Office de la Proprieté Canadian CA 2244918 C 2006/05/09

Intellectuelle Intellectual Property
du Canada Office (11)(21) 2 244 91 8
Un organisme An agency of 12 BREVET CANADIEN
'Industrie Canada ndustry Canada
CANADIAN PATENT
13) C
(86) Date de depot PCT/PCT Filing Date: 1997/02/14 (51) ClLInt./Int.Cl. H04[29/02(2006.01),

HO4L 12/24 (2006.01)

(72) Inventeurs/Inventors:
NEWCOMBE, ADRIAN, |

(87) Date publication PCT/PCT Publication Date: 199//08/21
(45) Date de délivrance/lssue Date: 2006/05/09

(85) Entree phase nationale/National Entry: 1998/07/31 MCGRATH, DAMIAN, IE

(86) N° demande PCT/PCT Application No.: |[E 199//000010 (73) Propriétaire/Owner:

(87) N° publication PCT/PCT Publication No.: 1997/030535 TELEFONAKTIEBOLAGET LM ERICSSON, SE
(30) Priorité/Priority: 1996/02/15 (S960137) IE (74) Agent: BEAUCHESNE, NICOLAESCU

(54) Titre : UNITE DINTERCONNEXION ET DE GESTION ET PROCEDE DE PRODUCTION D'UNE TELLE UNITE
54) Title: A MANAGEMENT INTERWORKING UNIT AND A METHOD FOR PRODUCING SUCH A UNIT

]

~~a
GDMO Specification Proprietary Specification
—_—
A
» Jﬁ
(_Loader Mocus roocier
4 oo

(57) Abrégée/Abstract:
In a process (1) an MIU (10) Is produced by creating models (4, 5) of the management interfaces to be interworked. Each model

has objects representing managed resources. Domain knowledged (7), an interface (8) and a processor (6) create mappings

< o
SSonEeAN S f
T e
B i St [[[
N
RN
R

C an a d a http:vopic.ge.ca - Ottawa-Hull K1A 0C9 - atp.//cipo.ge.ca OPIC

OPIC - CIPO 191

CA 2244918 C 2006/05/09

anen 2 244 918
13) C

(57) Abrege(suite)/Abstract(continued):

between equivalent parts of the models. The models and mappings form an ICF (11), which communicates using an Iinternal

protocol (i1, 12) with a pair of MCFs (12). The MCFs (12) perform format conversion and communicate with the interworked
Interfaces.

CA 02244918 1998-07-31

PCT WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT

HO4L 12/24 Al

(S1) International Patent Classification 6 : (11) International Publication Number: WO 97/30535

(43) International Publication Date: 21 August 1997 (21.08.97)

COOPERATION TREATY (PCT)

— e e - ek "k e e o

(22) International Filing Date: 14 February 1997 (14.02.97)

(30) Priority Data:
S960137 15 February 1996 (15.02.96) IE

(71) Applicant (for all designated States except US): TELEFONAK -
TIEBOLAGET LM ERICSSON [SE/SE]; S-126 25 Stock-

holm (SE).

(75) Inventors/Applicants (for US only): NEWCOMBE, Adrian

[IE/IE]; 211 Custom House Harbour, Dublin 1 (IE). Mc-
| GRATH, Damian [IE/IE]; 7 Killegland Rise, Ashbourne,
County Meath (IE).

(74) Agents: O’CONNOR, Donal, H. et al.; Cruickshank & Co., 1
Holles Street, Dublin 2 (IE).

(57) Abstract

In a process (1) an MIU (10) is produced by creating models (4,
5) of the management interfaces to be interworked. Each model has
objects representing managed resources. Domain knowledged (7), an
interface (8) and a processor (6) create mappings between equivalent
parts of the models. The models and mappings form an ICF (11), which
communicates using an internal protocol (il, i2) with a pair of MCFs
| (12). The MCFs (12) perform format conversion and communicate with
the interworked interfaces.

(54) Title: A MANAGEMENT INTERWORKING UNIT AND A METHOD FOR PRODUCING SUCH A UNIT

(21) International Application Number: PCT/IE97/00010 | (81) Designated States: AL, AM, AT, AU, AZ. BA, BB, BG, BR,

BY, CA, CH, CN, CU, CZ, DE, DE (Utility model), DK,
DK (Utility model), EE, ES, FI, GB, GE, HU, IL, IS, JP,
KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD,
MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD,
SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, US, UZ, VN,
ARIPO patent (KE, LS, MW, SD, SZ, UG), Eurasian patent
(AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent
(AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU,
MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM,
GA, GN, ML, MR, NE, SN, TD, TG).

(72) Inventors; and t Published

With international search report.

Before the expiration of the time limit Jor amending the
claims and to be republished in the event of the receipt of
amendments.

