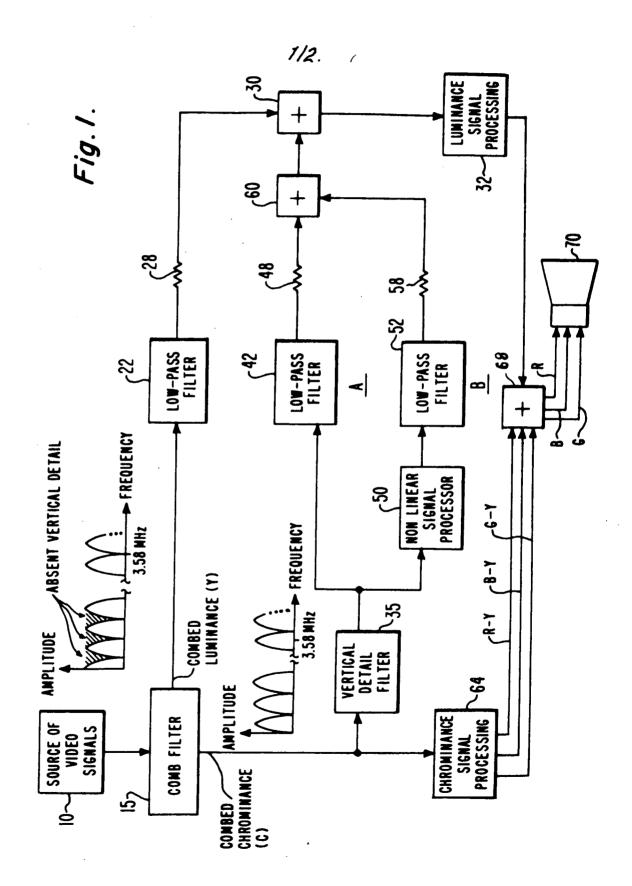
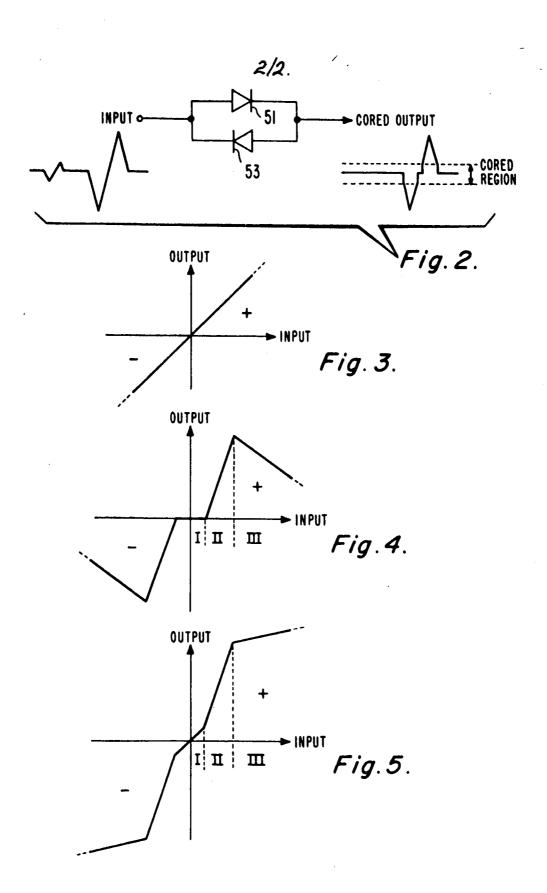


$_{\mbox{\tiny (12)}}\,UK\,\,Patent$ $_{\mbox{\tiny (19)}}GB$ $_{\mbox{\tiny (11)}}\,2\,\,050\,\,110\,\,B$


- Video image vertical detail restoration and enhancement
- (51) INT CL3;H04N 9/535
- (21) Application No **8015407**
- (22) Date of filing **9 May 1980**
- (30) Priority data
 - (31) 38202
 - (32) 11 May 1979
 - (33) United States of America (US)
- (43) Application published **31 Dec 1980**
- (45) Patent published 9 Mar 1983


(73) Proprietor
RCA Corporation
30 Rockefeller Plaza
City and State of New York
10020
United States of America

(72) Inventors
William Adamson Lagoni
Jack Selig Fuhrer

- (52) Domestic classification
 H4F D1B1 D1D1 D30B D30E
 D30G D30T2 GX
- (56) Documents cited **None**
- (58) Field of Search **H4F**

(74) Agents
Richard W Pratt
50 Curzon Street
London W17 8EU

GB 2 050 110B

5

Video image vertical detail restoration and enhancement

This invention concerns a network for providing both restoration and enhancement of picture vertical detail information in a color television receiver including a comb filter or the like for separating the luminance and chrominance components of the television signal, without enhancing interference signals such as noise.

