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SRAM CONTROLLER FOR PARALLEL PROCESSOR ARCHITECTURE

BACKGROUND

This invention relates to memory controllers
particularly for use in parallel processing systems.

Parallel processing is an efficient form of
information processing of concurrent events in a computing
process. Parallel processing demands concurrent execution
of many programs in a computer, in contrast to sequential
processing. In the context of a parallel processor,
parallelism involves doing more than one thing at the same
time. Unlike a serial paradigm where all tasks are
performed sequentially at a single station or a pipelined
machine where tasks are performed at specialized stations,
with parallel processing, a plurality of stations are
provided with each capable of performing all tasks. That
is, in general all or a plurality of the stations work
simultaneously and independently on the same or common
elements of a problem. Certain problems are suitable for
solution by applying parallel processing.

Memory systems used in parallel processing tasks
can be inefficient. Memory systems can have a dead time
i.e., bubble that can either be 1 or 2 cycles depending on

the type of memory device employed.
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SUMMARY

According to an aspect of the present invention,
a controller for a random access memory includes an address
and command queue that holds memory references from a
plurality of microcontrol functional units. The address
and command queue includes a read queue and a first
read/write queue that holds memory references from a core
processor. The controller also includes control logic
including an arbiter that detects the fullness of each of
the queues and a status of completion of outstanding memory
references to select a memory reference instruction from
one of the queues.

One or more of the following advantages may be
provided by one or more aspects of the invention.

The memory controller performs memory reference
sorting to minimize delays (bubbles) in a pipeline from an
interface to memory. The memory system is designed to be
flooded with memory requests that are independent in
nature. The memory controller enables memory reference
sorting which reduces dead time or a bubble that occurs
with accesses to SRAM. With memory references to SRAM,
switching current direction on signal lines between reads
and writes produces a bubble or a dead time while waiting
for current to settle on conductors coupling the SRAM to
the SRAM controller. That is, the drivers that drive
current on the bus need to settle out prior to changing
states. Thus, repetitive cycles of a read followed by a
write can degrade peak bandwidth. Memory reference sorting
organizes references to memory such that long strings of

reads can be followed by long strings of writes. This can
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be used to minimize dead time in the pipeline to
effectively achieve closer to maximum available bandwidth.
Grouping reads and writes improves cycle-time by
eliminating dead cycles. The memory controller performs
memory reference sorting based on a read memory reference.
The memory controller can also include a lock
lookup device for look-ups of read locks. The address and
command queue also includes a read lock fail queue, to hold
read memory reference requests that fail because of a lock
existing on a portion of memory as determined by the lock

lookup device.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of a communication
system employing a hardware-based multithreaded processor.

FIG. 2 is a detailed block diagram of the
hardware-based multithreaded processor of FIG. 1.

FIG. 3 is a block diagram of a microengine
functional unit employed in the hardware-based
multithreaded processor of FIGS. 1 and 2.

FIG. 3A is a block diagram of a pipeline in the
microengine of FIG. 3.

FIG. 3B. is diagram that shows a format for a
context switch instruction.

FIG. 3C is a block diagram showing general
purpose register address arrangement.

FIG. 4 is a block diagram of a memory controller
for enhanced bandwidth operation used in the hardware-based

multithreaded processor.
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FIG. 4A is a flow chart that represents an
arbitration policy in an SDRAM controller of FIG. 4.

FIG. 4B is a timing diagram that shows advantages
of optimizing SDRAM controller.

FIG. 5 is a block diagram of a memory controller
for latency limited operations used in the hardware-based
multithreaded processor.

FIG. 5A is a timing diagram that shows advantages
of optimizing SRAM controller.

FIG. 6 is a block diagram of a communication bus

interface in the processor of FIG. 1.

DESCRIPTION

Architecture:

Referring to FIG. 1, a communication system 10
includes a parallel, hardware-based multithreaded processor
12. The hardware-based multithreaded processor 12 is
coupled to a bus such as a PCI bus 14, a memory system 16
and a second bus 18. The system 10 is especially useful
for tasks that can be broken into parallel subtasks or
functions. Specifically hardware-based multithreaded
processor 12 is useful for tasks that are bandwidth
oriented rather than latency oriented. The hardware-based
multithreaded processor 12 has multiple microengines 22
each with multiple hardware controlled threads that can be
simultaneously active and independently work on a task.

The hardware-based multithreaded processor 12
also includes a central controller 20 that assists in
loading microcode control for other resources of the

hardware-based multithreaded processor 12 and performs
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other general purpose computer type functions such as
handling protocols, exceptions, extra support for packet
processing where the microengines pass the packets off for
more detailed processing such as in boundary conditions.

In one embodiment, the processor 20 is a Strong Arm’ (Arm is
a trademark of ARM Limited, United Kingdom) based
architecture. The general purpose microprocessor 20 has an
operating system. Through the operating system the
processor 20 can call functions to operate on microengines
22a-22f. The processor 20 can use any supported operating
system preferably a real time operating system. For the
core processor implemented as a Strong Arm architecture,
operating systems such as, MicrosoftNT real-time, VXWorks
and pCUS, a freeware operating system available over the
Internet, can be used.

The hardware-based multithreaded processor 12
also includes a plurality of function microengines 22a-22f.
Functional microengines (microengines) 22a-22f each
maintain a plurality of program counters in hardware and
states associated with the program counters. Effectively,
a corresponding plurality of sets of threads can be
simultaneously active on each of the microengines 22a-22f
while only one is actually operating at any one time.

In one embodiment, there are six microengines
22a-22f as shown. Each microengines 22a-22f has
capabilities for processing four hardware threads. The six
microengines 22a-22f operate with shared resources
including memory system 16 and bus interfaces 24 and 28.
The memory system 16 includes a Synchronous Dynamic Random

Access Memory (SDRAM) controller 26a and a Static Random
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Access Memory (SRAM) controller 26b. SDRAM memory l6a and
SDRAM controller 26a are typically used for processing
large volumes of data, e.g., processing of network payloads
from network packets. The SRAM controller 26b and SRAM
memory 1l6b are used in a networking implementation for low
latency, fast access tasks, e.g., accessing look-up tables,
memory for the core processor 20, and so forth.

The six microengines 22a-22f access either the
SDRAM 1l6a or SRAM 1l6b based on characteristics of the data.
Thus, low latency, low bandwidth data is stored in and
fetched from SRAM, whereas higher bandwidth data for which
latency is not as important, is stored in and fetched from
SDRAM. The microengines 22a-22f can execute memory
reference instructions to either the SDRAM controller 26a
or SRAM controller 16b.

Advantages of hardware multithreading can be
explained by SRAM or SDRAM memory accesses. As an example,
an SRAM access requested by a Thread 0, from a microengine
will cause the SRAM controller 26b to initiate an access to
the SRAM memory 16b. The SRAM controller controls
arbitration for the SRAM bus, accesses the SRAM 16b,
fetches the data from the SRAM 16b, and returns data to a
requesting microengine 22a-22b. During an SRAM access, if
the microengine e.g., 22a had only a single thread that
could operate, that microengine would be dormant until data
was returned from the SRAM. By employing hardware context
swapping within each of the microengines 22a-22f, the
hardware context swapping enables other contexts with
unique program counters to execute in that same

microengine. Thus, another thread e.g., Thread 1 can
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function while the first thread, e.g., Thread 0, is
awaiting the read data to return. During execution,
Thread_1 may access the SDRAM memory lta. While Thread 1
operates on the SDRAM unit, and Thread 0 is operating on
the SRAM unit, a new thread, e.g., Thread_ 2 can now operate
in the microengine 22a. Thread 2 can operate for a certain
amount of time until it needs to access memory or perform
some other long latency operation, such as making an access
to a bus interface. Therefore, simultaneously, the
processor 12 can have a bus operation, SRAM operation and
SDRAM operation all being completed or operated upon by one
microengine 22a and have one more thread available to
process more work in the data path.

