— e e e e = e —

ocl 01597

PCT/US01/11275

WO 01/77827

2/10

¢ ™RNOI

JOVAHILNI

1Nd.LNO/LNdNI

0S¢

dOV4H3LNI

-
-«

0ce

MYOMIaNoOL | HOMLAN

ove —

JOVHOLS AYVANOD3S

W3ALSAS
ONILLVE3dO
6l
m aoepB)U] J9sSN V/
[91¢
m A1anoosiq oiny U/ 61z
ﬁ Jajjonuo auo|D U/!\ 1z
m Japodey U/l\ £1z
q Jake|d aAnoy W/I\ 212
ﬁ lapiooay v/
— Lic
AHONWIN
S~ 02z
HJ0OSS3I00¥d
N
00¢

PCT/US01/11275

WO 01/77827

6LE —

FOVHOLS
v1iva

mvm\\m

W3ALSAS
ONILVH3dO0

u

@Emcmo 159 Em_o_tmg

vie—+—"

Jabeuej uopoesuel |
ele l\h u

)

AaAoosiq ojny
rAR> \\h

L€ l\m

1aAejd yoleg

)

AJOWIN

¢ 3yNOI4

408S300dd

00

3OVAYILNI
1NdLNO/LNGNI
ove —
JOVHYILNI
MHYOMLIN MHOMLIN OL
oge—"
JOVHOLS AMVANODIS —¢€ol

oze —

PCT/US01/11275

WO 01/77827

4/10

¥ 3dNOId

WO 01/77827 PCT/US01/11275
5/10

21—,

receiving an address of a web page -7 500
for which to '
initiate the recording process

y

510
recording an implicit action based
on the address
y
520
receiving a response from the web server
530

recording objects and attributes based on the
received response

Y

,, 540
recording actions performed on one or more
of the objects

A 4

- 550
receiving one or more responses from the

web server

Y

560
recording the objects and attributes based on

the received responses

FIGURE 5

WO 01/77827

212,

6/10

PCT/US01/11275

receiving from a user, a request to
play back a recorded flow

retrieving, from the web server objects and
attributes for each of the objects

performing the recorded actions on the
retrieved objects that correspond to the
objects on which the
recorded actions were previously performed

FIGURE 6

WO 01/77827

214—

PCT/US01/11275

7/10

Receiving one or more alternate values
from a user

generating additional actions
based on one or more recorded actions and
based on one or more of the alternate values

playing back the generated additional actions

FIGURE 7

PCT/US01/11275

WO 01/77827

8/10

|~ T qoaumgoohﬁs
' proge sapiaosd Jey amjoagmore aoteuLopad ySK pue A[qe[eds ‘IqKay
; “33], BIPIOIA], WOL 3MNAIIS ISNOYTULRI[amuoNaa[a {UrT a8URYIXT Ay,
: I asueyIxy - eIpI03[a]

7T oZIs - PR A0 BIpR 100]0) MAM L iy

Japiaold azis Lue 10 sanmqeden

‘ajqeeds ‘apers-aume)) - utone[d Juawiorday pidey dI wiePiedal,
uLiojjery jusnriojda(prdeyy J7 - RIpI0I[o [

NCCT 2218 - AUOCI BIPLOI]BY MMr gy

+ auoydarag

SSE[O-PlIoM PUR ‘53714135 SUNSUIOD pUB SULI3auEua {iom1au ‘(sSSO)
u Bao pUe SUR{IOMIIU-UORBULIONNT sapiacid "Ju] ‘saB0[oUyda], BIPIod[a],
¥ T suoneIUINUII013[a)
2 7SU0) 79 pULIaaNIoUS JI0M)au 'S () - U] 'Selg0jouyla], eIpIod[a]

" saueasjas £q paiios (g dog ‘PuNOY $YAs31 T9E

| 3umoa yuaumaog Yoreasal 110§ S)MSaY

Lv ajolg] wpoddng| mﬁ,ﬂmm%m OUILIIAXT UIOL DIURULIOLID
: !)\) il
UONBWIO U] BIPIODJSL saidojoupal

“pIpIOOP] S

"8y je ye it puid

T

SUORNIOS™ NN SUI

= SHUI'ge uayy , suolnjos,, = 1b'ge |
suonnjogT iy

= $Yul'ee uayy Yyoleasal, = bge JIf;

_“_uco_ﬁ Q mmmﬂ mzu E_ mE_gmcouAﬂmo Ecm

_sumz :o_ﬁﬁ:mm_ mez m_Eoo_m _. m__..:oo_m .r.

