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ABSTRACT

A computer-implemented method for designing an industrial
product modeled with a binary tree having leaf nodes representing basic
volumes, non-leaf nodes representing binary commutative operation
combining volumes, the method comprising the steps of:

- performing a design operation triggering the adding or the removing of
a leaf node; and

- Idealizing the binary tree, i.e. modifying the binary tree while
maintaining the optimality of the tree by minimizing the number of weak leaf
nodes, a weak leaf node being a leaf node such that, when removed, the
resulting binary tree is not optimal anymore.
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A computer-implemented method for designing an industrial
product modeled with a binary tree.

The invention relates to the field of computers programs and
systems, and more specifically to the field of computer-implemented method
for designing an industrial product modeled with a binary tree, for example In
computer aided design of acronym CAD.

The invention deals with computer aided design CAD, and more
precisely with declarative modeling (also named functional modeling). A
declarative modeling CAD system involves a predefined history tree together
with declarative features. After the CAD system user instantiates declarative
features, the data structure supporting the resulting solid is a history tree
including many sub-trees that combine basic volumes through a commutative
operation, like union or intersection. The invention takes advantage of this
particular circumstance to improve the solid update performance after the
user requests a change.

Given a predefined history tree, as illustrated on the left drawing of
figure 1, of a declarative modeling system, and given the input buckets of the
predefined history tree, declarative features, when instantiated, spread basic
volumes among input buckets. Consequently, after some features are
instantiated, each input bucket combines a plurality of basic volumes through
a commutative operation (mainly a Boolean union noted “+"). Currently, each
combination of basic volumes is implemented by an ordered list where
volumes are stored according to creation sequence, as illustrated by the right
drawing of figure 1. On figures, the root node is noted RN, leaf nodes are
noted LN, and internal nodes are noted IN, and arcs or edges link nodes.

It should be noticed that the update of a declarative solid involves
two steps. The first step is to update input buckets (lists of unions of basic
volumes) and the second step is to update the predefined history tree, where
commutative and non commutative operations are stored. According to
industrial testing, the very first implementation of declarative modeling
technology shows that overall computing time is mainly spent in the
predefined history tree update (as opposed to input buckets update time).
But, recent performance enhancements in this field (through ongoing
Dassault Systémes patents: EP2474928, EP2474929 and EP2474930)
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reduced the update time of the predefined history tree in such a way that the
basic volumes update time is now significant, and thus deserves
optimization.

As it will be detailed in the following, the invention makes an
intensive use of the “optimal binary tree” concept. This concept is well known
in the art of sorting and searching ordered data (named “records”) In a
dictionary. According to the art of sorting and searching, the so called "binary
search tree” is updated each time a new record is added to the dictionary and
its structure is designed to facilitate searching a given record. The searching
efficiency is based on the binary tree balance. For this purpose, elaborated
algorithms exist to maintain this balance each time a new record is added to
the dictionary. Searching skill is used for database management as well as
computational geometry. The classical reference is the book of D. Knuth:
“Sorting and searching”.

As explained before, each input bucket of the predefined history
tree combines its basic volumes through an ordered list. When the user
modifies a declarative feature of the part, basic volumes modifications
(deletion, dimension change, position change...) are executed and input
buckets need to be updated. This results In a large update time because
updating each list is proportional to the age of the modified volume. It is well
known from the solid modeling art that an ordered list is not the best structure
from the update time point of view.

Another problem of the background art is the following. Declarative
modeling technology is designed to behave independently of features
creation order. Dassault Systemes patent EP1501026 guarantees that the
shape of the resulting solid is independent of the features creation order. But,

the list implementation of input buckets makes the update of an early feature
longer than the update of a late feature, which clearly contradicts the user
perception of what should be a declarative behavior.

The art of searching is to maintain the balance of the binary
search tree. The topology of the binary search tree captures a structure that
IS highly related to the fact that leaf nodes are ordered records. For example,
the typical requirement is that all nodes of the left sub tree are lower
(according to the records ordering) than all nodes of the right sub tree. This is

the source of the complexity of balancing algorithms.
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A goal of the invention is to provide a computer-implemented
method and a system to overcome the above mentioned problems.

It is proposed, according to one aspect of the invention, a
computer-implemented method for designing an industrial product modeled
with a binary tree having leaf nodes representing basic volumes, non-leaf
nodes representing binary commutative operation combining volumes and
arcs linking nodes, the method comprising the steps of:

- performing a design operation triggering the adding or the removing of a
leaf node; and

- idealizing the binary tree, i.e. modifying the binary tree while maintaining
the optimality of the tree by minimizing the number of weak leaf nodes, a
weak leaf node being a leaf node such that, when removed, the resulting
binary tree is not optimal anymore, an optimal binary tree having an
absolute value of the depth difference between any two leaf nodes (LN)
equal to zero or one.

