wo 2016/118876 A1 I} I A1 000 0 O

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2016/118876 A1l

(51

eay)

(22)

(25)
(26)
(30)

(63)

1

28 July 2016 (28.07.2016) WIPO I PCT
International Patent Classification: (72)
GO6F 17/30 (2006.01)

International Application Number:
PCT/US2016/014547

International Filing Date: (74)

22 January 2016 (22.01.2016)
Filing Language: English (81)
Publication Language: English
Priority Data:
14/604,477 23 January 2015 (23.01.2015) US
Related by continuation (CON) or continuation-in-part
(CIP) to earlier application:
Us 14/604,477 (CON)
Filed on 23 January 2015 (23.01.2015)
Applicant: EBAY INC. [US/US]; 2145 Hamilton Avenue,
San Jose, California 95125 (US). 4)

Inventors: MURTHY, Sharad R.; 2270 Bayleaf Drive,
San Ramon, California 94582 (US). AVALANI, Bhaven;
10384 Melissa Court, Cupertino, California 95014 (US).
NG, Chun Tung Tony; 908 Bailey Court, San Ramon,
California 94582 (US).

Agents: SCHEER, Bradley, W. ct al,; P O Box 2938,
Minneapolis, Minnesota 55402 (US).

Designated States (uniess otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,
TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,
TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,

[Continued on next page]

(54) Title: MESSAGING AND PROCESSING HIGH VOLUME DATA

(57) Abstract: Disclosed are a system comprising a computer-readable stor-

o e

1102
/?
START

RECEIVE FIRST DATA IDENTIFYING RECEIVER MACHINES
AVAILABLE TO RECEIVE DATA MESSAGES LINKED TO A
TORIC

1104

~1108
RECEIVE SECOND DATA IDENTIFYING A TRANSMITTER
MACHINE AVAILABLE TO PR DATA MESSAGES LINKED
TQ THE TORIC

l 1108

LINK A PLURALUITY OF VALUES TO RESPECTIVE RECEIVER
MAGHINES THAT ARE LINKED TO THE TORIC, THE
PLURALITY OF VALUES BEING COMPUTED FOR THE TOFIG

age medium storing at least one program, and a computer-implemented
method for providing partial views of event streams over a network. A sub-
scription manager receives subscription data from a client device. A mes-
saging interface module receives an event stream comprising event messages.
A normalizer converts the received event stream to a table of entries. The
entries correspond to respective event messages. A view processor selects a
portion of the converted first event stream based at least on the entries of the
selected portion of the event stream matching the subscription data. The view
processor provides the selected portion of the converted event stream for
transmission as session data to the subscriber.

WO 2016/118876 A1 |IIIWAIL 00T 00 T O

DK, EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, Published:
LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, __
SL SK, SM, TR), OAPI (BF, BJ, CF, CG, CL, CM, GA,

GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

with international search report (Art. 21(3))

WO 2016/118876 PCT/US2016/014547

MESSAGING AND PROCESSING HIGH VOLUME DATA

PRIORITY CLAIM

[0001] The application claims priority to U.S. Patent Application No.
14/604,477, entitled “SYSTEMS AND METHODS FOR MESSAGING AND
PROCESSING HIGH VOLUME DATA OVER NETWORKS,” filed January

23, 2015, which is incorporated herein by reference in its entirety.

TECHNICAL FIELD

[0002] Example embodiments of the present application relate generally to

the technical field of data processing.

BACKGROUND

[0003] Communications between or among machines may be performd
using a publisher-subscriber arrangement. A transmitter machine functions as a
message publisher, also known as a message producer. The transmitter machine
may transmit (¢.g., produce or publish) one or more messages using a network.
The transmitter machine sends a message via the network to one or more
receiver machines. The message, however, is not addressed to any particular
receiver machine. Rather, the transmitter machine sends the message using a
multicast network protocol that allows multiple receiver machines to each
receive the message. The multicast protocol supports one-to-many
communication, and the transmitter machine has no information indicating
which specific receiver machine will process the message. In this regard, the
multicast communication differs from point-to-point (¢.g., one-to-ong)
communication. A receiver machine functions as a message subscriber, also
known as a message consumer. The receiver machine may receive (e.g.,
consume) the message sent from the transmitter machine. The receiver machine

monitors the network for messages sent using the multicast protocol.

WO 2016/118876 PCT/US2016/014547

BRIEF DESCRIPTION OF THE DRAWINGS

[0004] In the drawings, which are not necessarily drawn to scale, like
numerals can describe similar components in different views. Like numerals
having different letter or numeric suffixes can represent different instances of
similar components. The drawings illustrate generally, by way of example, but
not by way of limitation, various embodiments discussed in the present
document.

[0005] FIG. 1 is a network diagram depicting a client-server system, within
which one example embodiment can be deployed.

[0006] FIG. 2 is a block diagram illustrating a mobile device, according to
an example embodiment.

[0007] FIG. 3 is a block diagram illustrating an example embodiment of a
messaging system including multiple modules forming at least a portion of the
client-server system of FIG. 1.

[0008] FIG. 4 is a block diagram illustrating an example producer-consumer
system, in accordance with an example embodiment.

[0009] FIG. 5 is a block diagram illustrating an example messaging stack, in
accordance with an example embodiment.

[0010] FIG. 6 is a block diagram illustrating an example producer-agent-
consumer system, in accordance with an example embodiment.

[0011] FIG. 7 is a block diagram illustrating an example data structure of an
advertisement, in accordance with an example embodiment.

[0012] FIG. 8 is a block diagram illustrating an example messaging system
architecture, in accordance with an example embodiment.

[0013] FIG. 9 is a block diagram illustrating an example monitoring system
deployed by the messaging system, in accordance with an example embodiment.
[0014] FIG. 10 is a schematic diagram depicting an example embodiment of
interactions of producers and consumers for reconfiguring a consumer cluster,
according to an example embodiment.

[0015] FIG. 11 is a flowchart illustrating an example method of cluster

messaging, in accordance with an example embodiment.

WO 2016/118876 PCT/US2016/014547

[0016] FIG. 12 is a block diagram illustrating an example sessionizer system
architecture, in accordance with an example embodiment.

[0017] FIG. 13 is a block diagram illustrating example embodiment of a
sessionizer including multiple modules.

[0018] FIG. 14 is a block diagram illustrating an example sessionizer
architecture, in accordance with an example embodiment.

[0019] FIG. 15 is a flowchart illustrating an example method of generating
the sessionized data, in accordance with an example embodiment.

[0020] FIG. 16 is a flowchart illustrating an example method of generating
and updating sessions, in accordance with an example embodiment.

[0021] FIG. 17 is a flowchart illustrating an example method of session
lifecycle management, in accordance with an example embodiment.

[0022] FIG. 18 is a block diagram illustrating an example stream view
management architecture, in accordance with an example embodiment.

[0023] FIG. 19 is a block diagram illustrating an example stream view
management system, in accordance with an example embodiment.

[0024] FIG. 20 is a flowchart illustrating an example method of stream view
management, in accordance with an example embodiment.

[0025] FIGS. 21A and 21B are block diagrams illustrating example data
structures of an event message, in accordance with example embodiments.
[0026] FIG. 22 is a block diagram of a machine in the example form of a
computer system within which instructions can be executed for causing the

machine to perform any one or more of the methodologies discussed herein.

DETAILED DESCRIPTION

[0027] Reference will now be made in detail to specific example
embodiments for carrying out the inventive subject matter. Examples of these
specific embodiments are illustrated in the accompanying drawings. It will be
understood that they are not intended to limit the scope of the claims to the
described embodiments. On the contrary, they are intended to cover alternatives,
modifications, and equivalents as can be included within the scope of the

disclosure as defined by the appended claims.

WO 2016/118876 PCT/US2016/014547

[0028] In the following detailed description of example embodiments of the
invention, reference is made to the accompanying drawings which form a part
hereof, and which is shown by way of illustration only, specific embodiments in
which the invention may be practiced. It is to be understood that other
embodiments may be utilized and structural changes may be made without
departing from the scope of the present invention. Specific details are set forth in
order to provide a thorough understanding of the subject matter. Embodiments
can be practiced without some or all of these specific details. In addition, well
known features may not have been described in detail to avoid unnecessarily
obscuring the subject matter.

[0029] In accordance with the present disclosure, components, process steps,
and/or data structures are implemented using various types of operating systems,
programming languages, computing platforms, computer programs, and/or like
machines. In addition, those of ordinary skill in the art will recognize that
devices, such as hardwired devices, field programmable gate arrays (FPGAs),
application specific integrated circuits (ASICs), or the like, can also be used to
exploit one or more technical aspects of the devices without departing from the
scope of the concepts disclosed herein. Embodiments can also be tangibly
embodied as a set of computer instructions stored on a computer readable
medium, such as a memory device, to exploit technical aspects of a computer-
instruction based embodiments.

[0030] Example methods and systems for distributing and/or processing
data, which are embodied on electronic devices, are described. In the following
description, for purposes of explanation, numerous specific details are set forth
in order to provide a thorough understanding of example embodiments. It will
be evident, however, to one skilled in the art, that the present inventive subject
matter can be practiced without these specific details.

[0031] In example embodiments, systems and methods are disclosed for
distributing event messages, sessionizing event streams, and managing views of
the event streams in real time within networks. For example, real-time complex
event processing (CEP) involves processing millions of events per second. In
some scenarios, CEP can involve ingestion of event streams at very high velocity

(e.g., up to 1 million events per sec), volume (e.g., terabytes of data), and/or

WO 2016/118876 PCT/US2016/014547

variety (e.g., unstructured and semi structured data). CEP engines are CEP
instances used to analyze event streams to compute aggregates for the tuples of
information or a combination of tuples of information contained in the event.
Sometimes multiple streams can be joined to correlate event streams or detect
patterns in the arrival of events. However, a CEP engine running in a single
node will not have the processing resources to handle such large volumes.
[0032] As disclosed herein, example embodiments deploy multiple CEP
engines in a cluster and deployed on a number of devices. Example
embodiments distribute the workload across the cluster of CEP engines. Such an
arrangement can provide a scalable system. The system can scale the cluster of
CEP engines elastically so that as load increases new CEP engines can be added
to the cluster dynamically without impacting the health (¢.g., performance,
network stability, etc.) of the cluster. The cluster can selfheal in case of an CEP
engine failures or a specific instance becoming busy. Furthermore, the system
can deploy the cluster across one or more datacenters. In such a scenario, event
messages flow over a wide area network. In order to use the communication
bandwidth efficiently, the messaging system can batch and compress the

messages travelling over the network.

[0033] As used herein, events can refer to messages in a messaging system.
It will be appreciated that example embodiments of the messaging system can be
used in applications other than the CEP use case.

[0034] FIG. 1 is a network diagram depicting a client-server system 100,
within which one example embodiment can be deployed. A networked system
102, in the example form of a network-based marketplace or publication system,
provides server-side functionality, via a network 104 (e.g., the Internet or wide
area network (WAN)), to one or more clients. FIG. 1 illustrates, for example, a
web client 106 (e.g., a browser), and a programmatic client 108 executing on
respective client machines 110 and 112. Herein, the client machine 110 can be
referred to as a “client device™ or “user device” in various applications.

[0035] An application program interface (API) server 114 and a web server
116 are coupled to, and provide programmatic and web interfaces respectively
to, one or more application servers 118. The application servers 118 host one or

more marketplace applications 120, and payment applications 122. The

WO 2016/118876 PCT/US2016/014547

application servers 118 are, in turn, shown to be coupled to one or more data
processing servers 123 that facilitate processing data and database servers 124
that facilitate access to one or more databases 126.

[0036] The marketplace application(s) 120 can provide a number of
marketplace functions and services to users that access the networked system
102. The payment application(s) 122 can likewise provide a number of payment
services and functions to users. The payment application(s) 122 can allow users
to accumulate value (¢.g., in a commercial currency, such as the U.S. dollar, or a
proprietary currency, such as "points") in accounts, and then later to redeem the
accumulated value for items that are made available via the marketplace
application(s) 120.

[0037] The data processing servers 123 can provide a number of functions
and services to the networked system 102. In an example embodiment, the data
processing servers can deploy a number of producer devices for generating event
messages based on data received from the client machines 110. Furthermore, the
data processing servers 123 can deploy a number of CEP engines for processing
event messages generated by the producer devices. The data processing servers
123 can correspond to a number of servers deploying a distributed architecture.
For example, a number of data processing servers 123 can be deployed within a
number of datacenters as producer devices. Additionally or alternatively, a
number of data processing servers 123 can be deployed within a number of
datacenters as CEP engines. As will be described later in connection with FIG.
3, the data processing servers 123 can include additional components for
facilitating routing event messages to the respective CEP engine.

[0038] Further, while the system 100 shown in FIG. 1 employs a client-
server architecture, the present inventive subject matter is, of course, not limited
to such an architecture, and could equally well find application in a distributed,
or peer-to-peer, architecture system, for example. The various marketplace and
payment applications 120, 122 could also be implemented as standalone
software programs, which do not necessarily have networking capabilities.
[0039] In addition, while the various marketplace and payment applications

120, 122 have been described above as having separate functionalities, in

WO 2016/118876 PCT/US2016/014547

alternative embodiments these functionalities can be performed by any one or
more of the various marketplace and payment applications 120, 122.

[0040] The web client 106 accesses the various marketplace and payment
applications 120 and 122 via the web interface supported by the web server 116.
Similarly, the programmatic client 108 accesses the various services and
functions provided by the marketplace and payment applications 120 and 122 via
the programmatic interface provided by the API server 114. The programmatic
client 108 can, for example, be a seller application (e.g., the TURBOLISTER™
application developed by EBAY INC.™, of San Jose, California) to enable
sellers to author and manage listings on the networked system 102 in an off-line
manner, and to perform batch-mode communications between the programmatic
client 108 and the networked system 102.

[0041] FIG. 1 also illustrates a third party application 128, executing on a
third party server 130, as having programmatic access to the networked system
102 via the programmatic interface provided by the API server 114. For
example, the third party application 128 can, utilizing information retrieved from
the networked system 102, support one or more features or functions on a
website hosted by the third party. The third party website can, for example,
provide one or more promotional, marketplace, or payment functions that are
supported by the relevant applications of the networked system 102.

[0042] FIG. 2 is a block diagram illustrating a mobile device 200, according
to an example embodiment. In an example embodiment, the mobile device 200
can correspond to the client machine 110 of FIG. 1. In particular, the mobile
device 200 can interact with the networked system based on user input received
by the mobile device 200 from a user. Examples of user input can include file
requests, page views, clicks, form submissions, “keypress” events, input device
events, and/or other client-machine-side interactions. File requests can
encompass requesting, €.g., a web page, a component of a webpage, image data,
data from the marketplace application 120, and the web resources. The user
input can additionally or alternatively correspond to a sequence of interactions,
such a click path or stream (e.g., an ordered sequence of client-machine-side

mteractions).

WO 2016/118876 PCT/US2016/014547

[0043] The mobile device 200 can include a processor 202. The processor
202 can be any of a variety of different types of commercially available
processors specially configured for mobile devices 200 (for example, an XScale
architecture microprocessor, a microprocessor without interlocked pipeline
stages (MIPS) architecture processor, or another type of processor). A memory
204, such as a random access memory (RAM), a Flash memory, or other type of
memory, is typically accessible to the processor 202. The memory 204 can be
adapted to store an operating system 206, as well as application programs 208,
such as a mobile location-enabled application that can provide location based
services (LBSs) to a user. The processor 202 can be coupled, either directly or
via appropriate intermediary hardware, to a display 210 and to one or more
input/output (I/0) devices 212, such as a keypad, a touch panel sensor, a
microphone, and the like. Similarly, in some embodiments, the processor 202
can be coupled to a transceiver 214 that interfaces with an antenna 216. The
transceiver 214 can be configured to both transmit and receive cellular network
signals, wireless data signals, or other types of signals via the antenna 216,
depending on the nature of the mobile device 200. Further, in some
configurations, a global positioning system (GPS) receiver 218 can also make

use of the antenna 216 to receive GPS signals.

EXAMPLE MESSAGING SYSTEMS

[0044] In example embodiments disclosed herein, a messaging system
utilizes a publication-subscription (also referred to as “pub-sub” herein) process
by which producer devices (also referred to as “transmitter device”™ herein) and
consumer devices (also referred to as “receiver devices™ herein) connected to a
network discover each other through advertisements sent by the consumer
devices via a relay agent within the network. As stated, the producer devices can
be embodied by the data processing servers 123 of FIG. 1. Additionally or
alternatively, the producer devices can be embodied by the client machine 110 of
FIG. 1. The consumer devices correspond to one or more servers of the data
processing servers 123, A consumer device hosts one or more CEP engines for

processing event messages produced by the producer devices. A relay agent can

WO 2016/118876 PCT/US2016/014547

be a module hosted by the data processing servers 123 for interfacing producer
devices and consumer devices during runtime.

[0045] For example, in operations the messaging system can identify a
number of consumer devices (¢.g., forming a “consumer cluster ring”) available
to receive and process messages on a given topic that a producer device
generates. The producer device maintains a registry of the consumer devices
that have been identified as having subscribed to the topic. As consumer devices
are removed or added to the consumer cluster ring, the producer device updates
the producer’s registry.

