The present invention relates to ski constructions featured by equipment therefor to permit engaging each ski by a pole that may be used for effective control thereof.

A general object of the present invention is to provide simple and readily constructed and easily used pole engaging means intended to be mounted on each ski for ready engagement of a control pole, either of the conventional ski pole type or other similar pole construction, whereby a grip at the top end of the pole is readily available to a skier's hand when he is wearing a pair of such skis, the pole when so anchored to the ski permitting desired edging of the latter by lateral hand pressure on the pole handle while being so manipulable as to avoid endangering the skier in spills, and also permitting easy and effective retention of balance in an unusual manner.

A more specific object of the invention is to provide such apparatus which may equip a ski with a swingable pole that may be swung longitudinally forward to lie substantially flat along the ski or to be automatically detached from the latter in such motion, while being relatively immobile laterally of the ski in generally upright positions to permit edging ski control with provision, if desired, for limiting rearward pole swing from upright positions to assure more positive steadying of a skier.

Another object of the present invention is to provide such pole engaging means in the form of an anchorage for attachment to a ski in front of a skier wearing the same or a ski so equipped as to permit simple pole attachment or anchorage by a rather haphazard stabbing motion without necessitating particular care or skill or stopping action on the part of the skier to effect the desired attachment.

A further object of the invention is to provide such means whereby a ski pole of conventional design may be employed alternatively and at will to serve two purposes, its now intended function and means for ski guidance control and steadying support for a skier.

An additional object of the present invention is the provision of skis with upright poles in front of the skier, self-adaptable to his natural crouching stance in skiing, permitting and even tending to provide or increase loading of the front ends of the skis which naturally increases maneuvrability and control.

A still further object of the invention is to provide skis with poles appreciably forward of the boot platforms which in one embodiment are so attached or anchored thereto, at least temporarily, as to set up longitudinal triangles of support up through the poles, skier's arms and down through his body and legs as to steady him in a manner avoiding tipping backwards, while permitting development of lateral support triangles which permit easy recovery from dangerous angles of excessive leaning sideways.

Other objects of the invention will in part be obvious and will in part appear hereinafter.

The invention accordingly comprises the features of construction, combination of elements and arrangement of parts, which will be exemplified in the construction hereinafter set forth, and the scope of the invention will be indicated in the claims.

For a fuller understanding of the nature and objects of the invention, reference should be had to the following detailed description taken in connection with the accompanying drawings, in which:

Fig. 1 is a side elevational view of an embodiment of the present invention showing two positions of the pole, one in full lines and the other in dot-dash lines, with portions of a skier's body indicated in a normal position of rest before beginning a run;

Fig. 2 is an enlarged side elevation of ski clip and pole structure shown in Fig. 1, with parts broken away;

Fig. 3 is a sectional view substantially on line 3—3 of Fig. 2;

Fig. 4 is a perspective view of one part of the clip structure shown in Figs. 2 and 3;

Fig. 5 is a view similar to Fig. 2 of another embodiment of the invention;

Fig. 6 is a view similar to Fig. 3 of the embodiment shown in Fig. 5;

Fig. 7 is a top plan view of the structure shown in Fig. 5;

Fig. 8 is a sectional view taken substantially on line 8—8 of Fig. 5;

Fig. 9 is a top plan view, with parts broken away, of a modification of the clip structure shown in Fig. 7;

Fig. 10 is a side elevational view, with parts broken away and in section, of a modified form of the structure shown in Fig. 2, shown mounted on a portion of a ski;

Fig. 11 is a top plan view of the structure shown in Fig. 10;

Fig. 12 is a sectional view taken substantially on line 12—12 of Fig. 10; and

Fig. 13 is an enlarged perspective view of one of the pair of spring clips employed in the structure shown in Figs. 10 to 12 inclusive.
Referring to the drawings, like numerals indicate similar parts throughout, and, as will be seen from Fig. 1, each of a pair of skis of conventional form may, as is well known, comprise an area of the runner 16, having a tip 14 and tail 12, with a boot platform 13 located therebetween. In accordance with the present invention, such a ski 10 is to be equipped with pole engagement means or a clip structure 14 to which a substantially rigid pole 15 may be pivotally attached.

Since the most skiers use in practicing the sport of skiing a pair of ski poles of conventional form, it is preferred that the present invention be practiced in a manner to utilize those ski poles as the poles to be engaged or mounted on the skis in accordance with the teachings of the present application. Each ski pole thus may comprise a short handle 16 having a fitted with a grip 17 at its upper end to which is secured the usual wrist strap 18. Near its lower end, the ski pole 15 is fitted with the usual snow ring 19, secured thereto by flexible attachment means or webbing 21. The position of the pole 15 below the snow ring 19 may be considered to be the point 21 comprising a tapered point tip 22 and its shank 23.

