

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
25 September 2003 (25.09.2003)

PCT

(10) International Publication Number
WO 03/078949 A1

(51) International Patent Classification⁷: G01K 13/00

(21) International Application Number: PCT/GB03/01144

(22) International Filing Date: 14 March 2003 (14.03.2003)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
0206260.2 16 March 2002 (16.03.2002) GB

(71) Applicant (for all designated States except US): UNIVERSITY OF BRISTOL [GB/GB]; Senast House, Tyndall Avenue, Bristol, Avon BS8 1TH (GB).

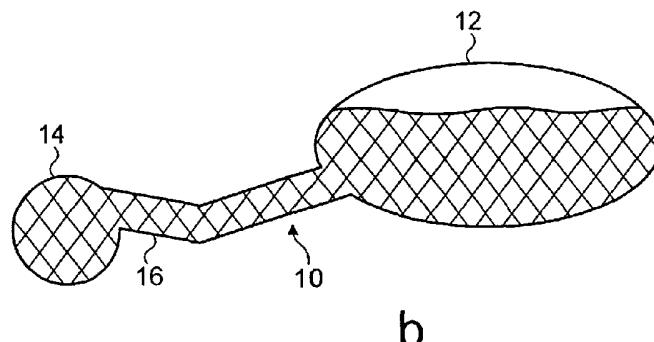
(72) Inventor; and

(75) Inventor/Applicant (for US only): BUTTERWORTH,

Andrew [GB/GB]; University of Bristol, Division of Farm Animal Science, Clinical Vet Science, Langford, North Somerset BS40 5DU (GB).


(74) Agent: HEATON, Joanne, Marie; Stevens, Hewlett & Perkins, 1 St. Augustine's Place, Bristol BS1 4UD (GB).

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.


(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),

[Continued on next page]

(54) Title: THERMOMETER

a

b

(57) Abstract: A thermometer is described which is suitable as an indwelling thermometer to detect pyrexia or oestrus in a mammal. The thermometer provides a continued signal that a predetermined reference temperature has been exceeded, which temperature is selected to be indicative of pyrexia or oestrus in a given species and may change according to species.

WO 03/078949 A1

European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

— *before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments*

Published:

— *with international search report*

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

THERMOMETER

This invention relates to a thermometer. More particularly, the present invention relates to an indwelling thermometer for clinical use.

Thermometers are well known in the art for providing an indication of temperature. Generally, thermometers comprise a heat-expandable fluid which is constrained to flow in a tube with indicia printed on the tube along the direction of expansion of the fluid; in use, the temperature is determined by reading the indication adjacent the leading edge of the fluid in the tube.

Recently, digital thermometers have been developed where a temperature is determined electronically and a digital indication of the temperature is provided.

More recently, disposable thermometers have been produced where the temperature indication is given using thermochromatic inks for predetermined reference intervals, an approximate temperature being provided by noting which inks have changed colour and which temperature they correlate to.

The present invention concerns an indwelling thermometer. In the description which follows the term "indwelling" is intended to define a thermometer which is left in a predetermined place for a long period of time to indicate that a rise in temperature above a predetermined threshold has occurred.

The invention will be described with particular reference to its preferred application in monitoring the temperature of the mammalian body, however, the invention finds equal utility in other areas where it is desirable to indicate that an unacceptable rise in temperature has occurred, for example in storage areas where spoilage may occur if a given temperature is exceeded.

In mammals a rise in temperature, especially in core body temperature, may be taken to be an indication of the presence of a pathology or of an infection. An early indication of infection can be vitally important to a farmer where the infection might spread through a herd of animals and early detection may prevent the spread of infection or unnecessary slaughter of uninfected animals.

In female mammals a temperature rise may also be indicative of ovulation or that oestrus is about to occur in mammals where actual release of the ovum is triggered by penetration. Both of these events are of interest to a farmer, a veterinary or medical practitioner and a woman experiencing difficulties in trying to conceive.

It is therefore an object of the present invention to provide a device which provides a signal that a rise in temperature above a predetermined threshold has occurred.

