发明名称
有机发光显示器的反射阳极及制作方法
摘要
一种有机发光显示器中的反射阳极的结构和制作方法，其特征是所述的阳极电极包括两层金属薄膜，第一层金属为铝，厚度为100nm～700nm，第二层金属为铝化钛，厚度为5nm～20nm。两层金属薄膜通过中间隔离层形成相互隔离的像素电极，所述的方法包括两层金属薄膜及隔离层的形成。本发明实现了OLED电极工艺与代工厂之间的工艺兼容，同时还能实现高性能的OLED器件工艺。
1. 一种有源矩阵式有机发光显示器的反射阳极，其特征是它由基板(4)和依次生长在基板(4)上第一金属层(1)及第二金属层(2)组成，中间隔离层(3)将第一金属层(1)和第二金属层(2)分隔成一个个相互隔离的像素电极。

2. 如权利要求1所述的反射阳极，其特征是所述的基板(4)为硅片或玻璃。

3. 如权利要求1所述的反射阳极，其特征是所述的第一金属层(1)材料为铝，厚度为100nm～700nm；第二金属层(2)材料为氧化钛，厚度为5nm～20nm。

4. 如权利要求1所述的反射阳极，其特征是所述的中间隔离层(3)的厚度为500nm～900nm；所用的材料为无机材料或有机聚合物材料。

5. 一种权利要求1所述的反射阳极的制作方法，其特征是：
首先，在基板上分别制备第一金属层和第二金属层；
其次，然后使用光刻图形化方法，形成独立的像素结构；
最后，在像素的间隙处制备中间隔离层进行分隔。

6. 如权利要求5所述的方法，其特征是制作像素间隙处的中间隔离层是采用PECVD方法沉积制备SiO2或SiNx材料层，然后进行抛光磨平电极表面层，暴露出第二金属层。

7. 如权利要求5所述的方法，其特征是制作像素间隙处的中间隔离层是采用旋涂方法制备有机聚合物材料层，然后进行曝光显影处理，暴露出第二金属层。

8. 一种权利要求1所述的反射阳极的制作方法，其特征是：
首先，在基板上制备第一金属层，然后使用光刻图形化方法，形成第一层像素结构；
其次，在第一层像素结构间隙处制备中间隔离层进行分隔，再进行抛光磨平暴露出第一金属层；
第三，在第一层金属层上制备第二层金属，然后使用光刻图形化方法，在第二金属层上与第一金属层上的第一层像素结构相对位置处形成第二层像素结构；
第四，在第二层像素结构间隙处制备中间隔离层进行分隔，再进行抛光磨平暴露出第二金属层；用于分隔同一金属层上的第一层像素结构的中间隔离层并与用于分隔第二金属层上的第二像素结构的中间隔离层相贯通。

9. 一种权利要求1所述的反射阳极的制作方法，其特征是：
首先，在基板上制备阳极电极图形光刻胶；
其次，在图形化的光刻胶上连续沉积第一金属层和第二金属层；
第三，使用有机溶剂对光刻胶进行剥离去胶，形成金属图形化电极层；
第四，向图形化电极层上的像素电极间隙处填充中间隔离层；
最后，对中间隔离层进行表面处理暴露出第二金属层。

10. 一种权利要求1所述的反射阳极的制作方法，其特征是：
首先，在基板上制备第一层金属层；
其次，对第一层金属层进行图形化处理形成第一层像素结构；
第三，在第一层像素结构间隙之间填充材料形成中间隔离层；中间隔离层为SiO2或SiNx；
第四，对所形成的中间隔离层进行研磨抛光表面处理，暴露出第一金属层；
第五，在第一金属层上沉积第二金属层；
第六，使用光刻图形化方法，在第二金属层上与第一金属层上的第一层像素结构相对
位置处形成第二层像素结构对第二金属层进行图像化处理形成第二层像素结构。
有源矩阵式有机发光显示器的反射阳极及制作方法