In a color television system such as the 15 system adopted by the United States, the luminance and chrominance components of a color television signal are disposed within the video frequency spectrum in frequency interleaved relation, with the luminance compo-20 nents at integral multiples of the horizontal line scanning frequency and the chrominance components at odd multiples of one-half the line scanning frequency. Various comb filter arrangements for separating the frequency in-25 terleaved luminance and chrominance components of the video signal are known, for example, from U.S. Patent 4,143,397 (D. D. Holmes) and U.S. Patent 4,096,516 (D. H. Pritchard) and the references cited therein.

A combed luminance signal which appears 30 at the luminance output of the comb filter has been subjected to a "combing" effect over its entire band. The combing action over the high frequency band portion which is shared with 35 chrominance signal components has the desired effect of deleting chrominance signal components. Extension of this combing action into the low frequency band portion which is not shared with the chrominance signal com-40 ponents, however, is not needed to effect the desired removal of chrominance signal components, and serves only to unnecessarily delete luminance signal components. Components in the lower end of this unshared band which 45 are subject to such deletion are representative of "vertical detail" luminance information. Preservation of such vertical detail is desirable to avoid loss of vertical resolution in the luminance content of a displayed image.

One arrangement for preserving the vertical 50 detail information employs a low pass filter coupled to the output of the comb filter at which the "combed" chrominance component appears. The upper cut-off frequency of this 55 filter lies below the band occupied by the chrominance signal component (with an illustrative choice being just below 2 MHz). The filter selectively couples signals below the chrominance band from the chrominance out-60 put of the comb filter to a combining network where the selectively coupled signals are summed with combed luminance output signals from the comb filter. The combined signal includes a "combed" high frequency por-65 tion (occupying a band of frequencies above

the filter cut-off frequency) from which chrominance signal components have been removed, and an uncombed (i.e., "flat") low frequency portion in which all luminance sig-

70 nal components have been preserved.

It is sometimes desirable to enhance the vertical detail information of a displayed image by adding back to the luminance signal a greater amount of the vertical detail signal

75 than is required to restore the luminance signal to its original form (i.e., a "flat" amplitude characteristic). The additional vertical detail signal then serves to emphasize or peak vertical detail information so as to enhance

80 picture detail resolution. For low level luminance signals, however, such enhancement tends to produce objectionable visible effects when noise interference is present and undesirably enhanced along with the vertical detail 85 information of the luminance signal.

Also in this instance, alternate line set-up variations (ALSUV) when present in the video signal are undesirably enhanced. The ALSUV phenomenon is a form of low level signal

90 interference manifested by variations in the black level of the video signal from line-to-line, and may be caused by misalignment of signal processing systems at the broadcast transmitter, for example. The ALSUV interfer-

95 ence is particularly noticeable for low level video signals of about five percent of the maximum expected video signal amplitude, and produces objectionable visible effects on a reproduced image which are undesirably 100 magnified, when vertical detail enhancement

is provided.

A technique for minimizing the adverse effects of noise and other undesirable components of a video signal employs a process 105 commonly referred to as signal "coring", wherein small amplitude excursions of the signal (including noise) are removed as described in U.S. Patent 3,715,477 for exam-

110 In accordance with the principles of the present invention, it is herein recognized that coring of the vertical detail signal must be accomplished in a manner which does not impair (e.g., "smear") vertical detail informa-

115 tion, particularly with regard to low level detail signal information which is to be restored to the luminance signal. Apparatus described herein accomplishes this result, and also advantageously provides for enhancement of the

120 vertical detail information substantially without simultaneously enhancing interfering signal components such as noise and alternate line set-up variations.