Accordingly, the present invention provides an indwelling thermometer comprising temperature sensing means and signal means for providing a continued indication that a predetermined threshold temperature has been exceeded.

Advantageously, the provision of a continued signal that the predetermined temperature has been exceeded enables the viewer to establish that the temperature has in fact been exceeded without continual monitoring of the subject. By the term "Continued Signal" as used herein is intended a signal which keeps signalling and does not stop signalling.

It is a further object of the invention to provide means for establishing that predetermined threshold temperature. Advantageously, this allows for temperature profiles of an individual subject to be established and used to eliminate minor temperature variations due to external temperature, exercise or sleep.

The signal means may provide a visual, aural, or mechanical indication that the temperature has been exceeded. For example, the signal may be the movement of an indicator device, the illumination/quenching of a light, the release of a marker dye, colour change of a thermochromatic ink, vibration of the thermometer, generation of a radio signal, activation of a buzzer or alarm, or an analogue or a digital telemetry system signal.

The temperature sensing means may be electronic, chemical or mechanical. For example the temperature sensing means may be a thermochromatic dye, a wax or grease with a specific melting point, a

thermodeformable plastics material, a thermocouple linkage, a thermistor or a printed circuit board.

The thermometer preferably dwells in a body cavity of the subject mammal, for example, the ear cavity or the vagina. Temperatures that are measured in the ear cavity tend to be very accurate since the ear cavity is so close to the brain. However, the thermometer may also be wholly or partially implanted into a subject mammal, for example, it may be implanted beneath the skin.

It is intended that in its most simple form the thermometer of the invention gives an indication that the threshold has been exceeded, however, in an alternative embodiment, the invention also provides means for recording the temperature of the subject over a predetermined period of time.

Preferably, the thermometer comprises a biocompatible material. By the term "biocompatible material" as used herein is intended a material which is suitable for leaving *in situ* in a subject animal for a long period of time without causing irritation, tissue growth, infection or promoting infection or an immunological, including autoimmunological, reaction. The thermometer of the invention may be made of or coated with such a material. Examples of such materials include surgical grade polymers, such as:

ABS - acrylonitrile-butadiene-styrene terpolymer

COPE - copolyester elastomer

EAA - ethylene acrylic acid

EMA - ethylene methylacrylate

EVA - ethylene-vinyl-acetate

HDPE - high-density polyethylene

HIPS - high-impact polystyrene

LCP - liquid crystal polymer

LDPE - low-density polyethylene

LLDPE - linear low-density polyethylene

PBT - poly(butylene terephthalate)

PC - polycarbonate

PC/ABS - polycarbonate - ABS alloy/blend

PC/PET - polycarbonate-PET alloy/blend

PE - polyethylene

PEI - polyetherimide

PET - poly(ethylene terephthalate)

PP - polypropylene

PPO - poly(phenylene oxide)

PUR - polyurethane

PVC - polyvinyl chloride

SAN - styrene acrylonitrile

SBC - styrene block copolymer

SPS - syndiotactic polystyrene

TPE - thermoplastic elastomer

TPO - thermoplastic olefin

TPU - thermoplastic urethane

ULDPE - ultra low-density polyethylene

VLDPE - very low-density polyethylene

Silicone

Biodegradable Copolymers

Copolymer Coatings

Pseudo - Poly(Amino-Acids)

Ceramic Composites

Thermoplastic-Fiber Composites

PYROLYTIC CARBON Pyrolite

In a first embodiment, the invention simply provides an indication that the predetermined threshold temperature has been exceeded. The thermometer is preferably in the form of an enclosed hollow container comprising two chambers separated by a waisted portion of the container. The container is preferably formed from a biocompatible material. The waisted portion of the container preferably contains the temperature sensing means while one of the chambers contains the signal means.

In this embodiment the temperature sensing means is a wax or grease, the melting point of which is at or close to the predetermined threshold temperature, and the signal means is preferably a marker dye contained in one chamber of the container only. Preferably, the wax or grease forms a plug in the waisted portion of the container such that the movement of the marker dye between the chambers of the container is prevented.