[0046] The producer devices generate and send to consumer devices event
messages (also referred to as “event data™ herein) that are representative of
events (e.g., representative of client-machine-side interactions). An event is a
collection of tuples of information. A tuple is made up of a key, such as a set of
American Standard Code for Information Interchange (ASCII) characters or
other suitable string data type, and a corresponding value, such as a primitive
data type. Example primitive types include integer, Booleans, floating point
numbers, fixed point numbers, characters and/or strings, data range, and/or the
like data types that are built-in the programming language. Events can be
classified into types based on matching tuples of information of the events. An
event stream is a collection of events received over time. There can be an event
stream for each event type. In an example embodiment, the collection of tuples
of information are representative of one or more user interactions or user events
m connection with the user’s teraction with a web resources, such as a web

page or an Internet-connected software program executing on the user’s device.

[0047] The producer device, ¢.g. using consistent hashing, associates a
number of hash values to each of the consumer devices of the consumer cluster.
The hash values can be viewed as respective consumer nodes on a circle. As
such, the assignment of hash values to consumer devices partitions the identified
consumer cluster to form a logical ring of consumer nodes for the given topic.

In other words, each consumer device is represented by a number of consumer
nodes on the logical ring.

[0048] The hash values can be assigned to a consumer device based on an

identifier of the corresponding consumer device. Examples of identifiers of the

WO 2016/118876 PCT/US2016/014547

consumer device include a globally unique identifier (“GUID”) of the consumer
device, an application identifier (“APPID”), a combination of the GUID APPID,
IP address, and/or the like. The consumer device can provide the identifier to
the producer device by providing the identifier within advertisement data as

described in connection with FIG. 7.

[0049] The hash values can be assigned to the consumer device in a pseudo
random manner using the identifier as a seed. In an example embodiment, the
producer device assigns hash values to a consumer device by executing a pseudo
random number generator using the identifier of the consumer device as the seed
to generate a number of values. The generated values can be assigned as the
hash values linked to the consumer device. Assigning hash values in a pseudo
random manner can facilitate distributing the consumer nodes approximately
evenly on the logical ring. Moreover, assigning hash values in a pseudo random
manner can facilitate approximately even distribution while adding or removing
consumer devices, for example, without reassigning hash values to the existing
consumer nodes.

[0050] The assignment of hash values to consumer devices can be stored in a
registry in the producer devices. During operation, the producer device can
determine the mapping of a given hash value to the corresponding consumer
device by using a hash function.

[0051] As described later in greater detail, in an example embodiment, each
producer device publishing messages on a given topic produces the same logical
ring. For example, each producer device publishing on a given topic can have
the same consumer devices registering to receive event messages in the given
topic. The consumer devices will provide the same identifiers to each of the
producer devices. Moreover, each producer device can use same mechanism to
assign hash values. As was described above, one example mechanism is to
assign the hash values pseudo random manner using the identifiers as seeds.
Accordingly, each producer device generates the same assignments between

hash values and consumer devices.

[0052] The producer device schedules event messages to the consumer
devices of the consumer cluster. For example, the producer device uses a key

contained in the event message to generate a partition key to select one consumer

10

WO 2016/118876 PCT/US2016/014547

device to receive the event message. In one example embodiment, the producer
device computes a hash value of the partition key and matches the computed
hash value against the hash values representing the consumer nodes of the
consumer devices registered with the producer device. The producer device
selects one of the consumer devices to receive the event message based on
comparing the distance of the hash of the partition key to the respective
consumer nodes. For example, the producer device makes the selection by
“walking” around the logical ring in a direction (¢.g., clockwise or anti-
clockwise), starting at the point of the hash of the partition key, until the first
consumer node is reached. The produce device selects the consumer device
associated with the first consumer node and routes the event message to the
selected consumer device for processing.

[0053] Using such an approach can provide an effective way to redistribute
the workload to the consumer device in response to a consumer device failure or
workload imbalance. For example, if a node fails, the producer device removes
or ignores the consumer nodes associated with the failed consumer device. As
stated, the distribution of the consumer nodes of the remaining consumer devices
remain approximately evenly distributed when the consumer nodes of a
consumer device is removed. This can be true since the event messages that
would have been scheduled for the failed consumer device are redistributed to
the next nearest consumer node of a function consumer device, while the routing
of event messages to the remaining consumer devices remain the same.
Likewise, when a consumer device becomes busy, the producer device can
automatically rebalance workload to other consumers by removing the consumer
nodes of the busy consumer device. Producer devices can discover slow
consumer devices and send event messages addressed to the consumer device to
an off-heap persistent queue to be replayed (e.g., processed) later, as will be
described in greater detail later in connection with FIGS 4 and 9. The statistics
produced by the messaging system can be used to elastically scale consumer
nodes in the cloud.

[0054] Accordingly, one aspect, among others, of example embodiments is
that the messaging system provides a scalable infrastructure with self-healing

features to facilitate complex event processing at very high volumes in, for

11

WO 2016/118876 PCT/US2016/014547

example, a cloud environment. Furthermore, the messaging system provides that
event messages with the same partition key are transmitted to the same consumer
device in the cloud, thereby facilitating computing aggregates and for watching
for patterns and reacting to those patterns. The messaging system can be
deployed in a network cloud or other distributed computing environment, as the
messaging system can batch, compress, and enable flow control. The messaging
system can elastically scale consumer clusters in real time in response to changes
in load and can automatically rebalance traffic in case of network congestion on
computation machine failures. As such, example embodiment of the messaging
system facilitates deploying the messaging system on a network cloud and
facilitating complex event processing.

[0055] It will be understood that example embodiments of the messaging
system can be used to in an Internet application tracking pipeline and several
other use cases deploying, for example, the JETSTREAM CEP framework. The
CEP framework can be used in building distributed applications for user
behavior analytics, monitoring, advertising, internet marketing, and risk and
security use cases. Example illustrative embodiments are described below.
[0056] FIG. 3 is a block diagram illustrating an example embodiment of a
messaging system 300 including multiple modules forming at least a portion of
the client-server system of FIG. 1. The modules 302-312 of the illustrated data
analysis system 300 include an application interface module(s) 302, a relay agent
module(s) 304, a scheduler module(s) 306, a provisioning module(s) 308, a
database interface module(s) 310, and a database update module(s) 312. The
application interface module(s) 302 includes a consumer-facing sub-module(s)
314, a producer-facing sub-module(s) 316, and a third party-facing sub-
module(s) 318.

[0057] In some embodiments, the components of the data analysis system
300 can be included in the data processing servers 123 of FIG. 1. However, it
will be appreciated that in alternative embodiments, one or more components of
the data analysis system 300 described below can be included, additionally or
alternatively, in other devices, such as one or more of the marketplace
application 120, the payment application 122, the servers 114, 116, 118, 130, the
network 104, and/or the client machines 110, 112 of FIG. 1. It will also be

12

WO 2016/118876 PCT/US2016/014547

appreciated that the data analysis system 300 can be deployed in systems other

than online marketplaces.

[0058] The modules 302-312 of the data analysis system 300 can be hosted
on dedicated or shared server machines (not shown) that are communicatively
coupled to enable communications between server machines. One or more of
the modules 302-312 can be deployed in one or more datacenters. Each of the
modules 302-312 are communicatively coupled (e.g., via appropriate interfaces)
to each other and to various data sources, so as to allow information to be passed
between the modules 302-312 of the data analysis system 300 or so as to allow
the modules 302-312 to share and access common data. The various modules of
the data analysis system 300 can furthermore access one or more databases 126

via the database server(s) 124.

[0059] The messaging system 300 can facilitate real-time CEP of large-scale
event data over a networked and distributed environment. To this end, the data
analysis system 300 illustrated in FIG. 3 includes the relay agent module(s) 304,
the scheduler module(s) 306, the provision module(s) 308, the database interface
module(s) 310, and the database update module(s) 312.

[0060] The application interface module(s) 302 can be a hardware-
implemented module that facilitates communication of data between the
messaging system 300 and clients, server, and other devices of the network, such
between the data processing servers 123 and one or more of the marketplace
application 120, the payment application 122, the servers 114, 116, 118, 130, the
network 104, and/or the client machines 110, 112 of FIG. 1. In particular, the
application interface module(s) 302 includes the consumer-facing sub-module(s)
314 for providing an interface with consumer devices. The producer-facing sub-
module(s) 316 provides an interface with producer devices. The third-party-
facing sub-module(s) 318 provides an interface with a number of third-party
servers. In example embodiments, the messaging system 300 can interface with
third-party applications 128 that provide web-based services, such as, but not
limited to, search services, data storage, data management, data mining, web-
activity monitoring and analytics, and like services. The messaging system 300
can receive such services by interacting with, for example, the third party

application 128.

13

WO 2016/118876 PCT/US2016/014547

[0061] In an example embodiment, the producers and consumer devices use
a publication-subscription model. As such, the producer-facing sub-module(s)
314 provides an interface for producer devices (e.g., one or more servers of the
data processing servers 123 of FIG. 1) to provide broadcast data for indicating
topics to which the producer devices publish. The broadcast data identifies the
producer device available to provide data messages linked to the topic

[0062] The consumer-facing sub-module(s) 316 provides an interface for
consumer devices (€.g., one or more servers of the data processing servers 123 of
FIG. 1) to provide advertisement data for indicating topics to which the
consumer devices request to subscribe. The advertisement data identifies that
the consumer device is available to receive event messages linked to the
indicated topics.

[0063] The relay agent module(s) 304 (also referred to as “identification
module(s)” herein) can be a hardware-implemented module that facilitates
linking producer devices and consumer devices. The relay agent module(s) can
be embodied by one or more servers of the data processing servers 123 of FIG.
1. In operation, the relay agent module(s) 304 receives broadcast data from
producer devices via the producer-facing sub-module 314 and advertisement
data from consumer devices via the consumer facing sub-module(s) 316. Based
on the received data from the producer and consumer devices, the relay agent
module(s) 304 can serve to link the producer and the consumer devices that have
matching topics.

[0064] The scheduler module(s) 306 can be a hardware-implemented module
that facilitates distributing event messages from a producer device to the
consumer devices of linked to the producer device. Example scheduling
schemes include round robin and consistent hashing, among others. When a
producer device provides a broadcast message to register with the relay agent
module(s) 304, the scheduler module(s) 306 instantiates a scheduler instance
hosted on the producer device. Each instance for a given topic can be the same,
and is thus said that “the scheduler is bound to the topic.”

[0065] The provisioning module(s) 308 can be a hardware-implemented
module that facilitates scheduling event messages to the consumer devices in a

scalable, fault-tolerant manner. The provisioning module(s) 308 links a plurality

14

WO 2016/118876 PCT/US2016/014547

of values, such as hash values, to respective consumer devices that are linked to
the topic. For example, the provisioning module(s) 308 can generate a plurality
of values based on the corresponding consumer device identifier. The
generating of the plurality of values can be in response to receiving respective
request messages (e.g., advertisement data as will be described in greater in
connection with FIG. 7). The plurality of values can be computed per topic.
The provisioning module(s) 308 can include a pseudo-random number generator
to generate the hash values for use with a consistent hashing scheduler.

[0066] In an example embodiment, the scheduler module(s) 308 determines
the hash values linked to the respective consumer devices in a way that is
independent of the producer device. In this way, the same hash values are
provided to each producer device publishing on a given topic.

[0067] In operation, the scheduler module(s) 306 accesses (e.g., receives or
retrieves) from the producer device an event message linked to the topic. The
event message includes a key value, and the scheduler module(s) 306 provides
the event message to a selected one of the consumer devices based on a
comparison of the key and a plurality of values of the respective consumer
devices. For example, the scheduler module(s) 306 computes a hash value of the
key value and then compares the computed hash value with the hash values of
the consumer devices. For example, the scheduler module(s) 306 makes the
selection by “walking” around the logical ring in a direction (¢.g., clockwise or
anti-clockwise), starting at the point of the hash of the key value until the
consumer hash value is reached, and the associated consumer device is selected.
[0068] The database interface module(s) 310 can be a hardware-
implemented module that facilitates accessing data for the messaging system
300. In an example embodiment, the database interface module(s) 310 can
interface with the database 126 of FIG. 1.

[0069] The database update module(s) 312 can be a hardware-implemented
module that facilitates updating the databases supporting the messaging system
300. For example, the database update module(s) 312 can facilitate updating
databases to aggregate data and to initiate database maintenance activities in

response to lifecycle events of sessions (e.g., start and end session events).

15

WO 2016/118876 PCT/US2016/014547

[0070] FIG. 4 is a block diagram illustrating an example producer-consumer
system 400, in accordance with an example embodiment. The producer
consumer system 400 includes a consumer device 402, a producer device 404, a
messaging service 406, a natty transport 408, a Zookeeper transport 410, an
advisory listener 412, a persistent queue 414, and a replayer 416.

[0071] As stated, the producer device 404 corresponds to a device that is a
producer of event messages and can be referred to as a “publisher” in the
messaging paradigm. The consumer device 402 corresponds to a device that
consumes messages and can be referred to as a “subscriber” of messages.

[0072] In operation, the producer device 404 and the consumer device 402
establish a “contract” which establises a communication channel between the
publisher and subscriber. The address for the channel is referred to as a topic.
Topics are strings of the form “id1.kind1/id2 kind2/name.” The °/” is a context
seperator. A topic is made up of one or more contexts (e.g., “id1 kind1” and
“id2 .kind2”). Subsequently-listed topics (e.g., id2 kind2) can inherent attributes,
such as quality of service characteristics, linked to the root context. The first
context is called the root context. In some example embodiments, a topic can
have only a root context.

[0073] As an illustrative example embodiment, an example topic can be
named “topic = Rtbd RTD/rtdEvent” that is being subscribed to and published
on. For example, the producer device 404 interfaces with the messaging service
406 and invokes an API call to an example function publish(topic, event) that
is implemented by the producer-facing sub-module(s) 316 of FIG. 3.
Additionally, the consumer device 402 interfaces with the messaging service 406
and invokes an API call to an example function subscribe(topic). The root
context in this topic is “Rtbd RTD”. It is bound to a specific Netty transport
instance, such as available from the APACHE SOFTWARE FOUNDATION™,
and which will be described in greater detail below. This context can be bound
to a consistent hashing scheduler. Accordingly, by publishing on a topic bound
to “Rtbd RTD,” the messaging service 406 uses consistent hashing scheduling.
[0074] The implementation exposes a singleton service interface that can be
used by producer devices to publish messages and consumer devices to consume

messages. The messaging service 406 has a plugggable transport architecture.

16

WO 2016/118876 PCT/US2016/014547

The transport instances can be dynamically plugged into the messaging service
406 at runtime. The messaging service 406 can support at least two types of
transports, such as a Netty transport 408 and a Zookeeper transport 410, such as
available from the APACHE SOFTWARE FOUNDATION™,

[0075] The messaging service 406 can use the Zookeeper transport 410 to
send control messages. Example control messages include discovery,
advertisement, and advisory messages. The Zookeeper transport 410 can
communicate with a distributed Zookeeper ensemble which acts as a relay agent
to pass control messages between producer and consumer message service
instances. The Zookeeper transport 410 binds to a topic and controls message
flows over this topic.

[0076] The messaging service 406 can use the Netty transport 408 for
transporting event messages. The Netty transport 408 can be built on top of
Netty non-block input-output (NIO) facility. It provides a completely async
transport over TCP. It transports plain old JAVA objects (POJOs) and uses
Kryo object serializer for marshalling the JAVA objects. The messaging service
406 can deploy one or more Netty Transport instances.

[0077] In an example embodiment, each instance of the Netty Transport 408
binds to one or more root context of a topic. This binding is provisioned with
the rule that no two transport instances bind to the same root context. Each root
context is bound to a scheduler module. All topics bound to the context are then
bound to the scheduler that is bound to the context. Each transport instance has
its own communication properties, which can substantially correspond to TCP
properties which can be tuned at runtime. The advisory listener 412 can direct
undelivered event messages to the persistent queue 414 to be resent later by the
replayer 416. Advisory listener 412 and replayer 416 will be described later in
greater detail in connection with FIGS. 8-10.

[0078] FIG. 5 is a block diagram illustrating an example messaging stack
500, in accordance with an example embodiment. The messaging stack 500
includes a producer-side stack 502, which includes a publisher 506, a scheduler
508, an encoder 510, a batcher 512, and a compressor 524. The messaging stack
600 also includes a consumer-side stack 504, which includes a decompressor

526, a decoder 528, and a subscriber 530.

17

WO 2016/118876 PCT/US2016/014547

[0079] The producer-side stack 502 can be embodied by a server of the data
processing servers 123, The scheduler 508, the encoder 510, the batcher 512,
and the compressor 524 can be embodied by the scheduler module(s) 306. The
consumer-side stack 504 can be embodied by a server of the data processing

servers 123.

[0080] The publisher 506 can correspond to a producer device 404 of FIG. 4.
The publisher 506 provides the scheduler event messages to be published to one
or more subscribers (¢.g., consumer devices).

