Receive and store information indicative of a caregiver’s performance and/or information indicative of a health status of the victim

Determine that treatment is completed

Transmit information

FIG. 11
<table>
<thead>
<tr>
<th>Date of publication of the international search report:</th>
<th>Date of publication of the amended claims:</th>
</tr>
</thead>
<tbody>
<tr>
<td>18 June 2015</td>
<td>13 August 2015</td>
</tr>
</tbody>
</table>
AMENDED CLAIMS
received by the International Bureau on 29 April 2015 (29.04.2015)

1. A system comprising:
 a first computing device comprising a processor coupled to a memory, the processor and the memory configured to:
 receive at least one of (i) information indicative of treatment of a victim by a first caregiver using the first computing device and (ii) information indicative of a health status of the victim;
 determine that treatment of the victim by the first caregiver using the first computing device is completed; and
 transmit the received information to a second computing device.

2. The system of claim 1, in which receiving the information indicative of treatment of the victim includes detecting a characteristic of the treatment of the victim by the first caregiver.

3. The system of claim 2, in which the characteristic of the treatment comprises one or more of a depth of chest compressions, a rate of chest compressions, a duration of chest compressions, and an indication of a continuity of chest compressions.

4. The system of claim 1, in which receiving the information indicative of a health status of the victim includes detecting a characteristic of the health status of the victim.
5. The system of claim 4, in which the characteristic of the health status comprises one or more of a vital sign of the victim and an ECG trace of the victim.

6. The system of claim 1, in which determining that treatment of the victim by the first caregiver using the first computing device is completed comprises detecting an indication that treatment is completed.

7. The system of claim 6, in which detecting an indication that treatment is completed comprises detecting that the first computing device has been disconnected from the victim.

8. The system of claim 6, in which determining that treatment of the victim by the first caregiver using the first computing device is completed comprises receiving an input from the first caregiver.

9. The system of claim 6, which determining that treatment of the victim by the first caregiver using the first computing device is completed comprises receiving a signal from the second computing device.

10. The system of claim 1, in which the first computing device comprises a defibrillator.
11. The system of claim 1, in which the first computing device comprises a mobile computing device.

12. The system of claim 1, in which the second computing device comprises a defibrillator.

13. The system of claim 1, in which the second computing device comprises a server.

14. The system of claim 1, comprising transmitting the received information to the second computing device according to a secure communications protocol.

15. The system of claim 14, comprising transmitting a key to the second computing device.

16. The system of claim 15, in which the key is based on an identifier of the victim and an identifier of the first device.

17. The system of claim 14, comprising transmitting, to a third computing device, key enabling the third computing device to access the information transmitted to the second computing device.
18. The system of claim 1, in which the first computing device is configured to transmit the received information after a primary functionality of the first computing device has been turned off.

19. A method comprising:

 receiving at least one of (i) information indicative of treatment of a victim by a first caregiver using the first computing device and (ii) information indicative of a health status of the victim;

 determining that treatment of the victim by the first caregiver using the first computing device is completed; and

 transmitting the received information to a second computing device.

20. The method of claim 19, in which receiving the information indicative of treatment of the victim includes detecting a characteristic of the treatment of the victim by the first caregiver.

21. The method of claim 19, in which receiving the information indicative of a health status of the victim includes detecting a characteristic of the health status of the victim.

22. A computer readable medium storing instructions for causing a computing system to:
receive at least one of (i) information indicative of treatment of a victim by a first
caregiver using the first computing device and (ii) information indicative of a health status
of the victim;

determine that treatment of the victim by the first caregiver using the first computing
device is completed; and

transmit the received information to a second computing device.

23. The computer readable medium of claim 19, in which receiving the information
indicative of treatment of the victim includes detecting a characteristic of the t-eatment of
the victim by the first caregiver.

24. The computer readable medium of claim 19, in which receiving the information
indicative of a health status of the victim includes detecting a characteristic of the health
status of the victim.

