Title: A CUTTING GUIDE

Abstract: The present disclosure provides a cutting guide for guiding a cutting tool when cutting a material. The cutting guide comprises an elongate body and a coupling for coupling the elongate body to the cutting tool in a manner such that the elongate body extends in a direction that is transversal to a cutting direction of the cutting tool. The cutting guide also comprises a marker or marking positioned on the elongate body for indicating a distance between the marker or marking and a cut by the cutting tool.
A CUTTING GUIDE

Field of the Invention

The present invention broadly relates to a cutting guide and relates particularly, though not exclusively, to a cutting guide for attachment to a pair of scissors for cutting fabric.

Background of the Invention

Dress making or the fabrication of garments in general often requires positioning a template or "pattern" of a portion of the garment onto fabric and then marking a line spaced apart from the template to indicate a seam allowance. The seam allowance is a predetermined distance (typically in the range of 0.5 to 1.5cm) from an outer edge of the template and the fabric is then cut at the marked line. Marking the fabric in that way is a cumbersome task especially if the portion of the garment has a complex shape.

Summary of the Invention

The present invention provides in a first aspect a cutting guide for guiding a cutting tool when cutting a material, the cutting guide comprising:

- an elongate body;
- a coupling for coupling the elongate body to the cutting tool in a manner such that the elongate body extends in a direction that is transversal to a cutting direction of the cutting tool; and
- a marker or marking positioned on the elongate body for indicating a distance between the marker or marking and a cut by the cutting tool.
For example, the cutting guide may be attached to a pair of scissors for cutting fabric. A template for a portion of a garment, such as a dressmaker's pattern, often does not include a seam allowance around the template. In this case the marker or marking of the cutting guide may be positioned such that the marker or marking follows a line of the pattern and the pair of scissors cuts the fabric at a distance from the line of the pattern that corresponds to the seam allowance without the need to mark the seam allowance on the fabric prior to cutting the fabric.

The marker typically is a member that is movable along a portion of the elongate body. For example, the marker may be a ring shaped member, such as a rubber ring, that is slidable along the portion of the elongate body. The elongate body may for example comprise a plurality of annular grooves that may be parallel to each other and that are arranged to receive the ring shaped member such that the position of the ring shaped member relative to the cutting tool is adjustable by choosing one of the grooves for positioning the ring shaped member. Alternatively, the elongate body may for example comprise a groove that is oriented in a direction of elongation and the marker may be coupled to the elongate body such that a portion of the marker is slidable in the groove along the elongate body.

The elongate body typically has a lower contact surface that is in use in frequent contact with the material that is cut by the cutting tool. The lower surface typically has a width that is narrower than the width of the elongate body.
The elongate body may have a cross-sectional that is rounded and/or may form an apex at the lower surface. In one specific example the elongate body has a cross-sectional shape in that is round and the lower surface is a line that extends along a portion of the elongate body. Consequently, the lower surface typically is relatively narrow, which facilitates accurate guiding by the cutting guide. Further, if the elongate body has a round or rounded cross-sectional shape and the marker or the marking extends around the elongate body, the cutting guide may be used at differing angular orientations relative to the template during cutting of the material, which facilitates guiding accuracy for example during a cutting action using a pair of scissors to which the cutting guide may be attached.

In one example the elongate body is a cylindrical member that typically is formed from a plastics material. The elongate body typically is substantially straight.

The coupling may comprise a clasp or any other suitable coupling means. In one specific embodiment of the present invention the cutting guide is arranged for attachment to a magnetisable or magnetic portion of the cutting tool and typically comprises a magnet, such as a Rare Earth magnet positioned within or on the elongate body. The coupling typically is positioned at an end-portion of the elongate body.

The present invention provides in a second aspect a cutting device comprising a cutting tool and the cutting guide in accordance with the first aspect of the present invention.
The cutting guide typically is attached to the cutting tool such that an end of the cutting guide extends in a direction substantially perpendicular to a cutting direction of the cutting tool.

The cutting device typically is arranged such that the cutting tool is attachable to the cutting tool at two opposite sides of the cutting tool, which for example facilitates conversion from left hand use to right hand use.

The cutting tool typically is a pair of scissors, such as a pair of scissors for cutting a fabric. In one specific embodiment the pair of scissors comprises a metallic magnetisable portion and the cutting guide comprises a magnetic material, typically at an end of the cutting guide, and which is used to couple the cutting guide to the cutting tool.

In one specific embodiment the cutting guide is attached to the cutting tool such that the cutting device is arranged to cut the material at a position along the cutting tool that is at, or in close proximity of, a position from which the cutting guide projects from the cutting tool.