[0081] The scheduler 508 can correspond to the scheduler module(s) 306 of
FIG. 3. The producer-side of the messaging stack is provisioned with the
pluggable message scheduler 508. The scheduler 508 can be one of two types:
weighted round robin or consistent hashing scheduling algorithms. Schedulers
provide quality of service (QOS). The scheduler 508 is bound to a root context
of a topic in example embodiments. Accordingly, the publisher can pick QOS
by simply picking the topic bound to the root context.

[0082] Weighted round robin: When the weighted round robin scheduler is

provisioned, event messages are distributed amongst the discovered consumers
using a weighted round robin algorithm. With this approach if weights for all
consumers are same, then the messages flowing down the producer side stack are
equally distributed amongst the set of consumers bound to that root context. If a
weight is assigned to a consumer node then events are distributed to that node
taking the weight into account. For example, if the weight is set to 20 for a
specific consumer instance, then only 20% of overall messages per second
(MPS) is scheduled to that instance and the balance gets equally distributed
between the remaining of the instances. Workload distribution can be done per
topic.

[0083] Consistent hashing: When a consistent hashing scheduler is

provisioned, a consistent hashing ring is created per topic. For example, when a
consumer advertisement arrives, a provisioned number of hashes are computed
using the identifier of the consumer device. For example, the identifier can be
contained in the advertisement. This operation is performed for all discovered
consumers. The hashes are distributed across a logical ring. There is one ring

for each topic. The algorithm is implemented such that the producer devices

18

WO 2016/118876 PCT/US2016/014547

publishing on the same topic have the same view of the ring. When a message
arrives at the scheduler, the message is decorated with a key that can be used to
create an affinity between the message and a consuming node. The scheduler
508 computes a hash on the key, and places the hashed value on the ring. The
scheduler 508 then traverses the ring in an anticlockwise or clockwise direction
until the scheduler 508 meets the first hash of a consumer node. There is a
mapping of hashes to consuming devices. The scheduler 508 can perform a
lookup in the registry to find the consumer device associated with the matched
hash. The scheduler 508 then schedules the event message to the consumer node
associated with the matched hash.

[0084] A listener (¢.g., the listener 412 of FIG. 4) can be plugged into the
consistent hashing scheduler so that it can listen to ring change notifications with
a view of the new ring. The listener can be used in systems that are sensitive to
ring changes. Examples of ring changes include adding a consumer device,
removing a consumer device, redefining QOS definitions of the consumer
devices, and/or the like. Listeners will be described in greater detail later in

connection with FIG. 9.

[0085] The encoder 510 performs an encoding process on the event message.
For example, the encoder 510 receives event messages from the scheduler 508,
encodes the received event messages, and provides the encoded event messages
to the batcher 512.

[0086] The producer-side 502 can be provisioned with the batcher 512 to
batch messages per context. Topics under the selected context can be batched.
The batch size is also provisioned and this can be changed at runtime. The
batcher 512 in the stack accumulates event messages delivered from upstream.
Event messages are scheduled downstream when either the batch size is reached
or a timer expires. The timer provides a mechanism to inhibit substantial delays
by the batcher 512 caused by a low rate of received event messages. It will be
appreciated that the batcher 512 can be omitted in alternative embodiments. In
an example embodiment, whether or not the batcher 512 is included can be
determined during provisioning of the .

[0087] The compressor 524 can compress the event messages. Compression

is driven through advertisements from the consumer (¢.g., the subscriber 530).

19

WO 2016/118876 PCT/US2016/014547

When the consumer signals to the producer that it expects the messages in a
compressed form, the producer can compress the messages. Both batched and
non-batched event messages can be compressed. In one example, SNAPPY
compression is supported.

[0088] On the consumer-side of the stack 504, the decompressor 526 and the
decoder 528 reverses the process of the compressor 526 and the encoder 510.
[0089] FIG. 6 is a block diagram illustrating an example producer-agent-
consumer system 600, in accordance with an example embodiment. The
producer-agent-consumer system 600 includes a producer device 600, a relay
agent module(s) 604, and a consumer device 606. . FIG. 6 shows the
interactions of the producer device 602, the relay agent module(s) 604, and the
consumer device 606 during the publication-subscription process, and for the
sake of brevity additional components of the messing system architecture are not
shown. An example embodiment of the messaging system architecture is
described in greater detail in connection with FIG. 8.

[0090] In operation, the producer device 602 and consumer device 606 can
start up out of order. Both the producer device 602 and the consumer device 606
register with the relay agent module(s) 604. The relay agent module(s) 604 can
be deployed as a cluster across datacenters. A group of the relay agents (not
shown) can be configured to be an active ensemble. The remainder of the group
is designated as observers. The relay agent module(s) 604 can be used as a
message router/distributor. The producer devices and consumer devices publish
messages through the relay agent module(s) 604 using a topic based address as
previously described.

[0091] If a consumer device 606 initiates registration, the consumer device
606 posts an advertisement through the relay agent module(s) 604 to all
interested producers at interaction 610. The relay agent module(s) 604, in
response, posts the advertisement with the producer device 602 at interaction
612. In response, the producer device 602 can build a registry containing all
known consumer devices that has registered with the producer device 602.
[0092] In some embodiments, the consumer device 606 can provide to the
producer 602 a number of advisors through the relay agent module(s) 604. For

example, the consumer device 606 can provide advisories to indicate a state of

20

WO 2016/118876 PCT/US2016/014547

the consumer device 606, such as the consumer device 606 is processing event
messages slowly, lacks resources to process event messages, has a surplus of
resources for its current workload, is requesting reinstating workload, and/or like
conditions that indicate reducing or increasing the workload to the consumer

device.

[0093] As an illustration, in operation the consumer device 606 can provide
the relay agent module(s) 604 the advisory message at interaction 614. The
advisory message can include a consumer device identifier, a topic identifier,
and an advisory identifier that is indicative of the type of advisory (e.g., usable
by the producer device 602 and/or the relay agent module(s) 604 to determine to
increase or decrease workload). After receiving the advisory message, the relay
agent module(s) 604 can route the advisory message to the producer device 602
and other producer devices linked to the topic at interaction 616. In turn, the
producer device 602 can update its registry of consumer identifiers based on the
advisory. For example, the producer device 602 can remove or disable the
consumer identifier from its registry so that the consumer device 606 is no
longer available to receive event messages for processing.

[0094] In further operation, if the consumer device detects that the consumer
device is available to process event messages, the consumer device 606 can send
another advisory to the relay agent module(s) 604 to indicate to the produce
device 602 that the consumer device 606 is available for receiving event
messages.

[0095] When a producer device 602 initiates registration, the producer
device 602 sends out a discover message through the relay agent module(s) 604
at interaction 618. The discovery message is broadcasted to all interested
consumer devices, such as consumer device 606, at interaction 620. The
consumer device 606, in response to receiving the discover message, can
respond with an advertisement, such as was described above in connection with
interactions 610, 612. The advertisement message is also sent through the relay

agent module(s) 604.

[0096] FIG. 7 is a block diagram illustrating an example data structure of an
advertisement 700, in accordance with an example embodiment. The

advertisement 700 travels from consumer device to producer device, as

21

WO 2016/118876 PCT/US2016/014547

described above in connection with FIG. 6. The consumer device generates a
unique consumer identifier data field 702 when it starts up. The advertisement
700 comprises an address data field 704, which can correspond to the consumers
IP address and/or port binding. The advertisement 700 also includes a QOS data
field 706 that can be indicative of any suitable quality of service characteristic,
such as compression, serialization format, data rate, and the like. The
advertisement 700 can also include a timestamp data field 708 that is indicative
of when the consumer device posted the advertisement 700. The advertisement
700 can also include, a weight data field 710 that is indicative of a relative
workload requested by the consumer device. The advertisement 700 can also
include a topic data field 712 that is indicative of the topics to which the
consumer device subscribing. When producer device receives the advertisement,
the producer device can update its consumer registry with the advertisement 700.
[0097] FIG. 8 is a block diagram illustrating an example messaging system
architecture 802, in accordance with an example embodiment. The messaging
system architecture 802 can be deployed across datacenters. For example, a first
datacenter can include a producer device 802, a relay agent module(s) 804, a
replayer 806, and a queue 808, such as a Kafka queue. A second datacenter can
include a portion of a cluster ring 810 comprising the consumer devices 812A-C,
a relay agent module(s) 814, a queue 818, such as a Kafka queue, and a replayer
822. A third datacenter can include the remaining portion of the cluster ring 810
comprising the consumer devices 8 12D-F, the relay agent module(s) 816, a
queue 820, such as a Kafka queue, and a replayer 824. The producer device 802
passes event messages to the cluster ring 810 through a scheduler module(s) 826
that determines the routing of the event messages within the cluster ring 810.
Similarly, the replayer 806 provides event messages to the cluster ring 810
through the scheduler module(s) 826.

[0098] The relay agent 804,, 814, 816 correspond to instances of the relay
agent module(s) 304 of FIG. 3. The scheduler module(s) 826 can correspond to
the scheduler module(s) 306 of FIG. 3.

[0099] The relay agent modules 804, 814, 816 are deployed across the
datacenters. Some of the relay agent modules in one of the datacenters are

designated as active ensemble (e.g., relay agent modules 804, 814, 816) and the

22

WO 2016/118876 PCT/US2016/014547

remaining as observers (not shown). The messaging stack in the producing
device 802 and consuming devices 812A-F register with an available relay agent
module. From then on, the producing device 802 and consuming devices 8 12A-
F communicate with the same relay agent module until the connection is broken
to that relay agent.

[00100] The producer device 802 sends discovery messages through its relay
agent 804, and the consumer devices 812A-F send advertisement messages
through their relay agents 814, 816. A discovery message can include a topic
identifier and an identifier of the producer device 802. The discovery and
advertisement messages can be sent and received across datacenters.
Accordingly, producer devices can discover consumer devices across
datacenters. Furthermore, the scheduler module(s) 826, utilizing a consistent
hashing arrangement, can facilitate routing event messages to cluster ring 810
having consumer devices that span across multiple datacenters.

[00101] FIG. 9is a block diagram illustrating an example monitoring system
900 deployed by the messaging system, in accordance with an example
embodiment. The monitoring system 900 includes a messaging service 902,
which includes a Netty transport 904 containing virtual queues 906A-C and a
virtual queue monitor 908. The messaging service 902 interfaces with one or
more consumer devices 910A-C, an alert listener 912, and an advisory listener
914 connected to a queue 916.

[00102] In one aspect, the monitoring system 900 can support self-healing
clusters. For example, when a consumer device 910A-C fails or becomes busy,
the traffic being scheduled to that consumer device should be redirected to
another consumer device. This reconfiguration can be achieved through the
messaging system described herein. In particular, the producer side of the
messaging stack can sense when a consumer device has failed. In such a
scenario, the failed consumer device can be removed from the producer device’s
registry and no more traffic is scheduled to that failed consumer device. Instead,
the traffic is rebalanced across the other instances in the cluster ring which are
still operational.

[00103] The producer side of the messaging stack maintains a virtual queue

906A-C per consumer device 910A-C in its registry, as shown in FIG. 9. The

23

WO 2016/118876 PCT/US2016/014547

virtual queue monitor 908 monitors the virtual queues 906A-C to detect
slowness of the consumer devices 910A-C. This typically happens when the
network between the producer device and a consumer device becomes slow or
when a consumer device operates slowly and cannot empty its communication
socket buffers. In such a case, the messaging service 902 emits advisory
messages to the advisory listener 914 or other listener components that are
subscribing to advisory messages. The advisory message contains the original
message with the topic over which it was published. The advisory listener 914
takes the event message, adds metadata and pushes the event to a Kafka queue
916. A replayer device, such as the replayers 822, 824 of FIG. 8, is setup to
listen to the queue 916 and replay the message directly to the consumer device.
[00104] The producer side can also be provisioned with the alert listener 912.
When the virtual queue monitor 908 detects a slow consumer device, the virtual
queue monitor 908 will signal the alert listener 912. For example, the virtual
queue monitor 908 can provide the alert listener 912 information about the
network address of the slow consumer device along with the topic. This can be
used as a signal to detect that corresponding producer device. An example
method of reconfiguring a consumer cluster ring is described below in

connection with FIG. 10.

EXAMPLE METHODS OF MESSAGING SYSTEMS

[00105] FIG. 10 is a schematic diagram depicting an example embodiment of
interactions 1000 of producers and consumers for reconfiguring a consumer
cluster, according to an example embodiment.

[00106] At interaction lines 1002-1004, the producer-side stack 502
transmits event messages to the consumer-side stack 504. At interaction line
1006, the consumer-side stack 504 monitors upstream queue depth to detect
slowness of the consumer application. At interaction line 1008, the consumer-
side stack 504 senses that the upstream queue in the consumer messaging stack
has built up beyond a first threshold value, and at interaction line 1010 it sends
advisories to all producer devices to stop sending messages to the consumer side

stack 504. At interaction line 1012, the producer-side stack 502 reacts to the

24

WO 2016/118876 PCT/US2016/014547

advisory message by rebalancing traffic destined to this consumer instance and
distributing this traffic across the cluster ring.

[00107] At interaction line 1014, the consumer-side stack 504 detects that
the upstream queue has dropped below a second threshold value, and the
consumer-side stack 504 sends another advisory message to producers to start
sending messages to the consumer-side stack 504 again. In an example
embodiment, the first and second threshold values can be different values. At
interaction line 1020, the producer-side stack 502 resumes transmission of the
event messages to the consumer-side stack 504.

[00108] FIG. 11 is a flowchart illustrating an example method 1100 of cluster
messaging, in accordance with an example embodiment. In this example, the
method 1100 can include operations such as receive first data identifying
consumer devices available to receive data messages (block 1104), receive
second data identifying a transmitter machine available to provide data messages
(block 1106), link a plurality of values to respective consumer devices (block
1108), access from the transmitter machine a first data message (block 1110),
and provide the first data message to a selected one the consumer devices (block
1112). The example method 1100 will be described below, by way of
explanation, as being performed by certain modules. It will be appreciated,
however, that the operations of the example method 1100 can be performed in
any suitable order by any number of the modules shown in FIG. 3.

[00109] In an example embodiment, the method 1100 starts at block 1102 and
proceeds to block 1104, at which the relay agent module(s) 304 receives first
data identifying consumer devices available to receive data messages linked to a
topic. The first data can correspond to one or more advertisements sent by
consumer devices.

[00110] At block 1106, the relay agent module(s) 304 receives second data
identifying a producer device (or “transmitter device”) that is available to
provide data messages linked to the topic. For example, the relay agent
module(s) 304 can receive a discovery message from a producer device that
indicates that producer device is publishing event messages on an identified

topic.

25

WO 2016/118876 PCT/US2016/014547

[00111] At block 1108, the provisioning module(s) 308 links a plurality of
values to respective consumer devices. For example, the values can be hash
values generated by a consistent hashing scheduler. For example, an identifier
of a consumer device can be used as a seed in a pseudo-random number
generator to generate a number of values that will be assigned to the consumer
device as its hash values. Thus, a number of hash values can be linked to each

consumer device. The plurality of values can be computed for the topic.

[00112] Atblock 1110, the scheduler module(s) 306 can access from the
producer device a first event message linked to the topic. For example, the
scheduler module(s) 306 can retrieve the first event message from data memory
(e.g., when implemented in the producer device) or receive it via a data
communication channel from the producer device (e.g., when implemented in a
device external to the producer device). The first event message includes a key
value. At block 1112, the scheduler module(s) 306 provides the first event
message to a selected one of the consumer devices based on a comparison of the
key and the plurality of values of the respective consumer devices. As stated,
the comparison can include evaluating the key using a hash function and then
comparing the resulting hash value with the values linked to the consumer
devices. The comparison can be made on the perimeter of a logical ring finding
the closest match in a clockwise or anti-clockwise direction. At block 1114, the

method 1100 can end.

EXAMPLE SESSIONIZATION SYSTEMS

[00113] In one aspect, among others, example embodiments disclosed herein
provide a system for facilitating sessionization of network data, such as for real-
time analytics of Internet and mobile applications, and also for monitoring,
security, Internet bot detection, and the like applications. Sessionization is a
process of grouping events containing a specific identifier and that occur during
atime window referred to as session duration. A visit or session is defined as a
series of page requests, image requests, and/or the like web resource requests
from the same uniquely identified client. Each time window starts when an
event is first detected with the unique identifier. The time window terminates

when no events have arrived with that specific identifier for the specified

26

WO 2016/118876 PCT/US2016/014547

duration. For analytics of web applications, sessionization can define the session
duration as 30 minutes of inactivity. However, for analytics of mobile device
flows and other applications, sessionization can use different session duration.
[00114] Sessionization facilitates storing selected fields extracted from the
event stream and also computing and storing aggregated counts of fields or
events over the lifetime of the session as events flow through the network.
Example embodiments disclosed herein are described in the context of
sessionizing user behavior data. It will be appreciated that machine behavior can
be sessionized in alternative embodiments, as well as other types of data suitable
sessionization.

[00115] The sessionizing system described herein comprise multi-stage
distributed-stages pipelined together. The first stage is a collection tier which
ingests events over multiple interfaces from different sources. The sessionizer is
the second stage of the pipeline. In one aspect, among others, the sessionizer
system creates and sustains sessionized data per tenant (or referred to as
“subscriber”) and produces lifecycle events as the session transitions through its

start and end state. A tenant is a client device requesting sessionized data.