Keeping such a ideal tree, allows to shorten the time needed by
the declarative CAD system to compute the new shape of the solid after the
user requests a change. Furthermore, the declarative CAD system response
time is smoother, meaning that the update time of a feature does not depend
on its creation date. In other words, the update time of any feature is
approximately the same, and, in the average, shorter that the state of the art
technology.

A faster update is a valuable improvement since, in CAD industry,

80% of design time is spent through modifications as opposed to 20% of
design time spent through creation of new models from scratch. Time saved

through performance enhancement can shorten the time-to-market of a new
product or can be used to investigate alternate designs.

By shortening the overall update time and by smoothing the
update time disproportion among features, the invention makes the
declarative CAD system more comfortable to use.

The invention makes use of optimal binary trees in a context that
IS much simpler than searching ordered records in a dictionary. Indeed, all
non leaf nodes of the binary tree are the same commutative operation

(mainly Boolean union) and all leaf nodes are basic volumes. This greatly
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simplifies the situation and the efficiency of the invention’s algorithms is a
result of their straightforwardness. As a consequence, computer programs
are easier to design, to test and to maintain, they are more reliable. It should
be noticed that algorithms dealing with binary trees for searching purpose are
not reusable in the context of the invention.

According to an embodiment, the computer-implemented method
comprises, when the design operation is the adding of a new leaf node, the
steps of:

- determining a path of nodes by traversing the binary tree, from the root
node to an existing leaf node, by iteratively choosing the next node
defining a sub-tree having the smallest number of leaf nodes; and

- adding the new leaf node at the existing leaf nhode ending path.

Thus adding a new leaf node saves or enhances the structure of
the tree at a computing cost that is proportional to its depth.

According to another embodiment, the computer-implemented
method comprises, when the design operation is the removing of a leaf node,
the steps of:

- determining as the non-optimal leaf node on the binary tree, which is
no longer optimal, the leaf node with the smallest depth;

- determining, in the path from the non-optimal leaf node to the root
node, the pivot node which is the first node which sub-tree Is non-
optimal,

- determining, in said non-optimal sub-tree of the pivot node, the V-sub-
tree which is the sub-tree having two leaf nodes with the deepest
depth; and

- switching the non-optimal leaf node and the V-sub-tree.

Thus restoring optimality after a node removal is performed at a
calculation cost that is proportional to the depth of the tree.

According to an embodiment, the computer-implemented methoad
further comprises a step of providing a predefined tree for inputting a binary
tree adapted for designing a specific industrial product.



10

15

20

25

30

CA 02863089 2014-09-08

5

Thus the CAD system features a declarative behavior and
provides the user with high level design features.

According to an embodiment, for each node of the binary tree, the
maximum depth of its sub-tree is stored in a memory.
That can limit calculation.

According to an embodiment, for each node of the binary tree, the
minimum depth of its sub-tree is stored in a memory.
That can limit calculation.

According to an embodiment, for each node of the binary tree, the
number of leaf nodes of its sub-tree is stored in a memory.
That can limit calculation.

In other words, the memory can be a non-transitory computer
readable medium.

According to an embodiment, the binary tree is obtained by
converting a non-optimal binary tree to an optimal binary tree.

Thus, it is possible to use a binary tree of an industrial product or
object, created without the method according to the invention.

For example, the method further comprising a preliminary step of
idealizing any binary tree representing an industrial product, by translating a
linear list of leaf nodes representing basic volumes into an ideal binary tree
wherein the leaf nodes are the said basic volumes.

Thus it is possible to use a binary tree of an industrial product or
object, created without the method according to the invention.

For example, the method further comprising a preliminary step of
idealizing any binary tree representing an industrial product, by using a
library of pre-computed ideal binary trees according to a relevant range of
leaf nodes number, and reading the number of leaf nodes representing basic
volumes of a linear list of the binary tree, to load the pre-computed ideal
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binary tree corresponding to the leaf nodes number and to set the basic
volumes of the linear list to the leaf nodes of the pre-computed binary tree.

Thus it is possible to use a binary tree of an industrial product or
object, created without the method according to the invention.

It is also proposed, according to another aspect of the invention, a
computer-readable medium having computer-executable instructions to
cause the computer system to perform the method for designing an industrial
product modeled with a binary tree as described above.

It is also proposed, according to another aspect of the invention, a
computer program product, stored on a computer readable medium, for
designing an industrial product modeled with a binary tree, comprising code
means for causing the system to take the steps of the method as described
above.