'

10

15

20

25

CA 02244918 1998-07-31

WO 97/30535 PCT/IES7/00010

"A Management Interworking Unit and
a Method for Producing such a Unit®

(MIU) and to a method for producing such a unit. The
invention relates particularly, but not exclusively, to

interworking of telecommunication systems.

There are numerous situations where a management
interworking unit is required to allow management systems
to interoperate. 1In one typical example, one management
system 1s a PABX supporting a proprietary management
interface and the other is a remote manager which supports
a standardised interface. The MIU will provide conversion

of protocol and information allowing the remote manager to
control the PABX.

MIUs typically have a conversion function often referred
to as an information conversion function (ICF), and
interfaces often referred to as message communication
functions (MCFs). An example of an MIU is that described
in PCT patent specification No. WO85/23469 (British
Telecommunications PLC). The ICF includes a mapper 44 and
the MCFs includes stacks 40 and 52. While such MIUs are

generally quite effective, they are often difficult to

and they are difficult to modify or expand.

The invention is directed towards providing an improved

management interworking unit which has a simpler
construction.

Another object is to provide a method for producing a
management interworking unit which is more efficient than
has heretofore been the case.

10

15

20

25

30

35

CA 02244918 2004-09-23

According to the invention, there is provided a process for
producing a management interworking unift for a pair of
management interfaces comprising the steps of:-
producing an information conversion function (ICF)
by: - -
storing a model associate with each interface,
each model comprising objects representing
.managed resources, and ‘

creating mappings including run time
conversion functions between equivalent parts
of the models; and

producing a message communication function (MCF)
associated with each management interface, each MCF
comprising means for performing format conversion
between the external protocol of the asso'ciated-'-
interfaces and an internal protocol for the ICF;

each model comprises objects in a containment
hierarchy providing a containment context for each

object; and

each object has a class defined by characteristics
independently of the context; and

the mappings are between individual objects and between
groups of objects having the same class and context,

namely context classes,

By creating models and subsequently creating mappings between

equivalent parts of the models the production of the iCF may

be automated to a large extent. This considerably reduces the

lead time in producing an MIU. Further, by separating out
format conversion as an ope'ration which is performed exclu
lively by the MCF, the task of producing the MIU is broken
down in a simple manner. All internal communication uses the
internal protocol and the MCFs solely carxy out the format,

2

10

15

20

25

30

35

CA 02244918 2004-09-23

conversion which 1is required for communication with the
interworked management intexfaces.

- Because each model comprises objects in a containment

hierarchy providing a containment context for each object,
the managed resources are represented in a simple manner

which reflects their structure.

As noted, each object has a class defined by characteristics
independently of the context. It has been found that by
linking the class and the context, a very effective way has
been found for auvtomatically identifying equivalent parts of
the ‘two models, This allows a large degree of automation.

Preferably, the models are created at least partially

B automatically- by loader modules. The processing operations of

loader modules may be carxied out very efficiently.

" In one embodiment, the models are created for management

interface specifications, and specification free text is
manually converted to the model language. This helps to
ensure that any awmbiguities which may exist in the
specifications are not transferred to the models.

Ssince the mappings are between individual objects and between
groups of objects having the same class and context, namely
context classes, comprehensive set of mappings is provided.

Preferably, the mappings define context class cardinality. In
one embodiment, the mnmappings are created betilween context
classes, and preferably also between objects, and preferably

also between object characteristics.

In one embodiment, the characteristics include object

functions {or actions), relationships, attributes,

notifications, and behaviocur. It has been found that this set

of characteristics comprehensively characterise each object.

10

135

20

29

30

35

|

CA 02244918 2004-09-23

Preferably, the mappings are created intera'ctively using a
graphical interface representing the models and the mappings.
This ‘is a very simple and fast way of creating the mappings.

Ideally, the mappings are predicated by run time rules
selected for the mappings.

'In one embodiment, the process has the further step of pre-

compiling the models and the mappings to a template to
produce source code.

Ideally, the template 1is manually modified after pre-
compiling and flags are inserted in the template to
differentiate automatically generated code from manually

generated code.

In one embodiment, searches are carrxied out to determine a
proposed mapping has previously been made for similar
characteristics and such mappings may be re—-used.

According to another aspect, the invention provides ‘a
management interworking unit (MIU) for at least two

management interfaces comprising:-

an information conversion function (ICF)
comprising:-

a model associated with each interface, each
model comprising objects representing managed
resources, and

run time conversion mappings between
equivalent parts of the models; and

a message communication function (MCF) associated
with each management interface, each MCF comprising
means for performing format conversion between the

10

15

20

25

30

35

CA 02244918 2004-09-23

external protocol_of the associliated interface and
an internal protocol of the ICFEF; and

each model comprises objects in a containment
hieraxchy providing a containment context for each
object and each object has a class defined by
characteristics independently of the context; and

the mappings axe between individual objects and
between groups of objects having the same class and
‘context, namely context classes. |

This 'structure of MIU stimulates the re-use of individual
MCF/ICF components.