The cutting device typically is arranged such that the cutting guide may be positioned at differing positions along the cutting tool. As mentioned above, the cutting tool may for example be a pair of scissors. If the pair of scissors is fully opened prior to cutting, then the cutting position will be further rearward than in the case of the pair of scissors being only partially opened prior
to cutting. In either case the cutting guide typically is positionable such that the cutting guide projects form the cutting tool from a position at, or in close proximity of, a position at which the cutting tool in use cuts the material.

The present invention provides in a third aspect a method of cutting a material using a cutting device of the second aspect of the present invention, the method comprising:

- cutting the material using the cutting tool; and
- guiding the cut using the marker or marking of the cutting guide.

The method typically comprises guiding the cut using the cutting guide projecting from the cutting tool at a position along the cutting tool that is at, or in close proximity of, a position at which the cutting tool in use cuts the material.

The method may also comprise selecting a position for coupling the cutting guide to the cutting tool such that the cutting guide projects from the cutting tool at a position along the cutting tool that is at, or in close proximity of, a position at which the cutting tool in use cuts the material.

Further, the method may comprise selecting a position for the marker or marking on the elongate member of the cutting guide and thereby selecting a cutting position relative to the marking or marker, which may be guided along a line of a pattern during cutting the material. In one specific example the method comprises cutting a material of a portion of a garment using a pattern,
wherein the material is cut at a distance from the pattern that corresponds to the seam allowance and the cutting guide is used to guide the cutting tool at that distance from the pattern.

The invention will be more fully understood from the following description of specific embodiments of the invention. The description is provided with reference to the accompanying drawings.

Brief Description of the Drawings

Figures 1 and 2 show a cutting device comprising a cutting tool and a cutting guide in accordance with a specific embodiment of the present invention;

Figure 3 shows a cross-sectional view of the cutting guide in accordance with a specific embodiment of the present invention; and

Figure 4 (a) and (b) show a perspective and a side view, respectively, of a cutting device in accordance with a specific embodiment of the present invention.

Detailed Description of Specific Embodiments

Embodiments of the present invention generally relate to a cutting guide for guiding a cutting tool. For example, the cutting tool may be a pair of scissors used for cutting fabric, such as fabric for making a dress, and the cutting guide may be arranged to guide the pair of scissors for cutting the fabric at a pre-determined distance from an edge of a template so as to allow for a seam.
Referring to Figures 1 to 3 a cutting tool, a cutting device and a method of cutting a material in accordance with a specific embodiment of the present invention is now described.

Figure 1 shows a cutting device 10 which in this example comprises a pair of scissors 12 that is suitable for cutting fabric, such as fabric for dress making. The cutting device 10 comprises a cutting guide 14 that projects from a side of the pair of scissors 12. Figure 1 shows the cutting device 10 in a closed configuration and Figure 2 is a representation of the cutting device 10 in an open configuration.

The cutting guide 14 comprises a straight elongate member 15 that has a round cross-sectional shape. The elongate body 15 has a lower surface 17 which in this example is a line for contacting the fabric frequently during cutting the fabric. In this embodiment the cutting guide 14 comprises circular grooves 16 and a rubber ring 18 is arranged for sliding along the elongate member 15 of the cutting guide 14 from one groove 16 to an adjacent groove 16. In use the rubber ring 18 functions as a marker and the rubber ring 18 may be in frequent contact with a line of a template while the pair of scissors 12 is used to cut the fabric at a pre-determined distance (as chosen by the position of the marker 18 relative to the scissors 12).

Alternatively, the marker of the cutting tool 14 may be provided in different forms. For example, the elongate body of the cutting tool 14 may comprise an elongate groove in which a marking member, such as a plastics member, may be secured such that the marking member can be
moved along a length portion of the elongate member to a
desired marking position.

In this embodiment the pair of scissors 12 is metallic and
the cutting guide 14 comprises an end portion that
includes a magnetic component and couples the cutting
guide 14 to the pair of scissors 12. The cutting guide 14
projects at a substantially right angle from a side
portion of the pair of scissors 12 and is moveable along
the pair of scissors 12 and can be coupled at different
positions along the pair of scissors 14.

The guiding accuracy of the cutting guide 14 is
facilitates if the cutting guide 14 projects from the
scissors 12 at a position that is in the proximity of a
region at which the pair of scissors 12 in use cuts the
fabric. For example, if the pair of scissors 12 is fully
opened prior to a cutting action, a cutting position is
further back than for the case of the pair of scissors 12
only being partially opened prior to the cutting action.
The ability to select a position at which the cutting
guide 14 is coupled to the pair of scissors 12 facilitates
accuracy of the guiding.