In order to use the conventional pole 15 for purposes of the present invention, its point 21 may be equipped with a suitable attachment 24, which may comprise an elongated socketed steel member or sleeve 25 provided with a tapered tip 26 and thereabout with a circumambient or circular collar 27 preferably tapered on its lower side, as shown, and squared off on its upper side to provide opposed anchoring shoulders 28, 29. Of course, since the collar 27 is continuous, its upper squared surface provides a plurality of pairs of diametrically opposed shoulders 28, 29 about the pole point shank 23, with any one of such pair being available for use, as may be dictated by the particular orientation of the pole about its longitudinal axis. The attachment member 25 is readily and quickly secured to the pole point 21 by virtue of the fact that its upper end 29 is longitudinally split, as indicated at 30, externally threaded as shown at 31, and provided with a downwardly flared wedging shoulder 32, as best shown in Fig. 3. An internally-threaded collar 33 is threadably engaged upon the externally-threaded upper end 29 of member 25 and is provided with an internally-threaded throat 34 jammed down upon the flared shoulder 32. As a result, the slotted upper end 29 of member 25 is constricted so as to grip and securely anchor the pole within pole point 21.

It will be understood that the equipment of a ski pole, such as 15, with the attachment 24 is readily accomplished at will and may be permanently left in position on the pole 15 since it does not interfere with normal use of the pole in the manners well known to those skilled in the art of skiing. As a result, such permanent mounting of attachment 24 makes available at all times its use in accordance with the teachings of the present invention for anchorage of a pole so equipped to a ski provided with suitable clip means of the present invention.

In the embodiment of the invention shown in Figs. 1 to 4 inclusive, the clip means 14 may comprise two laterally spaced-apart side members or plates 35, 36, each provided with a footing flange 38, suitably mounted on or secured to the top of the ski 10, such as by screws 37-37. The footing flanges 38, 36 together comprise the base of the clip 14. Side members 35, 36 are preferably formed of resilient sheet metal and are shaped as shown in Fig. 2. Each of the side members 35, 36 thus, preferably, has a top curved edge 35 which is provided with an imbricate aerofoil (as shown) turned laterally inward and downward, as best shown in Fig. 3. The lower edge 40 of each of flanges 38, 35 forms an anchorage abutment and is preferably curved along an arc of a circle about a center at 41, as indicated in Fig. 2. The edges 40 of resilient flange 38, 35 are preferably spaced apart a distance somewhat less than the diameter of member 25 just above shoulder collar 27, so as frictionally to grip therebetween the fitting 24 secured upon pole 15. As a result, when the tip 26 is placed between downwardly sloping flanges 38, 35 of clip 14 and the pole 15 then forced downwardly, those flanges will be resiliently spread apart to permit passage therebetween of the abutment collar 27 until the flange edges 40, 40 can snap toward each other above shoulders 25, 29. Thus, the pole 15 will be securely anchored to the clip 14, while the latter permits pivotal movement of the pole longitudinally of the ski 10 with the shoulders 28, 29 sliding beneath the curved edges 40, 45. Opposing side pressure of the spring flanges 38, 35 on opposite sides of the pole keep it from falling forward or backward if released by the hand of the skier.

Clip 14, in the embodiment shown in Figs. 1 to 4 inclusive, also includes bucket member 41 having a cupped bottom with an upwardly sloping front wall 42, a downwardly-sloping back panel 43 and opposed spaced-apart side panels 44, 45, with the latter preferably fastened or spot welded to base flanges or side plates 35, 36. At the top, back panel 43 may be merged with a supplemental strengthening and securing means, such as curved anchoring flange 46 which is secured in any desired manner to the opposed side plates 35, 36 such as by spot welding. There is provided in cupped bottom 42, at the bottom of the sloping back panel 43, suitable tip-receiving socket means, which may be in the form of a hole 48 of a diameter smaller than the external diameter of the main body of attachment member 25 above bearing point 41 on its tapered tip 26. It will thus readily be seen that the hole 46 is adapted to receive a portion of tip 26 while limiting downward movement of the pole 15, with the resulting socket mounting permitting pivotal action of the pole. The back panel 43 may, as explained more fully hereinafter, serve as a stop means for limiting backward swing of the pole 15, as well as a tip guide in mounting the pole equipped with attachment 24 upon a ski equipped with clip 14.