Examples of waxes or greases which may be used in the present invention include beeswax, lanolin, petroleum jelly, white petrolatum, spermaceti, cocoa butter, stearic acid, glycerinated gelatin, candelila wax, carnauba wax, or mixtures of any of these with oils such as sweet almond oil, liquid paraffin or any vegetable oil, especially hydrogenated vegetable oils, fatty acids or polyethylene glycol (PEG).

Compounds or mixtures which melt at or close to body temperature are widely known in the art in the formation of suppositories, pessaries or some emollients, cosmetics or moisturisers such as lip balms or lipsticks. Hence, the person skilled in the art could readily select a proprietary suppository base formulation for use as the wax or grease of this embodiment of the present invention. For example, a range of suppository bases which melt at temperatures of between 33 and 44°C and are available under the trade name DUB-PP from Stearinerie-Dubois of France, could be used in the present invention.

In use, the thermometer is applied to the animal in a manner such that the chamber containing the marker dye is held internally in the animal while the other chamber is external of the animal and is visible, when the predetermined threshold temperature is exceeded, the wax or grease melts and allows travel of the marker dye to the visible chamber.

Preferably, the container is shaped such that the melted wax or grease, when cooled, cannot re-plug the waisted portion of the container, for example the regions adjacent the waisted portion may flare outwardly. Alternatively, the thermometer may be introduced to the subject mammal in a manner such that the chamber holding the marker dye is above the plug and the second, empty chamber hence, when the plug melts, the melted wax or grease will

drain into the lower second chamber with the marker dye thereby preventing the waisted portion from becoming resealed.

The overall shape of the container is not critical although it is preferred that the thermometer does not cause discomfort to the subject mammal and in this respect it is preferred that the container is rounded or elliptical or other shape which does not present undue trauma to the animal. Ideally, the thermometer is shaped such that it is not likely to be easily lost if it is inserted into a body cavity such as the ear or the vagina. Additionally, where appropriate, it is desirable that the chambers are of unequal size to ensure that sufficient marker dye for detection is transferred from one chamber to the other.

The waisted portion of the thermometer may be a slight waisting of the container or, for more rapid melting of the wax or grease which may be held therein, be a narrow waisting or venturi. Ideally, the waisted portion is a tube of narrow cross-section with respect to the chambers, especially in the above-described embodiment where the temperature sensing means is a wax or grease which melts to allow transfer of a marker dye from one chamber to the other.

In order to establish the predetermined reference temperature the invention also provides a kit of thermometers, each thermometer detecting a different specific temperature, whereby in use a user applies a different thermometer to a subject animal each day to establish the range of normal temperature variation throughout a day for that subject animal. When used in this way, the kit provides an indication of the normal temperature range for that animal and allows selection of a thermometer indicating a temperature above the maximum daily variation for the detection of infection or of ovulation.

Alternatively, the predetermined reference temperature can be determined using an electronic temperature recording device which is introduced to and left to dwell in the subject mammal for a period of time, for example one week or one month, to record the temperature of the individual at selected intervals over that period of time, for example every 20 minutes for

one week. An example of a device suitable for this purpose is the device sold under the trade name "Tiny Talk"™ from RS Components Ltd., modified to be smaller and to have sufficient battery power to record the temperature variations for the required length of time.

In a second embodiment, the thermometer of the present invention is an electronic device in which the temperature sensing means comprise a thermistor and the signal means provide an optical or audible signal.

Preferably, the temperature sensing means comprise a thermistor set at or close to the predetermined threshold temperature. Alternatively, a bimetallic strip or a printed circuit board or a proprietary device such as those sold under the trade names Tiny tag Transit, Therma Tag or iButton having been modified to provide a continued signal and to be indwelling may be used to sense the temperature.

In order to ensure that the signal means continues to provide a signal even when the temperature subsequently drops below the reference temperature, the thermometer may further comprise means to prevent cancellation of the signal. Preferably, the cancellation prevention means comprises a latch. The latch may be a diode, a digital to analogue converter, an integrated circuit or a digital latch.