Video image vertical detail signal processing 125 apparatus according to the invention is included in a system for processing a video signal containing image representative luminance and chrominance components disposed within a frequency spectrum of said video

130 signal in frequency interleaved relation. The

system includes a comb filter for providing at a first output a combed luminance signal with amplitude peaks at integral multiples of an image line scanning frequency, and amplitude 5 nulls at odd multiples of one-half the line frequency. The comb filter also provides at a second output a combed chrominance signal with amplitude peaks at odd multiples of onehalf the line frequency, and amplitude nulls at 10 integral multiples of the line frequency. Signals provided at the second output of the comb filter include signal frequencies representative of luminance vertical image detail information absent from the combed lumi-15 nance signal at the first comb filter output. A filter network coupled to the second output of the comb filter selectively passes signal frequencies corresponding to the vertical detail signal information, to the exclusion of signals 20 occupying the band of chrominance signal frequencies. Small amplitude excursions of the vertical detail signal are translated with a first gain greater than zero, and moderate amplitude excursions of the vertical detail sig-25 nal are translated with a second gain greater than the first gain. The translated vertical detail signals are combined with the combed luminance signal from the first output of the comb filter to provide a reconstituted lumi-30 nance component, which is afterwards supplied to a luminance signal utilization network.

Figure 1 illustrates a bock diagram of a portion of a color television receiver employ35 ing apparatus according to the present invention:

In the drawing:

Figure 2 shows a circuit suitable for use with the arrangement of Fig. 1; and

Figures 3-5 depict amplitude response 40 characteristics of the apparatus of Fig. 1, which are useful in understanding the operation of the invention.

In Fig. 1, a source of composite color video signals 10 including luminance and chromi-45 nance components supplies video signals to an input of a comb filter 15 of known configuration, such as a comb filter employing charge coupled devices (CCD's) as shown in U.S. Patent 4,096,516. The luminance and 50 chrominance components are arranged within the video signal frequency spectrum in frequency interleaved relation. The luminance component has a relatively wide bandwidth (extending from D.C. or zero frequency to 55 about 4 MHz). The upper frequency range of the luminance component is shared with the chrominance component, which comprises a subcarrier signal of 3.58 MHz amplitude and phase modulated with color information. The 60 amplitude versus frequency response of comb filter 15 with respect to luminance combing action exhibits a peak amplitude response at integral multiples of the horizontal line scanning frequency (approximately 15,734 Hz), ex-65 tending from D.C. or zero frequency, and an

amplitude null at odd multiples of one-half the line scanning frequency, including the 3.58 MHz chrominance subcarrier frequency. The amplitude versus frequency response of comb

70 filter 15 with respect to chrominance combing action exhibits a peak amplitude response at odd multiples of one-half the line frequency including 3.58 MHz, and an amplitude null at integral multiples of the line frequency.

75 A "combed" luminance signal (Y) from the luminance output of comb filter 15 is coupled via a low pass filter 22 and a weighting resistor 28 to one input of a signal combining network 30. Filter 22 is arranged to pass all

80 luminance signals below a cut-off frequency of approximately 4 MHz, and serves to remove noise and clock frequency components of switching signals associated with the switching operation of comb filter 15 when of a 85 CCD type comb filter.

A "combed" chrominance signal (C) from the chrominance output of comb filter 15 is applied to a chrominance signal processing unit 64 for generating R-Y, B-Y and G-Y

90 color difference signals, and to an input of a low pass vertical detail filter 35. Unit 64 includes a suitable filter for passing only those signal frequencies from comb filter 15 which occupy the band of chrominance signal fre-

95 quencies. Filter 35 exhibits a cut-off frequency of approximately 1.8 MHz, and selectively passes those signal frequencies present in the combed chrominance signal output of comb filter 15 which lie below this cut-off fre-

100 quency. Signal frequencies in this region represent vertical detail luminance information which is absent from the combed luminance signal and which must be restored to the luminance signal to avoid loss of vertical reso-

105 lution in the luminance content of a displayed image. Such vertical detail restoration as well as vertical detail enhancement is accomplished as follows.

Vertical detail signals from the output of 110 filter 35 are coupled via a signal restoration path A including a low pass filter 42 and a weighting resistor 48, to one input of a signal combining network 60. Low pass filter 42 exhibits a cut-off frequency of approximately 2

115 MHz. The amplitude transfer characteristic of path A is linear and manifests a prescribed restoration gain for both positive and negative signal polarities. The magnitude of the restoration gain preferably corresponds to that

120 amount of gain which, in a given system, is required to restore small amplitude excursions of the vertical detail component to the luminance signal so that an ultimately reconstituted luminance signal exhibits an essentially

125 "flat" amplitude response with respect to small amplitude detail signals. In this connection it is noted that the magnitude of the restoration gain is a function of various factors, including the signal translating character-

130 istics of networks coupled between the out-

•

puts of comb filter 15 and a luminance signal processor 32, which processes ultimately reconstituted luminance signals, and the relative magnitudes of the signals appearing at the outputs of comb filter 15, for example.