[00116] To achieve a fault-tolerant distributed environment operating across
multiple datacenters, the sessionizing system uses the messaging system 300 of
FIG. 3 to maintain and manipulate the state of a session. Furthermore, the
sessionization system can create hierarchical sessions where one session spans
multiple sub sessions and/or multiple channels.

[00117] FIG. 12 is a block diagram illustrating an example sessionizer system
architecture 1200, in accordance with an example embodiment. The sessionizer
system architecture 1200 includes an application(s) 1202 that transmits event
messages by a first messaging system 1204 to a collector cluster ring 1206 that
includes one or more CEP engines 1208 A-F. The collector cluster ring 1206 is
interconnected with Zookeeper transports 1210, 1212 and queues 1214, 1216.
Additionally, the collector cluster ring 1206 connected to a second messaging
system 1224 that routes and passes event messages to a sessionization cluster
ring 1226 formed by one or more consumer devices 1228A-F. Additionally, the

sessionization cluster ring 1226 is interconnected with Zookeeper transports

27

WO 2016/118876 PCT/US2016/014547

1230, 1232 and data queues 1234, 1236. Furthermore, the sessionization
clustering 1226 can be interconnected with a subscriber(s) 1240.

[00118] The application(s) 1202 can correspond to web resources executed on
user devices and can serve as producer devices for the collector cluster ring
1206. The messaging system 1204 can route event messages from the
application(s) 1202 to the collector cluster ring 1206 using a round-robin
scheduler module. Event messages are then routed by the second messaging
system 1224 to the sessionization cluster ring 1226 for processing to generate
sessionized data. The sessionization clustering 1226 provides the sessionized
data to a corresponding subscriber(s) 1240, which is a device(s) that requests

particular sessionized data.

[00119] The collector cluster ring 1206, the CEP engines 1208A-F, the
Zookeeper transports 1210, 1212 and the queues 1214, 1216 for a first tier of the
sessionizer system 1200 can be referred to as the collector tier. The collector tier
can be deployed using multiple datacenters. For example, a first datacenter can
deploy the CEP engines 1208A-C, the Zookeeper transport 1210, and the data
queue 1214. A second datacenter can deploy the CEP engines 1208D-F, the
Zookeeper transport 1212, and the data queue 1216.

[00120] The collector tier receives event messages over multiple interfaces
from different 1202 sources, such as the application(s) 1202, and schedules the
event messages to a second tier, referred to as the sessionizer tier, through the
second messaging system 1224, Accordingly, the CEP engines 1208 A-F serve
as consumer devices with respect to the application(s) 1202 and serve as
producer devices with respect to the sessionization tier 1226. In an example
embodiment, the second messaging system 1224 can correspond to the
messaging system 300 of FIG. 3.

[00121] The sessionizer tier comprises the sessionization cluster ring 1226,
the consumer devices 1228A-F, the Zookeeper transports 1230, 1232, and the
data queues 1234, 1236. As such, the sessionizer tier can deployed as a cluster
ring that encompasses multiple datacenters. For example, the first datacenter can
deploy the consumer devices 1228A-C, the Zookeeper transport 1230, and the
data queue 1234, and a second datacenter can deploy the consumer devices

1228D-F, the Zookeeper transport 1232, and the data queue 1236. To provide

28

WO 2016/118876 PCT/US2016/014547

messaging across multiple datacenters, the Zookeepers 1210, 1212, 1230, 1232
can embody relay agent module(s) 304.

[00122] The subscriber(s) 1240 provides to the sessionization cluster ring
1226 a request message to receive sessionized data. The subscriber(s) can be
referred to as a “tenant.” The sessionization cluster ring 1226 performs
sessionization on a per-tenant basis. In other words, the sessionization cluster
ring 1226 can generate sessionized data specifically for a particular tenant.
[00123] Accordingly, each tenant-specific session has a unique identifier
derived from one or more tuples in the event stream. The collector tier and the
second messaging system 1224 can partition the sessionization cluster ring 1226
based on a key included in the event messages. For example, the key can
correspond to a globally unique identifier (“GUID”) of the event messages. A
GUID is unique to the device that is the source of the event messages (¢.g., the
user device browsing a website). It will be appreciated that other data of the
event messages can be used as the key in alternative example embodiments. For
example, an application identifier (“APPID”) and the GUID can be combined
(e.g., concatenated or joined) to form the session identifier.

[00124] As stated, the collector tier can receive event messages over multiple
interfaces. In an example embodiment, the collector tier additionally normalizes
the received event messages prior to sending the event message downstream.
The CEP engines 1208A-F hosted in the collector tier can filter out Internet bot
traffic. For example, the CEP engines 1208A-F can look up Internet bot
signature (e.g., patterns of events) and mark the event messages that match an
Internet bot signature as a “BOTSignaturcEvent” type. The event message can
be marked by adding metadata indication the “BOTSignatureEvent” type. After
filtering, the event message stream is then scheduled for the sessionizer tier by
using the key within the event message, such as by using the GUID of the event
message, as will be described in greater detail in connection with FIG. 14.
[00125] The sessionizing system can facilitate tenants defining the session
duration specific to their sessions. For example, session duration can defined as
30 minutes of inactivity. In alternative examples, session duration can be shorter

(e.g., 5-10 minutes) or longer (¢.g., 30-60 minutes).

29

WO 2016/118876 PCT/US2016/014547

[00126] FIG. 13 is a block diagram illustrating example embodiment of a
sessionizer system 1300 including multiple modules. The illustrated sessionizer
system 1300 includes a counter updater module(s) 1302, an event decorator
module(s) 1304, a bot detector module(s) 1306, a session updater module(s)
1308, and a metadata updater module(s) 1310.

[00127] In some embodiments, the components of the sessionizer system
1300 can be included in the data processing servers 123 of FIG. 1 and/or the
cluster ring 1226 of the sessionizer ring . However, it will be appreciated that in
alternative embodiments, one or more components of the sessionizer system
1300 described below can be included, additionally or alternatively, in other
devices, such as one or more of the marketplace application 120, the payment
application 122, the servers 114, 116, 118, 130, the network 104, and/or the
client machines 110, 112 of FIG. 1. It will also be appreciated that the
sessionizer system 1300 can be deployed in other machines interconnected with
the network 104 and in systems other than online marketplaces.

[00128] The modules 1302-1310 of the sessionizer system 1300 can be hosted
on dedicated or shared server machines (not shown) that are communicatively
coupled to enable communications between server machines. One or more of
the modules 1302-1310 can be deployed in one or more datacenters. Each of the
modules 1302-1310 are communicatively coupled (e.g., via appropriate
mterfaces) to each other and to various data sources, so as to allow information
to be passed between the modules 1302-1310 of the sessionizer system 1300 or
so as to allow the modules 1302-1310 to share and access common data. The
various modules of the sessionizer system 1300 can furthermore access one or

more databases 126 via the database server(s) 124.

[00129] The counter updater module(s) 1302 can be a hardware-implemented
module that facilitates the counting of the occurrence of user-defined fields in
received event messages and/or count the events represented by the event
messages. In operation as event messages arrive, the counter updater module(s)
1302 maintains a count of the occurrence of user defined fields in those event
messages or counts the events. These counters are maintained in session data

storage.

30

WO 2016/118876 PCT/US2016/014547

[00130] The event decorator module(s) 1304 can be a hardware-implemented
module that facilitates combining sources of information external to the event
message with the event messages. For example, other sources of data with
valuable information can be combined with an event stream, such as for
example, a user behavior stream. Examples of data that can be added with the
event message data includes geographical information, device classification,
demographics, and segment data.

[00131] In an example embodiment, the event decorator 1304 combines
supplemental data with the event message streams in real-time as the event
messages flow through the sessionizer system 1300. For example, the event
decorator 1304 looks up a data store using one of the attributes of the event
message as keys. Caching data can be used locally on the processing node or
externally in a fast lookup cache. Adding the supplemental data to event
message streams in real-time facilitates scalable data stores that can be queried at
the rates experienced in large-scale systems.

[00132] The bot detection module(s) 1306 can be a hardware-implemented
module that facilitates processing event messages generated by Internet bot
programs.

[00133] The bot detection module(s) 1306 can identify in real-time event
messages that correspond to activities of Internet bot programs. Although an
application tier that is upstream of the bot detection module(s) 1306 can look up
bot signatures in the producing applications (e.g., signatures of self-declared bots
and those detected during offline processing can be stored in a cache for looked
up), the application tier may fail to identify some Internet bot activities. The bot
detection module(s) 1306 detects Internet bot program activities by observing
the rates at which the Internet bot programs are accessing the site using
signatures. The bot detection module(s) 1306 uses probabilistic frequency
estimation techniques measured over rolling windows of time. The bot detection
module(s) 1306 can serve to reduce the processing resources consumed by event
messages generated by Internet bot programs. As the sessionization system
1300 detects bot signatures, the sessionization system 1300 updates the bot
signature cache. This cache can be provided by the collector tier to enforce bot

filtering.

31

WO 2016/118876 PCT/US2016/014547

[00134] The session updater module(s) 1308 can be a hardware-implemented
module that facilitates updating session information. For example, the session
updater module(s) 1308 can post a session start marker event to the
corresponding session when a session is created and a session end marker event
to the corresponding session when a session ends. The session start and end
marker events contain metadata derived from event streams and geographical
enriched data. The sessionizer system 1300 can support cross-channel (e.g.,
across multiple devices) sessions referred to as super sessions. The session
identifier of a super session is the user identifier.

[00135] The metadata updater module(s) 1310 can be a hardware-
implemented module that facilitates extracting data from streams of event
messages. For example, the metadata updater module(s) 1310 can extract data
from the event messages of a session and store the extracted data in a session
record in the form of session metadata. Examples of session metadata include
session identifier data, a page identifier data, geographical location data (¢.g.,
city, region, country, continent, longitude, latitude, Internet service provider),
browser type data, OS type data, and device type data.

[00136] In response to receiving a message event, the sessionizer system 1300
looks up the cache to determine if a key for the session exists. For example, the
event message has metadata indicating the key to use for cache lookup. The
event message is evaluated by the consumer device of the sessionization tier and,
for respective tenants, metadata is extracted and updated into the respective
tenant’s session if the session exists (e.g., the key for the session exists in the
cache). If session does not exist (¢.g., the key for the session does not exist in the
cache) a new session instance is created and a session key is minted and injected
into the session. The metadata extracted from the event is then updated into the
session record.

[00137] The sessionizer system 1300 can implement an interface for
providing sessionization capabilities. In an example embodiment, the
sessionizer system 1300 implements a number of annotations extending the EPL

(Esper’s event processing language). Example annotations are listed below:

TABLE 1: ANNOTATION LISTING

32

WO 2016/118876 PCT/US2016/014547

(@BotSession — Hint for create/load bot session

@BotSession("IP")
select'IP/' || ip as _pk_, ip
from BotFeedbackEvent(category='IP' and ip is not null);

Create/Load a bot session and use the IP address as the bot signature.

(@UpdateCounter — Increase bot session counter.

@UpdateCounter(name="bounceCount", category="IP")

select * from SessionEndEvent(eventCount = 1);

Increase the session counter bounceCount.

(@PublishBotSignature — Detect a bot signature and publish it

@PublishBotSignature("IP")
select 123 as _bottype_

from SessionEndEvent(ipSession.counter("bounceCount") > 50);

Publish the bot signature.

(@DebugSession — Used for debugging

(@Session —Provides hint for sessionizer to create/load session

@Session("SOJMainSession")
selectsias _pk_, ctas _timestamp_, _ sessionTTL as
duration

from PULSAREvent(si is not null and _ct is not null);

The statement returns _pk as the identifier of the session. The statement
can also return optional _timestamp _ as the event timestamp and _ duration

as the session max inactivity time.

33

WO 2016/118876 PCT/US2016/014547

(@SubSession — This annotation is used to provide hint for sessionizer to

create/load sub session

@SubSession("AppSession")
select app as _pk_
from PULSAREvent(p is not null);

The statement returns _pk_ as the identifier of the sub session and also can

return an optional _duration as the sub session max inactivity time.

(@UpdateState — Save sate to session

@UpdateState
select p as page from PULSAREvent;

Store the value of p tag into session variable page.

(@UpdateCounter — Create/Increase session counter

@UpdateCounter("HomePageView")
select * from PULSAREvent(pageGroup = 'HomePage');

Increase the session counter HomePageView if the pageGroup is HomePage.

(@AppendState — Append data into a list variable

@AppendState(name="pageList ", colname="page",
unique="true”)
select p as page from PULSAREvent;

Append the current page to session pagelist variable.

(@UpdateMetadata — Save to session metadata

34

WO 2016/118876 PCT/US2016/014547

@UpdateMetadata
select ipv4 as ip
from PULSAREvent (session.eventCount = 1);

Store the ipv4 value into the metadata.

(@UpdateDuration — Change session max idle time.

@UpdateDuration
select 60000 as _duration_
from PULSAREvent (session.botEventCount = 1);

Change session duration to 1 minute if it is a BOT session

(@DecorateEvent — Decorate new event info into the current event.

@DecorateEvent
select metadata.string('Referrer') as _Referrer
from PULSAREvent(metadata.string('Referrer’) is not null);

Decorate first event referrer to all following events.

[00138] FIG. 14 is a block diagram illustrating an example sessionizer
architecture 1400, in accordance with an example embodiment. The sessionizer
architecture 1400 can correspond to the sessionizer tier described above in
connection with FIG. 12. The sessionizer architecture 1400 includes an inbound
message channel (IMC) 1402, a dispatcher 1404, a sessionizer 1406, an
outbound message channel (OMC) 1408, a bot detector 1410, and a bot OMC
1412. The sessionizer 1406 can implement the counter update module(s) 1302,
the event decorator module(s) 1304, the session updater module(s)1308, and the
metadata updater module(s) 1310.

[00139] In an example embodiment, the sessionizer architecture 1400 is

implemented using a JETSTREAM container. The JETSTREAM container

35

WO 2016/118876 PCT/US2016/014547

provides a mechanism to build dynamic pipelines declaratively that can be
changed at run time. The pipeline of the sessionizer architecture 1400 can be
hosted in a JETSTREAM Application container and is wired as shown in the
illustrated embodiment of FIG. 14.

[00140] The IMC 1402 serves as a first stage of the pipeline that receive event
messages from the collector tier of FIG. 12. The event messages arriving at the
IMC are then forwarded to the dispatcher 1404, In the example embodiment, the
dispatcher 1404 corresponds to an Esper CEP engine that evaluates the event
messages and makes routing decisions. Event messages marked as type
BOTSignatureEvent are forwarded to the bot detector 1410, which processes the
event message and then provides the processed data to subscribers interested in

receiving events which contain metrics for different bot types.

[00141] In response a determination that the received event message marked
as an event type that does not require sessionization, the dispatcher 1404
forwards the received event message to the OMC 1408, thereby bypassing the

sessionizer 1406.

[00142] Accordingly, the dispatcher 1404 passes to the sessionizer 1406 event
messages that have bot activities filtered out. An example embodiment, the
sessionizer 1406 is another CEP engine instance that manages session lifecycle
and provides a fourth generation language (4GL) programmatic interface which
allows extraction of data from event and update of sessions. In an example
embodiment, the sessionizer 1406 is implemented using Esper’s EPL.
Additionally or alternatively, the sessionizer 1406 can be implementing using the
annotation listed in Table 1.

[00143] Additionally or alternatively, the sessionizer 1406 creates new
sessions for the specified combination of tuples of information contained in the
incoming event message. The sessionizer architecture provides users an
interface for writing user-defined rules for enforcing tenancy-based
sessionization in structured query language (SQL). An example for achieving
this using SQL is shown below:

[00144] INSERT INTO EWASESSION SELECT appid, guid, 30 AS
sessionduration, * FROM TRACKING_EVENT WHERE appid is not null;

36

WO 2016/118876 PCT/US2016/014547

[00145] @OutputTo(“sessionizer’) SELECT * FROM SESSIONINFO;
[00146] In this example, the SQL instructions define that the APPID and

GUID form the session identifiers and that 30 minutes as the session duration.
[00147] Providing users the ability to define rues can be met by providing a
4GL programming construct so users can implement these rules in 4GL and
submit the rules. For example, SQL can be adopted as a 4GL programming
construct to implement and submit rules using POWERBUILDER™,
STATISTICAL ANALYSIS SYSTEM™ (SAS), STATISTICAL PACKAGE
FOR SOCIAL SCIENCES™ (SPSS), STATA™ | and/or the like 4GL
programs. The JETSTREAM framework, which has an embedding the
JETSTREAM framework in the CEP engines, can allow the sessionizer to create
new SQL rules and apply it on the fly.

[00148] In example embodiments, the sessionizer architecture 1400 can track
and generate “super sessions” that span across multiple channels (for example,
ong session for a user using multiple screens and devices). A super session is
identified by an identifier referred to as “Actorld.” Events can have a unique
identifier for the session referred to as a session GUID. As the user changes
from one channel to another channel, the user receives multiple session
identifiers (e.g., multiple GUIDs). The user’s identity can be recognized during
the user’s interaction with the system, and the Actorld is included into the event
messages as an indicator of the user.