The hardware context swapping also synchronizes
completion of tasks. For example, two threads could hit
the same shared resource e.g., SRAM. Each one of these
separate functional units, e.g., the FBUS interface 28, the
SRAM controller 26a, and the SDRAM controller 26b, when
they complete a requested task from one of the microengine
thread contexts reports back a flag signaling completion
of an operation. When the flag is received by the
microengine, the microengine can determine which thread to
turn on.

One example of an application for the hardware-
based multithreaded processor 12 is as a network processor.
As a network processor, the hardware-based multithreaded
processor 12 interfaces to network devices such as a media
access controller device e.g., a 10/100BaseT Octal MAC 13a
or a Gigabit Ethernet device 13b. In general, as a network

processor, the hardware-based multithreaded processor 12

.
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can interface to any type of communication device or
interface that receives/sends large amounts of data.
Communication system 10 functioning in a networking
application could receive a plurality of network packets
from the devices 13a, 13b and process those packets in a
parallel manner. With the hardware-based multithreaded
processor 12, each network packet can be independently
processed.

Another example for use of processor 12 is a
print engine for a postscript processor or as a processor
for a storage subsystem, i.e., RAID disk storage. A
further use is as a matching engine. 1In the securities
industry for example, the advent of electronic trading
requires the use of electronic matching engines to match
orders between buyers and sellers. These and other
parallel types of tasks can be accomplished on the system
10.

The processor 12 includes a bus interface 28 that
couples the processor to the second bus 18. Bus interface
28 in one embodiment couples the processor 12 to the so-
called FBUS 18 (FIFO bus). The FBUS interface 28 is
responsible for controlling and interfacing the processor
12 to the FBUS 18. The FBUS 18 is a 64-bit wide FIFO bus,
used to interface to Media Access Controller (MAC) devices.

The processor 12 includes a second interface
e.g., a PCI bus interface 24 that couples other system
components that reside on the PCI 14 bus to the processor
12. The PCI bus interface 24, provides a high speed data
path 24a to memory 16 e.g., the SDRAM memory l6a. Through
that path data can be moved quickly from the SDRAM 1l6a

-8=
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through the PCI bus 14, via direct memory access (DMA)
transfers. The hardware based multithreaded processor 12
supports image transfers. The hardware based multithreaded
processor 12 can employ a plurality of DMA channels so if
one target of a DMA transfer is busy, another one of the
DMA channels can take over the PCI bus to deliver
information to another target to maintain high processor 12
efficiency. Additionally, the PCI bus interface 24
supports target and master operations. Target operations
are operations where slave devices on bus 14 access SDRAMs
through reads and writes that are serviced as a slave to
target operation. In master operations, the processor core
20 sends data directly to or receives data directly from
the PCI interface 24.

Each of the functional units are coupled to one
or more internal buses. As described below, the internal
buses are dual, 32 bit buses (i.e., one bus for read and
one for write). The hardware-based multithreaded processor
12 also is constructed such that the sum of the bandwidths
of the internal buses in the processor 12 exceed the
bandwidth of external buses coupled to the processor 12.
The processor 12 includes an internal core processor bus
32, e.g., an ASB bus (Advanced System Bus) that couples the
processor core 20 to the memory controller 26a, 26c and to
an ASB translator 30 described below. The ASB bus is a
subset of the so called AMBA bus that is used with the
Strong Arm processor core. The processor 12 also includes
a private bus 34 that couples the microengine units to SRAM
controller 26b, ASB translator 30 and FBUS interface 28. A

memory bus 38 couples the memory controller 26a, 26b to the
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bus interfaces 24 and 28 and memory system 16 including
flashrom 16c¢ used for boot operations and so forth.
Referring to FIG. 2, each of the microengines
22a-22f includes an arbiter that examines flags to
determine the available threads to be operated upon. Any
thread from any of the microengines 22a-22f can access the
SDRAM controller 26a, SDRAM controller 26b or FBUS
interface 28. The memory controllers 26a and 26b each
include a plurality of queues to store outstanding memory
reference requests. The queues either maintain order of
memory references or arrange memory references to optimize
memory bandwidth. For example, if a thread 0 has no
dependencies or relationship to a thread 1, there is no
reason that thread 1 and 0 cannot complete their memory
references to the SRAM unit out of order. The microengines
22a-22f issue memory reference requests to the memory
controllers 26a and 26b. The microengines 22a-22f flood
the memory subsystems 26a and 26b with enough memory
reference operations such that the memory subsystems 26a
and 26b become the bottleneck for processor 12 operation.
If the memory subsystem 16 is flooded with memory
requests that are independent in nature, the processor 12
can perform memory reference sorting. Memory reference
sorting improves achievable memory bandwidth. Memory
reference sorting, as described below, reduces dead time or
a bubble that occurs with accesses to SRAM. With memory
references to SRAM, switching current direction on signal
lines between reads and writes produces a bubble or a dead
time waiting for current to settle on conductors coupling

the SRAM 16b to the SRAM controller 26b.
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That is, the drivers that drive current on the
bus need to settle out prior to changing states. Thus,
repetitive cycles of a read followed by a write can degrade
peak bandwidth. Memory reference sorting allows the
processor 12 to organize references to memory such that
long strings of reads can be followed by long strings of
writes. This can be used to minimize dead time in the
pipeline to effectively achieve closer to maximum available
bandwidth. Reference sorting helps maintain parallel
hardware context threads. On the SDRAM, reference sorting
allows hiding of pre-charges from one bank to another bank.
Specifically, if the memory system léb is organized into an
odd bank and an even bank, while the processor is operating
on the odd bank, the memory controller can start
precharging the even bank. Precharging is possible if
memory references alternate between odd and even banks. By
ordering memory references to alternate accesses to
opposite banks, the processor 12 improves SDRAM bandwidth.
Additionally, other optimizations can be used. For
example, merging optimizations where operations that can be
merged, are merged prior to memory access, open page
optimizations where by examining addresses an opened page
of memory is not reopened, chaining, as will be described
below, and refreshing mechanisms, can be employed.

The FBUS interface 28 supports Transmit and
Receive flags for each port that a MAC device supports,
along with an Interrupt flag indicating when service is
warranted. The FBUS interface 28 also includes a
controller 28a that performs header processing of incoming

packets from the FBUS 18. The controller 28a extracts the
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packet headers and performs a microprogrammable
source/destination/protocol hashed lookup (used for address
smoothing) in SRAM. If the hash does not successfully
resolve, the packet header is sent to the processor core 20
for additional processing. The FBUS interface 28 supports

the following internal data transactions:

FBUS unit (Shared bus SRAM) to/from microengine.
FBUS unit (via private bus) writes from SDRAM Unit.
FBUS unit (via Mbus) Reads to SDRAM.