技术领域

【0001】本发明涉及一种反射型极电极结构及制造方法，具体涉及一种用于有机发光装置的反射型极电极的制造方法及由该方法制造的反射型极电极。

背景技术

【0002】有机发光二极管（OLED）显示器是一种通过使用发光的有机发光二极管来显示图像的自发光显示装置。通过控制电子和空穴在有机发射层中结合来产生发光。通过电子和空穴的控制，实现有机光电极的制作。有机光电极通常由有机光电极和二极管光电极单元组成。

【0003】使用单晶硅作为衬底制作晶体管驱动器，由于单晶硅具有非常好的迁移率，所以可以实现非常高的分辨率。使用单晶硅作为衬底制作的有机发光二极管显示器的尺寸通常小于1英寸，属于小型有机发光矩阵有机发光二极管显示器。为了实现微显示器件的较高分辨率，通常器件的阳极像素大小在2μm～20μm的量级。同时使用硅基板作为衬底，需要制作亚微米发射的有机发光二极管器件。因此希望器件阳极，一方面要具有较高的反射率，另一方面要保持空气中的稳定性，同时需要实现精细刻蚀图形化能力。专利 CN 101459226 等报道使用 Al、Mo、Cr、Ti 等作为阳极使用，但是 Mo、Cr 等材料在半导体代工厂中通常不使用。因此为了实现 OLED 电极工艺与代工厂工艺兼容，同时还能实现高性能的 OLED 器件工艺，需要开发新型的电极结构和制作工艺。

发明内容

【0004】本发明的目的是针对目前的有机发光二极管阳极因所使用的材料不能实现规模化生产的问题，发明一种能使用半导体代工厂中的通常使用的 Al 和 TiN 制造的 OLED 器件反射型阳极，同时提供其制作方法。

【0005】本发明的技术方案之一是：

一种有源矩阵式有机发光显示器的反射阳极，其特征是它由基板 4 和依次生长在基板 4 上第一金属层 1 及第二金属层 2 组成，中间隔离层 3 将第一金属层 1 和第二金属层 2 分隔成一个个相互隔离的像素电极。

【0006】所述的基板 4 为硅片或玻璃。

【0007】所述的第一金属层 1 材料为铝，厚度为 100nm～700nm；第二金属层 2 材料为氮化钛，厚度为 5nm～20nm。

【0008】所述的中间隔离层 3 的厚度为 500nm～900nm；所述的材料为无机材料或有机聚合物材料。

【0009】本发明的技术方案之二是：

一种硅基有源矩阵式有机发光显示器的反射型阳极的制作方法，其特征是：

首先，在基板上分别制备第一金属层和第二金属层；

其次，然后使用空刻图形化方法，形成独立的像素结构；
最后，在像素的间隙处制备中间隔离层进行分隔。

[0010] 制作像素间隙处的中间隔离层是先采用PECVD方法沉积制备SiO₂或SiNx材料层，然后进行抛光磨平电极表面层，暴露出第二金属层。

[0011] 制作像素间隙处的中间隔离层是先使用旋涂方法制备有机聚合物材料层，然后进行曝光显影处理，暴露出第二金属层。

[0012] 本发明的技术方案之三是：

一种硅基有源矩阵式有机发光显示器的反射阳极的制作方法，其特征是：

首先，在基板上制备第一金属层，然后使用光刻图形化方法，形成第一层像素结构；

其次，在第一层像素结构间隙处制备中间隔离层进行分隔，再进行抛光磨平暴露出第一金属层；

第三，在第一层金属上制备第二层金属，然后使用光刻图形化方法，在第二金属层上与第一金属层上的第一层像素结构相对位置处形成第二层像素结构；

第四，在第二层像素结构间隙处制备中间隔离层进行分隔，再进行抛光磨平暴露出第二金属层，用于隔离第一金属层上的第一层像素结构的中间隔离层并用于隔离第二金属层上的第二像素结构的是间隔隔离层相贯通。