In one embodiment, the mappings define context class

-cardinality.

Ideally, mappingé link context classes, and preferably also
link objects, and preferably also link object

characteristics.

In one embodiment, the object characteristics include object
functions ox actions, relationships, attributes,

notifications, and behaviour.

In some cases, mappings are predicated by run time rules
selected for the mappings. |

In one embodiment the internal protocol includes primitives
controlling start, end, and rollback of atomic transcations

in the ICF.

10

15

20

25

CA 02244918 1998-07-31

WO 97/30535 PCT/IES7/00010

The invention will be more clearly understood from the
following description of some embodiments thereof, given

by way of example only with reference to the accompanying
drawings in which: -~

Fig. 1 1is flow chart illustrating a process of the
invention for producing a management interworking unit
(MIU);

Fig. 2 is a schematic representation of relationships

between entities of interworked interfaces:

Fig. 3 1is a schematic representation of a manner in
which entities are mapped;

Fig. 4 is a sample display screen showing the manner in
which the MIU is created:; and

Figs. 5 and 6 are is a schematic representations of the
structure of an MIU.

Referring to Fig. 1, a process 1 is illustrated for the
production of a management interworking unit (MIU) 10.
Very briefly, the process 1 involves taking source
interface specifications A and B of the management system
interfaces to be interworked. In this embodiment, the

specification A is of a GDMO (General Description of

Managed Objects) interface, whereas the specification B is

of a proprietary interface. The specification A is
converted to an information model 4 in a Map language
representation by loader modules 2. The specification B
1s converted to an information model 5 defined in the Map

langauge by loader modules 3 which parse the specification

and convert it to the semantically equivalent Map language
representation.

10

15

20

25

30

CA 02244918 1998-07-31
WO 97/30535 PCT/TES7/00010

Instead of creating the models, they may be previously

Created as part of the specification or otherwise, and
thus simply stored.

The MIU 10 comprises an information conversion function

(ICF) 11 and a pair of message communication functions
(MCFs) 12. The ICF 11 maps the information contained in

to perform run time conversion. There is at least one ICF
11 for each pair of interworked models. The MCFs 12
handle all communication with the external entities. The
external communication is according to the relevant
‘protocol, such as CMIS (Common Management Information
Services) or MML (Man Machine Language) primitives. There
is a defined interface between each MCF 12 and the ICF 11,
across which signals are transmitted according to an

internal protocol. The internal protocol includes only -
ten basic primitives.

Within the architecture of the MIU 10, there is separation

of core and optional functionality, functional

distribution of the physical architecture, administration,
and initialisation operations.

Returning to the process 1, in one example specification
A 1s of a Q3 interface based upon an ETSI (European

Telecommunications Standards Institute) standard
management model for ATM cross-connects. Specification B

is of a proprietary interface. Specification A is

10

15

20

25

30

WO 97/30835 CA 02244918 2004-09-23 PCT/ME97/00010

- 8 -
described 1n GDMO and accessed wvia the CMIP (Common
Management Information Protocol) protocol through which the

operations can be performed upon the managed objects.

Specification B is based on a proprietary object oriented

information model and communicates using UNIX™ message

- dueue.

There is a common internal representation for objects of
the information models 4 and 5. The information in each
interface 1is represented as a set of objects 1in a
containment hierarchy. These objects are defined in a
language developed for the purpose and called Map which
describes not only the information models 4 and 5, but

also the mappings 9 defining the relationships which exist
between them. The loader modules 2 and 3 operate on the
specifications A and B, which are typically stored as
ASCII text to convert them into the Map description models
4 and 5. The descriptions which are generated may be
annotated interactively using the interface 8 to generate
additional Map statements. Alternatively, the user can
directly generate the entire models 4 and 5 manually using
Map. Parts of the specification written in free text may
not be converted automatically by the loader module and
so the user must annotate the model. This ensures that
any ambiquities arising from free text are not passed into
the model. An example 1is free text representation of

managed object behaviours in GDMO specifications.

The manner in which the processor 6 creates the mappings

9 is now described. These mappings include creation
relationships which twin entities in the two models. Such
mappings between the two models link:

- (a) context classes, and within these:

- (b) objects; and within these:

CA 02244918 1998-07-31
WO 97/30535 PCT/IEO7/00010

- (¢) object internal characteristics.

Regarding (a) above, each class is defined by a set of

characteristics including:-

- function (action),

5 - relationships,
- attributes (data members),
- notifications, and

- behaviour.

A context class 1is a particular class in a particular
10 context or position in the containment hierarchy.