The FBUS 18 is a standard industry bus and includes a
data bus, e.g., 64 bits wide and sideband control for
address and read/write control. The FBUS interface 28
provides the ability to input large amounts of data using a
series of input and output FIFO=s 29a-29b. From the FIFOs
29a-29b, the microengines 22a-22f fetch data from or
command the SDRAM controller 26a to move data from a
receive FIFO in which data has come from a device on bus
18, into the FBUS interface 28. The data can be sent
through memory controller 26a to SDRAM memory l6a, via a
direct memory access. Similarly, the microengines can move
data from the SDRAM 26a to interface 28, out to FBUS 18,
via the FBUS interface 28.

Data functions are distributed amongst the
microengines. Connectivity to the SRAM 26a, SDRAM 26b and
FBUS 28 is via command requests. A command request can be
a memory request or a FBUS request. For example, a
command request can move data from a register located in a

microengine 22a to a shared resource, e.g., an SDRAM
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location, SRAM location, flash memory or some MAC address.
The commands are sent out to each of the functional units
and the shared rescurces. However, the shared resources do
not need to maintain local buffering of the data. Rather,
the shared resources access distributed data located inside
of the microengines. This enables microengiﬁes 22a-22f, to
have local access to data rather than arbitrating for
access on a bus and risk contention for the bus. With this
feature, there is a 0 cycle stall for waiting for data
internal to the microengines 22a-22f.

The data buses, e.g., ASB bus 30, SRAM bus 34 and
SDRAM bus 38 coupling these shared resources, e.g., memory
controllers 26a and 26b are of sufficient bandwidth such
that there are no internal bottlenecks. Thus, in order to
avoid bottlenecks, the processor 12 has an bandwidth
requirement where each of the functional units is provided
with at least twice the maximum bandwidth of the internal
buses. As an example, the SDRAM can run a 64 bit wide bus
at 83 MHz. The SRAM data bus could have separate read and
write buses, e.g., could be a read bus of 32 bits wide
running at 166 MHz and a write bus of 32 bits wide at 166
MHz. That is, in essence, 64 bits running at 166 MHz which
is effectively twice the bandwidth of the SDRAM.

The core processor 20 also can access the shared
resources. The core processor 20 has a direct
communication to the SDRAM controller 26a to the bus
interface 24 and to SRAM controller 26b via bus 32.
However, to access the microengines 22a-22f and transfer
registers located at any of the microengines 22a-22f, the

core processor 20 access the microengines 22a-22f via the
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ASB Translator 30 over bus 34. The ASB translator 30 can
physically reside in the FBUS interface 28, but logically
is distinct. The ASB Translator 30 performs an address
translation between FBUS microengine transfer register
locations and core processor addresses (i.e., ASB bus) so
that the core processor 20 can access registers belonging
to the microengines 22a-22c.

Although microengines 22 can use the register set
to exchange data as described below, a scratchpad memory 27
is also provided to permit microengines to write data out
to the memory for other microengines to read. The
scratchpad 27 is coupled to bus 34.

The processor core 20 includes a RISC core 50
implemented in a five stage pipeline performing a single
cycle shift of one operand or two operands in a single
cycle, provides multiplication support and 32 bit barrel
shift support. This RISC core 50 is a standard Strong Arm7
architecture but it is implemented with a five stage
pipeline for performance reasons. The processor core 20
also includes a 16 kilobyte instruction cache 52, an 8
kilobyte data cache 54 and a prefetch stream buffer 56.

The core processor 20 performs arithmetic operations in
parallel with memory writes and instruction fetches. The
core processor 20 interfaces with other functional units
via the ARM defined ASB bus. The ASB bus is a 32-bit bi-

directional bus 32.
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Microengines:

Referring to FIG. 3, an exemplary one of the
microengines 22a-22f, e.g., microengine 22f is shown. The
microengine includes a control store 70 which, in one
implementation, includes a RAM of here 1,024 words of 32
bit. The RAM stores a microprogram. The microprogram is
loadable by the core processor 20. The microengine 22f
also includes controller logic 72. The controller logic
includes an instruction decoder 73 and program counter (PC)
units 72a-72d. The four micro program counters 72a-72d are
maintained in hardware. The microengine 22f also includes
context event switching logic 74. Context event logic 74
receives messages (e.g., SEQ # EVENT RESPONSE;

FBI EVENT RESPONSE; SRAM _EVENT RESPONSE; SDRAM
_EVENT_RESPONSE; and ASB _EVENT_RESPONSE) from each one of
the shared resources, e.g., SRAM 26a, SDRAM 26b, or
processor core 20, control and status registers, and so
forth. These messages provide information on whether a
requested function has completed. Based on whether or not
a function requested by a thread has completed and signaled
completion, the thread needs to wait for that completion
signal, and if the thread is enabled to operate, then the
thread is placed on an available thread list (not shown).
The microengine 22f can have a maximum of e.g., 4 threads
available.

In addition to event signals that are local to an
executing thread, the microengines 22 employ signaling
states that are global. With signaling states, an
executing thread can broadcast a signal state to all

microengines 22. Receive Request Available signal, Any and
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all threads in the microengines can branch on these
signaling states. These signaling states can be used to
determine availability of a resource or whether a resource
is due for servicing.

The context event logic 74 has arbitration for
the four (4) threads. 1In one embodiment, the arbitration
is a round robin mechanism. Other techniques could be used
including priority queuing or weighted fair queuing. The
microengine 22f also includes an execution box (EBOX) data
path 76 that includes an arithmetic logic unit 76a and
general purpose register set 76b. The arithmetic logic
unit 76a performs arithmetic and logical functions as well
as shift functions. The registers set 76b has a relatively
large number of general purpose registers. As will be
described in FIG. 3B, in this implementation there are 64
general purpose registers in a first bank, Bank A and 64 in
a second bank, Bank B. The general purpose registers are
windowed as will be described so that they are relatively
and absolutely addressable.

The microengine 22f also includes a write
transfer register stack 78 and a read transfer stack 80.
These registers are also windowed so that they are
relatively and absolutely addressable. Write transfer
register stack 78 is where write data to a resource is
located. Similarly, read register stack 80 is for return
data from a shared resource. Subsequent to or concurrent
with data arrival, an event signal from the respective
shared resource e.g., the SRAM controller 26a, SDRAM
controller 26b or core processor 20 will be provided to

context event arbiter 74 which will then alert the thread
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that the data is available or has been sent. Both transfer
register banks 78 and 80 are connected to the execution box
(EBOX) 76 through a data path. In one implementation, the
read transfer register has 64 registers and the write
transfer register has 64 registers.

As shown in FIG. 3A, the microengine datapath
maintains a 5-stage micro-pipeline 82. This pipeline
includes lookup of microinstruction words 82a, formation of
the register file addresses 82b, read of operands from
register file 82c, ALU, shift or compare operations 82d,
and write-back of results to registers 82e. By providing a
write-back data bypass into the ALU/shifter units, and by
assuming the registers are implemented as a register file
(rather than a RAM), the microengine can perform a
simultaneous register file read and write, which completely
hides the write operation.