25. A defibrillating system comprising:

a processor coupled to a memory, the processor and the memory configured to:

identify a treatment event associated with treatment of a victim with the
defibrillating system, and

transmit a representation of a portion of an ECG signal associated with the
identified treatment event.
26. The defibriliating system of claim 25, wherein the portion of the ECG signal is of a predetermined length of time having a start time and an end time based on a time associated with the identified treatment event,

27. The defibriliating system of claim 26, wherein the predetermined length of time is less than about 15 seconds.

28. The defibriliating system of claim 25, wherein the processor and the memory are configured to identify the portion of the ECG signal associated with the identified treatment event,

29. The defibriliating system of claim 28, wherein identifying the portion of the ECG signal comprises selecting a portion of the ECG signal having a predetermined length of time.

30. The defibriliating system of claim 25, wherein the processor and the memory are configured to identify multiple treatment events associated with treatment of the victim with the defibriliating system.

31. The defibriliating system of claim 30, wherein the processor and the memory are configured to transmit an identifier of each of the multiple treatment events.
32. The defibrillating system of claim 30, wherein the processor and the memory are configured to receive a selection of a particular one of the multiple treatment events.

33. The defibrillating system of claim 32, wherein the processor and the memory are configured to transmit the portion of the ECG signal associated with the particular one of the multiple treatment events.

34. The defibrillating system of claim 25, wherein transmitting the portion of the ECG signal comprises displaying the portion of the ECG signal on a display interface of the defibrillating system.

35. The defibrillating system of claim 25, wherein transmitting the portion of the ECG signal comprises transmitting the portion of the ECG signal to a computing device.

36. The defibrillating system of claim 25, wherein the processor and the memory are configured to detect that the defibrillating system has been disconnected from the victim.

37. The defibrillating system of claim 36, wherein the processor and the memory are configured to detect that the defibrillating system has been disconnected by detecting a loss of impedance in a circuit that includes the defibrillating system and the victim.
38. The defibrillating system of claim 25, wherein the portion of the ECG signal corresponds to a time period in which the defibrillating system performed an analysis of the victim's rhythm,

39. The defibrillating system of claim 25, wherein the portion of the ECG signal corresponds to a time period during which the defibrillating system was first connected to the victim.

40. A defibrillating system comprising:
 a processor coupled to a memory, the processor and the memory configured to:
 - during treatment of a victim with an automated external defibrillator (AED), associate each of multiple portions of an electrocardiogram (ECG) signal with a corresponding treatment event;
 - detect that the AED has been disconnected from the victim;
 - responsive to the disconnection of the AED, display identifiers of at least some of the treatment events;
 - receive a user selection of one of the displayed treatment events; and
 - display a representation of the portion of the ECG signal associated with the selected treatment event.

41. A method comprising:
identifying, by a processor of a defibrillating system, a treatment event associated with treatment of a victim with the defibrillating system; and
transmitting, by the processor, a representation of a portion of an ECG signal associated with the identified treatment event.

42. The method of claim 41, wherein the portion of the ECG signal is of a predetermined length of time having a start time and an end time based on a time associated with the identified treatment event.

43. The method of claim 42, wherein the predetermined length of time is less than about 15 seconds.

44. The method of claim 41, wherein the defibrillating system includes an AED.

45. The method of claim 41, further comprising identifying the portion of the ECG signal associated with the identified treatment event.

46. The method of claim 45, wherein identifying the portion of the ECG signal comprises selecting a portion of the ECG signal having a predetermined length of time.
47. The method of claim 41, wherein identifying a treatment event comprises identifying multiple treatment events associated with treatment of the victim with the defibrillating system.

48. The method of claim 47, further comprising transmitting an identifier of each of the multiple treatment events.

49. The method of claim 47, further comprising receiving a selection of a particular one of the multiple treatment events.

50. The method of claim 49, wherein transmitting the portion of the ECG signal comprises transmitting the portion of the ECG signal associated with the particular one of the multiple treatment events.

51. The method of claim 41, wherein transmitting the portion of the ECG signal comprises displaying the portion of the ECG signal on a display interface of the defibrillating system.