Regarding (b) above, each object represents a resource
managed by the associated management system interface.
They can be at widely different levels of the abstraction,
depending on the nature of the management required. One
15 level of abstraction is cross-connect equipment, and a
lower-level example is a switching fabric contained within

the cross-connect equipment.

Regarding (c) above each object is an instance of a class,
i.e. it will have particular characteristic values.

20 The Map language can describe relationships which specify
that when an instance of one context class is created in
one model, then an equivalent instance of another context
class should be created in the other model. These two
instances are said to be twinned and the relationships are

25 referred to as creation relationships. The processor 6
Creates code to support run time mappings between the
instances stored in the MIU and instances stored in one of
the systems being interworked.

10

i5

20

25

30

CA 02244918 1998-07-31

WO 97/30535 PCT/IE97/00010
- 10 -

Referring to Fig. 2, examples of the creation

relationships are illustrated. One such relationship is

referred to as a total relationship 20 between a context
class 21 and a context class 22, each having objects 23.
Such a relationship is one-~to-one. Another type of
creation relationship is a sub-set relationship 25 in
which every instance created in A will lead to a twin
creation in B, but not necessarily the reverse. Thus, the

mappings include assertions defining cardinality.

Regarding the mapping of context classes, the Map langauge
supports a simple set of assertions which are used to

relate context classes in two models. These are described
as follows:-

l. Simple total relationship. Given a context class A in
one model and context class B in another, they can be
related using the expression (is-total A B). This
means that whenever an instance of A is created, an
instance of B must be created and vice versa. These
instances are said to be twinned. This means that
whenever an operation 1like get, set or action is
performed on one, its equivalent must be performed on
the other.

2. Subset and predicated relationships. The expression
is_subset A B means that if an instance of A is created
then an instance of B must also be created but the
reverse 1s not necessarily true, i.e. if an instance of
B 1s created then an instance A is not necessarily
created. Determining when to create a twin can be done
using predicates. These can be used, for instance, to
test the values of attributes in a newly created

instance of B to determine whether a twin instance of
A should be created.

| CA 02244918 1998-07-31
WO 97/30535 PCY/IES7/0001D

3. Relating attributes or subparts of attributes.

Sometimes classes in two models may be related wvia an
attribute which is a list or a set i.e. a twin instance
exists for each member of the list or set.

S 4. Implicit relationships. These relationships do not
imply twinning between two classes. Sometimes,
however, an attribute in one model may be used to
uniquely identify an instance of a class within another

model. This is termed an implicit relationship and is

10 supported in Map with the is imp assertion.

5. Relating virtual base classes. Allowing inheritance of
mappings reduces work in the same way that allowing

inheritance in classes does.

6. Many-to-one creation assertions. These occur when two
15 or more classes in one model are to be related to the

same class in another model.

7. Mappings to functional systems. Many legacy systems

use functional interfaces such as ‘C’ language APIs or

MMLs. The Map language specifies interface functions

20 and asynchronous messages for handling these types of

functional interface.

Regarding the mapping of objects and their
characteristics, this involves describing the ways in
which managed resources represented by the objects relate
25 to each other. This relationship is represented by the
mapping of the contained characteristics of the objects.
The following are data-mapping cases involving primitives

which accompany the class mappings is_total and is subset:

l. Mapping simple attributes. This involves describing
30 data mappings between two attributes of simple type

10

15

20

25

30

CA 02244918 1998-07-31

WO 97/30535 PCT/IES7/00010

- 12 -

(e.g. enumerated or integer). These mappings will
generally take the form of tables for mapping
enumerated types and functions for mapping other types
such as integers.

Mapping complex attributes. Complex attributes are
those involving structures, choices, lists or other
combinations of the above. The notation for mapping
these types is more involved.

Compound attribute mappings. This is where several
attributes map to one attribute.

Mapping actions. Actions in one class may be mapped to
one oOor more actions in a related class. Mapping
actions involve two stages. The first stage is to map
the action’s parameters and return values. This 1is
done in the same way that attributes are mapped. The
second stage in mapping actions is to map the critical
elements of their behaviours involving gets, sets,

creates and actions. This is a complex task.

Non-existent mappings for mandatory attributes. This
situation occurs when an attribute is required at
object creation time but none exists because there is
no equivalent information in the interworked interface.

A default value is specified instead.

Uncacheable objects. This handles the situation of
mapping notifications and what happens when an object
can change but does not issue a notification to the
MIU. Such objects are marked as uncacheable in the
MIU.

The Map language consists of a list of declarations which

describe the models 4 and 5 and the mappings 9. Map

10

15

20

25

CA 02244918 1998-07-31

WO 97/30535 PCT/IES7/60010

- 13 -

describes managed interfaces using managed object classes,

data type definitions, functions, exceptions, messages,

and a containment tree.