It is also proposed, according to another aspect of the invention,
an apparatus for designing an industrial product modeled with a binary tree
comprising means for implementing the steps of the method as described
above.

It is also proposed, according to another aspect of the invention,
an industrial product designed with the method of anyone of claims 1 to 10.

The invention will be better understood with the study of some
embodiments described by way of non-limiting examples and illustrated by
the accompanying drawings wherein :

- figure 1 illustrates a an example of tree, according the

background art,
- figures 2 to 30 illustrate computer-implemented method,

according to aspects of the invention.
- figure 31 illustrates a computer network or similar digital

processing environment in which the present invention may be implemented,;

and
- figure 32 illustrates a diagram of the internal structure of a

computer.
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Following figures explain more in details the functioning of the
present invention.

As lllustrated on figure 2, the invention implements the
combination of input bucket's basic volumes through balanced binary trees
as opposed to existing ordered lists, as illustrated in the right drawing on
figure 1. The update time of each input bucket is then propottional to the
logarithm of its number of basic volumes, as opposed to the update time of
an ordered list which is proportional to its total number of basic volumes.
Furthermore, each balanced binary tree is managed in such a way that its
shape remains optimal through creation and deletion of basic volumes.

The invention description is focused on the management of one
binary tree. Of course, implementing the invention in a declarative CAD
system Is to put into service as many binary trees as necessary, depending
on the predefined history tree structure, each binary tree being managed
according to the present description.

The graph definitions used are the followings.

A tree, as lllustrated on figure 3, is an acyclic graph. A tree
includes exactly one more node than the number of arcs. The leftmost graph
of figure 3 Is not a tree (notice the many cycles). The rightmost graph of
figure 3 Is a tree.

A binary tree, as illustrated on figure 4, is a tree featuring one
node with two arcs, named the root node RN, a plurality of nodes with three
arcs, named internal nodes IN, and a plurality of nodes with one arc, named
the leaf nodes LN. Conventionally, drawings will place the root node RN at
the lowest position and leaf nodes LN at higher positions, as illustrated on

figure 4.
All along the present application, p is the number of leaf nodes

LN and is written p=2?+r where g and » are integer numbers such that
0<r<2% Number g is often written g =1log, p. It is well known from graph

theory (by applying the Euler relationship to binary trees) that the total
number of nodes as well as the number of arcs is entirely defined by the
number of leaf nodes LN.
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By convention, as represented on figure 5, the arcs of a binary
tree are oriented from the leaf nodes LN toward the root node RN: top to
bottom in the drawings. The root node RN has no output arc and two input
arcs, leaf nodes LN have no input arc and one output arc, internal nodes IN
have one output arc and two input arcs, as Illustrated on figure 5. This
conventional orientation is chosen according to the data flow captured by the
binary tree in the context of the invention. It is implicit in the drawings.

As lllustrated on figure 6, the sub tree defined by a node x Is the
tree obtained by cutting the output arc of node x. Consequently, node x Is
the root node of its sub tree. A leaf node can be viewed as a sub tree.

By definition, two sibling nodes have the same output node. On
figure 7, dotted contours surround two sibling sub trees sharing the same
output node x.

The depth of a node is the number of arcs of the path from the
said node to the root node RN. The depth of a tree is the largest leaf node
depth. The depth of the root node RN is zero. On figure 8, depth of node x is
3, depth of leaf node y is 3, depth of leaf node z is 5, depth of the tree is 5.

Each non leaf node has two input nodes, conventionally named
‘left” and “right”. By definition, the left sub tree of a given non leaf node is the
sub tree defined by its left input node, similarly, the right sub tree is the sub
tree defined by its right input node. By definition, a balanced binary tree is
such that for each non leaf node, the absolute value of the depth difference
between its left and right sub trees is lower or equal to one. The leftmost tree
on figure 9 is not balanced while the rightmost tree is balanced (nodes are

labeled with their respective sub tree depths).
An optimal binary tree OBT is a particular balanced binary tree. By

definition, the absolute value of the depth difference between any two leaf
nodes LN of an optimal binary tree equals zero or one. In other words, there
exist at most two depth levels for leaf nodes LN, as illustrated on figure 10.
The balanced binary tree on figure 9 is not optimal, while the leftmost
balanced binary tree on figure 10 is optimal.

By definition, all leaf nodes LN of a perfect binary tree have the
same depth, as illustrated in the rightmost of figure 10. The number of leaf

nodes LN of a perfect binary tree is always an integer power of 2 meaning
that p=27. Consequently, the depth of any leaf node LN of an optimal binary
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tree with p =27 +r leaf nodes LN is either g or g+1. The following property

Is well known from previous art. an optimal binary tree features the smallest
depth among all binary trees having the same number of leaf nodes LN.