[0013] 本发明的技术方案之四是：

一种硅基有源矩阵式有机发光显示器的反射阳极的制作方法，其特征是：

首先，在基板上制备阳极电极图形光刻胶；

其次，在图形化的光刻胶上连续沉积第一金属层和第二金属层；

第三，使用有机溶剂对光刻胶进行剥离去胶，形成金属图形化电极层；

第四，向图形化电极层上的像素电极间隙处填充中间隔离层；

最后，对中间隔离层进行表面处理暴露出第二金属层。

[0014] 本发明的技术方案之五是：

一种硅基有源矩阵式有机发光显示器的反射阳极的制作方法，其特征是：

首先，在基板上制备第一层金属层；

其次，对第一层金属层进行图形化处理形成第一层像素结构；

第三，在第一层像素结构间隙之间填充材料形成中间隔离层，中间隔离层为SiO₂或SiNx。

[0015] 第四，对所形成的中间隔离层进行研磨抛光处理，露出第一金属层；

第五，在第一金属层上沉积第二金属层；

第六，使用光刻图形化方法，在第二金属层上与第一金属层上的第一层像素结构相对位置处形成第二层像素结构。

[0016] 本发明的有益效果是：

本发明实现了OLED电极工艺与代工厂之间的工艺兼容，同时还能实现高性能的OLED器件工艺。

[0017] 本发明电极结构简单，可靠性好，制造工艺简单易行，有利于提高生产效率，提高成品率，降低工艺成本。

附图说明
具体实施方式
[0021] 下面结构附图和实施例对本发明作进一步的说明。
[0022] 实施例一。
[0023] 如图 1 所示：

一种有源矩阵式有机光显示器的反射阳极的制作方法，它包括以下步骤：
(1) 在硅基（或玻璃）底板 4 上使用溅射金属沉积的方法，连续沉积制备金属 Al 层 1 和 TiN 层 2。
(2) 在步骤 (1) 中，Al 层的厚度为 100nm～700nm，TiN 层的厚度为 5nm～20nm。
(3) 在步骤 (1) 中制备金属薄膜后，在薄膜上旋涂上 i-line 的光刻胶，进行曝光显影等工序，在光刻胶上实现所需的阳极电极图形。然后使用干法刻蚀等方法，对金属薄膜进行刻蚀，最后再将光刻胶去除，实现金属薄膜的图形化。
(4) 在步骤 (3) 制作完成之后，使用化学气相沉积等方法，沉积一层 SiO2 层，用于将金属阳极之间的间隙填充形成中间隔离层 3。
(5) 在步骤 (4) 之后，对背板顶部的 SiO2 层进行抛光，直到露出金属阳极层停止。

一种有源矩阵式有机光显示器的反射阳极的制作方法，它包括以下步骤：
(1) 在硅基（或玻璃）底板 4 上使用溅射金属沉积的方法，连续沉积制备金属 Al 层 2 和 TiN 层 3。
(2) 在步骤 (1) 中，Al 层的厚度为 100nm～700nm，TiN 层的厚度为 5nm～20nm。
(3) 在步骤 (1) 中制备金属薄膜后，在薄膜上旋涂上 i-line 的光刻胶，进行曝光显影等工序，在光刻胶上实现所需的阳极电极图形。然后使用干法刻蚀等方法，对金属薄膜进行刻蚀，最后再将光刻胶去除，实现金属薄膜的图形化。
(4) 在步骤 (3) 制作完成之后，使用旋涂等方法制备有机聚合物材料，如聚酰亚胺、光刻胶材料等，形成中间隔离层 3。
(5) 在步骤 (4) 之后，对有机聚合物材料层进行曝光显影处理，暴露出第二层金属 TiN，同时中间隔离层高度高于 TiN 层高度。