The SDRAM interface 26a provides a signal back to
the requesting microengine on reads that indicates whether
a parity error occurred on the read request. The
microengine microcode is responsible for checking the SDRAM
read Parity flag when the microengine uses any return data.
Upon checking the flag, if it was set, the act of branching
on it clears it. The Parity flag is only sent when the
SDRAM is enabled for checking, and the SDRAM is parity
protected. The microengines and the PCI Unit are the only
requestors notified of parity errors. Therefore, if the
processor core 20 or FIFO requires parity protection, a
microengine assists in the request. The microengines 22a-
22f support conditional branches. The worst case

conditional branch latency (not including jumps) occurs
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when the branch decision is a result of condition codes

being set by the previous microcontrol instruction.

latency is shown below in Table 1:

microstore lookup

reg addr gen

reg file lookup

ALU/shifter/cc

The
1y 271 391 41 51 61| 71 8

————————————————— e T B B s ST S S
| n1 | cb | n2 | XX | bl | b2 | b3 | b4

| | n1 § cb | XX | XX | bl | b2 | b3 |

| ! | n1 | cb | XX | XX | bl | b2 |

[ | [ l nl | cb | XX | XX | bl |

| [ | m2] | n1 | cb | XX | XX |

write back

As shown in Table 1,

the condition codes of nl are set,

where nx

cb
bx
XX

is pre-branch microword

is conditional branch

is post-branch microword

is aborted microword

(nl sets cc's)

it is not until cycle 4 that

and the branch decision

can be made (which in this case causes the branch path to

be looked up in cycle 5).

The microengine incurs a 2-cycle

branch latency penalty because it must abort operations n2

and n3 (the 2 microwords directly after the branch)

in the

pipe, before the branch path begins to f£ill the pipe with

operation bl.

If the branch is not taken,

no microwords

are aborted and execution continues normally. The

microengines have several mechanisms to reduce or eliminate

the effective branch latency.

The microengines support deferred branches.

Deferring branches are when a microengine allows 1 or 2

microwords after the branch to occur before the branch

takes effect

(i.e.

the effect of the branch is

-18-
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in time). Thus, if useful work can be found to fill the
wasted cycles after the branch microword, then the branch
latency can be hidden. A 1l-cycle deferred branch is shown
below where n2 is allowed to execute after cb, but before
bl:

————————————————— R et e et
microstore lookup | n1 | cb | n2 | XX | bl | b2 | b3 | b4
reg addr gen | | nl J cb | n2 | XX | bl | b2 | b3 |
reg file lookup | | j nl | cb | n2 | XX | bl | b2 |
ALU/shifter/cc I [ | | nl | cb | n2 | XX | bl |
write back | | | | } nl | cb | n2 | XX |

A 2-cycle deferred branch is shown below, where
n2 and n3 are both allowed to complete before the branch to
bl occurs. Note that a 2-cycle branch deferment is only
allowed when the condition codes are set on the microword

preceding the branch.

microstore lookup | n1 | cb | n2 | n3 | bl | b2 | b3 | bd | b5
I

reg addr gen | | n1 | cb | n2 | n3 | bl | b2 | b3 | bd |
reg file lkup | [ l n1 | ¢cb | n2 | n3 | bl | b2 | b3 |
ALU/shftr/cc | | | | n1 | cb | n2 | n3 | bl | b2 |
write back | | | | l n1 | cb | n2 | n3 | bl |

The microengines also support condition code
evaluation. If the condition codes upon which a branch
decision are made are set 2 or more microwords before the

branch, then 1 cycle of branch latency can be eliminated
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because the branch decision can be made 1 cycle earlier:

————————————————— e R Bttt e e e
microstore lookup ' nl | n2 | cb | XX | bl | b2 | b3 | b4 |
reg addr gen | I nl | n2 | cb | XX | 1 | b2 | b3 |
reg file lookup | | f nl1 | n2 | cb | XX | bl | b2 |
ALU/shifter/cc | | | | n1 | n2 | cb | XX | bl |
write back | | | { | n1 | n2 | cb | XX |

In this example, nl sets the condition codes and
n2 does not set the conditions codes. Therefore, the
branch decision can be made at cycle 4 (rather than 5), to
eliminate 1 cycle of branch latency. In the example below,
the l-cycle branch deferment and early setting of condition

codes are combined to completely hide the branch latency:

Condition codes (cc's) set 2 cycles before a l-cycle

deferred branch:

----------------- e e Attt e e e TN &
microstore lookup fnl | n2 | cb | n3 | bl | b2 | b3 | bd |
reg addr gen | | nl | n2 | cb | n3 | bl | b2 | b3 |

reg file lookup | | | n1 | n2Z | cb | n3 | bl | b2 |
ALU/shifter/cc | | | I nl | n2 | cb | n3 | bl |
write back | | | | | n1 | n2 | cb | n3 |

In the case where the condition codes cannot be
set early (i.e. they are set in the microword preceding the
branch), the microengine supports branch guessing which

attempts to reduce the 1 cycle of exposed branch latency
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that remains. By "guessing" the branch path or the

sequential path, the microsequencer pre-fetches the guessed

path 1 cycle before it definitely knows what path to

execute.

If it guessed correctly,

1 cycle of branch

latency is eliminated as shown below:

guess branch taken /branch is taken

11 21 31 41 5 61 71 8|
————————————————— D Rt B A et Dt
microstore lookup | n1 | cb | n1 | bl | b2 | b3 | b4 | b5
reg addr gen | | n1 | cb | XX | bl b2 | b3 | bd |
reg file lookup | | | n1 | ¢b | XX | bl | b2 | b3 |
ALU/shifter/cc | | [ | n1 | cb | XX | bl | b2 |
write back | | | | | nl cb | XX | bl |

If the microcode guessed a branch taken incorrectly, the

microengine

still only wastes 1 cycle:

guess branch taken /branch is NOT taken

! 21 31| 41 51| 61} 71 8
————————————————— R e e e k Rttt
microstore lookup | nl | cb | nl | XX | n2 | n3 | néd | n5
reg addr gen | f nl | cb | nl | XX n2 | n3 | nd |
reg file lookup | | | n1 | cb | nl XX | n2 | n3 |
ALU/shifter/cc [ ] | | nl1 | cb | nl1 | XX | n2 |
write back | | | | | nl cb | nl | XX |

However, the latency penalty is distributed

differently when microcode guesses a branch is not taken:
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For guess branch NOT taken / branch is NOT taken

there are no wasted cycles as set out below.

————————————————— B R T e T
microstore lookup ! nl | cblnl | n2 | n3 | nd | n5 | né6
reg addr gen | l n1 | cb | nl1 | n2 | n3 | nd | n5 |
reg file lookup | I i nl | cb | nl1 | n2 | nl | bd |
ALU/shifter/cc | | | | n1 | cb | nl1 | n2 | n3 |
write back | | | ] | nl | cb | n1 | n2 |

However for guess branch NOT taken /branch is

taken there are 2 wasted cycles.