Operations performed on binary trees and used in the invention
are "adding a new leaf node” and “removing an existing leaf node”. The
adding operation is performed as follows. Given an existing leaf node «
symbolically representing a basic volume and given a new basic volume
named c, the adding operation is to replace leaf node a by the sub tree
defined by root node + and leaf nodes a and ¢, as illustrated on figure 11.

Clearly, adding a leaf node may increase the binary tree depth.

The removing operation is performed as follows. Removing a leaf
node LN of a binary tree is to replace its output node by the root node RN of
its sibling sub tree. For example, on figure 12, removing leaf node 5 is to
replace the output node + of node b by the root node + of the sibling sub
tree a+c of leaf node 5.

Clearly, removing a leaf node LN may decrease the binary tree
depth.

So far, all definitions and properties are known from previous art.
They may differ from one reference to another; this is why they are precisely
recalled. Up to our knowledge, next definitions are original to the invention.

Now Is defined the notion of weak leaf node WLN of an optimal
binary tree. Given an optimal binary tree, a weak leaf node is, by definition, a
leaf node such that, when removed, the resulting binary tree is not optimal
anymore. For example, on figure 13, removing leaf node x does not break

optimality.
Conversely, removing node y, on figure 14 actually breaks

optimality, which makes leaf node y a weak leaf node WLN. Rightmost tree

IS not optimal because there are three |leaf nodes depth values: 2, 3 and 4.
A weak leaf node Is characterized as follows. Its depth is ¢, its

sibling node is a leaf node LN (and not a sub tree) and there exists
somewhere In the binary tree a node with depth g +1.

Now Is defined an ideal binary tree IBT. By definition, an ideal
binary tree IBT is an optimal binary tree OBT featuring the minimum number
of weak leaf nodes WLN. As illustrated on figure 15, not all optimal binary
trees OBT are ideal. The leftmost binary tree is optimal but not ideal while the
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rightmost binary tree is ideal. They both have ten leaf nodes LN, the leftmost
binary tree has six weak leaf nodes WLN, and the rightmost binary tree has

four weak leaf nodes WLN. Weak leaf nodes WLN are white squares.
The number of weak leaf nodes ¢ of an optimal binary tree OBT

with p =27 +r leaf nodes LN is bounded from below by the smallest number
of weak leaf nodes ¢_._and is bounded from above by the largest number of
weak leaf nodes ¢_._, meaning that ¢_. <@ <¢@_. where ¢_ =0 if r=0

andg_. = max{o,zq —2r} f r=0and where ¢ =0 |if r=0 and

~(Pmax =27 —2div(r+1,2) if r#0.

Notation div(a,b) is the quotient of the Euclidian division of integer number a
by integer number 5.

In the context of the invention, leaf nodes LN are volumes and non
leaf nodes are a binary commutative operations combining volumes
altogether. Furthermore, each non leaf node stores the solid shape resulting
from the combination of its two input solids. Each time the user creates or
deletes a declarative feature, new leaf nodes LN are added to or removed
from binary trees. The following describes algorithms to maintain optimality
and ideality of binary trees through any edition sequence. The ideal binary
tree concept is useful to reduce loss of optimality at leaf node deletion.
Reducing the number of weak leaf nodes WLN reduces as well the
probability for the binary tree to lose optimality and for the system to restore
optimality.

Given an existing binary tree, and given a new leaf node LN to be
added to the said binary tree, the “ideal growth algorithm” computes the best
existing leaf node LN where to add the new leaf node LN. The data structure
saves, for each node, the number of leaf nodes LN of its sub tree. In other
words, each node x knows the number of leaf nodes LN of its sub tree,
noted A(x) with A(x)=0 if x is a leaf node LN. The algorithm starts with the

root node RN and visits the input node of the current node featuring the

smallest number A until a leaf node LN Is reached.
x :=the root node
While x Is not a leaf node do begin

Y =the left input node of x
Z =the right input node of x
If A(y) < A(z) then

X =)
Else
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X .= 2Z
End if
End while

Return x

On figure 16 below, the best place for a new leaf node is pointed
by the arrow. Nodes visited by the algorithm are labeled with their respective
A numbers.

Clearly, the computational cost for finding the best leaf node LN is
proportional to the binary tree depth.

It should be noticed that previous algorithm works even when the
binary tree is not ideal. Starting with a non ideal tree, ideality is reachead after
a finite number of added leaf nodes LN. Starting with an ideal tree |IBT and
adding a new leaf node LN at the place prescribed by the algorithm provides
a new ideal tree IBT.

Restoring optimality is illustrated on figure 17.