实施例二。
如图 2 所示：

一种有源矩阵式有机光显示器的反射阳极的制作方法，它包括以下步骤：
(1) 在硅基（或玻璃）底板 4 上使用溅射金属沉积的方法，沉积制备金属 Al 层 1，Al 层的厚度为 100nm～500nm。
(2) 在金属 Al 层 1 上，旋涂上 i-line 的光刻胶，进行曝光显影等工序，在光刻胶上实现所需的阳极电极图形。然后使用干法刻蚀等方法，对金属薄膜进行刻蚀，最后再将光刻胶去除，实现金属薄膜的图形化。
[0037] (3)在步骤(2)制作完成之后，使用化学气相沉积等方法，沉积一层 SiO₂层，用于
将金属阳极之间的间隙填充，形成中间隔离层 3。
[0038] (4)在步骤(3)之后，对背板顶部的 SiO₂层进行抛光，直到露出金属阳极 Al 层停
止。
[0039] (5)在步骤(4)之后，使用溅射金属沉积的方法，沉积制备金属 TiN 层 2，TiN 层的
厚度为 5nm ~ 20nm。在金属 TiN 层上，旋涂上 i-line 的光刻胶，进行曝光显影等工序，在光
刻胶上实现所需的阳极电极图形。然后使用干法刻蚀等方法，对金属薄膜进行刻蚀，最后再
将光刻胶去除，实现金属薄膜的图形化。
[0040] 实施例四。
[0041] 一种有源矩阵式有机发光显示器的反射阳极的制作方法，它包括以下步骤：
（1）在硅基(或玻璃)底板 4 上使用溅射金属沉积的方法，沉积制备金属 Al 层 1，Al 层
的厚度为 100nm ~ 500nm。
[0042] (2)在金属 Al 层 1 上，旋涂上 i-line 的光刻胶，进行曝光显影等工序，在光刻胶上
实现所需的阳极电极图形。然后使用干法刻蚀等方法，对金属薄膜进行刻蚀，最后再将光刻
胶去除，实现金属薄膜的图形化。
[0043] (3)在步骤(2)制作完成之后，使用化学气相沉积等方法，沉积一层 SiO₂层，用于
将金属阳极之间的间隙填充，形成中间隔离层 3。
[0044] (4)在步骤(3)之后，对背板顶部的 SiO₂层进行抛光，直到露出金属阳极 Al 层停
止。
[0045] (5)在步骤(4)之后，使用溅射金属沉积的方法，沉积制备金属 TiN 层 2，TiN 层的
厚度为 5nm ~ 20nm。在金属 TiN 层上，旋涂上 i-line 的光刻胶，进行曝光显影等工序，在光
刻胶上实现所需的阳极电极图形。然后使用干法刻蚀等方法，对金属薄膜进行刻蚀，最后再
将光刻胶去除，实现金属薄膜的图形化。
[0046] (6)在步骤(5)制作完成之后，使用旋涂等方法制备有机聚合物材料，如聚酰亚胺、
光刻胶材料等，形成中间隔离层 3。
[0047] (7)在步骤(6)之后，对有机聚合物材料层进行曝光显影处理，暴露出第二层金属
TiN，同时中间隔离层高度高于 TiN 层高度。
[0048] 实施例五。
[0049] 一种硅基有源矩阵式有机发光显示器的反射阳极的制作方法，它包括以下步骤：
（1）在硅基(或玻璃)底板 4 上，旋涂上 i-line 的光刻胶，进行曝光显影等工序，在光刻
胶上实现所需的阳极电极图形。
[0050] (2)在步骤(1)之后，在图形化的光刻胶上，使用电子束蒸发等金属沉积的方法，连
续沉积制备金属 Al 层 1 和 TiN 层 2，Al 层的厚度为 100nm ~ 500nm，TiN 层的厚度为 5nm ~
20nm。
[0051] (3)在步骤(2)之后，使用有机溶剂对光刻胶进行剥离去胶，最后形成金属图形化
电极层。
[0052] (4)在步骤(3)制作完成之后，使用旋涂等方法制备有机聚合物材料，如聚酰亚胺、
光刻胶材料等，形成中间隔离层 3。
[0053] (5)在步骤(4)之后，对有机聚合物材料层进行曝光显影处理，暴露出第二层金属
TiN。

[0054] 本发明未涉及部分与现有技术相同或可采用现有技术加以实现。