To choose an example, a typical datatype is described as

follows:

(deftype drink machine_state (enum empty not empty full))
This is an enumerated type declaration for the type
drink machine_state which can have one of three values:
empty, not_empty or full. Structures are declared in a
similar fashion as are choices and lists. In addition,
there are certain basic types such as integer, natural,
string, real, boolean and reference (for referencing other
managed objects).

The following is an example of a mapping in the Map
language. This mapping relates to the diagram of Fig. 3.

(1s_total GEquipment Gl2Equipment (= GType 12)...)

In this example, two models have taken a different
approach to modelling the same real-world resources. One
has chosen to model the set of all GEquipment objects
using a single class called GEquipment. The other model
has modelled the same type of resources using three
different classes: GlZ2Equipment, Gl4Equipment and
Gl6Equipment which are 1less general than GEquipment.
GType 1s an attribute in GEquipment. When, for example,
an instance of GEquipment is created with GType=12, its
twin will be an instance of Gl2Equipment class.

When GType=24, there 1is no equivalent mapping. The
default decision for a predicated mapping is not to create
a twin. The attributes which may be tested are those that

10

15

20

25

CA 02244918 1998-07-31

WO 97/30335 PCT/IE97/60010

- 14 -

must be supplied at creation time, i.e. mandatory
attributes.

The general format of an 1is_total relationship is as

follows: -
(is_total source-context-class target-context-class
predicate

(attribute-maps...) ;7 Data mappings attributes

(action-maps...) ; Mappings for attributes

-4

(notification-maps...)) ; Mappings for notifications

e

The attribute-maps statement consists of a list of maps

statements which have the general form for simple
attribute mappings:

(maps <attribute-component> <attribute-component>
(down <maptable> | <function>)
(up <maptable> | <function>))

There are two mappings, one in a downward direction, one
in an upward direction. These can be described by means
of either a maptable which provides explicit translations
for enumerated types or by a function which is written
programmatically, like an action behaviour, or drawn from
a standard set of functions, e.g. per-hour-to-per-minute.
These predefined functions could potentially be provided
in a library of separate Map modules. The simplest form
of the maps statement 1is where two attributes are
involved, both of which are enumerated types and maptables
are used to specify downward and upward mappings. An
example of this is illustrated below.

This example involves mapping simple attributes such as
enumerated types or integers. Consider the following

CA 02244918 1998-07-31
WO 97/30535 PCT/IES7/00010

- 15 -

types used to describe the attributes drink machine state
and vending machine state:

(deftype drink machine_state type (enum run_out ok low))

(deftype vending_machine_state type (enum empty
5 operational))
In order to map an attribute of type
drink machine_ state type to an attribute of type
vending machine state type, we use the following
expression.
10 (attribute-mappings

(maps drink _machine_state vending machine state
; 5 Mapping drink_machine_state down to
;7 vending machine state
(down
15 (maptable
(run_out empty) y » run_out maps to empty

(ok operational)

(low operational)

e’
-8 e’

20 ;7 Mapping vending machine state back up to
;7 drink_machine state
(up
(maptable
(empty run out) ;7 empty maps to run out
25 (operational ok)
))
))
Mapping tables are not always sufficient for describing a
mapping. Where more flexibility is required, mapping
30 functions use the same simple programmatic syntax for

describing conversions. Consider the problem of mapping

10

15

20

25

30

CA 02244918 1998-07-31

WO 97/30535 PCT/IE97/00010

- 16 -

from an integer attribute X to an integer attribute Y.
The value of Y is always double that of X unless X exceeds

128, in which case Y always takes the value 256. 1In Map
this would be implemented as.

(maps X Y
(down
;3 Declare a function with a single parameter

;7 param will automatically be instantiated with

(func (param)

(var integer ?rval)

“e
“e

;; Multiply param (X) by 2 and

assign to variable ?rval

w8
-

o
’

assign ?rval (* param 2))

s o~ %y

“- o

1f ?rval exceeds 256 then
let ?rval = 256

“e “~ s
“e s

e

(1f (> ?rval 256)
(assign ?rval 256)

nil ;s else

S’

“ e
e

Return the final result, ?rval

“s
e e

" - e

return ?rval)

)
(up ;7 function to do the opposite of the downward
function)

It 1s possible to use predefined or previously defined
functions for mapping. For 1nstance, if the wvalues of

CA 02244918 1998-07-31

WO 97/30535 PCT/IE97/6G010

- 17 -

attribute X mapped straight to attribute Y and vice versa
the mapping could be defined as:

(maps X Y
(down
5 (function identity))

(up
(function identity)))

The compiler ensures that the number of arguments for the
predefined function match those of the mapping (in this

10 case a single argument is required in each direction).