Preferably, the signal means provide a light output, for example the illumination or extinguishing of an LED or other light source, or a sound output such as the activation of a buzzer, beep or other alarm sound. The activation of the signal is preferably irreversible ensuring that the increased temperature is detected. Alternatively, the signal means may be a radio transmitter which sends a signal to a remote receiving station, the alarm signal being generated at the receiving station. The signal means may also send a mobile telecommunications signal to a mobile telephone, for example in the form of a "text" or SMS message or as a pre-recorded voice message. This allows for remote telemetry monitoring of, for example, a herd of cows or sheep.

In this embodiment, it is also desirable to provide means for recording the temperatures sensed by the temperature sensing means. This data may be stored on a memory chip or other data storage device. The data storage may

be remote, especially where the signal is sent to a remote receiving station, or can be contained within the device.

Additionally, a computer program may be used where the program compares the data contained within the signal to stored data, the program may then vary or set the predetermined temperature, for example by means of a discriminating function. In this way, the program can make a decision, based on the received data when compared to the stored data.

In a third embodiment, the thermometer may be formed from a plastics material with a thermochromatic pigment or ink incorporated therein. In this embodiment the temperature sensing means and the signal means may both be the thermochromatic pigment or ink, or the temperature sensing means may be the thermochromatic pigment or ink, and the signal means may be fixative to prevent the thermochromatic pigment or ink reverting to its original colour.

The predetermined reference temperature is likely to be in the region of 35 - 44°C, preferably approximately 39°C, since mammalian core temperature is generally in the region of 37 - 38°C. Examples of normal core body temperatures are as follows:-

Animal	°C
Dog	38.9
Cat	38.6
Stallion	37.6
Mare	37.8
Rabbit	39.5
Pig	39.2
Goat	39.1
Sheep	39.1
Dairy cow	38.6
Human	37.3

Hence, the pre-determined reference temperature which is considered to be indicative of infection or of oestrus will be modified according to which mammal the thermometer will be used with.

Additionally, the size and shape of the thermometer can be adapted according to the subject mammal it is to be used in.

Where a visual signal is generated, it is preferable that the externally oriented portion of the thermometer be sufficiently large to be readily seen. For example, in farm animals the thermometer is likely to be read by a farmer when inspecting the cows, such as at milking time. In sheep, the externally oriented portion of the device may be sized so that it can be detected from a distance when herding the sheep. When to be used in the human female it is preferable that the device be shaped and sized similar to a tampon for comfort and ease of use for the user.

Embodiments of the invention will now be described, by way of example only, with reference to the accompanying drawing of which,

Figures 1a and 1b show a first embodiment of the thermometer of the invention, and

Figure 2 is a schematic representation of an electronic version of the thermometer of the present invention.

Referring to Figure 1a a thermometer 10 is provided which is in the form of a container having two chambers 12 and 14 separated by a waisted portion 16. The waisted portion 16 is in the form of a narrow tube and contains a plug 18 of a wax having a melting temperature of 40°C for use in dairy cows. The wax used is a standard suppository base wax, e.g. a mixture of stearic acid, cocoa butter and PEG. Chamber 12 contains a marker dye and is much larger than chamber 14 to ensure transfer of the marker dye to chamber 14 on removal, by melting, of the plug 18. The thermometer 10 is made from a medical grade plastics material.

Figure 1b shows the thermometer 10 of Figure 1a after the wax plug 18 has melted due to the increase in body temperature above the predetermined threshold temperature of 40°C.

Referring to Figure 2 an electronic version 20 of the device is shown. The device 20 comprises a sensor 22. The sensor 22 may be a device such as that sold under the trade-name iButton modified to provide a continued signal and to be indwelling for example by being coated with a biocompatible or non-irritant material, linked to an indicator 24, in the form of an LED, by a conductor 26 also coated with a biocompatible or non-irritant material. A latch 28 is interposed between sensor 22 and indicator 24 to prevent cancellation of the signal and thereby to ensure the continued illumination of indicator 24.