Operation of the present invention will be understood from the following. As shown in Fig. 1, the engagement or clip means 14 preferably is mounted on ski 10 and appreciable distance forward of the boot platform 13, between that platform and the ski tip 11, and preferably about twelve inches (12") ahead of the toes of a skier's boot; so as to permit effective ski control by the pole with the latter in any of its anchored, readily accessible and adjustable, upright positions forward or in its rearmost position, indicated in full lines in Fig. 1. As a result, when the pole 15 is in a position to the rear of a line normal to the longitudinal axis of the ski 10, the invention provides a pull member for the skier which enables him to steady his balance when encountering uneven terrain in skiing, minimizing the tendency for a tyro to relinquish excessively (the tendency for a beginner to lean backward to a degree of
overbalancing). This structure develops triangles of forces from the clips 14 up the poles 15 and skier’s arms to his body, down his body and legs to boot platform 13, and forward along the skis 10 back to clips 14, which give effective longitudinal support to the skier.

The present invention further involves longitudinally-extending abutment flange edges 40, 48, 40, laid out on the arcs of circles generated about a center 41 at the hole or socket, 48, permit pivoting of the pole 15 longitudinally of the ski from the rearmost position shown in full lines at X in Fig. 1, forward through an arc of swing comprising angles (a) and (b) to the foremost anchored position indicated in dot-dash lines at Y, with these positions making acute angles (a) and (b) to a vertical line Z through the clip 14. This permitted pole longitudinal swing avoids any interference with a skier’s natural tendency and need to crouch forward during downhill runs, the poles being automatically adjustable from one to another of the plurality of upright positions thereof to accommodate the skier’s almost constantly changing degree of crouch attendant upon altering conditions of terrain, speed, etc., while naturally tending to load the skis as the skier unconsciously supports part of the weight of his leaning body by the poles on the skis forward of their attachment to his boots. This front loading desirably increases maneuverability and control of the skis.

Beyond the extreme forward anchored position at Y, further forward pivoting of the pole 15 will disengage its shoulders 28, 28 from beneath the front ends of abutment flanges 40, 40 to free the pole from the clip 14. Thus, if the skier is catapulted forward by encountering an obstruction, the poles will be freed from the skis to be carried with him, so that any tendency of injury due to attachment of the poles to the skis will be absent.

The embodiment of the present invention shown in Figs. 1 to 4 inclusive, is of particular advantage in that the anchorage mounting of the poles to the skis is a simple matter requiring no skill and no inconvenient stooping. The skier, when he desires to anchor the poles to the skis, merely slots the point of each into the open top of its anchorage clip 27. The pole tip 26 will be guided by downwardly and inwardly sloping flanges 39, 39 to the space intervening between their shoulders or abutment edges 40, 40 to strike against the downwardly and forwardly sloping back panel 45 or its upwardly sloping lip or front wall 42 forward of the hole 48, so as to be guided into the latter as the tapered bottom side of collar 27 spreads these spring flanges 39, 39 apart until their abutment edges can snap down together above the shoulder 28, 28, pivotally to anchor each of the poles securely to its ski.

The stop 14 substantially prevents any lateral pivoting of each of the poles 15 relative to the ski to which it is anchored so that the pole may be employed to edge the ski by lateral pressure on the pole handle for helpful ski control in making turns and also in climbing. This prevention of lateral swing of the poles relative to the skis is also very useful in increasing a skier’s power of recovery from any tendency to fall sideways. As he overbalances to one side he naturally tends to lift his foot and the ski attached thereto on the far side and leveris inward on the top of the pole engaged with the ski, thus pushing down on that ski being lifted. Similar conditions of leveraging and downward push are set up by the over-balancing skier relative to the inside ski and its engaged pole. As a result lateral triangles of forces are set up which provide the skier with sufficient supplemental support to permit him to force himself upright again, except in extreme cases of extreme lateral overbalance, and this has been found to be a highly important feature of the present invention.

It will thus be seen that longitudinal swing with avoidance of lateral swing of the poles is very important and that tying of poles to skis provides support for a skier in every direction. This greatly reduces the strain on the ankles and legs. Further, provision for automatic freeing of the poles from the skis is a helpful feature of embodiments of the present invention in order to avoid danger of injury when a skier is catapulted forward in a spill. However, insofar as the latter feature is concerned, such danger is minimized if the pole is permitted freely to collapse down upon the ski tip. There is a further reason for providing for ready separation of the poles from the ski by means of the anchorage of the present invention since a skier might well desire at times to employ the skis and the ski poles in the now conventional manner.