————————————————— e e e s
microstore lookup | n1 | cb | n1 | XX | bl | b2 | b3 | b4
reg addr gen | | n1 | cb | XX } XX | bl | b2 | b3 |
reg file lookup | | l nl | cb | XX | XX | bl | b2 |
ALU/shifter/cc | ! I l nl1 | cb | XX | XX | bl |
write back I | | | | nl | cb | XX | XX |

The microengine can combine branch guessing with l-cycle
branch deferment to improve the result further. For guess
branch taken with l-cycle deferred branch/branch is taken

is:

————————————————— B i e e Rt
microstore lookup |l nl | cb | n2 | bl | b2 | b3 | b4 | b5
reg addr gen | | nl1 | ¢cb | n2 | bl | b2 | b3 | bd |
reg file lookup | | l nl | cb | n2 | bl | b2 | b3 |
ALU/shifter/cc | | | | n1 | cb | n2 } bl | b2 |
write back | | | |  nl | cb | n2 | bl |
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In the case above, the 2 cycles of branch latency are

hidden by the execution of n2, and by correctly guessing

the branch direction. If microcode guesses incorrectly, 1

cycle of branch latency remains exposed as shown below:
guess branch taken with l-cycle deferred

branch/branch is NOT taken

microstore lookup | nl1 | cb | n2 | XX | n3 | n4d | n5 | n6 | n7 |

reg addr gen | | n1 | cb | n2 | XX | n3 | nd | n5 | n6 |
reqg file lkup | [ | nl | cb | n2 | XX | n3 | n4d | n5 |
ALU/shftr/cc | | | | nl | cb | n2 | XX | n3 | nd |
write back | [ | | l n1 | cb | n2 | XX | n3 |

If microcode correctly guesses a branch NOT
taken, then the pipeline flows sequentially in the normal
unperturbed case. If microcode incorrectly guesses branch
NOT taken, the microengine again exposes 1 cycle of

unproductive execution as shown below:

guess branch NOT taken/branch is taken

microstore lookup | nl | cb | n2 | XX | bl | b2 | b3 | b4 | b5 |

reg addr gen | I nl | cb | n2 | XX | bl | b2 | b3 | b4 |
reg file lkup | | | n1 | cb | n2 | XX | bl | b2 | b3 |
ALU/shftr/cc | | | l n1 | cb | n2 | XX | bl | b2 |
write back | | | | l nl | cb | n2 | XX | bl |
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where nx is pre-branch microword (nl sets cc's)
cb is conditional branch
bx is post-branch microword

XX is aborted microword

In the case of a jump instruction, 3 extra cycles of
latency are incurred because the branch address is not
known until the end of the cycle in which the jump is in

the ALU stage:

microstore lookup | nl | jp | XX | XX | XX | 31 | j2 | 33 | 34 |

reg addr gen | I nl | jp | XX | XX | XX | 31 | j2 | 33 |
reg file lkup | | | nl | jp | XX | XX | XX | 31 | j2 |
ALU/shftr/cc | | | [ nl | jp | XX | XX | XX | j1 |
write back | | | | I nl | jJp | XX | XX | XX |

Context Switch:

Referring to FIG. 3B, a format from a context
switch instruction is shown. A context switch is a special
form of a branch that causes a different context (and
associated PC) to be selected. Context switching
introduces some branch latency as well. Consider the

following context switch:

microstore lookup | ol | ca | br | n1 | n2 | n3 | n4d | n5 | né6 |

reg addr gen | | ol | ca } XX { nl | n2 | n3 | nd | n5 |
reg file lkup | I | ol J ca | XX | nl | n2 | n3 | n4d |
ALU/shftr/cc | | | | ol | ca | XX | n1 | n2 | n3 |
write back | [ | | | o1 | ca | XX | nl | n2 |

-24-



10

15

20

25

30

WO 01/16769 PCT/US00/22653

where ox i1s old context flow
br is branch microword in old context
ca is context rearbitration (causes context
switch)
nx is new context flow

XX is aborted microword

In a context switch the Abr@ microword is aborted
to avoid control and timing complexities that could be
caused by saving the correct old context PC.

Conditional branches that operate on ALU
condition codes which are set on the microword before the
branch can select 0, 1 or 2-cycle branch deferment modes.
Condition codes set 2 or more microwords before the
conditional branch that operates on them can select 0 or 1-
cycle branch deferment modes. All other branches
(including context rearbitrations) can select either 0 or
l-cycle branch deferment modes. The architecture could be
designed to make a context arbitration microword within a
branch deferment window of a preceding branch, jump or
context arbitration microword, an illegal option. That is,
in some embodiments, a context switch would not be allowed
to occur during a branch transition in the pipeline because
as mentioned, it could unduly complicate saving of the old
context PC. The architecture could also be designed to
make branching within the branch deferment window of a
preceding branch, jump or context arbitration microword
illegal to avoid complicated and possible unpredictable
branch behaviors.

Each microengine 22a-22f supports multi-threaded

execution of four contexts. One reason for this is to
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allow one thread to start executing just after another
thread issues a memory reference and must wait until that
reference completes before doing more work. This behavior
is critical to maintaining efficient hardware execution of
the microengines because memory latency is significant.
Stated differently, if only a single thread execution was
supported, the microengines would sit idle for a
significant number of cycles waiting for references to
return and thereby reduce overall computational throughput.
Multi-threaded execution allows an microengines to hide
memory latency by performing useful independent work across
several threads. Two synchronization mechanisms are
supplied in order to allow a thread to issue an SRAM or
SDRAM reference, and then subsequently synchronize to the
point in time when that reference completes.

One mechanism is Immediate Synchronization. 1In
immediate synchronization, the microengine issues the
reference and immediately swap out that context. The
context will be signaled when the corresponding reference
completes. Once signaled, the context will be swapped back
in for execution when a context-swap event occurs and it is
its turn to run. Thus, from the point of view of a single
context's instruction stream, the microword after issuing
the mem reference does not get executed until the reference
completes.

A second mechanism is Delayed Synchronization.

In delayed synchronization, the microengine issues the
reference, and then continues to execute some other useful
work independent of the reference. Some time later it

could become necessary to synchronize the thread's
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execution stream to the completion of the issued reference
before further work is performed. At this point a
synchronizing microword is executed that will either swap
out the current thread, and swap it back in sometime later
when the reference has completed, or continue executing the
current thread because the reference has already completed.
Delayed synchronization is implemented using two different
signaling schemes:

If the memory reference is associated with a
transfer register, the signal from which the thread is
triggered is generated when the corresponding transfer
register valid bit is set or cleared. For example, an SRAM
read which deposits data into transfer register A would be
signaled when the valid bit for A is set. If the memory
reference is associated with the transfer FIFO or the
receive FIFO, instead of a transfer register, then the
signal is generated when the reference completes in the
SDRAM controller 26a. Only one signal state per context is
held in the microengines scheduler, thus only one
outstanding signal can exist in this scheme.

There are at least two general operational
paradigms from which microcontroller micro-programs could
be designed. One would be that overall microcontroller
compute throughput and overall memory bandwidth are
optimized at the expense of single thread execution
latency. This paradigm would make sense when the system
has multiple microengines executing multiple threads per
microengine on unrelated data packets.

A second one is that microengine execution

latency should be optimized at the expense of overall
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microengine compute throughput and overall memory
bandwidth. This paradigm could involve execution of a
thread with a real-time constraint, that is, a constraint
which dictates that some work must absolutely be done by
some specified time. Such a constraint requires that
optimization of the single thread execution be given
priority over other considerations such as memory bandwidth
or overall computational throughput. A real-time thread
would imply a single microengine that executes only one
thread. Multiple threads would not be handled because the
goal is to allow the single real-time thread to execute as
soon as possible--execution of multiple threads would
hinder this ability.

The coding style of these two paradigms could be
significantly different with regard to issuing memory
references and context switching. In the real time case,
the goal is to issue as many memory references as soon as
possible in order to minimize the memory latency incurred
by those references. Having issued as many references as
early as possible the goal would be to perform as many
computations as the microengines as possible in parallel
with the references. A computation flow that corresponds

to real-time optimization is:

0) issue mem ref 1

0) issue mem ref 2

0) issue mem ref 3

o) perform work independent of mem refs 1, 2 and 3

o) synch to completion of mem ref 1

o) perform work dependent on mem ref 1 and independent of mem ref 2
and 3
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o) issue any new mem refs based on preceding work.

o) synch to completion of mem ref 2

o) perform work dependent on mem ref 1 and 2 independent of mem ref
3

o) issue any new mem refs based on preceding work.

o) synch to completion of mem ref 3

o) perform work dependent on the completion of all 3 refs

o) issue any new mem refs based on preceding work.