Vertical detail signals from filter 35 are also applied to a vertical detail enhancement signal processing path B, which comprises the cascade combination of a nonlinear signal processing network 50, a low pass filter 52, and a signal weighting resistor 58. Signals processed by path B are applied to a second input of combining network 60, which combines the vertical detail restoration signals from path A with the vertical detail enhancement signals from path B to produce a desired output response as will be discussed.

The combination of vertical detail filter 35 with restoration filter 42 establishes the signal 20 bandwidth of restoration path A, and the combination of vertical detail filter 35 with filter 52 establishes the signal bandwidth of enhancement path B, such that chrominance signal frequencies are greatly attenuated.

In this example low pass filter 52 exhibits a 25 cut-off frequency of approximately 1.8 MHz for attenuating signal frequencies within and above the chrominance signal frequency band. Filter 52 serves to improve image defin-30 ition particularly with respect to effects which may appear as visible disturbances along the edge of a displayed diagonal image pattern, as discussed in greater detail in our concurrently filed UK patent appln. No. 8015408 35 (Serial No. 2049349) which claims priority from U.S. patent appln. serial No. 038204 filed 11th May 1979, entitled "Image Detail Improvement in a Vertical Detail Enhancement System"

40 Signal processor 50 includes a diode signal coring network of the general type shown in Fig. 2, including diodes 51 and 53 which are coupled in inverse parallel relationship and which conduct in response to opposite polarity signals, respectively. Additional details of coring circits of this type can be found in U.S. Patent 3,715,477 and in our UK patent appln. No. 8014178 (Serial No. 2049347) filed 30th April 1980, entitled "Signal Processing Circuit Having a Non-Linear Transfer Function".

The amplitude transfer characteristic of signal processor 50, and also the transfer characteristic for signals developed at the second input of combining network 60 via path B, is illustrated by Fig. 4. The following remarks concerning the response to positive (+) polarity signals also apply to signals of negative (-) polarity.

The coring, paring and amplifier circuits within processor 50 produce a signal amplitude transfer (gain) characteristic, as shown in Fig. 4, for three regions I, II and III with respect to three predetermined ranges of vertical detail signal amplitude. The coring circuit

produces a response corresponding to zero gain within a first region for low level signals (e.g., signal amplitudes of about five percent of maximum expected amplitude). That is, the

70 coring circuit inhibits the low level signals to prevent their enhancement in path B, along with noise and other undesired components. The amplifier stage within processor 50 amplifies vertical detail signals of moderate ampli-

75 tude (e.g., signal amplitudes between about five percent and forty percent of maximum expected amplitude) within region II with a gain of approximately three, for example, to thereby emphasize the vertical detail informa-

80 tion and increase picture contrast in this region. Relatively large amplitude vertical detail signals (e.g., corresponding to high contrast images such as lettering) are reduced in amplitude or "pared" as indicated by the ampli-

85 tude response in region III, to avoid excessive contrast and to prevent kinescope "blooming which would otherwise distort or obscure picture detail.

A combined vertical detail signal produced 90 at the output of combining unit 60 exhibits an amplitude characteristic in accordance with the amplitude transfer characteristic shown in Fig. 5. The transfer characteristic of Fig. 5 represents a composite transfer characteristic

95 including the transfer characteristic of Fig. 3 (for restoration path A) combined with that of Fig. 4 (for enhancement path B). A circuit for producing the transfer function shown in Fig. 4 is shown in our UK Patent Application No.

100 8014180 (Serial No. 2050107) filed 30th April 1980, entitled "Controllable Non-Linear Processor of Video Signals".