52. The method of claim 41, wherein transmitting the portion of the ECG signal comprises transmitting the portion of the ECG signal to a computing device.
53. The method of claim 41, comprising detecting that the defibrillating system has been disconnected from the victim.

54. The method of claim 53, wherein detecting that the defibrillating system has been disconnected comprises detecting a loss of impedance in a circuit that includes the defibrillating system and the victim.

55. The method of claim 53, further comprising receiving confirmation from the user that the defibrillating system has been disconnected.

56. A computer readable medium storing instructions for causing a computing system to:
 identify a treatment event associated with treatment of a victim with the defibrillating system, and
 transmit a representation of portion of an ECG signal associated with the identified treatment event.

57. The defibrillating system of claim 56, wherein the portion of the ECG signal is of a predetermined length of time having a start time and an end time based on a time associated with the identified treatment event.

58. The defibrillating system of claim 57, wherein the predetermined length of time is less than about 15 seconds.
59. The computer readable medium of claim 56, wherein the instructions cause the computing system to identify the portion of the ECG signal associated with the identified treatment event.

60. The defibrillating system of claim 59, wherein identifying the portion of the ECG signal comprises selecting a portion of the ECG signal having a predetermined length of time.

61. The computer readable medium of claim 56, wherein the instructions cause the computing system to identify multiple treatment events associated with treatment of the victim with the defibrillating system.

62. The computer readable medium of claim 61, wherein the instructions cause the computing system to receive a selection of a particular one of the multiple treatment events.

63. The computer readable medium of claim 62, wherein the instructions cause the computing system to transmit the portion of the ECG signal associated with the particular one of the multiple treatment events.

64. The system of claim 1, wherein the processor and the memory are configured to initiate transmission of the received information to a wearable computing device.
65. The system of claim 1, wherein the processor and the memory are configured to initiate transmission of the received information to one or more of wearable glasses and a wrist-worn computing device.

66. The system of claim 1, wherein the processor and the memory are configured to automatically identify and establish communication with the second computing device.

67. The computer readable medium of claim 22, wherein the instructions cause the computing system to initiate transmission of the received information to a wearable computing device.

68. The computer readable medium of claim 22, wherein the instructions cause the computing system to initiate transmission of the received information to one or more of wearable glasses and a wrist-worn computing device.

69. A wrist-worn computing device comprising:

 a communications component configured to wirelessly receive, from a defibrillator or an electrode pad, at least one of (i) information indicative of delivery of treatment to a victim by a caregiver and (ii) information indicative of a health status of the victim; and

 a processor coupled to a memory, the processor and memory configured to cause transmit, to a display interface of the wrist-worn computing device or to a remote computing
device, one or more of the information indicative of treatment of the victim or the information indicative of the health status of the victim.

70. The wrist-worn computing device of claim 69, wherein the information indicative of the health status of the victim comprises one or more of a pulse, a blood pressure, a respiration rate, Sp02 data, CO2 data, or an ECG signal.

71. The wrist-worn computing device of claim 69, wherein the information indicative of delivery of treatment to the victim by the caregiver comprises one or more of a depth of chest compressions, a rate of chest compressions, a duration of chest compressions, or an indication of continuity of chest compressions.

72. The wrist-worn computing device of claim 69, wherein the remote computing device comprises a server.

73. The wrist-worn computing device of claim 69, wherein the processor and memory are configured to automatically identify and establish communication with the remote computing device.

74. The defibrillating system of claim 25, wherein the processor and the memory are configured to initiate transmission of the representation of the portion of the ECG signal to a wearable computing device.
75. The defibrillating system of claim 25, wherein the processor and the memory are configured to initiate transmission of the representation of the portion of the ECG signal to one or more of wearable glasses or a watch.

76. The computer readable medium of claim 56, wherein the instructions cause the computing system to initiate transmission of the representation of the portion of the ECG signal to a wearable computing device.

77. The computer readable medium of claim 56, wherein the instructions cause the computing system to initiate transmission of the representation of the portion of the ECG signal to one or more of wearable glasses or a watch.