[00149] The sessionizer 1406 can detect that an event message includes an
Actorld. If the sessionizer 1406 detects an Actorld in the event message, the
sessionizer 1406 forwards the event message back into the sessionizer cluster
ring 1226 over a different topic specifying the Actorld as the affinity key. The
event is marked as being replayed to process Actorld. The sessionizer 1406 now
creates a new session for the Actorld. With this approach, aggregates attributed
to the channel session are now also attributed to the super session. Accordingly,
if a mobile event message is received, the event message will be attributed to the
mobile session and the super session. The super session can have a different life
cycle compared to the sessions that are linked to it. The linked session and the
super session can also have aggregates.

[00150] Additionally or alternatively, the sessionizer architecture 1400 can

37

WO 2016/118876 PCT/US2016/014547

also partition the session itself into multiple sub-sessions. In such a case, the
sessionizer architecture 1400 creates a sub-session per partition, which allows
the sessionizer architecture 1400 to maintain aggregates and metadata per sub-
session. The life cycle of the sub sessions is encapsulated with in the lifecycle of
the parent session. So when parent session expires, the sub-sessions expire too.
Aggregate and metadata updates in the sub-session can be performed in EPL.
For example, subsessions can facilitate experimentation by creating subsessions
for respective experiment trials as a way to measure trial results and to attribute
effect of independent variables of the experiment.

[00151] Additionally or alternatively, the sessionizer architecture 1400 can
track and manage session lifecycle events, such as session start and session end
events. For example, when an event message arrives at the sessionizer
architecture 1400, the sessionizer 1406 passes the event message through the
dispatcher 1404 to determine where to forward the event message. If the event is
to be sessionized, the dispatcher 1404 forwards the event message to the
sessionizer processor 1406. As stated, the sessionizer 1406 is a CEP engine
which has a set of rules written in SQL per tenant. The event message is
evaluated by the CEP engine and, for each tenant, metadata is extracted and
updated into the tenant’s session if the corresponding session exists. If session
does not exist, a new session instance is created and a session key is minted and
injected into the session. The metadata extracted from the event is then updated
into the session record. The newly created session is also updated with
geographic and demographic information. A lifecycle event called “session start
marker event” is generated to signal the start of a new session. This event
contains session start time and all the data accumulated in the session at creation
time. This event is forwarded to interested subscribers.

[00152] As more events arrive into the session, the aggregates are updated in
the session. The event itself is decorated with geographic and demographic
information along with the session key and sent to interested subscribers.
[00153] Session records can be stored in a cache, such as an off heap cache
that can work on a very large memory region outside the JAVA heap. This
cache is backed by a replicated distributed backing store deployed across

multiple datacenters. The cache component has a runner that monitors the

38

WO 2016/118876 PCT/US2016/014547

activity for each record in the cache. When a session record is updated in the
cache, its last update time stamp is recorded along with an expiry time, which
can be calculated in the process. The runner sweeps the entire cache every few
seconds. When it encounters that a session record that has expired, it removes it
from cache and generates a life cycle event called “session end marker event.”
This event contains the session key, the data recorded in the session along with
the aggregate counts, and session start and end times.

[00154] Subscribers can subscribe to session life cycle and raw events.
[00155] Additionally or alternatively, the sessionizer architecture 1400 can
facilitate dynamic scaling and fault accommodations. For example, the
consumer devices 1228A-F (also referred to as “sessionizer nodes™) of FIG. 12
can be automatically discovered by the CEP engines 1204 (¢.g., the producer
devices of the collector cluster ring 1206). The sessionizer cluster ring 1226 can
grow to hundreds of nodes, and as new nodes are added to the cluster, traffic
automatically rebalances. When a node in the sessionizer cluster ring 1226 fails
or a new node is added to the ring, traffic is rebalanced so that all the events
flowing to that particular sessionizer node is now scheduled to other nodes in the
cluster ring. As traffic enters other nodes, the session state associated with that
event is restored from the distributed cache.

[00156] The cluster ring facilitates disaster recovery. An event is generated in
response to detecting that a change due to node failure or addition of a new node.
A listener can listen to this event. The listener then queries the distributed cache
for sessionizer identifiers (also referred to as “keys™ herein) that were inserted
from the failed node. The sessionizer identifiers that have expired (e.g., the most
recent event occurred after the duration window of the session elapsed) are then
processed and closed out. As part of the process of closing out the expired
sessions, a life cycle event called “session end marker event™ is generated.
[00157] When a new session is created a session key is minted and bound to
the session, and the binding is stored in a cache. In an example embodiment, an
off-heap cache technology with a distributed backing store is used. This type of
design allows recovery from failures and restore state. An off-heap cache can be

used that has a backing store in a server farm to store the session data.

[00158] When an event message is received, the cache is checked to see if the

39

WO 2016/118876 PCT/US2016/014547

key exists. The event message has metadata indicating the key to use for cache
lookup. If the key is not found, the backing store is checked. Ifthe key is found
in the backing store, the session is restored from cache, the count is incremented,
and the backing store is updated.

[00159] When a sessionizer node dies, the session that were supposed to
expire on the node should be closed. A record of these sessions are stored in the
distributed cache. The sessionizer architecture 1400 maintains a segment in the
cache that contains a set of keys that were written to the cache from the
sessionizer nodes accumulated over a window (e.g., 200 milliseconds). In this
way, a record is kept of the keys written from a specific node. The key for each
of these bucket entries is created by combining the time segment and hostld,
which usable to identify and/or address the device that hosts the sessionizer
node. Each sessionizer node has a listener that listens to ring changes. When
there is failure detected on one host, other hosts have a leader that reads the keys
and their corresponding sessions from the expired node and closes them out. If
the session is still valid, the session is kept; otherwise, the “session end marker
event” is sent out.

[00160] FIG. 15 is a flowchart illustrating an example method 1500 of
generating the sessionized data, in accordance with an example embodiment. In
this example, the method 1500 can include operations such as receiving data
indicative of a subscription request for sessionized data (block 1504), allocating
a sessionizer bank linked to the subscription request (block 1506), provisioning
identifier linked to the respective processing engines of the sessionizer bank
(block 1508), registering the allocated sessionizer bank as available to process
event messages (block 1510), receiving event messages (block 1512), processing
the received event messages (block 1514), and providing generated sessionized
data (block 1516). The example method 1500 will be described below, by way
of explanation, as being performed by certain modules. It will be appreciated,
however, that the operations of the example method 1500 can be performed in
any suitable order by any number of the modules shown in FIGS. 3 and 13.
[00161] The method 1500 starts at block 1502 and proceeds to block 1504, at
which a subscription interface receives data indicative of a subscription request

for sessionized data. The subscription request can include a subscriber identifier,

40

WO 2016/118876 PCT/US2016/014547

the sessions of interest, and the like. The subscription request can be
transmitted by the subscriber(s) 1240 of FIG. 12. The subscription interface can
be implemented at the sessionizer cluster ring 1226 of FIG. 12. In an example

embodiment, the subscription interface can correspond to the relay agent
module(s) 304 of FIG. 3.

[00162] At block 1506, the allocation module(s) allocates a sessionizer bank
(such as the sessionizer cluster ring 1226 of FIG. 12) for servicing the
subscription request. The sessionizer bank comprises processing engines
available to service the subscription request. The sessionizer bank is linked to
the subscription request and the subscriber(s) 1240.

[00163] At block 1508, a messaging interface module provisions identifiers
linked to the respective processing engines of the sessionizer bank. For
example, the messaging interface module can be implemented by the messaging
system 1224 of FIG. 12. Furthermore, the messaging system 1224 can
implement the messaging system 300 described in connection with FIG. 3 for
providing consistent hashing scheduling. As such, the identifiers linked to the
respective processing engines can correspond to a number of hash values
assigned to each of the processing engines of the sessionizer bank.

[00164] At block 1510, the messaging interface module registers with a
collection server the allocated sessionizer bank as available to process event
messages (or “event data”) matching the subscription request by providing the
provisioned identifiers. For example, the consumer devices 1228A-F of FIG. 12
provides advertisements to the messaging system 1224, relay agent modules
(e.g., the Zookeeper transports 1230, 1232) interfaced with the collector cluster
ring 1206, or a server (not shown) connected with the collector cluster ring 1206
configured to receive advertisements. As a result, the CEP engines 1208A-F can
serve as producer devices with respect to the sessionizer cluster ring 1226.
[00165] At block 1510, the messaging interface module receives event
messages from a processing engine linked to the collection server. For example,
one of the CEP engines 1208 A-F transmits an event message through the
messaging system 1224 to a selected one of the consumer devices 1228A-F. The

selection of the consumer device can be based on a consistent hashing scheduler.

41

WO 2016/118876 PCT/US2016/014547

[00166] At block 1514, the selected one of the consumer devices 1228A-F
processes received event messages in accordance with session rule data linked to
the subscription request to generate sessionized data. The session rule data
correspond to one or more attributes (e.g., tuples of information) that the

subscriber requested. At block 1516, providing the generated sessionized data to

the subscriber(s) 1240. At block 1518, the method 1500 ends.
[00167] FIG. 16 is a flowchart illustrating an example method 1600 of

generating and updating sessions, in accordance with an example embodiment.
In an example embodiment, the blocks 1602-1652 of the method 1600 can be
performed by the consumer devices 1228A-F of FIG. 12.

[00168] The method 1600 can be triggered by receiving an event message.
For example, the method 1600 can start at block 1602 in response to receiving an
event message of a raw event type. For example, a raw event type corresponds
to receiving an event message from a producer device that is not marked as
containing an Interet bot program signature and/or if it is not marked to be
bypassed by the sessionizer. At block 1604, the method 1600 determines
whether a session exists for the raw event. In response a determination that a
session does not exist, the method 1600 can proceed to block 1606 to determine
whether a read is to be performed. In an example embodiment, a read is to be
performed in response to a sessionizer node failure. If a read is to be performed,
the method 1600 can proceed to block 1608 for loading a session and to block
1610 for determining whether a load is pending. If the load is not pending, the
method performs an asynchronous load of a session at block 1612. Ifthe load is

pending, the method 1600 queues the received raw event at block 1614.
[00169] Returning to the decision of block 1606, if the method 1600

determines that a read is not required then the method 1600 proceeds to block
1616 for creating a new session. The method 1600 proceeds to blocks 1618-
1624 for decorating the received event message with geographic and
demographic information, extracting metadata from the received event message,
executing a sessionizer on the event message, and sending a session begin
marker. At blocks 1626-1634, the method 1600 updates the counters associated
with the decorated event message, executes a sessionizer, saves and

synchronizes the session, sends the sessionized event data to the subscriber, and

42

WO 2016/118876 PCT/US2016/014547

processes pending events. After processing pending events at block 1634, the
method 1600 can retumn to block 1626 for repeating the actions of block 1626-
1634,

[00170] Returning to the decision of block 1604, in response a determination
that a session for the received event message exists, the method 1600 proceeds to
block 1636 for determining whether the existing session is long based on the
session duration. For example, an existing session is long when it has expired
based on the latest cached event messaged being past the session duration.

Based on a determination that the session is long, the method 1600 proceeds to
block 1602 to end the old session and create a new session at block 1616, after
which the method 1600 executes block 1618-1634 as described above. If instead
the method determines that the session is not long at block 1636, the method
proceeds to block 1642 to decorate the event message with geographic and
demographic information and then proceeds to block 1626-1634 as described
above.

[00171] The method 1600 can also be triggered by receiving data indicative of
a session load event, such as a request to load a selected session. The method
1600 can start at block 1650 and proceed to block 1650 to determine whether or
not the session exists. Based on a determination that the session does exist the
method 1600 proceeds to block 1636 to determine whether or not the session is
long and continues as described above. Based on a determination that the
session does not exist, the method 1600 proceeds to block 1638 to end the old

session and proceeds to block 1616 as described above.

[00172] FIG. 17 is a flowchart illustrating an example method of session
lifecycle management, in accordance with an example embodiment. In an
example embodiment, the blocks 1702-1752 of the method 1700 can be
performed by the consumer devices 1228A-F of FIG. 12. The execution of the
method 1700 can be executed in response to a number of events, such as a timer
event, a session check event, and a session recover event. In response to a timer
event, the method 1700 starts at block 1702 and proceeds to block 1704 to
handle a timeout read request. At block 1706, the method 1700 handles the
session timeout and then proceeds to block 1708 to check the affinity. For

example, an affinity exists if there is a sessionizer node that is assigned to

43

WO 2016/118876 PCT/US2016/014547

receive event messages for the corresponding session and tenant of the time out
cvent. Based on a determination that there is no affinity, the method 1700
proceeds to block 1710 to send a session check event and then ends at block
1712 (and, e.g., repeating the method 1700 starting at block 1722).
Alternatively, based on a determination that there is an affinity, the method 1700
proceeds to block 1714 to execute the sessionizer. The method then proceeds to
blocks 1716, 1718 to send a session end marker and then to delete the session.
Afterwards, the method 1700 proceeds to block 1719 to end.

[00173] In response to either a session recover event (block 1720) or session
check event (block 1722), the method 1700 proceeds to block 1724 to determine
whether a local session exists. A local session is session data stored in an off
heap cache of a sessionizer node and which is backed up in a backing store, such
as the Kafka queues 1234, 1236 of FIG. 12. Based on a determination that a
local session does exist, the method 1700 proceeds to block 1726 and ends.
Alternatively, based on a determination that a local session does not exist, the
method 1700 proceeds to block 1714 to execute the sessionizer and then proceed

to blocks 1716-1719 as described above.

EXAMPLE VIEW MANAGEMENT SYSTEMS

[00174] In a real-time analytics environment, streams of event messages can
carry hundreds of tuples of information. In systems where events are generated
at a very high rate (¢.g., approximately millions of events/sec or greater) and the
pavload size is large (¢.g., approximately 1 kilobyte or more), the network
bandwidth and computational resources to process the streams can be high. The
system can be even more expensive if the streams flow over a wide arca
network. However, in many situations, the consumer devices of these streams
are interested in consuming only a small amount of information from these
streams and only when certain trigger conditions are satisfied. This is driven, in
part, by cost considerations, as consuming a large volume of event messages at
high rates can involve significant cost for the processing nodes and also can
impact network bandwidth.

[00175] Example view management systems and methods disclosed herein

can provide a cost effective way of dynamically creating partial views of an

44

WO 2016/118876 PCT/US2016/014547

event stream. A partial view of an event stream refers to a portion of the event
stream that is selected for providing to a subscriber. The portion is selected
based on a filtering rule that is defined by the subscriber and applied to the tuples
of information of the event messages of the event stream.

[00176] Partial views can be generated based on subscription request
received in a publication-subscription model. In this way, the system can
efficiently distribute information through a wide area network, using point-to-
point communication, and using different qualities of service. The tuples of
information that are served to subscribers are regulated such that the subscriber
receives information tuples that they are authorized to see and information tuples
that the subscriber is not authorized to see are filtered out of the partial view.
[00177] In particular, in an example embodiment, the view management
system is a single stage cloud based distributed real time system. At its ingress,
the view management system receives high volume of events through multiple
interfaces in real time. The view management system supports representation
state transfer (REST), Kafka, and the like cluster messaging solutions. The
architecture is capable to be adapted to other communication channels by
building and deploying new adaptors. New adaptors can be built to support a
communication channel configured to receive messages of the new channel type
and to provide to a normalizer (which will be described in greater detail below) a
data definition that specifiecs how to flatten out the event messages of the new
channel type to a map or table having entries that are keys paired with respective
values without nested maps or tables. The new adaptor can be deployed by
having the new adaptor register with the normalizer so that the normalizer
becomes configured to receive event messages from the new adaptor. As part of
the registration, the new adaptor can provide the normalizer the corresponding
data definition. Normalizing data will be described in greater detail later in
connection with FIG. 21.

[00178] In this way, in ong aspect, among others, of an example embodiment,
the view management system is opaque to data. For example, the view
management system is designed to handle semi-structured and unstructured data.
Internally, the view management system handles Map data type (¢.g., a table)

where the key is of type string and the corresponding value can be a primitive

45

WO 2016/118876 PCT/US2016/014547

data type. The view management system can handle values of complex type if
the data type is defined to the view management system and also built into the
application.

[00179] FIG. 18 is a block diagram illustrating an example view management
architecture 1800, in accordance with an example embodiment. The view
management architecture 1800 includes a view application 1802 that comprises a
number of input adaptors, such as an inbound message channel 1804, an inbound
REST channel 1806, and an inbound Kafka channel 1808. The view application
1802 further includes a normalizer 1810, a view processor 1812, and a number
of output adapters, such as an outbound message channel 1814, an outbound
REST channel 1816, and an outbound Kafka channel 1818. The view
application 1802 is interconnected with a subscriber module(s) 1820, a
subscription manager module(s) 1822, an authentication system 1824, and a
rules database 1826. The authentication system 1824 and subscription manager
module(s) 1822 are coupled with a policy database 1828.

[00180] As event messages are received by the input adaptors, the normalizer
1810 normalizes the event message data for the processing by a CEP engine. In
one example aspect, nested tables are folded into the outer table such that
resulting normalized event message corresponds to a flat table with no nested
objects. Normalization will be described in greater detail later in connection
with FIGS. 21A, 21B. The normalized event messages are provided to the view
processor 1812, which is corresponds to a CEP engine provisioned with

mutation and filtering rules per subscriber.