It is noted that in region I (vertical detail restoration), low level vertical detail signal 105 information has been restored in an amount sufficient to preserve normal low level vertical resolution in the luminance content of a displayed image. The choice of the restoration gain as provided by the amplitude transfer

110 response for region I (see Figs. 1 and 3) involves considerations of what results are acceptable in a given video signal processing system. For example, if the restoration gain is excessive, low level ALSUV signal interference

115 is likely to be visible. If the restoration gain is insufficient, significant combing effects (i.e., signal peaks and nulls at different frequencies) will appear in the vertical detail frequency region below 2 MHz, resulting in lost low

120 level vertical detail information. Thus the slope of the amplitude transfer characteristic in region I corresponds to that amount of signal gain necessary to produce a desired response (e.g., a flat luminance response)

125 without introducing unacceptable side effects.
The signal amplitude response for region I, as determined by restoration path A, preferably exhibits a fixed relationship with the response of the signal path which couples the combed

130 luminance signal from the output of the comb

filter 15 to combiner 30.

In region II (vertical detail enhancement), an appropriate amount of vertical detail enhancement has been provided by imparting addi-5 tional gain to signals of moderate amplitude in a manner which is considered to benefit vertical resolution of a displayed image. Since only signals processed by the enhancement path are cored and signals processed by the resto-10 ration path are translated with the restoration gain, image "smear" of low level vertical detail information is avoided and enhancement of undesirable low level signal components including noise and ALSUV interference 15 is essentially eliminated or reduced to an acceptable minimum. Additional information concerning the composite nonlinear response of Fig. 5, including region III (vertical detail pared) is disclosed in our UK patent applica-20 tion No. 8014176 (Serial No. 2049346) filed 30th April 1980, entitled 'Non-Linear Processing Of Video Image Vertical Detail Information'

It is also noted that the described vertical 25 detail signal processing arrangement is unaffected by variations in the D.C. level of the luminance component. Due to the manner in which a comb filter derives a combed chrominance signal by employing a subtractive sig-30 nal combining process as is known, the combed chrominance signal exhibits a zero D.C. component. Coring of the vertical detail signal, as derived from the comb filter chrominance output, can therefore be accomplished 35 predictably about the D.C. bias level developed at the combed chrominance output of the comb filter and which corresponds to the center of the "core." Since the reference level about which coring is accomplished is fixed 40 predictably, the signal coring range is welldefined and assists to provide well-defined restoration, enhancement and paring regions as discussed.

The processed vertical detail signal appear-45 ing at the output of combining network 60 is summed in network 30 with the combed luminance signal supplied via filter 22. The output signal from combiner 30 corresponds to a reconstituted luminance component of 50 the video signal with the vertical detail information thereof restored and enhanced as discussed. The reconstituted luminance component is afterwards coupled to a luminance signal processing unit 32. An amplified lumi-55 nance signal Y from unit 32 and the color difference signals from chrominance unit 64 are combined in a matrix 68 for providing R, B and G color image representative output signals. These signals are then suitably cou-60 pled to image intensity control electrodes of a color kinescope 70.

Signal weighting resistors 28, 48 and 58 are proportioned in value so that appropriate amounts of the combed luminance signal and 65 processed vertical detail signals when com-

bined produce a desired level of the luminance component which ultimately appears at the output of combiner 30. The signal propagation delays associated with paths A and B

70 are equalized by means of the signal delays associated with filters 42 and 52. Also, the signal propagation delays between the luminance output of comb filter 15 and the first input of combiner 30 via path A and the

75 chrominance output of comb filter 15 and the second input of combiner 30 via path B, are equalized by means of the delay associated with filter 22 and the delay associated with filters 35, 42 and 52 in the vertical detail 80 signal path.

Although combining networks 30 and 60 are shown as separate units in Fig. 1, it should be recognized that these two combining networks could be replaced by a single, 85 three-input combining network for summing the combed luminance signal from comb filter 15 with the vertical detail signals coupled via paths A and B.

90 CLAIMS

Video image vertical detail signal processing apparatus in a system for processing a video signal containing image representative luminance and chrominance components disposed within a frequency spectrum of said video signal in frequency interleaved relation, said system including comb filter means for providing at a first output a combed lumi-

nance signal with amplitude peaks at integral 100 multiples of an image line scanning frequency and amplitude nulls at odd multiples of one-half said line frequency, and for providing at a second output a combed chrominance signal with amplitude peaks at odd multiples of one-

105 half said line frequency and amplitude nulls at integral multiples of said line frequency, and wherein signals provided at said second output include signal frequencies representative of luminance vertical image detail information
110 absent from said combed luminance signal at said first output, said apparatus comprising:

means coupled to said second output of said comb filter means for selectively passing said signal frequencies corresponding to verti-115 cal detail signal information, to the exclusion of signals occupying the band of chrominance signal frequencies;

means for translating small amplitude excursions of said vertical detail signal with a first 120 gain greater than zero, and for translating moderate amplitude excursions of said vertical detail signal with a second gain greater than said first gain;

means for combining signals translated by 125 said translating means with said combed luminance signal from said first output of said comb filter means to provide said luminance component; and

luminance signal utilization means for re-130 ceiving said luminance component from said 10

combining means.