In contrast, optimization for throughput and
bandwidth would take a different approach. With
optimization for microengine computational throughput and
overall memory bandwidth less consideration is given to
single thread execution latency. To accomplish this, the
goal would be to equally space memory references across the
microprogram for each thread. This would provide a uniform
stream of memory references to the SRAM and SDRAM
controllers and would maximize the probability that 1
thread is always available to hide the memory latency

incurred when another thread is swapped out.

Register file address types:

Referring to FIG. 3C, the two register address
spaces that exist are Locally accessibly registers, and
Globally accessible registers accessible by all
microengines. The General Purpose Registers (GPRs) are
implemented as two separate banks (A bank and B bank) whose
addresses are interleaved on a word-by-word basis such that
A bank registers have 1sb=0, and B bank regisfers have
lsb=1. Each bank is capable of performing a simultaneous

read and write to two different words within its bank.
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Across banks A and B, the register set 76b is
also organized into four windows 76by-76b; of 32 registers
that are relatively addressable per thread. Thus, thread 0
will find its register 0 at 77a (register 0), the thread 1
will find its register_ 0 at 77b (register 32), thread 2
will find its register_0 at 77c (register 64), and thread 3
at 77d (register 96). Relative addressing is supported so
that multiple threads can use the exact same control store
and locations but access different windows of register and
perform different functions. The uses of register window
addressing and bank addressing provide the requisite read
bandwidth using only dual ported RAMS in the microengine
22f.

These windowed registers do not have to save data
from context switch to context switch so that the normal
push and pop of a context swap file or stack is eliminated.
Context switching here has a 0 cycle overhead for changing
from one context to another. Relative register addressing
divides the register banks into windows across the address
width of the general purpose register set. Relative
addressing allows access any of the windows relative to the
starting point of the window. Absolute addressing is also
supported in this architecture where any one of the
absolute registers may be accessed by any of the threads by
providing the exact address of the register.

Addressing of general purpose registers 78 can
occur in 2 modes depending on the microword format. The
two modes are absolute and relative. In absolute mode,
addressing of a register address is directly specified in

7-bit source field (a6-a0 or b6-b0):
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7 6 5 4 3 2 1 0

R e B Rt

A GPR: | a6l 0 | a5| a4| a3| a2| al}| a0} a6=0
B GPR: | b6l 1 | b5| b4| b3| b2| bl| bO] b6=0
SRAM/ASB:| a6| a5| a4| 0 | a3| a2| all a0| a6=1, ab5=0, a4=0
SDRAM: | a6} a5| a4{ 0 | a3} a2] all a0| a6=1, a5=0, ad=1

register address directly specified in 8-bit dest field
(d7-d0) :
7 6 5 4 3 2 1 0

e s R B e e

A GPR: | d7) dél d5| d4| d3| d2| di{ d0] d7=0, d6=0
B GPR: | d71 d6| d5] 44| d3}| d2| d1| d0| d7=0, de6=1
SRAM/ASB:| d7| d6| d5| d4} d3| d2| dl| d0| d7=1, d6=0, d5=0
SDRAM: | d7] dé| d5| d4| d3| d2| d1| d0| d7=1, d6=0, d5=1

If <a6:ab5>=1,1, <b6:b5>=1,1, or <d7:d6>=1,1 then
the lower bits are interpreted as a context-relative
address field (described below). When a non-relative A or
B source address is specified in the A, B absolute field,
only the lower half of the SRAM/ASB and SDRAM address
spaces can be addressed. Effectively, reading absolute
SRAM/SDRAM devices has the effective address space;
however, since this restriction does not apply to the dest
field, writing the SRAM/SDRAM still uses the full address
space.

In relative mode, addresses a specified address
is offset within context space as defined by a 5-bit source

field a4-a0 or b4-b0):
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7 6 5 4 3 2 1 0
R e T T e s =
A GPR: | a4l 0 |context| a3} a2| all| a0| a4=0
B GPR: | b4] 1 |context| b3| b2| bl| b0| b4=0
SRAM/ASB: |ab4| 0 |ab3|context| b2| bl|ab0| ab4=1, ab3=0
SDRAM: jabd] 0 |ab3|context| b2| bl|ab0| ab4=1, ab3=1
or as defined by the 6-bit dest field (d5-d0):
7 6 5 4 3 2 1 0
B e e e gttt
A GPR: | d5| dé4]|context| d3| d2| d1] dO} d5=0, d4=0
B GPR: | d5| dé|context| d3| d2| dl| d0} d5=0, d4=1
SRAM/ASB:| d5| d4| d3|context| d2| dl] 40} d5=1, d4=0, d3=0
SDRAM: | d5| d4| d3|context| d2| di| dO| d5=1, d4=0, d3=1

If <d5:d4>=1,1,

then the destination address does

not address a valid register, thus, no dest operand is

written back.

The following registers are globally accessible

from the microengines and the memory controllers:

The microengines are not interrupt driven.

transmit FIFO

hash unit registers

transmit control FIFO

scratchpad and common registers

receive FIFO and receive status FIFO

Each

microflow executes until completion and then a new flow is

chosen based on state signaled by other devices in the

processor 12.

Referring to FIG.

4, the SDRAM memory controller

26a includes memory reference queues 90 where memory
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reference requests arrive from the various microengines
22a-22f. The memory controller 26a includes an arbiter 91
that selects the next the microengine reference requests to
go to any of the functioning units. Given that one of the
microengines is providing a reference request, the
reference request will come through the address and command
queue 90, inside the SDRAM controller 26a. If the
reference request has a bit set called the Aoptimized MEM
bit@ the incoming reference request will be sorted into
either the even bank queue 90a or the odd bank queue 90b.
If the memory reference request does not have a memory
optimization bit set, the default will be to go into an
order queue 90c. The SDRAM controller 26 is a resource
which is shared among the FBUS interface 28, the core
processor 20 and the PCI interface 24. The SDRAM
controller 26 also maintains a state machine for performing
READ-MODIFY-Write atomic operations. The SDRAM controller
26 also performs byte alignment for requests of data from
SDRAM.

The order queue 90c maintains the order of
reference requests from the microengines. With a series of
odd and even banks references it may be required that a
signal is returned only upon completion of a sequence of
memory references to both the odd and even banks. If the
microengine 22f sorts the memory references into odd bank
and even bank references and one of the banks, e.g., the
even bank is drained of memory references before the odd
bank but the signal is asserted on the last even reference,
the memory controller 26a could conceivably signal back to

a microengine that the memory request had completed, even
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though the odd bank reference had not been serviced. This
occurrence could cause a coherency problem. The situation
is avoided by providing the order queue 90c allowing a
microengine to have multiple memory references outstanding
of which only its last memory reference needs to signal a
completion.

The SDRAM controller 26a also includes a high
priority queue 90d. In the high priority queue 90d, an
incoming memory reference from one of the microengines goes
directly to the high priority queue and is operated upon at
a higher priority than other memory references in the other
queues. All of these queues, the even bank queue 90a, the
odd bank queue 90b, the order queue 90c and the high
priority queue, are implemented in a single RAM structure
that is logically segmented into four different windows,
each window having its own head and tail pointer. Since
filling and draining operations are only a single input and
a single output, they can be placed into the same RAM
structure to increase density of RAM structures.