It will be appreciated that alternatively the coupling of
the cutting guide 14 to the pair of scissors 12 may be
effected by other means. For example, the cutting guide
14 may comprise a clip or clasp that may be arranged to
couple the cutting guide 14 to the pair of scissors 12.

Figure 3 shows a cross-sectional representation of the
cutting guide 14. In this embodiment, the elongated
member of the cutting guide 14 is provided in the form of
a plastic tube. It will be appreciated, however, that alternatively the elongate member of the cutting guide 14 may be provided in any other suitable form such as in the form of a metallic tube. Embedded into an end of the plastic tube 19 is a magnet 20 that is arranged for coupling the cutting guide 14 to the pair of scissors 12 (or any other suitable cutting tool). In this embodiment the magnet 20 comprises a Rare Earth material and consequently is a relatively strong magnet.

Cutting a material, such as fabric for making a garment, using the cutting device 10 consequently typically comprises selecting a location at which the cutting guide 14 is attached to the cutting tool 12 and attaching the cutting guide 14 to the cutting tool 12 at that position. Further, the method comprises selecting a position for the marker 18 such that a distance between a cutting line of the cutting tool 12 and the marker 18 corresponds to a seam allowance. The cutting device 10 is then typically positioned such that the marker 18 can follow the template and the cutting tool 12 can cut the fabric at a distance relative to the template that corresponds to the seam allowance. If the cutting action is changed in any way, for example a pair of scissors may be more or less opened, the method may also comprise selecting another position for coupling the cutting guide 14 to the cutting tool 12 and coupling the cutting guide 14 to the cutting tool 12 at the selected position.

Figures 4 (a) and (b) show a cutting guide in accordance with another embodiment of the present invention. The cutting 40 is related to the cutting guide 10 shown in Figures 1 to 3. The cutting guide 10 comprises a hollow
body 42 that has a plurality of parallel grooves 44 for receiving a rubber ring (not shown), such as marker 18 shown in Figures 1 - 3. The cutting guide 40 has a magnet 46 for magnetically coupling the cutting guide 40 to a cutting tool, such as the cutting tool 12 shown in Figures 1 and 2. The magnet 46 of the cutting guide 40 has a flat face 48 that forms an angle of 87 degrees with an axis of the cutting guide 40. In this example the cutting guide 40 is arranged such that, when the cutting guide 40 is attached to the cutting tool 12, the cutting guide 40 projects slightly upwards (by 3 degrees), which facilitates the guiding and cutting action. It is to be appreciated that the cutting guide may be arranged to project slightly upwardly by any other suitable angle, such as an angle of the order of 10 degrees, 5 degrees or smaller than 3 degrees.

Although the invention has been described with reference to particular examples, it will be appreciated by those skilled in the art that the invention may be embodied in many other forms. For example, it will be appreciated that in variations of the described embodiment the cutting tool 14 may also have another suitable shape, for example, the cutting tool may have a substantially triangular cross-sectional shape and it may be arranged so that an apex of the triangular shape points in a downward direction. In addition, it is to be appreciated that alternatively the cutting tool may not necessarily be used for cutting fabric but may also be used for cutting other suitable materials.
The Claims:

1. A cutting guide for guiding a cutting tool when cutting a material, the cutting guide comprising:
 an elongate body;
 a coupling for coupling the elongate body to the cutting tool in a manner such that the elongate body extends in a direction that is transversal to a cutting direction of the cutting tool; and
 a marker or marking positioned on the elongate body for indicating a distance between the marker or marking and a cut by the cutting tool.

2. The cutting guide of claim 1 wherein the cutting guide comprises a marker and wherein the marker is movable along a portion of the elongate body.

3. The cutting guide of claim 1 or 2 wherein the cutting guide comprises a marker and wherein the marker is a ring shaped member.

4. The cutting guide of claim 2 or 3 wherein the marker is a rubber ring.

5. The cutting guide of claim 3 or 4 wherein the elongate body comprises a plurality of annular grooves that are arranged to receive the ring shaped member such that the position of the ring shaped member relative to the cutting tool is adjustable by choosing one of the grooves for positioning the ring shaped member.

6. The cutting guide of any one of the preceding claims wherein the elongate body has a lower surface that in use
is in frequent contact with the material that is in use cut by the cutting tool.

7. The cutting guide of claim 6 wherein the lower surface has a width that is narrower than a width of the elongate body.

8. The cutting guide of claim 6 or 7 wherein the lower surface is a line that extends along a portion of the elongate body.

9. The cutting guide of any one of the preceding claims wherein the elongate body has a cross-sectional shape that is rounded.

10. The cutting guide of any one of the preceding claims wherein the cutting guide is arranged for attachment to a magnetisable or magnetic portion of the cutting tool and comprises a magnet.