The processor 6 has a compiler which generates skeletal
source code for the MIU 10. Code generation occurs in two
stages, namely pre-compiling for generation of a code
template, and conversion of the code template into a code
15 cutput. The code template allows a user to view the

automatically generated source code and to customise it by

addition of hand-written code. Flags are used to
differentiate between the two types of code so that user
code is not over-written by the compiler. The compiler
20 generates source code of a high level language such as C++
as well as IDL code. Mapping features implemented include

processing of is_total and is subset class mappings
including aspects such as:

* Implementing mapping predicates,
25 * Mapplng ‘context classes’,
¥ Mapping of class creation,
* Propagation of simple/choice/structured data

mappings for attributes both to and from the
Managing and Managing Systems,

30 * Propagation of actions including parameter
and return value mapping,

10

15

20

25

30

CA 02244918 1998-07-31

WO 97/30535 PCT/IE97/00010
- 18 -
. Mapping set-valued attributes and action
parameters,
* Mapping of notifications raised by the

Managed System.

In addition to a compiler, the processor 6 also uses the
user interface 8 as a Map model editor and a mapping
definition editor. Referring to Fig. 4, a tool bar 30
displayed by the user interface 8 is illustrated. This
tool bar allows the user to select the source and target
models to be mapped from the list of models loaded into
the system. The screen shown in Fig. 4 is at the
beginning of a mapping session in which a mapping has just
been drawn between the class FABRIC in model A and the
class FAB in model B. This is done simply by clicking on
"Create Mapping" in the button and then selecting the
source and target classes for the mapping. A line is then
displayed to depict the mapping and the window shown top-
right of the figure appears. This is referred to as an
assertion window and it allows the user to specify the
type and the content of the mapping. Normally the user
will begin by specifying the nature of the mapping at a
class level and in this example it involves chobsing a
mapping as being is total or is subset. Other options
could be available such as is_imp, is_ total rev, or
I1s_subset_rev. The predicate, to describe the run time
conditions under which the twinning is to be formed, must
be specified. After hitting the predicate button they can
type the predicate directly in an editor window. At any
stage during modelling or mapping, the user may decide to
compile the system down to source code using the menu
lllustrated.

In summary, the process carried out by the processor 6
could be set out briefly in the following table:

WO 97/308358 CA 02244918 2004-09-23 PCT/IE97/00010

- 19 -

STEP 1 Describe the managed interfaces to the two systems
being interworked. 1In general these descriptions
will be generated automatically from the existing
system specification. For 1instance, a file

c containing a GDMO description is imported using a
converter which converts the specification to Map.

pr—

If 1t is not possible to do this, then the user will

have to describe the managed 1nterface manually

using the MIU CE’s (Creation Environment) modeller

10 toolbar.

STEP 2 Describe in the Map langquage the mappings between
the two systems. Some of these will be specified

by hand, others can be inferred automatically by

the Creation Environment.

15 STEP 3 Compile the resultant Map description of the
mappings down to code templates for the MIU. Code
templates contain the outline of final MIU source
code. They allow the user to see what this code
output will look like. Code templates also allows

20 the user to add their own handwritten code to

supplement the autogenerated code (See step 4).

STEP 4 Add handwritten source code where necessary and
generate final code output. Using code templates
means that even if the mappings are recompiled the

25 handwritten parts will not be overwritten.

Referring to Figs. 5 and 6, the MIU 10 which is created is

shown in more detail. Fig. 5 shows the MIU broken into
the MCFs and the ICF. The MCFs abstract the specifics of
the particular communication protocols (el and e2). They

30 use a homogeneous set of internal generic management

10

15

20

25

30

CA 02244918 1998-07-31

WO 97/30535 PCT/IE97/00010

- 20 -

primitives to communicate with the ICF over interfaces il
and i12. The internal structure of the ICF which is used
to effect the mappings between the systems at runtime is
important. The purpose of the MIU CE (Creation
Environment) is to provide support for a process to build
the ICF portion of an MIU. The internal protocol which
crosses the internal reference points 11 and 12 includes
the following primitives:-

GET Get 1is specific to object based models and
retrieves the value of an attribute. It 1is

analogous to the CMIS M-~GET service element.

SET Set i1s specific to object based models and
sets the value of an attribute. It 1is
analogous to the CMIS M-SET service element.

CREATE Create 1s specific to object based models and
creates a new oObject instance. It 1is
analogous to the CMIS M-CREATE service
element.

DELETE Delete is specific to object based models and

deletes an object instance. It is analogous
to the CMIS M-DELETE service element.

FUNCTION Function invokes a function across the
l interface. Such a function could be a CMIS
M-ACTION or could be an MML command to a

managed resource. Function can be

synchronous in which it waits for the result
of the function or asynchronous in which it
doesn’'t wait.