[00181] An example aspect of example embodiments, the view processor
1812 treats the normalized event message stream as a database table. The
structure of the events are defined to the view processor 1812 similar to the way
atable is defined to a database management application. The view processor
1812 can perform SQL queries against the stream of event messages. The
stream of event messages change over time, so the query is performed in real-
time on the streams of event messages. The view processor achieves this by
using a window of time over which the SQL queries are performed. That is the
SQL queries are applied to the portion of the event stream occurring within the

window of time. The window can be either a tumbling window (e.g., a number

46

WO 2016/118876 PCT/US2016/014547

of fixed-sized, non-overlapping and contiguous time intervals) or a rolling
window (¢.g., a fixed-size time interval that shifts with time). An example
embodiment, the view management architecture 1800 can handle any type of
event as long as the event is defined to the normalizer 1810.

[00182] The subscription manager module(s) 1822 provides an API for
subscribers 1820 to subscribe to views. In operation, the subscriber 1820
provides the subscription manager module(s) 1822 subscription data to subscribe
to a view of the stream of event messages. The subscription data includes the
parent stream name and a list of tuples from the parent stream that the subscriber
1820 selects to view. The subscription data also includes the channel, the
channel address, and the QOS associated with the channel. Some channels
might not support QOS control.

[00183] Additionally or alternatively, the view management architecture
1800 enforces authentication and authorization processes as part of subscription.
For example, the subscription manager module obtains authorization information
for the subscriber 1820 from the authentication system 1824 once the subscriber
1820 has successfully authenticated. The view management architecture 1800
supports a simple authentication and security level (SASL) based interface
enabling the view management architecture 1800 to work with many
authentication systems. Once the authentication system 1824 determines that the
subscriber 1820 is authenticated and once authorization information successfully
retrieved, the subscription manager module(s) 1822 generates SQL statements to
select the specified tuples from the original stream and also adds the predicate to
the statement based on the filtering rules provided in the subscription. The SQL
statement is generated if the subscriber 1820 is authorized to see those tuples;
and the SQL statement is not generated if the subscriber 1820 is not authorized
to see those tuples. The subscription request will fail if the authorization check
fails.

[00184] If authorization passes, the SQL statements are committed to the
configuration system and the system is updated with the new SQL statements
and the view becomes active. For example, the SQL statements can be stored in
the rules database 826 is a set of rules that can be accessed by the view processor

1812 during operation.

47

WO 2016/118876 PCT/US2016/014547

[00185] The view management architecture 1800 utilizes the JETSTREAM
framework which provides a distributed CEP infrastructure. For example, the
view processor 1812 can correspond to JETSTREAM’s Esper Processor.
Accordingly, the view processor 1812 receives SQL statements on the fly and

the statement are compiled and applied to the CEP engine at run time.

[00186] In example embodiments, the subscription manager module(s) 1822
provides a portal, such as a graphical user interface, for a human user to interact
with the view management architecture 1800 and setup a subscription manually.
This requires the user to be authenticated along with a subscriber application
whose credentials need to be provided.

[00187] FIG. 19 is a block diagram illustrating an example view management
system 1900, in accordance with an example embodiment. The view
management system 1900 includes one or more applications 1902 coupled to a
messaging system 1904 to connect to the cluster ring 1906 of one or more view
application nodes 1908A-F. Load balancers 1910, 1912 interconnect
applications 1914, 1916 with the cluster ring 1906. Furthermore, the
applications 1914, 1916 are connected to respective data queues 1918, 1920.

The data queues 1918, 1920 can correspond to Kafka queues in an example
embodiment. Zookeeper transports 1922, 1924 also connected to the cluster ring
1906. Subscribers 1926 are coupled to the clustering 1906,

[00188] The application 1902 can serve as producer device generating event
messages delivered to the cluster ring 1906 through the messaging system 1904.
The messaging system 1904 can employ a round-robin scheduler in an example
embodiment. It will be appreciated that the messaging system 1904 can, but
need not, correspond to the messaging system 300 of FIG. 3 The view
application nodes 1908 A-F can correspond to respective instances of the view
application 1802 of FIG. 18. Furthermore, each node of the view application
nodes 1908A-F can be provisioned in response to a view description provided by
the subscriber 1926.

[00189] The view application nodes 1908 A-F treat the real-time stream as a
database table and run queries against the stream. A stream is made of a
sequence of event messages of a given type. In this way, each stream is similar

to a database table. Each individual event message in the stream is similar to a

48

WO 2016/118876 PCT/US2016/014547

row in a database table. A technical effect is that persistent storage of streams
can be avoided in example embodiments. The view applications 1908A-F use
CEP engines to provide query processing capability. A schema of the event
message can be declared to the CEP engine, €.g., by the application 1902. The
view applications 1908 A-F apply queries at run time on behalf of corresponding
subscribers. An example query follows:

[00190] @OutputTo("outboundMessageChannel")

[00191] @PublishOn(topics="Trkng.RR1/bisEvent")

[00192] Select
nat,flgs.t,p,itm,app,mav,sid,g,uc,aa,cat,tcatid,gf, Ifcat,cpnip,sQr, leaf, type,b
ti,quan,binamt,bidamt,curprice,incr_price,bi,st,pri,I1,12,meta,plmt,irkp,cart
_itm,itm_gqty,ul,rdt,dn,osv from SOJEvent(p in
('2047935','2052268','1468719','1673582','5408','2056116','2047675','434
0)):

[00193] In this example, the query selects a set of fields from the stream
named SOJEvent after using the filters specified by the IN() clause. The output
is then directed to one of the endpoints in the Directed Cyclical Graph. At the
SQL level, the subscribers control the flow of events through the pipeline and
also specify the address over which the information will published. For
example, the @outputTo() annotation specifies the channel.

[00194] FIG. 20 is a flowchart illustrating an example method 2000 of stream
view management, in accordance with an example embodiment. In this
example, the method 2000 can include operations such as receiving subscription
data from a client device (block 2004), receiving a first event stream (block
2006), converting the received first event stream to a table of entries (block
2008), selecting a portion of the converted first event stream based at least on the
entries of the selected portion of the event stream matching the at least on
attribute (block 2010), and providing the selected portion of the converted event
stream for transmission as session data to the client device (block 2012). The
example method 2000 will be described below, by way of explanation, as being
performed by certain modules and components. It will be appreciated, however,
that the operations of the example method 2000 can be performed in any suitable
order by any number of the modules shown in FIGS. 3, 18, and 19.

49

WO 2016/118876 PCT/US2016/014547

[00195] The method 2000 starts at block 2002 and proceeds to block 2004, at
which the subscription manager module(s) 1822 receives subscription data from
a client device. The client device can correspond to a subscriber such as the
subscriber 1820 a FIG. 18. The subscription data comprises an event stream
identifier to identify an event stream and at least one attribute to select events
from the event stream. In example embodiments, the subscription data further
comprise data indicative of a requested channel, channel address, and QOS
associated with the requested subscription. At least a portion of the subscription
data can be stored in the rules database 1826. For instance, the at least one
attribute to select events can be stored as a set of rules (e.g., SQL type query
rules) linked to the subscriber (¢.g., the registered user of the client device).
[00196] In an example embodiment, a view processor 1812 of FIG. 18 is
provisioned in response to receiving the subscription data. The view processor
1812 is configured based on a number of rules based on the subscription data.
For example, the provisioned view processor 1812 accesses the rules database
1826 to retrieve and apply a number of SQL type query rules.

[00197] In example embodiments, the subscription manager module(s) 1822
and the authentication system 1824 authenticate the user and authorize the user
to receive the data requested, as described above. For example, in response to a
successful authentication process, the subscription manager module(s) 1822
compares the subscription data with authorization data linked to the user device.
The subscription manager module(s) 1822 determines whether the user device is
authorized to receive data indicated by the at least one attribute of the

subscription data.

[00198] At block 2006, a messaging interface module receive a first event
stream from a producer device. For example, the event stream can correspond to
a stream of event messages received from at least one of the inbound message
channel 1804, the inbound REST channel 1806, or the inbound Kafka channel of
FIG. 19. Furthermore, the received stream of event messages match the event
stream identifier.

[00199] At block 2008, a normalizer module, such as the normalizer 1810 of

FIG. 18, converts the received first event stream to a table of entries. The entries

50

WO 2016/118876 PCT/US2016/014547

of the table correspond to respective event messages. In other words, the
normalizer module flattens out the data structure of the received event messages.
[00200] At block 2010, a view processor 1812 selects a portion of the
converted first event stream based at least on the entries of the selected portion
of the event stream matching the at least on attribute of the subscription data.
The selecting of the portion of the converted first event stream includes
performing a database search query against the converted first event stream. At
block 2012, the view processor engine 1812 provides the selected portion of the
converted event stream for transmission as session data to the client device.
[00201] FIGS. 21A and 21B are block diagrams illustrating example data
structures 2100A, 2100B of an event message, in accordance with example
embodiments. The data structure 2100A represents an illustrative example
embodiment of an event message 2102 received at the input of the normalizer
1810 of FIG. 18. The data structure 2100B represents an illustrative example
embodiment of the data structure 2100A after its structure has been flattened by
the normalizer 1810 during operation. It will be appreciated that the example
embodiments of FIG. 21A, 21B are described by way of illustration only and are
not intended to be limiting. Furthermore, the scope of the disclosure herein
encompasses other received event-message data structures in alternative
embodiments.

[00202] The data structure 2100A includes the received event message 2102,
which includes a header data field 2104 and one or more entries, such as entries
2106-2110. The entries 2106-2110 represent tuples of information of the event
message. Each of the entries 2106-2110 includes a key paired with a value. For
example, the entry 2106 includes KEY 1 matched with VALUE 1. The entry
2108 includes KEY 2 matched with VALUE 2. The entry 2110 includes
KEY 3 matched with VALUE 3.

[00203] The header data field 2104 can include data that is descriptive of the
contents of the event message 2102. For example, the header data field 2104 can
include an identifier of the event message type (¢.g., channel type), data
indicative of the number of entries contained by the event message 2102, a start
address of the entries 2106- 2110, an end address of the entries 2106-2110, a
start address of cach of the entries 2106-2110, an end address of cach of the

51

WO 2016/118876 PCT/US2016/014547

entries 2106-2110, a timestamp indicating the time that the event message 2102
was sent and/or received, and/or the like.

[00204] Furthermore, the header data field 2104 can include data that
describes the data types or data structures of the values of the entries 2160-2110.
This data can be useful because values of the entries 2106-2110 of the received
event message 2102 need not correspond to primitive data types. One or more of
the values of the entries 2106-2110 can correspond to a nested table or map. For
example, in the illustrated example embodiment, VALUE 2 of the entry 2108
corresponds to a nested table 2112 that includes a number of entries, such as
entries 2114-2118. In particular, the entry 2114 includes KEY A matched with
VALUE_A; the entry 2116 includes KEY B matched with VALUE_B; and the
entry 2118 includes KEY C matched with VALUE_C. The nested table can, for
example, describe attributes of a tuple of information.

[00205] The header data field 2104 can include data that is descriptive of the
structure of the values of the entries 2106-2110. For example, the header data
field 2104 can include data that indicates the length (¢.g., the number of entries)
of cach of the values of the entries 2106-2110. In the illustrated example
embodiment of FIG. 21A, VALUE 1 and VALUE 3 are primitive data types.

[00206] Turning to FIG. 21B, the data structure 2100B shows the flattened
version of the data structure 2100A. For example, during operation, the
normalizer 1810 can convert the event message 2102 to the data structure 2100B
of FIG. 21B which corresponds to a flat map or table. Accordingly, the data
structure 2100B includes a number of entries such as 2120-2128. The entry
2120 corresponds to the entry 2106 of the event message 2102. The entries
2122-2126 of the data structure 2100B correspond to the nested table 2112 that
the normalizer 1810 has brought to the top level of the table to remove nested
tables. To maintain the key mapping, the normalizer 1810 combines each of the
keys KEY A, KEY B, KEY C of the nested table 2112 to the key (e.g.,
KEY 2) that is matched to the nested table 2112 (e.g., VALUE 2). In an
alternative embodiment, the order of the appended keys can be reversed (e.g.,
[KEY A KEY 1]).

[00207] The normalizer 1810 can combine the keys of the different levels in a

number of ways. The combination can be formed by appending and/or

52

WO 2016/118876 PCT/US2016/014547

concatenating each key or a portion of each key. For example, the entry 2122
corresponds to the first entry 2114 of the nested table 2112. Accordingly, the
normalizer 1810 appends KEY A to KEY 2 to form KEY 2A, which is
matched to the value VALUE_A of the first entry 2114. That is, KEY 2A can
be represented as [KEY 2 KEY A]. The normalizer 1810 can continue
appending the key of each entry of the nested table 2112 to KEY 2 to form the
keys of the entries 2124, 2126.

[00208] Accordingly during operation, the normalizer 1810 generates a
normalized event message in response to receiving the event message. For
example, the normalizer 1810 determines whether an entry of the event message
has a nested table or map as its value. In response to a determination that the
entry includes a nested table, the normalizer 1810 combines the key of the entry
with the respective keys of the nested table. The normalizer then matches the
resulting keys with the respective entries of the nested table to form the entries
of the normalized event message that correspond to the nested table. This
processes can occur recursively so that tables of tables of tables, and so on, are
flattened out.

[00209] Additionally or alternatively, the normalizer 1810 can omit the
header data field 2104 of the event message 2102 in normalizing the event
message 2102 and generating the data structure 2100B. For example, the
normalizer 1810 can generate new header data describing characteristics of the
data structure 2100B, such as its length ¢.g., number of entries). In alternative
embodiment, the new header data can be omitted from the data structure 2100B
(e.g., by using an end of table marker to signal the end of the data structure
2100B).

[00210] Certain embodiments are described herein as including logic or a
number of components, modules, or mechanisms. Modules can constitute either
software modules (¢.g., code embodied (1) on a non-transitory machine-readable
medium or (2) in a transmission signal) or hardware-implemented modules. A
hardware-implemented module is a tangible unit capable of performing certain
operations and can be configured or arranged in a certain manner. In example
embodiments, one or more computer systems (€.g., a standalone, client or server

computer system) or one or more processors can be configured by software (e.g.,

53

WO 2016/118876 PCT/US2016/014547

an application or application portion) as a hardware-implemented module that
operates to perform certain operations as described herein.

[00211] In various embodiments, a hardware-implemented module can be
implemented mechanically or electronically. For example, a hardware-
implemented module can comprise dedicated circuitry or logic that is
permanently configured (e.g., as a special-purpose processor, such as a field
programmable gate array (FPGA) or an application-specific integrated circuit
(ASIC)) to perform certain operations. A hardware-implemented module can
also comprise programmable logic or circuitry (e.g., as encompassed within a
general-purpose processor or other programmable processor) that is temporarily
configured by software to perform certain operations. It will be appreciated that
the decision to implement a hardware-implemented module mechanically, in
dedicated and permanently configured circuitry, or in temporarily configured
circuitry (e.g., configured by software) can be driven by cost and time
considerations.

[00212] Accordingly, the term "hardware-implemented module" should be
understood to encompass a tangible entity, be that an entity that is physically
constructed, permanently configured (e.g., hardwired) or temporarily or
transitorily configured (e.g., programmed) to operate in a certain manner and/or
to perform certain operations described herein. Considering embodiments in
which hardware-implemented modules are temporarily configured (e.g.,
programmed), each of the hardware-implemented modules need not be
configured or instantiated at any one instance in time. For example, where the
hardware-implemented modules comprise a general-purpose processor
configured using software, the general-purpose processor can be configured as
respective different hardware-implemented modules at different times. Software
can accordingly configure a processor, for example, to constitute a particular
hardware-implemented module at one instance of time and to constitute a
different hardware-implemented module at a different instance of time.

[00213] Hardware-implemented modules can provide information to, and
receive information from, other hardware-implemented modules. Accordingly,
the described hardware-implemented modules can be regarded as being

communicatively coupled. Where multiple of such hardware-implemented

54

WO 2016/118876 PCT/US2016/014547

modules exist contemporancously, communications can be achieved through
signal transmission (¢.g., over appropriate circuits and buses) that connect the
hardware-implemented modules. In embodiments in which multiple hardware-
implemented modules are configured or instantiated at different times,
communications between such hardware-implemented modules can be achieved,
for example, through the storage and retrieval of information in memory
structures to which the multiple hardware-implemented modules have access.
For example, one hardware-implemented module can perform an operation, and
store the output of that operation in a memory device to which it is
communicatively coupled. A further hardware-implemented module can then, at
a later time, access the memory device to retrieve and process the stored output.
Hardware-implemented modules can also initiate communications with input or
output devices, and can operate on a resource (€.g., a collection of information).
[00214] The various operations of example methods described herein can be
performed, at least partially, by one or more processors that are temporarily
configured (e.g., by software) or permanently configured to perform the relevant
operations. Whether temporarily or permanently configured, such processors
can constitute processor-implemented modules that operate to perform one or
more operations or functions. The modules referred to herein can, in some
example embodiments, comprise processor-implemented modules.