Removing a weak leaf node WLN from an optimal binary tree OBT
yields a binary tree that is no more optimal. Indeed, the removing operation

creates a so called “non optimal leaf node”, which is the unique leaf node LN
with depth g —1, keeping in mind that there exists somewhere else in the

binary tree at least one leaf node LN with depth ¢ and at least one leaf node

LN with depth g +1.

The input data of the optimality restoration algorithm are

e a binary tree equipped with the appropriate data structure (described
in the following) together with

e (a pointer to) its unique non optimal leaf node, noted x.

The algorithm includes three steps: find the pivot node PN which Is
the first node which sub-tree is non-optimal, find the “V” sub-tree (a V-sub-
tree being a sub-tree including two leaf nodes and a root node) and switch

the non optimal leaf node LN with the V sub-tree.
The following data structure is used. Each node s is labeled with

two integer numbers: the maximum depth of its sub tree d_ (s) and the

minimum depth of its sub tree d__(s). If the binary tree is optimal, then for
any node ¢ the following optimality condition, noted c(¢), is true:

0<d_ (u)-d_ (v)<land 0<d, (v)-d,,(@)<]
wherein u,v are the input nodes of node ¢. If node ¢ is a leaf node, then
dmax (t) = dmin (t) = O Y



10

15

20

25

30

39

CA 02863089 2014-09-08

12

The step of finding the pivot node PN can be realized as follows.
The pivot node finder algorithm starts from the non optimal leaf node x and

progresses towards the root node RN to find the so called pivot node PN,
noted y. The pivot node PN is the first node on the path featuring a false

optimality condition.
s =the output node of x
While c(s) is true do begin

s .= the output node of s

End while
y=3s
Figure 18 illustrates the pivot node PN finding process. The found
oivot node is y. Nodes visited by the algorithm are labeled with (d,...,d,.. )

numbers.
The step of finding the V-sub-tree with the deepest depth can be realized as

follows. Then, the algorithm starts from pivot node y toward leaf nodes and

finds a deepest V sub-tree. The root node of this deepest V sub-tree is noted
VA

The algorithm follows:

Si=y

While s is not a leaf node do begin
u :=the left input node of s
v :=the right input node of s

fd_ (u)>d__(v) then

S =u
Else
S=V
End if
End while

z :=output node of s

Figure 19 illustrates the V sub-tree searching. Nodes visited by the
algorithm are labeled with their respective 4, numbers.

The step of switching is then illustrated on figure 20, wherein the
root node of this V sub-tree, noted :z, is switched with the non optimal leaf
node LN, which restores optimality.

Figure 21 illustrates the worst case possible. It may happen that
the pivot node PN is the root node RN. This occurs when the removed leaf
node is located “far” from the deepest leaf nodes. On figure 21, a leaf node Is
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previously removed on the left side of the tree, giving birth to the non optimal
leaf node x. Since the deepest leaf nodes are located on the right side of the

tree, the pivot node y is the root node. Even in this worst case, the
computational cost of optimality restoration is proportional to the depth of the
binary tree.

Optimality restoration reorganizes the binary tree in such a way
that some solid modeling updating is required to get the new solid shape.
Operations to be replayed are located on the paths from modified nodes to
the root node RN. These operations are the boxed “+” on figure 22. In other
words, nodes represented as boxed “+” are nodes to recalculate following a
change.

Figure 23 represents the worst case optimality restoration. Clearly,
the number of “+” operations to replay cannot exceed twice the depth of the
binary tree. Here again, the computational complexity is proportional to the
binary tree depth.

The core of the present invention is to restore the ideality of the
binary tree.

Removing a weak leaf node WLN from an ideal binary tree IBT
and restoring optimality through the previous algorithm yields an ideal binary
tree IBT (which is better than an optimal binary tree OBT, i.e. an optimal
binary tree OBT, the number of weak leaf nodes minimized, a weak leaf node
being a leaf node such that, when removed, the resulting binary tree iIs not
optimal anymore ).

Now follows a proof of the invention.

Let v be a weak leaf node WLN of an initial ideal binary tree IBT
with p =27 +r leaf nodes. Then, three facts must be noticed. Firstly, the

depth of leaf node v is ¢g. Secondly, the sibling sub tree of node v is in fact
another leaf node noted x (with depth g as well). Otherwise the V shape

sibling sub tree of v would save optimality after v is removed. Thirdly, there

exists somewhere in the initial binary tree at least one leaf node LN with
depth g +1. This is illustrated on figure 24.