NOTIFY Notify intercepts an event report from the

interface. Such an event report could

10

15

20

25

CA 02244918 1998-07-31

WO 97/30535 PCT/IES7/00010

- 21 -

correspond to a CMIS M-EVENT-REPORT or an

asynchronous message from the managed

resource.
RECEIVE Receive enables the ICF to receive data from
the interface. It would be used where the

ICF expects an asynchronous response from an
external entity. The receive primitive
blocks the ICF waiting for the response.

START-MIU-TRANSACTION
This primitive enables a set of primitives to
be invoked as an atomic transaction. If an
error occurs during one of the operations
which make up the transaction then the
previous operation can be undone to revert

back to the previous state.

END MIU TRANSACTION
This primitive denotes the end of the
transaction and indicates that the
Lransaction was successful and should be

committed.

ABORT MIU TRANSACTION
This primitive is used to terminate a
transaction in which one of the operations
was unsuccessful. It is used to rollback all
the operations performed during the
transaction and return the system to its

previous state.

The MCFs perform the format conversion to these primitives
from the relevant external protocol by hard-coded rules.

10

15

20

25

30

WO 97/30535

CA 02244918 2004-09-23 PCT/IE97/00010

- 292

The MIU provides the runtime support necessary for system
interworking. In order to effect the mappings the MIU
architecture supports some particular runtime structures

including:

* A Twinning Table - Given a reference to an object in
the MIU it will return a reference to the equivalent

object in the managed systems and vice versa.

* An expected events queue - This holds a list of events
which are expected, when they are to arrive and what

action to take when they arrive.

The Map compiler generates source code for these
structures and all related mappings. Where required the
MIU can be generated so that it stores 1its objects

persistently using a database. The key to the Map
compiler is that it allows flexibility in the type of
source code it outputs. The user can i1nsert ‘tags’ in the
map code allowing him or her to 1include portions of
handwritten source code. This means that even if the
mappings change the user’s handwritten source code
annotations will not be overwritten. Allowing flexible
code generation is a great advantage. The 1invention does
not require an expensive, proprietary runtime environment,
because it can potentially generate code that will fit
into a variety of runtime environments or else provide a

lightweight’ standalone runtime MIU.

The MCF and ICFEF components of the MIU 10 use CORBA IDL™

interfaces to communicate with other components. These
interfaces are based on primitives for retrieving and
setting values of attributes, creating and deleting object

instances, invoking a function across the interface, event
reporting, enabling the ICF to wait until specified data

is received from the interface, enabling a set of

10

15

20

25

30

WO 97/30835 CA 02244918 2004-09-23 PCT“’EQ‘”OOO]O

- 23 -
primitives to be invoked as an automatic transaction,

denoting the end of the transaction, and rolling back a

transaction.

There may additionally be primitives for start-up. As can

be seen from Fig. 3, each of the component objects contains
at least one process and there 1s also a server process for
the DBMS (Database Management System). Both the managed and

managing ICFs are DBMS clients and manipulate the managed

objects 1n the MIB (Management Information Base), whilich 1is

stored in the DBMS. Both the management and the managed ICF
servers act as distinct database clients and so are

independent of each other.

Referring again to Fig. 6, the processes and IDL
interfaces of the MIU 10 are 1llustrated. The ICF 11 acts
as a dispatcher for the managed and the managing ICF
interfaces. An MCF 12 1is not allowed to associate
directly with either the managed or managing ICF
interfaces, but instead associates with the ICF interface,
which then passes back a reference to the appropriate

managed or managing ICF interfaces. This 1is done to
ensure that the MCFs in an MIU are associated with the

correct interfaces.

It will be appreciated that the invention provides a
process for producing an MIU which automates the task to
a large extent, while at the same time allowing large
degree of wuser interaction to provide the necessary
flexibility. The structure of the models and the manner
in which the mappings are generated allows the degree of
automation, and in addition provides a simple structure
which may be easily understood by the user for manual
annotation and later modification. Further, because the
structure of the MIU is simple, it may be easily modified
to either take account of changes in management interfaces
which are already interworked, or to add additional

10

CA 02244918 1998-07-31

WO 97/30535 PCT/IE97/00010

- 24 -

interworking capability. The fact that the format
conversion from the external to the internal protocol is
performed by the MCFs separately from the ICF 4is an
important feature as it results in a definite boundary
between the MCFs and the ICF. Further, within the ICF,
the model and mappings structure is relatively simple and
allows easy modification.

The invention is not limited to the embodiments
hereinbefore described, but may be varied in construction
and detail.