[00215] Similarly, the methods described herein can be at least partially
processor-implemented. For example, at least some of the operations of a
method can be performed by one or more processors or processor-implemented
modules. The performance of certain of the operations can be distributed among
the one or more processors, not only residing within a single machine, but
deployed across a number of machines. In some example embodiments, the
processor or processors can be located in a single location (e.g., within a home
environment, an office environment or as a server farm), while in other
embodiments the processors can be distributed across a number of locations.
[00216] The one or more processors can also operate to support performance
of the relevant operations in a "cloud computing” environment or as a "software
as a service” (SaaS). For example, at least some of the operations can be

performed by a group of computers (as examples of machines including

55

WO 2016/118876 PCT/US2016/014547

processors), these operations being accessible via a network 104 (¢.g., the
Internet) and via one or more appropriate interfaces (e.g., application program
mterfaces (APIs).)

[00217] Example embodiments can be implemented in digital electronic
circuitry, or in computer hardware, firmware, software, or in combinations of
them. Example embodiments can be implemented using a computer program
product, €.g., a computer program tangibly embodied in an information carrier,
¢.g., in a machine-readable medium for execution by, or to control the operation
of, data processing apparatus, ¢.g., a programmable processor, a computer, or
multiple computers.

[00218] A computer program can be written in any form of programming
language, including compiled or interpreted languages, and it can be deployed in
any form, including as a stand-alone program or as a module, subroutine, or
other unit suitable for use in a computing environment. A computer program can
be deployed to be executed on one computer or on multiple computers at one site
or distributed across multiple sites and interconnected by a communication
network 104,

[00219] In example embodiments, operations can be performed by one or
more programmable processors executing a computer program to perform
functions by operating on input data and generating output. Method operations
can also be performed by, and apparatus of example embodiments can be
implemented as, special purpose logic circuitry, ¢.g., a ficld programmable gate
array (FPGA) or an application-specific integrated circuit (ASIC).

[00220] The computing system can include clients and servers. A client and
server are generally remote from each other and typically interact through a
communication network 104, The relationship of client and server arises by
virtue of computer programs running on the respective computers and having a
client-server relationship to each other. In embodiments deploying a
programmable computing system, it will be appreciated that both hardware and
software architectures merit consideration. Specifically, it will be appreciated
that the choice of whether to implement certain functionality in permanently
configured hardware (¢.g., an ASIC), in temporarily configured hardware (e.g., a

combination of software and a programmable processor), or a combination of

56

WO 2016/118876 PCT/US2016/014547

permanently and temporarily configured hardware can be a design choice.
Below are set out hardware (e.g., machine) and software architectures that can be
deployed, in various example embodiments.

[00221] FIG. 22 is a block diagram of a machine in the example form of a
computer system 2200 within which instructions 2224 can be executed for
causing the machine to perform any one or more of the methodologies discussed
herein. In alternative embodiments, the machine operates as a standalone device
or can be connected (¢.g., networked) to other machines. In a networked
deployment, the machine can operate in the capacity of a server or a client
machine 110 in server-client network environment, or as a peer machine in a
peer-to-peer (or distributed) network environment. The machine can be a
personal computer (PC), a tablet PC, a set-top box (STB), a personal digital
assistant (PDA), a cellular telephone, a web appliance, a network router, switch
or bridge, or any machine capable of executing instructions 2224 (sequential or
otherwise) that specify actions to be taken by that machine. Further, while only
a single machine is illustrated, the term “machine” shall also be taken to include
any collection of machines that individually or jointly execute a set (or multiple
sets) of instructions 2224 to perform any one or more of the methodologies
discussed herein.

[00222] The example computer system 2200 includes a processor 2202 (e.g.,
a central processing unit (CPU), a graphics processing unit (GPU) or both), a
main memory 2204 and a static memory 2206, which communicate with each
other via a bus 2208. The computer system 2200 can further include a video
display unit 2210 (e.g., a liquid crystal display (LCD) or a cathode ray tube
(CRT)). The computer system 2200 also includes an alphanumeric input device
2212 (e.g., akeyboard or a touch-sensitive display screen), a user interface (UI)
navigation (or cursor control) device 2214 (e.g., a mouse), a disk drive unit
2216, a signal generation device 2218 (¢.g., a speaker) and a network interface
device 2220.

[00223] The disk drive unit 2216 includes a computer-readable medium 2222
on which is stored one or more sets of data structures and instructions 2224 (e.g.,
software) embodying or utilized by any one or more of the methodologies or

functions described herein. The instructions 2224 can also reside, completely or

57

WO 2016/118876 PCT/US2016/014547

at least partially, within the main memory 2204 and/or within the processor 2202
during execution thereof by the computer system 2200, the main memory 2204
and the processor 2202 also constituting machine-readable media 2222.

[00224] While the computer-readable medium 2222 is shown, in an example
embodiment, to be a single medium, the term "computer-readable medium" can
include a single medium or multiple media (¢.g., a centralized or distributed
database, and/or associated caches and servers) that store the one or more
instructions 2224 or data structures. The term "computer-readable medium" shall
also be taken to include any non-transitory, tangible medium that is capable of
storing, encoding or carrying instructions 2224 for execution by the machine and
that cause the machine to perform any one or more of the methodologies of the
present inventive subject matter, or that is capable of storing, encoding or
carrying data structures utilized by or associated with such instructions 2224,
The term “computer-readable medium” shall accordingly be taken to include, but
not be limited to, solid-state memories, and optical and magnetic media.

Specific examples of computer-readable media 2222 include non-volatile
memory, including by way of example semiconductor memory devices, e.g.,
erasable programmable read-only memory (EPROM), electrically erasable
programmable read-only memory (EEPROM), and flash memory devices;
magnetic disks such as internal hard disks and removable disks; magneto-optical
disks; and CD-ROM and DVD-ROM disks.

[00225] The instructions 2224 can further be transmitted or received over a
communications network 2226 using a transmission medium. The instructions
2224 can be transmitted using the network interface device 2220 and any one of
a number of well-known transfer protocols (e.g., hypertext transfer protocol
(HTTP)). Examples of communication networks 2226 include a local arca
network (LAN), a WAN, the Internet, mobile telephone networks, plain old
telephone (POTS) networks, and wireless data networks (e.g., WiFi and WiMax
networks). The term "transmission medium" shall be taken to include any
intangible medium that is capable of storing, encoding or carrying instructions
(e.g., instructions 2224) for execution by the machine, and includes digital or

analog communications signals or other intangible media to facilitate

58

WO 2016/118876 PCT/US2016/014547

communication of such software. A transmission medium is one embodiment of
a computer readable medium.

[00226] The following numbered examples comprise embodiments.

[00227] 1. A system for providing partial views of event streams over a
network, the system comprising:

a subscription manager module configured to receive subscription data from a
client device, the subscription data comprising an event stream identifier to
identify an event stream and at least one attribute to select events from the event
stream,

a messaging interface module configured to receive a first event
stream comprising event messages, the first event stream matching the event
stream identifier;

a normalizer module configured to convert the received first event
stream to a table of entries, the entries corresponding to respective event
messages; and

a view processor engine configured to select a portion of the
converted first event stream based at least on the entries of the selected portion
of the event stream matching the at least on attribute, the view processor engine
being configured to provide the selected portion of the converted event stream
for transmission as session data to the client device.

[00228] 2. The system of example 1, wherein the converting of the received
first event stream includes flattening out nested tables within the received first
event stream.

[00229] 3. The system of example 1 or example 2, wherein the view process
engine is provisioned with subscription rules based on the received subscription
data.

[00230] 4. The system of any one of examples 1 to 3, the selecting of the
portion of the converted first event stream includes performing a database search
query against the converted first event stream.

[00231] 5. The system of any one of examples 1 to 4, wherein the received

subscription data further includes a channel identification data.

59

WO 2016/118876 PCT/US2016/014547

[00232] 6. The system of example 5, wherein the channel identification data
is usable by the subscription manager module to determine a quality-of-service
characteristic.
[00233] 7. The system of any one of examples 1 to 6, further comprising an
authentication module interfaced with the subscription module such that in
response to the subscription manager receiving the subscription data the
authentication module performs an authentication process on a user of the user
device.
[00234] 8. The system of example 7, wherein in response to a successful
authentication process, the subscription module compares the subscription data
with authorization data linked to the user device, the subscription module being
configured to determine whether the user device is authorized to receive data
indicated by the at least one attribute.
[00235] 9. The system of any one of examples 1 to 8, wherein the view
processor corresponds to an instance of an Esper Processor.
[00236] 10. The system of any one of examples 1 to 9, wherein the
subscription module is further configured to provide data for rendering a
graphical interface on the client device, the graphical interface to receive user
input to form at least of portion of the subscription data.
[00237] 11. A method for providing partial views of event streams over a
network, the method comprising:

receiving subscription data from a client device, the subscription data
comprising an event stream identifier to identify an event stream and at least one
attribute to select events from the event stream;

receiving a first event stream comprising event messages, the first
event stream matching the event stream identifier;

converting the received first event stream to a table of entries, the
entries corresponding to respective event messages;

selecting, using one or more processors, a portion of the converted
first event stream based at least on the entries of the selected portion of the event
stream matching the at least on attribute; and

providing the selected portion of the converted event stream for

transmission as session data to the client device.

60

WO 2016/118876 PCT/US2016/014547

[00238] 12. The method of example 11, wherein the converting of the
received first event stream includes flattening out a nested table within the
received first event stream.
[00239] 13. The method of example 11 or example 12, wherein the selecting
of the portion of the converted first event stream is performed by a view process
engine that is provisioned with subscription rules based on the received
subscription data.
[00240] 14. The method of any one of examples 11 to 13, the selecting of the
portion of the converted first event stream includes performing a database search
query against the converted first event stream.
[00241] 15. The method of any one of examples 11 to 14, wherein the
received subscription data further includes a channel identification data.
[00242] 16. A machine-readable storage medium for providing partial views
of event streams over a network, the machine-readable storage medium
embodying instructions that, when executed by a machine, cause the machine to
perform operations comprising:

receiving subscription data from a client device, the subscription data
comprising an event stream identifier to identify an event stream and at least one
attribute to select events from the event stream;

receiving a first event stream comprising event messages, the first
event stream matching the event stream identifier;

converting the received first event stream to a table of entries, the
entries corresponding to respective event messages;

selecting a portion of the converted first event stream based at least
on the entries of the selected portion of the event stream matching the at least on
attribute; and

providing the selected portion of the converted event stream for
transmission as session data to the client device.
[00243] 17. The machine-readable storage medium of example 16, wherein
the converting of the received first event stream includes flattening out a nested
table within the received first event stream.
[00244] 18. The machine-readable storage medium of example 16 or example

17, wherein the selecting of the portion of the converted first event stream is

61

WO 2016/118876 PCT/US2016/014547

performed by a view process engine that is provisioned with subscription rules
based on the received subscription data.

[00245] 19. The machine-readable storage medium of any one of examples 16
to 18, the selecting of the portion of the converted first event stream includes
performing a database search query against the converted first event stream.
[00246] 20. The machine-readable storage medium of any one of examples 16
to 19, wherein the received subscription data further includes a channel
identification data.

[00247] Although the inventive subject matter has been described with
reference to specific example embodiments, it will be evident that various
modifications and changes can be made to these embodiments without departing
from the broader scope of the inventive subject matter. Accordingly, the
specification and drawings are to be regarded in an illustrative rather than a
restrictive sense. The accompanying drawings that form a part hereof, show by
way of illustration, and not of limitation, specific embodiments in which the
subject matter can be practiced. The embodiments illustrated are described in
sufficient detail to enable those skilled in the art to practice the teachings
disclosed herein. Other embodiments can be utilized and derived therefrom,
such that structural and logical substitutions and changes can be made without
departing from the scope of this disclosure. This Detailed Description, therefore,
is not to be taken in a limiting sense, and the scope of various embodiments is
defined only by the appended claims, along with the full range of equivalents to
which such claims are entitled.

[00248] Such embodiments of the inventive subject matter can be referred to
herein, individually and/or collectively, by the term “invention” merely for
convenience and without intending to voluntarily limit the scope of this
application to any single invention or inventive concept if more than one is in
fact disclosed. Thus, although specific embodiments have been illustrated and
described herein, it should be appreciated that any arrangement calculated to
achieve the same purpose can be substituted for the specific embodiments
shown. This disclosure is intended to cover any and all adaptations or variations

of various embodiments. Combinations of the above embodiments, and other

62

WO 2016/118876 PCT/US2016/014547

embodiments not specifically described herein, will be apparent to those of skill

in the art upon reviewing the above description.

63

WO 2016/118876 PCT/US2016/014547

CLAIMS

L. A system for providing partial views of event streams over a network, the
system comprising:

a subscription manager module configured to receive subscription data
from a client device, the subscription data comprising an event stream identifier
to identify an event stream and at least one attribute to select events from the
event stream;

a messaging interface module configured to receive a first event stream
comprising event messages, the first event stream matching the event stream
identifier;

a normalizer module configured to convert the received first event stream
to a table of entries, the entries corresponding to respective event messages; and

a view processor engine configured to select a portion of the converted
first event stream based at least on the entries of the selected portion of the event
stream matching the at least on attribute, the view processor engine being
configured to provide the selected portion of the converted event stream for

transmission as session data to the client device.

2. The system of claim 1, wherein the converting of the received first event
stream includes flattening out nested tables within the received first event

stream.

3. The system of claim 1, wherein the view process engine is provisioned

with subscription rules based on the received subscription data.
4, The system of claim 1, the selecting of the portion of the converted first
event stream includes performing a database search query against the converted

first event stream.

5. The system of claim 1, wherein the received subscription data further

includes a channel identification data.

64

WO 2016/118876 PCT/US2016/014547

6. The system of claim 5, wherein the channel identification data is usable
by the subscription manager module to determine a quality-of-service

characteristic.

7. The system of claim 1, further comprising an authentication module
interfaced with the subscription module such that in response to the subscription
manager receiving the subscription data the authentication module performs an

authentication process on a user of the user device.

8. The system of claim 7, wherein in response to a successful
authentication process, the subscription module compares the subscription data
with authorization data linked to the user device, the subscription module being
configured to determine whether the user device is authorized to receive data

indicated by the at least one attribute.

9. The system of claim 1, wherein the view processor corresponds to an

instance of an Esper Processor.

10. The system of claim 1, wherein the subscription module is further
configured to provide data for rendering a graphical interface on the client
device, the graphical interface to receive user input to form at least of portion of

the subscription data.

11. A method for providing partial views of event streams over a network,
the method comprising:

receiving subscription data from a client device, the subscription data
comprising an event stream identifier to identify an event stream and at least one
attribute to select events from the event stream;

receiving a first event stream comprising event messages, the first event
stream matching the event stream identifier;

converting the received first event stream to a table of entries, the entries

corresponding to respective event messages;

65

WO 2016/118876 PCT/US2016/014547

selecting, using one or more processors, a portion of the converted first
event stream based at least on the entries of the selected portion of the event
stream matching the at least on attribute; and

providing the selected portion of the converted event stream for

transmission as session data to the client device.

12. The method of claim 11, wherein the converting of the received first
event stream includes flattening out a nested table within the received first event

stream.

13. The method of claim 11, wherein the selecting of the portion of the
converted first event stream is performed by a view process engine that is

provisioned with subscription rules based on the received subscription data.

14. The method of claim 11, the selecting of the portion of the converted first
event stream includes performing a database search query against the converted

first event stream.

15. The method of claim 11, wherein the received subscription data further

includes a channel identification data.

16. A machine-readable medium for providing partial views of event streams
over a network, the machine-readable storage medium embodying instructions
that, when executed by a machine, cause the machine to perform operations
comprising:

receiving subscription data from a client device, the subscription data
comprising an event stream identifier to identify an event stream and at least one
attribute to select events from the event stream;

receiving a first event stream comprising event messages, the first event
stream matching the event stream identifier;

converting the received first event stream to a table of entries, the entries

corresponding to respective event messages;

66

WO 2016/118876 PCT/US2016/014547

selecting a portion of the converted first event stream based at least on
the entries of the selected portion of the event stream matching the at least on
attribute; and

providing the selected portion of the converted event stream for

transmission as session data to the client device.

17. The machine-readable storage medium of claim 16, wherein the
converting of the received first event stream includes flattening out a nested

table within the received first event stream.

18. The machine-readable storage medium of claim 16, wherein the selecting
of the portion of the converted first event stream is performed by a view process
engine that is provisioned with subscription rules based on the received

subscription data.
19. The machine-readable storage medium of claim 16, the selecting of the
portion of the converted first event stream includes performing a database search

query against the converted first event stream.

20. The machine-readable storage medium of claim 16, wherein the received

subscription data further includes a channel identification data.