The SDRAM controller 26a also includes core bus
interface logic i.e., ASB bus 92. The ASB bus interface
logic 92 interfaces the core processor 20 to the SDRAM
controller 26a. The ASB bus is a bus that includes a 32
bit data path and a 28 bit address path. The data is
accessed to and from memory through MEM ASB data device 98,
€.g., a buffer. MEM ASB data device 98 is a queue for
write data. If there is incoming data from the core
processor 20 via ASB interface 92, the data can be stored
into the MEM ASB device 98 and subsequently removed from
MEM ASB device 98 through the SDRAM interface 110 to SDRAM
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memory l6a. Although not shown, the same queue structure
can be provided for the reads. The SDRAM controller 26a
also includes an engine 97 to pull data from the
microengines and PCI bus.

Additional queues include the PCI address queue
94 and ASB read/write queue 96 that maintain a number of
requests. The memory requests are sent to SDRAM interface
110 via multiplexer 106. The multiplexer 106 is controlled
by the SDRAM arbiter 91 which detects the fullness of each
of the queues and the status of the requests and from that
decides priority based on a programmable value stored in a
priority service control register 100.

Once control to the multiplexer 106 selects a
memory reference request, the memory reference request, is
sent to a decoder 108 where it is decoded and an address is
generated. The decoded address is sent to the SDRAM
interface 110 where it is decomposed into row and column
address strobes to access the SDRAM 1l6a and write or read
data over data lines 1l6a sending data to bus 112. In one
implementation, bus 112 is actually two separate buses
instead of a single bus. The separate buses would include
a read bus coupling the distributed microengines 22a-22f
and a write bus coupling the distributed microengines 22a-
22f.

A feature of the SDRAM controller 26a is that
when a memory reference is stored in the queues 90, in
addition to the optimized MEM bit that can be set, there is
a Achaining bit@. The chaining bit when set allows for
special handling of contiguous memory references. As

previously mentioned, the arbiter 12 controls which
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microengine will be selected to provide memory reference
requests over the commander bus to queue 90 (FIG. 4).
Assertion of the chain bit will control the arbiter to have
the arbiter select the functional unit which previously
requested that bus because setting of the chain bit
indicates that the microengine issued a chain request.

Contiguous memory references will be received in
queue 90 when the chaining bit is set. Those contiguous
references will typically be stored in the order queue 90c
because the contiguous memory references are multiple
memory references from a single thread. In order to
provide synchronization, the memory controller 26a need
only signal at the end of the chained memory references
when done. However, in an optimized memory chaining,

(e..g, when optimized MEM bit and chaining bit are set) the
memory references could go into different banks and
potentially complete on one of the banks issuing the signal
Adone@ before the other bank was fully drained, thus
destroying coherency. Therefore, the chain bit is used by
the controller 110 to maintain the memory references from
the current queue.

Referring to FIG. 4A, a flow representation of
the arbitration policy in the SDRAM controller 26a is
shown. The arbitration policy favors chained microengine
memory requests. The process 115 starts by examining for
Chained microengine memory reference requests 115a. The
process 115 stays at the chained requests until the chain
bit is cleared. The process examines ASB bus requests 115b
followed by PCI bus requests 115¢, High Priority Queue
Sexrvice 115d, Opposite Bank Requests 115e, Order Queue
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Requests 115f, and Same Bank Requests 115g. Chained
request are serviced completely, whereas services 115b-115d
are serviced in round robin order. Only when services
115a-115d are fully drained does the process handle
services 115e-115g. Chained microengine memory reference
requests are when the previous SDRAM memory request has the
chain bit set. When the chain bit is set then the
arbitration engine simply services the same queue again,
until the chain bit is cleared. The ASB is higher priority
than PCI due to the severe performance penalty imposed on
the Strong arm core when the ASB is in wait state. PCI has
higher priority than the microengines due to the latency
requirements of PCI. However with other buses, the
arbitration priority could be different.

As shown in FIG. 4B, typical timing of a memory
without active memory optimization and with active memory
optimization is shown. As can be seen, the use of active
memory optimizations maximizes the use of the bus and thus
hides the inherent latency within physical SDRAM devices.
In this example, a non-optimized access can take 14 cycles
while optimized access can take 7 cyles.

Referring to FIG. 5, the memory controller 26b
for the SRAM is shown. The memory controller 26b includes
an address and command queue 120. While the memory
controller 26a (FIG. 4) has a queue for memory optimization
based on odd and even banking, memory controller 26b is
optimized based on the type of memory operation, i.e., a
read or a write. The address and command queue 120
includes a high priority queue 120a, a read queue 120b

which is the predominant memory reference function that an
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SRAM performs, and an order queue 120c which in general
will include all writes to SRAM and reads that are to bé
non-optimized. Although not shown, the address and
command queue 120 could also include a write queue.

The SRAM controller 26b also includes core bus
interface logic i.e., ASB bus 122. The ASB bus interface
logic 122 interfaces the core processor 20 to the SRAM
controller 26b. The ASB bus is a bus that includes a 32
bit data path and a 28 bit address path. The data is
accessed to and from memory through MEM ASB data device
128, e.g., a buffer. MEM ASB data device 128 is a queue
for write data. TIf there is incoming data from the core
processor 20 via ASB interface 122, the data can be stored
into the MEM ASB device 128 and subsequently removed from
MEM ASB device 128 through SRAM interface 140 to SRAM
memory 1l6éb. Although not shown, the same queue structure
can be provided for reads. The SRAM controller 26b also
includes an engine 127 to pull data from the microengines
and PCI bus.

The memory requests are sent to SRAM interface
140 via multiplexer 126. The multiplexer 126 is controlled
by the SRAM arbiter 131 which detects the fullness of each
of the queues and the status of the requests and from that
decides priority based on a programmable value stored in a
priority service control register 130. Once control to the
multiplexer 126 selects a memory reference request, the
memory reference request, is sent to a decoder 138 where it
is decoded and an address is generated. The SRAM Unit
maintains control of the Memory Mapped off-chip SRAM and
Expansion ROM. The SRAM controller 26b can address, e.g.,
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16 MBytes, with, e.g., 8 MBytes mapped for SRAM 16b, and 8
MBytes reserved for special functions including: Boot
space via flashrom 16c; and Console port access for MAC
devices 13a, 13b and access to associated (RMON) counters.
The SRAM is used for local look-up tables and queue
management functions.

The SRAM controller 26b supports the following

transactions:
Microengine requests (via private bus) to/from SRAM.
Core Processor (via ASB bus) to/from SRAM.

The SRAM controller 26b performs memory reference
sorting to minimize delays (bubbles) in the pipeline from
the SRAM interface 140 to memory 1l6b. The SRAM controller
26b does memory reference sorting based on the read
function. A bubble can either be 1 or 2 cycles depending
on the type of memory device employed.