In use, the device is inserted into the vagina of a cow and left in place. When sensor 22 detects a rise in temperature above a predetermined threshold it sends a signal along connector 26 to indicator 24, which illuminates. On visual inspection, the farmer, or a vet, then knows that the temperature of that particular cow has exceeded the threshold temperature and can investigate pyrexia or oestrus in that animal.

In the human female, the present invention is primarily used for the detection of ovulation rather than to monitor for infection. However, it is still possible to use the invention to monitor infection in this way. It is also preferred that the present invention be usable without the need for a medical practitioner although use under medical supervision is not to be excluded.

In such a use it is intended that a device of the invention 10,20 is worn *per vaginam* continuously for at least one complete menstrual cycle so that the temperature peak experienced prior to ovulation can be determined and be distinguished from temperature fluctuations due to other causes.

In one embodiment for this application the user may use a series of disposable indwelling thermometers 10 each of which has a wax or grease 18 which is predetermined to melt at an incrementally higher temperature, for example one at 36.9°C, one at 37.1°C, one at 37.5°C etc since normal human body temperature varies between 36.8 and 37.3°C, depending on the individual and on the level of activity being undertaken.

Once the normal temperature of the user has been established thermometers 10 are selected where the wax or grease 18 melts at the ovulation-indicative temperature rise. The thermometer 10 is worn continually

until dye 12 can be seen in chamber 14, which is indicative of ovulation. Intercourse can then be timed to improve the chances of conception.

Using the second embodiment, the thermometer device 20, is again worn *per vaginam* to establish the normal body temperature range of the user. Devices 20 are used where the signaling threshold is varied. This can be done using one device 20 where the temperature threshold can be manually set or by using a series of pre-set, fixed temperature devices. Again, the device 20 is left in place throughout a complete menstrual cycle to establish the ovulation-indicative temperature peak of the user. Then, either the device 20, is set to be at or just below the desired temperature or a device 20 is selected which has a fixed predetermined temperature and operates at or just below the ovulation-indicative temperature of the user.

CLAIMS

1. An indwelling thermometer which indwells in the ear or vaginal cavity of a subject mammal and which the thermometer comprises temperature sensing means and signal means for providing a continued indication that a predetermined threshold body temperature has been exceeded.
2. An indwelling thermometer according to claim 1, in which signal means provides a visual, aural, or mechanical indication that the temperature has been exceeded.
3. An indwelling thermometer according to claim 1 or claim 2, in which the signal is selected from the group comprising the movement of an indicator device, the illumination/quenching of a light, the release of a marker dye, colour change of a thermochromatic ink, vibration of the thermometer, generation of a radio signal, activation of a buzzer or alarm, and a digital telemetry system signal.
4. An indwelling thermometer according to any one of claims 1 to 3, in which temperature sensing means is electronic, chemical or mechanical.
5. An indwelling thermometer according to any one of claims 1 to 4, in which the temperature sensing means comprises a thermochromatic dye, a wax or grease with a specific melting point, a thermodeformable plastics material, a thermocouple linkage, a thermistor or a printed circuit board.
6. An indwelling thermometer according to any one of claims 1 to 5, in which the thermometer is implanted beneath the skin.

7. An indwelling thermometer according to any preceding claim, in which the thermometer comprises an enclosed hollow container comprising two chambers separated by a waisted portion of the container.
8. An indwelling thermometer according to any preceding claim, in which the waisted portion of the container contains the temperature sensing means.
9. An indwelling thermometer according to claim 8, in which the temperature sensing means is a wax or grease, the melting point of which is at or close to the predetermined threshold temperature.
10. An indwelling thermometer according to any one of claims 1 to 7, in which the signal means is a marker dye contained in one chamber of the container only.
11. An indwelling thermometer according to any one of claims 1 to 4, in which the thermometer further comprises means to store temperature data generated by the temperature sensing means.
12. An indwelling thermometer according to claim 11, in which the data relates to temperatures below and above the predetermined threshold.
13. An indwelling thermometer according to claim 11 or claim 12, in which the predetermined threshold is selected by a computer program.
14. An indwelling thermometer according to claim 13, in which the program is contained within the thermometer.
15. An indwelling thermometer according to any one of claims 1 to 6, in which the thermometer is formed from a plastics material with a thermochromatic pigment or ink incorporated therein.