2. Apparatus according to Claim 1, wherein said signal translating means comprises:

5 a first signal path for translating said vertical detail signal with said first gain;

a second signal path for removing small amplitude excursions of said vertical detail signal; and

means for combining the signals translated by said first and second signal paths.

3. Apparatus according to Claim 1, wherein:

said frequency selective means comprises a 15 low pass filter.

Video image vertical detail signal processing apparatus in a color television receiver for processing a color television signal containing image representative luminance and chrominance components disposed within a frequency spectrum of said television signal in frequency interleaved relation, said receiver including a page for providing at a

frequency interleaved relation, said receiver including comb filter means for providing at a first output a combed luminance signal with amplitude peaks at integral multiples of an

image line scanning frequency and amplitude nulls at odd multiples of one-half said line frequency, and for providing at a second output a combed chrominance signal with

30 amplitude peaks at odd multiples of one-half said line frequency and wherein signals provided at said second output include signal frequencies representative of luminance vertical image detail information absent from said combed luminance signal at said first output,

said apparatus comprising:

means coupled to said second output of said comb filter means for selectively passing said signal frequencies corresponding to verti-40 cal detail signal information, to the exclusion of signals occupying the band of chrominance signal frequencies;

means for translating small amplitude excursions of said vertical detail signal with a first

45 gain greater than zero, and for translating moderate amplitude excursions of said vertical detail signal with a second gain greater than said first gain;

means for combining signals translated by 50 said translating means with said combed luminance signal from said first output of said comb filter means to provide said luminance component; and

luminance signal utilization means for re-55 ceiving said luminance component from said combining means.

Printed for Her Majesty's Stationery Office by Burgess & Son. (Abingdon) Ltd.—1983. Published at The Patent Office, 25 Southampton Buildings, London, WC2A 1AY, from which copies may be obtained.

THE PATENT OFFICE

State House 66-71 High Holborn London WC1R 4TP

Switchboard 01-831 2525

RENEWAL DETAILS

PATENT NO 2050 110
RENEWAL DATE 9/5/80.
RENEWAL FEE PAID FOR 7# YEAR ON 18/4/80
A A A A A A A A A A A A A A A A A A A
FOR THE COMPTROLLER

NOTE: RENEWALS FILED WITHIN THE LAST FEW DAYS MAY NOT APPEAR IN THE RECORDS

2050110 Dated: 2050110 9 May 1980

Application No.: 8015407

Published: 31 December 1980

Priority: 11 May 1979 United States of America

038,202

RCA CORPORATION 30 Hockefeller Plaza, City and State of New York 10020, United States of America, a Corporation of the State of Delaware, United States of America,

WILLIAM ADAMSON LAGONI, 4704 81st Place, Indianapolis, Indiana, United States of America. JACK SELIG FUHRER, 3668 Carmel Drive, Carmel, Indiana, United States of America.

Video image vertical detail restoration and enhancement:

Address for Service:

T.I.M Smith, 50 Curzon Street, London, Wly SEI

	T.I.M Smith, 50 Curzon Street, London, Wly 8EU			
	Request for examination: 17 MAR 1981		S.18(4) CLEARANIGE REPORTED	
II	Application refused		DATE: LA HOT OL	
	or withdrawn:			
	Patent granted: WITH EFFECT FROM		9 MAR 1983	
		SECTION 25(1)	MALI 1000	
	Renewal Fee paid	d in respect of		
	5th Year			
1	6th Year			
	7th Year			
	8th Year			
4	9th Year			
	10th Year			
4	11th Year			
1	12th Year			
	13th Year			
	14th Year			
	15th Year			
4	16th Year			
	17th Year 18th Year			
4	19th Year			
	20th Year			
-	Zoui I cai			
Patent ceased or				
#-	expired:			
-				
4	Dd 8242478 2-5M 10/80 UPS B/B			