After leaf node v is removed, its former sibling leaf node x comes
down with depth g -1, thus breaking optimality. This is illustrated on figure

25.
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In order to restore optimality, the algorithm finds a V sub-tree, the
root node RN of which is noted z and switches nodes z and x. The key
point is that the sibling tree of z is a leaf node, noted w, and not another V

sub-tree. (Otherwise, the initial binary tree would not be ideal. Indeed, we can
suppose that the sibling sub-tree of node z is a V sub-tree. Then, switching
this V sub-tree with leaf node v or x on the initial binary tree would decrease
the number of weak leaf nodes WLF while saving the total number of leaf

nodes LN, which contradicts the ideality hypothesis of the initial binary tree.)
So, after weak leaf node v i1s removed and after nodes x and z are

switched, two situations are possible. If there is no more leaf node LN with
depth g+1, the resulting binary tree Is perfect because all leaf nodes LN

have the same depth, which Is a particular ideal binary tree. If there exist
somewhere In the tree other leaf nodes LN with depth g+1, then two new

weak leaf nodes WLN are created. This is because the two initial weak leaf

nodes x and v are now replaced by four weak leaf nodes: x, w and the two
leaf nodes of the V sub tree, noted c¢,d In the drawings, like illustrated on

figure 26.
Since the total number of leaf nodes LN is now p—1, the resulting

optimal binary tree OBT is ideal |BT. Indeed, in this context, the number of
weak leaf nodes WLN of the initial (and ideal) binary tree IBT 1Is

o (p)=27-2r. After the weak leaf node WLN removal and the optimality

restoration, the number of weak leaf nhodes WLN of the resulting optimal
binary tree OBT is ¢_. (p)+2. But,

o (p)+2=29-2r+2
= 21 -—-2(r—~1)

— @min (p o 1)
This means that the resulting optimal binary tree OBT is ideal IBT
since it has p-—1 leaf nodes LN, which ends the proof.

It should be noticed that deleting a non weak leaf node of an ideal
binary tree IBT may lose ideality, (while saving optimality) as illustrated on
figure 27. Deleting the pointed leaf node of the leftmost ideal binary tree
vields the center binary tree. Its weak |leaf nodes are white squares. It is
optimal but not ideal because an ideal binary tree with the same number of
leaf nodes features no weak leaf node WLN.

The ideal growth algorithm restores ideality after a sufficient
number of leaf nodes are added. Furthermore, restoring the optimality of a
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previously optimal, but not ideal, binary tree does not generally yield an ideai
binary tree IBT. In other words, the invention saves optimality of binary trees.
ldeality is saved through growth and optimality restoration.

Figure 28 captures all possible status of the binary tree, including
ideal binary tree, optimal (but non ideal) binary tree and non optimal binary
tree. It also gathers all possible status changes through operations performed
on the binary tree, including adding a leaf node LN (according to the ideal
growth algorithm), removing a weak leaf node WLN, removing a non weak
leaf node and restoring optimality. Non optimal status is transient, meaning
that the algorithm instantaneously restores optimality as soon as it is lost.

According to previous description, all operations performed on the
optimal binary tree OBT are proportional to its depth, which is the logarithm
of the number of leaf nodes LN. These operations are: removing a leaf node,
adding a leaf node, restoring optimality, or updating the solid. Conversely,
operations performed on a linear list are mainly proportional to the total
number of leaf nodes LN. Under the industrial hypothesis that all basic
volumes have the same probability to be modified or deleted, the following
diagram compares the average computational growth between optimal binary
tree and ordered list. The binary tree option is clearly advantageous

compared to ordered list, as illustrated on figure 29.
Noting p =2%+r the number of leaf nodes LN, the average depth of the
optimal binary tree OBT Is
2F
h()pt(p):q i '
p

The average depth of the ordered list is

+1 1
h[,:'s! (p ) — p R
P

2

Appropriate data structure is a binary tree together with additional
information stored at each node. Binary tree data structures, pointers and
navigation functions are classical in the art. Beyond this, the invention
requires that each node is able to provide the following numerical data: the
maximum depth of its sub tree, the minimum depth of its sub tree and the
number of leaf nodes LN of its sub tree. These data are maintained up to
date by the operations (removing a leaf node, adding a leaf node, restoring
optimality) at a cost that is, at most, proportional to the depth. The overall



10

15

20

25

30

CA 02863089 2014-09-08

16

logarithmic computational complexity of the algorithm is preserved. In other
words, the data structure management does not raise complexity.

The following properties of optimal binary trees OBT may help
implementation. The first point is that all sub trees of an optimal binary tree
are optimal binary trees as well. The second point is that given p =29 +r the
number of leaf nodes LN of an optimal binary tree, with 0<r <27, the
number of leaf nodes with depth ¢ is 27 —» and the number of leaf nodes
with depth g +1 is 2r. Consequently, maximum and minimum depths of an

optimal binary tree can be easily computed from its number of leaf nodes.
Given p, compute g and ¥ suchthat p=27+r and 0<r<2?. If r=0, then

d =qgandd__:=gq otherwise d_. =g and d_, =q+1.