16. An indwelling thermometer according to claim 15, in which temperature sensing means comprises the thermochromatic pigment or ink and the signal means comprises a fixative to prevent the thermochromatic pigment or ink reverting to its original colour.
17. A kit of thermometers to establish the predetermined threshold temperature of an individual subject mammal, the kit comprising a series of thermometers according to any preceding claim, each thermometer detecting a different predetermined threshold temperature across a range of temperatures.
18. A kit according to claim 17, in which the temperature range is from 35-45°C.
19. Use of an indwelling thermometer according to any one of claims 1 to 16, in which the mammal is a human.
20. Use of an indwelling thermometer according to claim 19, in a human female.
21. Use according to claim 20 for the detection of ovulation.
22. A method of determining ovulation, the method comprising the steps of inserting a thermometer according to any one of claims 1 to 16 into the ear or vagina of a subject mammal, allowing said thermometer to indwell, and periodically observing the signal means to detect a signal.
23. A method according to claim 22, in which the mammal is a human female.

24. A method of determining infection of a mammal, the method comprising the steps of inserting a thermometer according to any one of claims 1 to 16 into the ear or vagina of a subject mammal, allowing said thermometer to indwell, and periodically observing the signal means to detect a signal.

1 / 1

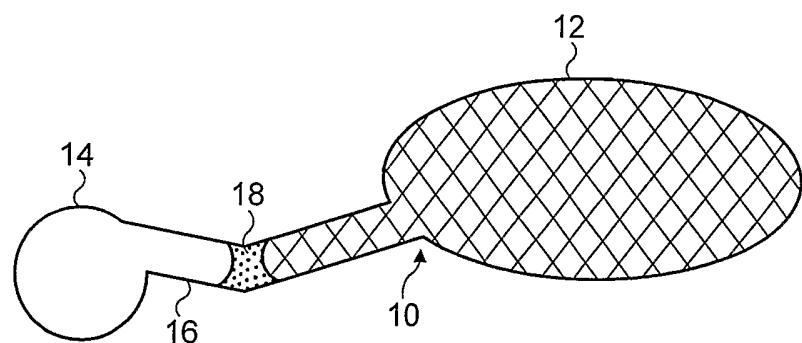


FIG. 1a

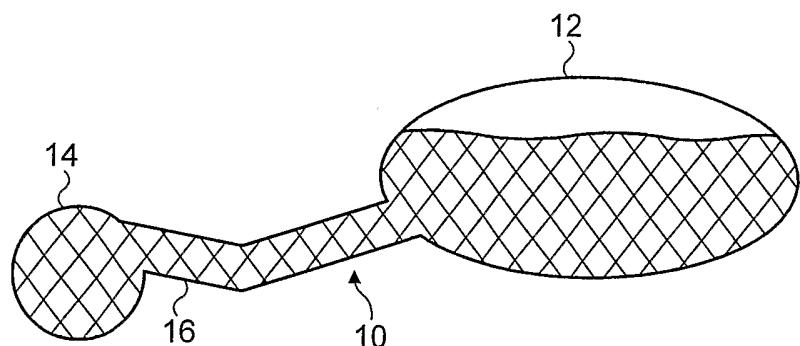


FIG. 1b

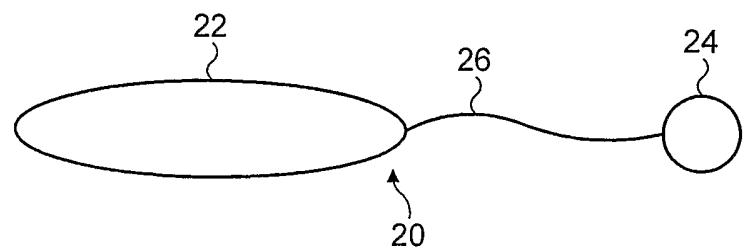


FIG. 2

INTERNATIONAL SEARCH REPORT

Internat Application No
PCT/GB 03/01144

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 G01K13/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 7 G01K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, PAJ, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	DE 41 22 930 A (SCHOENER PETER DIPL ING) 6 February 1992 (1992-02-06) the whole document ---	1-4, 11-14, 17-23
X	EP 0 090 327 A (WEILAND WERNER) 5 October 1983 (1983-10-05)	1-5, 11-14, 17-24
Y	the whole document ---	6
Y	EP 0 167 262 A (KUREHA CHEMICAL IND CO LTD) 8 January 1986 (1986-01-08)	6
A	page 4, line 21 -page 5, line 4 --- -/-	1-4, 6-24

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

° Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