10

15

20

23

30

35

CA 02244918 2004-09-23

...25_

THE EMBODIMENTS OF THE INVENTION IN WHICH AN EXCLUSIVE
PROPERTY OR PRIVILEGE IS CLAIMED ARE DEFINED AS FOLLOWS:

1. A process for producing a management interworking unit

for a palr of management interfaces comprising the steps
of:-

producing an information conversion function (ICF)
by:-
storing a model associliate with each interface,
each model comprising objects representing

managed resources, and

creating mappings 1ncluding run time
conversion functions between equivalent parts

of the models; and

producing a message communication function (MCF)
assoclated with each management interface, each MCF

comprising means for performing format conversion

between the external protocol of the associated

interfaces and an internal protocol for the ICF;

each model comprises objects 1n a containment
hierarchy providing a containment context for each

object; and

each object has a class defined by characteristics
independently of the context; and

the mappings are between 1ndividual objects and between

groups of objects having the same class and context,
namely context classes.

2. A process as clalmed 1in claim 1, wherein the models are

created at least partially automatically by loader

modules.

10

15

20

25

30

35

10.

11.

12.

CA 02244918 2004-09-23

26

A process as claimed in claim 1 or 2, wherein the models

are created from management 1interface specifications,
and specification free text 1s manually converted to the

model language.

A process as claimed in claim 1, 2 or 3, wherein the

mappings define context class cardilnality.

A process as claimed in claim 4, where mapplngs are

created between context classes.

A process as claimed in claim 4 or 5, whereln mapplngs

are created between ocbjects.

A process as claimed in claims 4 to 6, whereln mapplngs

are created between object characteristics.

A process as claimed in claim 7, wherein the object

characteristics include object functions, relationships,

attributes, notifications, and behaviour.

P

A process as claimed 1in any one of claims 1 to 8,

wherein the mappings are created interactively using a
graphical interface representing the models and the

mappilings.

A process as claimed in any one of claims 1 to 9,

wherein mappings are predicated by run time rules

selected for the mapplings.

A process as claimed 1n any one of claims 1 to 10,

pr—

wherein the process has the further step o0f pre-

compiling the models and the mappings to a template to

produce source code.

A process as claimed 1n claim 11, wherein the template

is manually modified after pre-complling and flags are

10

15

20

25

30

35

13.

14.

15.

CA 02244918 2004-09-23

27

inserted in the template to differentiate automatically

generated code from manually generated code.

A process as claimed in any one of claims 1 to 12,

wherein searches are carried out to determine 1f a

proposed mapping has previously been made for simllar

characteristics and such mapplngs may be re-used.

A management interworking unit (MIU) for at least two

management interfaces comprising:-

an information conversion function (ICF)

comprising: -

a model associated with each interface, each
model comprising objects representing managed

resources, and

run time conversion mapplngs between

equivalent parts of the models; and

a message communication function (MCF) assoclated

with each management interface, each MCF comprising

means for performing format conversion between the

external protocol of the associlated i1nterface and

an internal protocol of the ICF; and

each model comprises objects 1n a contalnment

hierarchy providing a contalnment context for each

object and each object has a class defined by

characteristics 1ndependently of the context; and

the mappings are between 1ndividual objects and
between groups of objects having the same class and

context, namely context classes.

A management interworking unit as claimed 1n claim 14,

wherelin the mappings define context class cardinality.

10

15

20

l1o.

17.

18.

19.

20,

21,

CA 02244918 2004-09-23

~ 08—

A management interworking unit as claimed in claim 14

and 15, wherein mapplngs link context classes.

A management interworking unit as clalmed 1n any one of

claims 14 to 16, whereilin mappings 1link objects.

A management interworkling unit as claimed in any one of
claims 14 to 17, whereln mappings link object
characteristics.

A management interworkling unit as clalmed 1n claim 18,
wherein the object characteristics 1nclude object

functions or actions, relationships, attributes,

notifications, and behaviour.

A management interworking unit as claimed 1n any one of
claims 14 to 19, wherein mappilings are predicated by run

time rules selected for the mappings.

A management interworking unit as claimed 1n any one of
claims 14 to 20, whereiln the i1nternal protocol includes
primitives controlling start, end, and rollback of

atomic transactions 1n the ICF.

WO 97/306535

CA

02244918 1998-07-31

1/4

PCY/IES7/00810

CA 02244918 1998-07-31

WO 97/30535 PCT/IES7/00010

2/4

Set of all possible instances
of GEquipment Clkasses

Set of all possible
G 12Equipment
Instances

CA 02244918 1998-07-31

WO 97/30535 PCT/IES7/00010

3/4

CA 02244918 1998-07-31
WO 97/30535 PCT/TE9S7/00010

4/4

To Manhaging
€1 External Entity

MCF ' Y
< Ref. Point

ICF
‘____.__—-\—-

| 2
Ref. Point

MCF
ea To Managed
External Entity
Fig. 5

avnd
el

IDL Interface
CORBA

se_rver ()
UNIX Process <>

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - abstract
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - claims
	Page 29 - claims
	Page 30 - claims
	Page 31 - claims
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - abstract drawing