This section describes, like illustrated on figure 30, conversion of a
part designed according to the state of the art technology (each input bucket
is fed with a linear list, left drawing of figure 30) to the data format of the
invention (each input bucket is fed with an ideal binary tree IBT, right drawing
of figure 30).

The converter runs an idealization algorithm for each input bucket,
which is to translate a linear list of basic volumes into an ideal binary tree IBT
the leaf nodes LN of which are the said basic volumes. Then, the converter
runs the solid modeling update of the part, which yields the same solid
shape.

An idealization algorithm is to create the ideal binary tree step by
step as follows:

Initiate a new binary tree (an empty binary tree reduced to its root

node)

For each basic volume v of the linear list do begin

Add a new leaf node v to the binary tree

End for

Another and faster idealization algorithm involves a library of pre-
computed ideal binary trees IBT according to a relevant range of leaf nodes
number, typically from p =2 leaf nodes up to p =350 leaf nodes. These are
pure logical structures. For each input bucket, the method comprises the
reading of the number of basic volumes of its linear list, the loading of the

ideal binary tree structure corresponding to this leaf nodes number and the
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setting of the basic volumes of the linear list to the leaf nodes of the binary

tree.
The algorithm choice depends on how large and how frequent the

conversions are.
The first use of data conversion is to convert models designed by

using a previous version of the CAD system (that does not implement the
invention) into models compatible with a version of the CAD system that does
implement the invention. In that case, the binary tree is obtained by
converting a non-optimal binary tree to an optimal binary tree OBT.

Another use of data conversion is to improve the performance

after creation.

Figure 31 Iillustrates a computer network or similar digital
processing environment in which the present invention may be implemented.

Client computer(s)/devices CL and server computer(s) SV provide
processing, storage, and input/output devices executing application programs
and the like. Client computer(s)/devices CL can also be linked through
communications network CNET to other computing devices, including other
client devices/processes CL and server computer(s) SV. Communications
network 70 can be part of a remote access network, a global network (e.g.,
the Internet), a worldwide collection of computers, Local area or Wide area
networks, and gateways that currently use respective protocols (TCP/IP,
Bluetooth, etc.) to communicate with one another. Other electronic
device/computer network architectures are suitable.

Figure 32 Is a diagram of the internal structure of a computer (e.qg.,
client processor/device CL or server computers SV) in the computer system
of figure 31. Each computer CL, SV contains system bus SB, where a bus is
a set of hardware lines used for data transfer among the components of a
computer or processing system. Bus SB is essentially a shared conduit that
connects different elements of a computer system (e.q., processor, disk
storage, memory, input/output ports, network ports, etc...) that enables the
transfer of information between the elements.

Attached to system bus SB is /O device interface DI for
connecting various input and output devices (e.g., keyboard, mouse,
displays, printers, speakers, etc.) to the computer CL, SV. Network interface
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N| allows the computer to connect to various other devices attached to a
network (e.g., network CNET of figure 31).

Memory MEM provides volatile storage for computer software
instructions S| and data CPP used to implement an embodiment of the
present invention (e.g., a first path builder PB, means CM for computing a
second path, an updater UD implementing the method discussed in Figs 1 to
30, and supporting code detailed above).

Disk storage DS provides non-volatile storage for computer
software instructions S| and data DAT used to implement an embodiment of
the present invention. Central processor unit CPU is also attached to system
bus SB and provides for the execution of computer instructions.

In one embodiment, the processor routines Sl and data DAT are a
computer program product (generally referenced CPP), Including a computer
readable medium (e.g., a removable storage medium such as one or more
DVD-ROM'’s, CD-ROM'’s, diskettes, tapes, etc...) that provides at least a
portion of the software instructions for the invention system. Computer
program product CPP can be installed by any suitable software installation
procedure, as is well known in the art.

In another embodiment, at least a portion of the software
instructions may also be downloaded over a cable, communication and/or
wireless connection. In other embodiments, the invention programs are a
computer program propagated signal product SP embodied on a propagated
signal on a propagation medium (e.g., a radio wave, an infrared wave, a laser
wave, a sound wave, or an electrical wave propagated over a global network
such as the Internet, or other network(s)). Such carrier medium or signals
provide at least a portion of the software instructions for the present invention
routines/program CPP.

In alternate embodiments, the propagated signal is an analog
carrier wave or digital signal carried on the propagated medium. For
example, the propagated signal may be a digitized signal propagated over a
global network (e.g., the Internet), a telecommunications network, or other
network.