& document member of the same patent family

Date of the actual completion of the international search

8 July 2003

Date of mailing of the international search report

18/07/2003

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Thomte, M

INTERNATIONAL SEARCH REPORT

Internat Application No
PCT/GB 03/01144

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	PATENT ABSTRACTS OF JAPAN vol. 2000, no. 02, 29 February 2000 (2000-02-29) & JP 11 316161 A (MATSUSHITA ELECTRIC IND CO LTD), 16 November 1999 (1999-11-16) abstract ---	1-5, 11-13, 22-24
X	PATENT ABSTRACTS OF JAPAN vol. 2000, no. 04, 31 August 2000 (2000-08-31) & JP 2000 005136 A (NIPPON TELEGR & TELEPH CORP <NTT>; TOKAI UNIV), 11 January 2000 (2000-01-11) abstract ---	1-5
X	US 4 676 254 A (FROHN HERMANN J) 30 June 1987 (1987-06-30) figures 2,3 ---	1,3,4, 11,22,23
A	US 5 991 700 A (CLAY BRADFORD G ET AL) 23 November 1999 (1999-11-23) abstract ---	1-24
A	US 4 502 487 A (KONDRAKCI HENRY C ET AL) 5 March 1985 (1985-03-05) abstract ---	1-24
A	US 4 333 477 A (CHERVITZ MELVIN) 8 June 1982 (1982-06-08) the whole document -----	1-24

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Search Report	Application No
PCT/GB 03/01144	

Patent document cited in search report		Publication date		Patent family member(s)	Publication date
DE 4122930	A	06-02-1992	DE	4122930 A1	06-02-1992
EP 0090327	A	05-10-1983	DE	3211573 A1	06-10-1983
			DE	3237565 A1	12-04-1984
			AR	229771 A1	30-11-1983
			AT	32022 T	15-02-1988
			AU	1290383 A	06-10-1983
			BR	8301594 A	06-12-1983
			CA	1199727 A1	21-01-1986
			DE	3375369 D1	25-02-1988
			DK	136383 A	30-09-1983
			EG	15937 A	30-09-1986
			EP	0090327 A2	05-10-1983
			ES	8401718 A1	16-03-1984
			FI	830977 A ,B,	30-09-1983
			IN	159291 A1	25-04-1987
			JP	58177630 A	18-10-1983
			NO	831131 A	30-09-1983
			OA	8313 A	29-02-1988
			ZA	8302173 A	28-12-1983
EP 0167262	A	08-01-1986	JP	61014530 A	22-01-1986
			DK	252985 A	30-12-1985
			EP	0167262 A2	08-01-1986
JP 11316161	A	16-11-1999	CN	1297343 T	30-05-2001
			EP	1077046 A1	21-02-2001
			WO	9956629 A1	11-11-1999
			US	6522912 B1	18-02-2003
JP 2000005136	A	11-01-2000	NONE		
US 4676254	A	30-06-1987	DE	3509503 A1	25-09-1986
			AU	5379986 A	18-09-1986
			EP	0195207 A2	24-09-1986
			JP	61220642 A	30-09-1986
US 5991700	A	23-11-1999	NONE		
US 4502487	A	05-03-1985	EP	0144383 A1	19-06-1985
			JP	60501195 T	01-08-1985
			WO	8404237 A1	08-11-1984
			US	4633885 A	06-01-1987
US 4333477	A	08-06-1982	US	4232684 A	11-11-1980