11. The cutting guide of any one of the preceding claims wherein the coupling is positioned at an end-portion of the elongate body.

12. A cutting device comprising a cutting tool and the cutting guide in accordance with any one of the preceding claims.

13. The cutting device of claim 12 wherein the cutting guide is attached to the cutting tool such that an end of the cutting guide extends in a direction substantially perpendicular to a cutting direction of the cutting tool.
14. The cutting device of claim 12 or 13 wherein the cutting tool is a pair of scissors.

15. The cutting device of any one of claims 12 to 14 wherein the cutting guide is attached to the cutting tool such that the cutting device is arranged to cut the material at a position along the cutting tool that is at, or in close proximity of, a position from which the cutting guide projects from the cutting tool.

16. The cutting device of any one of claims 12 to 15 wherein the cutting device is arranged such that the cutting guide may be positioned at differing positions along the cutting tool.

17. A method of cutting a material using a cutting device of the second aspect of any one of claims 12 to 16, the method comprising:
 cutting the material using the cutting tool; and
 guiding the cut using the marker or marking of the cutting guide.

18. The method of claim 17 comprising guiding the cut using the cutting guide projecting from the cutting tool at a position along the cutting tool that is at, or in close proximity of, a position at which the cutting tool in use cuts the material.

19. The method of claim 17 or 18 comprising selecting a position for the marker on the elongate member of the cutting guide.

20. The method of claim 19 comprising guiding the marker
21. The method of any one of claims 17 to 20 comprising selecting a position for coupling the cutting guide to the cutting tool such that the cutting guide projects from the cutting tool at a position along the cutting tool that is at, or in close proximity of, a position at which the cutting tool in use cuts the material.

22. The method of any one of claims 17 to 21 comprising cutting a material of a portion of a garment using a pattern, wherein the material is cut at a distance from the pattern that corresponds to the seam allowance and the cutting guide is used to guide the cutting tool at that distance from the pattern.
INTERNATIONAL SEARCH REPORT

International application No. PCT/AU2011/00117

A. CLASSIFICATION OF SUBJECT MATTER

Int. Cl.
B26B 13/22 (2006.01) D06H 7/14 (2006.01)

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

WPI & EPODOC: IPC/ECLA Marks: B26B1, B26B3, B26B5, B26B7, B26B9, B26B11, B26B13, B26B15, B23D9, B23D15, C1435, B23D21, B23D29, B23D31, B23D33, D06H1, D06H7, A43D8; Keywords: scissors, shears, cut, mark, draw, pencil, scribe, attach, connect, extend, project, ring, spindle, circle, circular, measure, gage, gauge and like terms.

Google Patents: scissors measure marker, scissors gage, scissors marker, roller cylinder marker, rolling fabric marker, fabric marker, rolling ruler line marker rotating fabric marker and like terms

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US 508453 A (WALDIE) 14 November 1893 Pg. 1 lines 15-77, Figs. 1-3</td>
<td>1-22</td>
</tr>
<tr>
<td>X</td>
<td>US 692578 A (WOLFF) 4 February 1902 Pg. 1 lines 25-66, Figs. 1-4</td>
<td>1-22</td>
</tr>
</tbody>
</table>

[X] See patent family annex

Further documents are listed in the continuation of Box C

* Special categories of cited documents:
 "A" document defining the general state of the art which is not considered to be of particular relevance
 "E" earlier application or patent but published on or after the international filing date
 "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 "O" document referring to an oral disclosure, use, exhibition or other means
 "P" document published prior to the international filing date but later than the priority date claimed

Date of the actual completion of the international search 08 December 2011

Date of mailing of the international search report 21/12/2011

Name and mailing address of the ISA/AU

AUSTRALIAN PATENT OFFICE
PO BOX 200, WODEN ACT 2606, AUSTRALIA
E-mail address: pct@ipaustralia.gov.au
Facsimile No. +61 2 6283 7999

Authorized officer

ALISON GREEN

AUSTRALIAN PATENT OFFICE
(ISO 9001 Quality Certified Service)

Telephone No: +61 2 6283 2174

Form PCT/ISA/210 (second sheet) (July 2009)
This Annex lists the known "A" publication level patent family members relating to the patent documents cited in the above-mentioned international search report. The Australian Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>US 508453</td>
<td>NONE</td>
</tr>
<tr>
<td>US 692578</td>
<td>NONE</td>
</tr>
<tr>
<td>US 6523264</td>
<td>NONE</td>
</tr>
</tbody>
</table>

Due to data integration issues this family listing may not include 10 digit Australian applications filed since May 2001.

END OF ANNEX