In one embodiment, the propagated signal is a signal that Is
transmitted over the propagation medium over a period of time, such as the
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instructions for a software application sent in packets over a network over a

period of milliseconds, seconds, minutes, or longer.
In another embodiment, the computer readable medium of

computer program product CPP is a propagation medium that the computer
system CL may receive and read, such as by receiving the propagation
medium and identifying a propagated signal embodied in the propagation
medium., as described above for computer program propagated signal

product.
Generally speaking, the term “carrier medium” or transient carrier

encompasses the foregoing transient signals, propagated signals,
propagated medium, storage medium and the like.

While this invention has been particularly shown and described
with references to example embodiments thereof, it will be understood by
those skilled in the art that various changes in form and details may be made
therein without departing from the scope of the invention encompassed by

the appended claims.
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CLAIMS

1. A computer-implemented method for designing an
industrial product modeled with a binary tree having leaf nodes (LN)
representing basic volumes, non-leaf nodes representing binary
commutative operation combining volumes, the method comprising the
steps of:

- performing a design operation triggering the adding or the removing of
a leaf node (LN); and

- idealizing the binary tree, i.e. modifying the binary tree while
maintaining the optimality of the tree (OBT) by minimizing the number
of weak leaf nodes (WLN), a weak leaf node (WLN) being a leaf node
(LN) such that, when removed, the resulting binary tree is not optimal
anymore, an optimal binary tree having an absolute value of the depth
difference between any two leaf nodes (LN) equal to zero or one.

2. A computer-implemented method according to claim 1,
comprising, when the design operation is the adding of a new leaf node
(LN), the steps of:

. determining a path of nodes by traversing the binary tree, from the root
node (RN) to an existing leaf node (LN), by iteratively choosing the
next node defining a sub-tree having the smallest number of leaf nodes
(LN); and

- adding the new leaf node (LN) at the existing leaf node (LN) ending
path.

3. A computer-implemented method according to claim 1,
comprising, when the design operation is the removing of a leaf node (LN),

the steps of:
- determining as the non-optimal leaf node (LN) on the binary tree, which

is no longer optimal, the leaf node (LN) with the smallest depth;

- determining, in the path from the non-optimal leaf node (LN) to the root
node (RN), the pivot node (PN) which is the first node which sub-tree is
non-optimal;
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- determining, in said non-optimal sub-tree of the pivot node (PN), the V-
sub-tree with the deepest depth, a V-sub-tree being a sub-tree having

two leaf nodes (LN); and
- switching the non-optimal leaf node (LN) and the V-sub-tree.

4. A computer-implemented method according to one of
claims 1 to 3 wherein it further comprises a step of providing a predefined
tree for inputting a binary tree adapted for designing a specific industrial
product.

5. A computer-implemented method according to one of
claims 1 to 4 wherein, for each node of the binary tree, the maximum
depth of its sub-tree is stored in a memory.

6. A computer-implemented method according to one of
claims 1 to 5 wherein. for each node of the binary tree, the minimum depth
of its sub-tree is stored in a memory.

7. A computer-implemented method according to one of
claims 1 to 6 wherein. for each node of the binary tree, the number of leaf
nodes (LN) of its sub-tree is stored in a memory.

8. A computer-implemented method according to one of
claims 1 to 7 wherein the binary tree is obtained by converting a non-
optimal binary tree to an optimal binary tree (OBT).

9. A computer-implemented method according to claim 8,
further comprising a preliminary step of idealizing any binary tree
representing an industrial product, by transiating a linear list of leaf nodes
(LN) representing basic volumes into an ideal binary tree (IBT) wherein the
leaf nodes (LN) are the said basic volumes.

10. A computer-implemented method according to claim 8,
further comprising a preliminary step of idealizing any binary tree
representing an industrial product, by using a library of pre-computed ideal
binary trees according to a relevant range of leaf nodes (LN) number, and
reading the number of leaf nodes (LN) representing basic volumes of a
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linear list of the binary tree, to load the pre-computed ideal binary {ree
(IBT) corresponding to the leaf nodes number and to set the leaf nodes
(LN) of the pre-computed binary tree to the basic volumes of the linear list.

11. A computer-readable medium having computer-
executable instructions to cause the computer system to perform the
method for designing an industrial product modeled with a binary tree of
anyone of claims 1 to 10.

12. A computer program product, stored on a computer
readable medium, for designing an industrial product modeled with a
binary tree, comprising code means for causing the system to take the
steps of the method of anyone of claims 1 to 10.

13. An apparatus for designing an industrial product
modeled with a binary tree comprising means for implementing the steps
of the method of anyone of claims 1 to 10.

14.  Industrial product designed with the method of anyone of
claims 1 to 10.
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