‘_L Mxmh :

._xnﬁam{soo m_Eou_mz 2._52_‘...‘. azs:
‘ wcazs_ow it

AU0d BIpIODEY MMM ANy, W SUoOnnoS Iy U
“AWODBIPIOSY MM ANy, W SUORNjOSTNGN YU

. . o:,m}_m%._._ o BuBN.
R .. SBNeAUOROY SUR(

nfsynsay Yess

,. S ; — ~afieyg. _. : :@_.*wd.?

L00735a1[

: BURN MOl
cdpH suondo mol Ul Ed

1] oes

1] ozs

‘».1\8@

N 018

WO 01/77827

9/10

PCT/US01/11275

g_s—-/i

playing back a recorded flow to identify
recorded objects whose attributes do not
have a value

Y

a value

for each identified object, searching ohe o ¥~ o910
more recorded flows to identify a matching
recorded object whose attribute has

930
N y

Locate a
matching object?

receiving from a user, the
value for the attribute of the
identified object

920
v -

generating a value for the attribute

of the identified object by copying
the value of the attribute of the

matching recorded object into the
attribute of the identified object

277N 940

continuing the play back of the recorded flow

FIGURE 9

WO 01/77827

33—,

10/10

PCT/US01/11275

Receiving a request to store
or retrieve data from a database

1000

Y

Formatting one or more database
commands for the request

h 4

Executing the one or more
database commands

Y

Returning results from executing
the one or more database commands

FIGURE 10

INTERNATIONAL SEARCH REPORT Inte: onal application No.

PCT/US01/11275
A. CLASSIFICATION OF SUBJECT MATTER
IPC(7) : GOGF 9/54
USs CL : 709/315

According to International Patent Classification (IPC) or to both national classification and [PC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
U.S. : GOGF 9/54

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
EAST, WEST, DIALOG, INTERNET

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category * Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US 5,893,053 A (TRUEBLOOD) 06 April 1999, column 5, line 22- column 6, line 37. 1-36
X US 5,878,384 A (JOHNSON et al.) 02 March 1999, all 1-36
A US 6,047,123 A (BROWN et al.) 04 April 2000 1-36
A IBM. "Method to intercept Dynamically Loaded Subroutine Calls on the IBM RISC 1-36

System/6000 AIX Operating System". March 1992, Vol. 34, No. 10A, pg. 382-387

D Further documents are listed in the continuation of Box C. D See patent family annex.

. Special categories of cited documents: “T" Iater document published after the intemational filing date or priority
date and not in conflict with the application but cited to understand the
“A” document defining the gencral state of the art which is not considered to be principle or tieory underlying the invention
of particular relevance
“Xr document of particular relevance; the claimed invention cannot be
“B” earlicr application or patent published on or after the intemational filing date considered novel or cannot be considered to involve an inventive step
when the document is taken alone.
“L” document which may throw doubts on priority claim(s) or which is cited to
establish the publication date of another citation or other special reason (as “Y” document of particular relevance; the claimed invention cannot be
specified) considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
“O" document referring to an oral disclosure, usc, exhibition or other means being obvious to a person skilled in the art
“P” document published prior to the intemational filing date but later than the “&” document member of the same patent family
priority date claimed
Date of the actual completion of the international search Date of mailing of the international search report
11 June 2001 (11.06.2001) _ 2 1yl 2001
g 3 R
Name and mailing address of the ISA/US Authorized officer
Commissioner of Patents and Trademarks
Box PCT Alvin E. Oberley Q"’ﬁj“ \
Washington, D.C. 20231
Facsimile No. (703)305-3230 Telephone No. (703) 305-0286

Form PCT/ISA/210 (second sheet) (July 1998)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