67

WO 2016/118876

PCT/US2016/014547

1721
100 ~a,
130 =, 110~ 112~
IR0 PARTY SERVER CLIENT MACHINE CLIENT MACHINE
aRD PARTY WEB PROGRAMMATIC
APELICATION CLIENT CLIENT
] 3 3
H § H
128 106 108
NETWORK 1o
= (E.G.,
s, INTERNET) e
mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm FaLl
£ 3
§ i
§ 14 Rl I
§ j
i APl SERVER WER SERVER i
i (PROGRAMMATIC (WER i
§ INTERFACE) INTERFACE) i
§ §
; & & |
f 118 i
§ j
§ APPLICATION SERVER(S) i
§ E
i 120~ 122 ;
i i
E el | MARKETPLACE PAYMENT = — E
E APPLICATION(S) | | APPLICATION(S) |
§ i
§ E
i i
§ i
§ §
E f 124 s E
§ §
i DATA - i
DATABASE
§ PROCESSING [et sy DATARARER) i
: SERVER(S) SERVER(S) {8} :
§ i
] . i
; 128 ;
L e e e e e o ot oo e 2o e s e o e 2 o s o 2 e e o e s 2 2 o o s J

WO 2016/118876 PCT/US2016/014547

2721 -
\‘{/"‘
/ 218
4 MORBILE DEVICE &
DISPLAY
ol _2;_’_1__@'
GPS RECEIVER | _
218
TRANSCEIVER
214 -
% MEMORY
PROCESSOR [% 204
—> 202
T oS
208
i APPLICATIONS
208
O DEVICES
212
™ A

FIG. 2

WO 2016/118876 PCT/US2016/014547

3721

APPLICATION INTERFACE
MODULE(S)

CONSUMER-FACING
SUB-MODULE(S)
214

PRODUCER-FACING
SUB-MODULE(S) 304
218 -

ARD PARTY-EACING
SUB-MODULES) RELAY AGENT
318 MODULE(S)

I 306

SCHEDULER

MODULE(S) -~ 308

PROVISION
MODULE(S)

{—»319

DATABASE
INTERFACE
MODULE(S)

f“‘312

DATABADE UPDATE
MODULES)

FIG. 3

WO 2016/118876 PCT/US2016/014547

403\\\§ 4/ 21
402 404
CONSUMER PRODUCER
408
MESSAGING SERVICE
408 410 412
NETTY ZOOKEEPER
ADVISORY
TRANSPORT TRANSPORT STENER

PERSISTENT |
QuUEUE |

/416

REPLAYER

FIG. 4

WO 2016/118876

PCT/US2016/014547
502 5/21 504 et
506
PUBLISHER 4
% 508 7530
SCHEDULER SUBSCRIBER
¥ 510) 528
ENCODER NECODER
% 512 3 528
BATCHER DECOMPRESSOR
¥ 7524 Fy
COMPRESSOR
FIG. 5
600
EVENT 822
/802 o /- 804 l /608

261{}

514
PRODUCER RELAY AGENT «Qm(-:-m-m CONSUMER

~ G620

FiG. 6

WO 2016/118876 PCT/US2016/014547

&/ 21

ADVERTISEMENT DATA

CONSUMER 1D DATA 702

ADDRESS DATA 704

GOG DATA 708

TIMESTAMP DATA 708

WEIGHT DATA 710

TOPIC DATA 712

FIG. 7

PCT/US2016/014547

WO 2016/118876

HAAV Tl
m
Y
~
0i8 \\M
4
4
-
o,
HAAY TdEY
(08 e

g 9id

@m\m/

ANZOV AVTEY e

e,

/

o,

N\'//
N
S,

&

ANDDY AV T

818

Enm\\

HAAY T

a0 \\

INEDY AV

o8-~

HF0NG0H

08 \

WO 2016/118876 PCT/US2016/014547
8521
900
902
MESSAGING SERVICE
— 904
{
NETTY TRANSPORT
/~906A ~ 8068 . S06C (,4308
12
VIRTUAL ALERT
QUEUE LISTENER
MONITOR
- 914
\ ADVISORY
LISTENER
¥ ¥ ¥
S10A 1 | 9108 910G

FIG. 9

WO 2016/118876 PCT/US2016/014547

9/ 21
1000
504
502
PRODUCER SIDE CONSUMER SIDE
H
3 :
H
1002
[TRANSMIT MESSAGE !
0 1006
/1o TRANSMIT MESSAGE
: MONITOR
} QUEUE
/10 e ANSMIT MESSAGE . /
|
| T 1008
? DETECT QUEUE
3 1S ABOVE A
5 TRANSMIT ADVISORY /7 1970 THRESHOLD
1012 i
H
/ REBALANCE ;
TRAFFIC :
{
’ !
| L 014
| jDETECT QUEUE
| TRANSMIT ADVISORY /0% IS BELOW A
N THRESHOLD
1018
& REBALANCE
TRAFFIC

1020 TRANSMIT MESSAGE

FIG. 10

WO 2016/118876 PCT/US2016/014547

10721
o 1100
1102
{ START 3
4 f‘ﬂ@aﬁi
RECEIVE FIRST DATA IDENTIFYING RECEIVER MACHINES
AVAILABLE TO RECEIVE DATA MESSAGES LINKED TG A
TORPIC
¢ f-'i‘iQS

RECEIVE SECOND DATA IDENTIFYING A TRANSMITTER
MACHINE AVAILABLE TO PROVIDE DATA MESSAGES LINKED
TOTHE TORIC

1108

¥

LINKCA PLURALITY OF VALUES TO RESPECTIVE RECEIVER
MACHINES THAT ARE LINKED TO THE TOPIC, THE
PLURALITY OF VALUES BEING COMPUTEDR FOR THE TOPIC

! f-«‘E’i”E('J

ACCESS FROM THE TRANSMITTER MACHINE A FIRST DATA
MESSAGE LINKED TO THE TORIC, THE FIRST DATA
MESSAGE INCLUDING A KEY VALUE

2
¥ f-«’iﬁ._

PROVIDE THE FIRST DATA MESSAGE TO A SELECTED ONE
THE RECEIVER MACHINES BASED ON A COMPARISON OF
THE KEY AND THE PLURALITY OF VALUES OF THE
RESPECTIVE RECEIVER MACHINES

WO 2016/118876 PCT/US2016/014547

JJ

11/2%

e 1200

SUBSCRIBER

L'“»‘E 240

123

224

FIG. 12

1202
Ve
APPLICATION

WO 2016/118876

PCT/US2016/014547

12/ 21
1300
(1302 1306 1310
GPDATER METADATA
UPDATER BOT DETECTOR IETADAT)
(1904 /1308
DECORATOR SESSION UPDATER

FIG. 13

PCT/US2016/014547

WO 2016/118876

vl oDid

13/2%

WO -
80wl
ONG L0 (] MITINOISGES e MIHOLYAGIG e Sl
A aopl POpL Z0%)
MOLORLIA 1O e

oLyl

WO 2016/118876 PCT/US2016/014547

14/ 21 g,»-ﬂSGO

1502
{ STARY 3

¥

fw’i 504

RECEIVE DATA, FROM A CLIENT DEVICE, INDICATIVE OF A
SUBSCRIPTION REQUEST FOR SESSIONIZED DATA

(84

- {“1 08

ALLOCATE A SESSIONIZER BANK AS BEING AVAILABLE TO
SERVICE THE SUBSCRIPTION REQUEST

1! 1508

PROVISION IDENTIFIERS LINKED TO THE RESPECTIVE
PROCESSING ENGINES OF THE SESSIONIZER BANK

i {,-4510

REGISTER, WITH A COLLECTION SERVER, THE ALLOCATED
SESSION BANK AS AVAILABLE TO PROCESS EVENT DATA
MATCHING THE SUBSCRIPTION REQUEST BY PROVIDING

THE FROVISIONED IDENTIFIERS

T f«-'15’§2

RECEIVE EVENT DATA FROM A TRANSMITTING DEVICE
LINKED BY THE COLLECTION SERVER TO A SELECTED ONE
OF THE PROCESSING ENGINES OF THE SESSIONIZER BANK

1514
ik -
PROCESS THE RECEIVED EVENT DATA IN ACCORDANCE
WITH SESSION RULE DATA LINKED TO THE SUBSCRIFTION
REQUEST

(53]
83

v o

PROVIDE THE PROCESSED EVENT DATA TO THE CLIENT
DEVICE

WO 2016/118876 PCT/US2016/014547

18/ 21

1602 [eed
RAW | /SESSIONNNO »
EVENT |7\ "

SESSION
LOADED

EVENT 11650

CREATE
ENDOLD | 1 Y

SESSION SESSION

f”1618 rl

DECORATE GEOGRAPHIC
AND DEMOGRAFHIC INFO

QUEUE
RAW
EVENT
~1820 ¥ 1612

DECORATE EXTRACT METADATA | | ﬁi;i?
GEOGRAPHIC AND

DEMOGRAPHIC INFO| ~1827 i SESSION

EXECUTE
SESSIONIZER

¥

SEND SESSION
BEGIN MARKER

¥

1626
Emmmmmmmww UPDATE COUNTER <
¥

EXECUTE 1628
SESSIONIZER

¥

SAVE SESSION AND Leaag
SYNCHRONIZE SESSION

¥

SEND SESSIONIZED 1832
EVENT DATA

¥
PROCESS ~1634

PENDING EVENTS
FiG. 16

1624

WO 2016/118876 PCT/US2016/014547
16/ 21
o 1700
/17200 1722 (1702
SESSION SESSION TIMER
RECOVER CHECK EVENT
EVENT EVENT
v 1704
HANDLER
TIMEQUT
- READ
REQUEST
v 1708
HANDLE
SESSION
TIMEOUT
1710
SEND
SESSION
CHECK
EVENT
¥

1714

EXECUTE

SESSION SESSIONIZER

EXIST?

4 1716

SEND SESSION
END MARKER

v o478

ASYNC DELETE
SESSION

PCT/US2016/014547

WO 2016/118876

WNALSAS
MNOLLYOLINIHLNY
/ewwww
HAFDYMNYN

NOLLARIOSENS

17721

W{NNMW\

AAGIMDSENS g

GG rrrereeeeorree

AN

TENNYHD TENNYHD
WAy e WA
GNNOELNC ANNOSNI
gLl goaL—"

g
TANNYHD T TIANNYHD
1S3y e m@mﬂwmmma HIZITYWHON [ty 1GTY
ONNOELAO | | ANNOSNI
\gigl Zigi~ 18l sogi—’
TANNYHD TIANNYHD
JOVSSTN JOYSSIN
ONNOCEIN0 PLYL ONNAOENI
" F08 L~

2081~

WO 2016/118876 PCT/US2016/014547

18/ 21

%/ﬂﬁQGO

1930
e

B SURSCRIBER

FiG. 19

=
Q
b
<
= O
o :
= =1 o
'S <«
i
ol i ‘_(O
1] & - 3 = 5
.. e 55‘) et
N
h il
(&)
=

1902
Ve
ARPPLICATION

WO 2016/118876

19721
{«2(}0@
2002
{ START 3
& fﬂ20€34

RECEIVE FIRST DATA IDENTIFYING RECEIVER MACHINES
AVAILABLE TO RECEIVE DATA MESSAGES LINKED TG A
TORPIC

- s 2006

RECEIVE SECOND DATA IDENTIFYING A TRANSMITTER
MACHINE AVAILABLE TO PROVIDE DATA MESSAGES LINKED
TOTHE TORIC

) 2008

LINKCA PLURALITY OF VALUES TO RESPECTIVE RECEIVER
MACHINES THAT ARE LINKED TO THE TOPIC, THE
PLURALITY OF VALUES BEING COMPUTEDR FOR THE TOPIC

! !,«-«2('319

RECEIVE FROM THE TRANSMITTER MACHINE A FIRST DATA
MESSAGE LINKED TO THE TORIC, THE FIRST DATA
MESSAGE INCLUDING A KEY VALUE

¥ f-«2012

PROVIDE THE FIRST DATA MESSAGE TO A SELECTED ONE
THE RECEIVER MACHINES BASED ON A COMPARISON OF
THE KEY AND THE PLURALITY OF VALUES OF THE
RESPECTIVE RECEIVER MACHINES

V2014
END

FIG. 20

PCT/US2016/014547

WO 2016/118876

20/ 21
2102
HEADER DATA
2104
KEY VALUE 1 ‘
2106 -
KEY 2 VALUE 2 ..
2108
KEY 3 VALUE 3 N -
2110
20
o KEY_1 VALUE 1
122
3 KEY 2A VALUE A
124
“a KEY 2B VALUE B
KEY 20 | VALUE C
KEY 3 VALUE 2

PCT/US2016/014547

2
u,w'miﬁﬁA

KEY A | VALUE A

KEY B | VALUE B

KeY_C VALUE C

FIG. 218

WO 2016/118876 PCT/US2016/014547

21721
~2200
&
2202+
L PROCESSOR 2210
VIDED D
= . ® = DISPLAY
2224 ~—NSTRUCTIONS
2204
! MAIN MEMORY onan
. S AL ;
= ALPHA-NUMERIC] |

INPUT DEVICE §~

2994 —INSTRUCTIONS

2208
22@6’“‘) 5
ATATIC CURSOR @_214
e AEMORY SN Y] S SN CONTROL §)
M DEVICE
2220 DRIVE UNIT 2218
. COMPUTER- 1§
N INETWORK READABLE
NTERFACE MEDIUM 232
DEVICE
msmumsamsrzzzza

> SIGNAL Y
NETWORK § ol GENERATION
N DEVICE

FIG. 22

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US2016/014547

A. CLASSIFICATION OF SUBJECT MATTER
IPC(8) - GO6F17/30 (2016.01)
CPC - GO06F17/3089 (2016.01)

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC(8) - GO6F15/16, /173, /177; F17/00, /20, /28, /30; F19/00; F3/00, /048; F7/00; Q40/00; G10L15/02, /14, H04L12/18 (2016.01)
CPC - GO6F17/28, /30064, /3033, /30516, /30545, /30719, /3089; F19/322, /325, /327, /328; F21/6254, /6263; Q10/10; (2016.01)

Q40/00, /04; Q50/01, /22, /24; G10L.15/02, /14; G11B27/105, /11, /28;

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
US: 704/236, /239, /245, 1251; 705/3, 135, 136.00R; 707/747, /803, /829, /956; 709/201, /204, /207; 715/201, /704, /751, /1853

HO4L12/1859, /1895, /5694; L41/5093 (keyword delimited)

Orbit, Google Patents, Google Scholar, Google

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

Search terms used: messages, event streaming, client, device, subscription, table, view, partial, summary, nested, flatten, esper

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US 8,296,303 B2 (NAVAS) 23 Octobef 2012 (23.10.2012) entire document 1,3-11, 13-16, 13-20

Y 2,12,17

Y US 2007/0106537 A1 (MOORE) 10 May 2007 (10.05.2007) entire document 2,12,17

A US 6,662,206 B1 (BANAVAR et al) 09 Delcember 2003 (09.12.2003) entire document 1-20

A US 2014/0172427 A1 (ROBERT BOSCH GMBH) 19 June 2014 (19.06.2014) entire document |1-20

A US 8,275,816 B1 (PEGG) 25 September 2012 (25.09.2012) entire document 1-20

A US 7,752,552 B2 (PENNINGTON et al) 06 July 2010 (06.07.2010) entire document 1-20

P.A US 9,166,892 B1 (PRADO et al) 20 October 2015 (20.10.2015) entire document 1-20

A US 8,768,805 B2 (TAYLOR et al) 01 July 2014 (01.07.2014) entire document 1-20

D Further documents are listed in the continuation of Box C.

D See patent family annex.

* Special categories of cited documents:

“A” document defining the general state of the art which is not considered
to be of particular relevance

“E” earlier application or patent but published on or after the international
filing date .

“L” document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

“0” document referring to an oral disclosure, use, exhibition or other
means

“P” document published prior to the international filing date but later than

the priority date claimed

“T” later document published after the international filing date or priority
date and not in conflict with the apﬁlication but cited to understand
the principle or theory underlying the invention

“X” document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

“Y” document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

“&” document member of the same patent family

Date of the actual completion of the international search

17 March 2016

Date of mailing of the international search report

Name and mailing address of the [SA/

Mail Stop PCT, Attn: ISA/US, Commissioner for Patents
P.O. Box 1450, Alexandria, VA 22313-1450

Facsimile No. 571-273-8300

24 MAR 2076

Blaine R. Copenheaver

PCT Helpdesk: 571-272-4300
PCT OSP: 571-272-7774

Form PCT/ISA/210 (second sheet) (January 2015)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - description
	Page 53 - description
	Page 54 - description
	Page 55 - description
	Page 56 - description
	Page 57 - description
	Page 58 - description
	Page 59 - description
	Page 60 - description
	Page 61 - description
	Page 62 - description
	Page 63 - description
	Page 64 - description
	Page 65 - description
	Page 66 - claims
	Page 67 - claims
	Page 68 - claims
	Page 69 - claims
	Page 70 - drawings
	Page 71 - drawings
	Page 72 - drawings
	Page 73 - drawings
	Page 74 - drawings
	Page 75 - drawings
	Page 76 - drawings
	Page 77 - drawings
	Page 78 - drawings
	Page 79 - drawings
	Page 80 - drawings
	Page 81 - drawings
	Page 82 - drawings
	Page 83 - drawings
	Page 84 - drawings
	Page 85 - drawings
	Page 86 - drawings
	Page 87 - drawings
	Page 88 - drawings
	Page 89 - drawings
	Page 90 - drawings
	Page 91 - wo-search-report