The SRAM controller 26b includes a lock lookup
device 142 which is an eight (8 entry address content
addressable memory for look-ups of read locks. Each
position include a valid bit that is examined by subsequent
read-lock requests. The address and command queue 120 also
includes a Read Lock Fail Queue 120d. The Read Lock Fail
Queue 120d is used to hold read memory reference requests
that fail because of a lock existing on a portion of
memory. That is, one of the microengines issues a memory
request that has a read lock request that is processed in
address and control queue 120. The memory request will

operate on either the order queue 120c or the read queue
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120b and will recognize it as a read lock request. The
controller 26b will access lock lookup device 142 to
determine whether this memory location is already locked.
If this memory location is locked from any prior read lock
request, then this memory lock request will fail and will
be stored in the read lock fail queue 120d. If it is
unlocked or if 142 shows no lock on that address, then the
address of that memory reference will be used by the SRAM
interface 140 to perform a traditional SRAM address
read/write request to memory 16b. The command controller
and address generator 138 will also enter the lock into the
lock look up device 142 so that subsequent read lock
requests will find the memory location locked. A memory
location is unlocked by operation of the a microcontrol
instruction in a program after the need for the lock has
ended. The location 'is unlocked by clearing the valid bit
in the CAM. After an unlock, the read lock fail queue
120d becomes the highest priority queue giving all queued
read lock misses, a chance to issue a memory lock request.

As shown in FIG. 5A, typical timing of a static
random access memory without active memory optimization and
with active memory optimization is shown. As can be seen,
grouping reads and writes improves cycletime eliminating
dead cycles.

Referring to FIG. 6, communication between the
microengines 22 and the FBUS interface Logic (FBI) is
shown. The FBUS interface 28 in a network application can
performs header processing of incoming packets from the
FBUS 18. A key function which the FBUS interface performs

is extraction of packet headers, and a microprogrammable
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source/destination/protocol hashed lookup in SRAM. 1If the
hash does not successfully resolve, the packet header is
promoted to the core processor 28 for more sophisticated
processing.

The FBI 28 contains a Transmit FIFO 182, a
Receive FIFO 183, a HASH unit 188 and FBI control and
status registers 189. These four units communicate with
the microengines 22, via a time-multiplexed access to the
SRAM bus 38 which is connected to the transfer registers
78, 80 in the microengines. That is, all communications to
and from the microengines are via the transfer registers
78, 80. The FBUS interface 28 includes a push state
machine 200 for pushing data into the transfer registers
during the time cycles which the SRAM is NOT using the SRAM
data bus (part of bus 38) and a pull state machine 202 for
fetching data from the transfer registers in the respective
microengine.

The Hashing unit includes a pair of FIFO=s 188a,
188b. The hash unit determines that the FBI 28 received an
FBI hash request. The hash unit 188 fetches hash keys from
the calling microengine 22. After the keys are fetched and
hashed, the indices are delivered back to the calling
microengine 22. Up to three hashes are performed under a
single FBI_hash request. The busses 34 and 38 are each
unidirectional: SDRAM push/pull data, and
Sbus_push/pull data. Each of these busses require control
signals which will provide read/write controls to the

appropriate microengine 22 Transfer registers.
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Generally, transfer registers require protection
from the context controlling them to guarantee read
correctness. In particular, if a write transfer register
is being used by a thread 1 to provide data to the SDRAM
16a, thread_1 must not overwrite this register until the
signal back from SDRAM controller 26a indicates that this
register has been promoted and may now be re-used. Every
write does not require a signal back from the destination
indicating that the function has been completed, because if
the thread writes to the same command queue at that
destination with multiple requests, the order of the
completion is guaranteed within that command queue, thus
only the last command requires the signaling back to the
thread. However, if the thread uses multiple command
gueues (order and read), then these command requests must
be broken into separate context tasks, so that ordering is
maintained via context swapping. The exception case
indicated at the beginning of this paragraph is relative to
a certain class of operations using an unsolicited PUSH to
transfer registers from the FBI for FBUS status
information. 1In order to protect read/write determinism on
the transfer registers, the FBI provides a special
Push protect signal when these special FBI push operations

are set up.
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Any microengine 22 that uses the FBI unsolicited
push technique must test the protection flag prior to
accessing the FBUS interface/microengine agreed upon
transfer registers. If the flag is not asserted, then the
transfer registers may be accessed by the microengine. If
the flag is Asserted then the context should wait N cycles
prior to accessing the registers. A priori this count is
determined by the number of transfer registers being
pushed, plus a frontend protection window. The basic idea
is that the microengine must test this flag then quickly
move the data which it wishes to read from the read
transfer registers to GPR's in contiguous cycles, so the
push engine does not collide with the microengine read.

Other Embodiments

It is to be understood that while the invention
has been described in conjunction with the detailed
description thereof, the foregoing description is intended
to illustrate and not limit the scope of the invention,
which is defined by the scope of the appended claims.

Other aspects, advantages, and modifications are within the

scope of the following claims.

What is claimed is:

-43-



10

15

20

25

WO 01/16769 PCT/US00/22653

CLAIMS

1. A controller for a random access memory
comprises:

an address and command queue that holds memory
references from a plurality of microcontrol functional
units, said address and command queue comprising:

a read queue;

a first read/write queue that holds memory
references from a core processor; and

control logic including an arbiter that detects
the fullness of each of the queues and a status of
completion of outstanding memory references to select a

memory reference from one of the queues.

2. The controller of claim 1 wherein the control
logic further selects one of the queues to provide a next
memory references based on a programmable value stored in a

priority service control register.

3. The controller of claim 1 wherein the address and
command gueue comprises:
a high priority queue that holds memory

references from high priority tasks.
4. The controller of claim 1 wherein a microengine

sorts memory references into read and write memory

references.
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5. The controller of claim 1 wherein the address and
command queue comprises:

an order queue that holds write memory requests
wherein the controller examines incoming reference requests
and sorts the incoming memory reference requests into
either the read queue or an order queue in accordance with

a specified address mode.

6. The controller of claim 5 wherein the address and
command queue comprises:

an order queue; and

wherein 1f the memory reference request does not
have a memory optimization bit set, the memory reference is

stored in the order queue.

7. The controller of claim 1 wherein the address and
command queue is implemented in a single memory structure
and comprises:

an order queue for storing memory references;

an read queue for storing memory references;

a high priority queue for storing memory
references; and

with the memory structure being segmented into
four different queue regions, each region having its own

head and tail pointer.
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8. The controller of claim 7 wherein the address and
command queue further comprises:

an insert queue control and a remove queue
arbitration logic to control insert and removal of memory

references from the queues.

9. The controller of claim 1 further comprising:

a command controller and address generator that
is responsive to an address from a selected memory
reference from one said queues, to produce addresses and

commands to control a memory interface.

10. The controller of claim 9 further comprising:
a memory interface responsive to generated

addresses and commands to produce memory control signals.

11. The controller of claim 9 wherein controller
further comprises:
a lock lookup content addressable memory for

look-ups of read locks.

12. The controller of claim 10 wherein the address
and command queue further comprises:

a Read Lock Fail Queue to hold read lock memory
reference requests that fail because of a preexisting lock

is on a portion of memory.
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13. The controller of claim 12 wherein controller
comprises control logic to respond if one of the
microengines issues a read lock request by accessing the
lock lookup memory to determine whether the memory location

is already locked.

14. The controller of claim 13 wherein if the memory
location is locked from any prior read lock request, then
the issued memory lock request fails and is stored in the

read lock fail queue.

15. The controller of claim 14 wherein if the memory
location is not locked then the issued memory reference is
converted into address signals for the memory by the memory

interface.

16. The controller of claim 15 wherein the command
controller and address generator enters the lock for the
memory address for the issued memory reference into the

lock look up memory.
17. The controller of claim 1 wherein the controller

is configured to control static random access memory

(SRAM) .
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