In the embodiment shown in Figs. 5 and 8 inclusive, clip means 114 is shown in the form of a U-shaped base member 136 having a transversely-extending portion 47, preferably shaped to conform to the top surface of the ski and fastened to the latter by means of screws 37, 37. Upwardly-extending side arms 135, 135 of the U-shaped base member 136 pivotally carry therebetween anchorage means to which the ski pole is to be snap fastened. For this purpose the point 21 of the ski pole 15 may be provided with a downwardly tapered collar 127 having a squared top surface to provide on opposite sides anchoring shoulders 128, 128. The clip abutment means is provided by a box-shaped frame 48 having side arms 45, 49 respectively pivotally mounted at 50, 50 to the arms 135, 135 of base member 136. The box member 48 includes a cone-shaped or cupped bottom 51 extending transversely between the two side portions 49, 49 and at its lowest point the tip-receiving socket is formed, preferably by means of a hole 148, to receive the tip 22 of pole point 21, while limiting the tip will pass through that hole. The upper side of the box member 48 is provided by two inwardly-turned and downwardly-sloping resilient flanges 133, 133 having their inner bottom edges 140, 140 serving as abutment shoulders beneath which collar 21 is to be received by snap action, provided by forming the box member 48 of resilient sheet material, such as spring steel.

Stop means are provided in the embodiments shown in Figs. 5 to 8 inclusive, by transverse bars 52, 52 mounted between side arms 135, 135 and suitably secured thereto. Each of the stop bars 52 preferably is provided centrally thereof with a laterally-projecting abutment element 53 to serve as engagement means for the coned bottom 51 of the box member 48, to limit the longitudinal pivoting action thereof. Such limiting of forward swing of the clip means 114 by that stop means on the front side of base member 136 is best indicated by the dot-dash position 148, shown in Figs. 5, 6, to which it is swung by pole 15 and the latter is swung forward to position Y at the front limit of the arc of its anchored swing. The similar stop bar 52 provided with abutment element 53 located on the rear side of base member 136.
dictates the rearmost position of box member 48 as the pole 15 is swung backward to position X. As shown in Fig. 7, the inwardly and downwardly sloping flanges 139, 139 are so shaped as to provide a slot 54 therebetween having a wide mouth at least at the front side of the clip. Medially of that slot 54, in its most restricted portion, there are preferably formed small notches at 55, 55 to dictate the normal, securely anchored position of the pole point 21.

It will thus be seen that, in the embodiment shown in Figs. 5 to 8 inclusive, a ski pole 15 equipped with the tapered collar 127 may be readily mounted to the clip 114 by stabbing the pole point 21 between the in-turned downwardly sloping flanges 139, 139, which guide the tip 22 toward the slot 54 between their edges 140, 140. Those flanges will be spread apart by the tapered collar 127, to permit the latter to be snapped to beneath the flange edges 140, 140, with the tip 22 finding the hole 148 in the coned bottom 51 of the box member 48. The shank 23 of point 21 either will find its central position in notches 55, 55, or may be caused to be moved thereto by manipulating the pole backward or forward, as may be necessary, with the box member 48 suitably jammed against one of its stops 53, 53.

In use of the embodiment shown in Figs. 5 to 8 inclusive, the action is similar to that described above in connection with the form disclosed in Figs. 1 to 4 inclusive, and any tendency for the ski to be catapulted from his ski will cause the pole 15 to be pivoted forward to the position Y where forward stop 53 limits further pivoting action of box member 48. Further forward turning pressure on the pole by the skier as he is thereby forward will force the pole 15 out of notches 55, 55 further along the slot 54 to emerge from the clip through the wide front mouth of the slot, thereby freeing collar 127 from beneath the abutment edges 140, 140. It may be desired to limit backward movement of the pole point in clip devices of the type shown in Figs. 5 to 8 inclusive, without attendant disengagement of the poles so as to check excessive rickrack. For this purpose, there may be provided a limiting means, such as that proposed in Fig. 9, which may comprise a crossbar 56 suitably secured to the abutment flanges 139, 139 to bridge across the rear mouth of slot 54 therebetween, and there may be provided in such crossbar a notch 57 to shank 23 of point 21 as it is forced from opposed notches 55, 55. Also, it will be understood that stop bar structure, such as 56, may be located closely adjacent to, or immediately behind notches 55, 55, so that the point shank 23 may be prevented from moving to the rear thereof.

Advantages of the present invention may be attained by clip embodiments in which no particular provision is made for longitudinal swing-limiting stops. As is shown in Figs. 10 to 13 inclusive, the clip means may be in the form of attachment 214, wherein side plates 235, 235 are shown provided with flanges 236, 236 suitably anchored to the top of a ski, forward of a boot platform. There is mounted between side plates 235, 235 a relatively shallow bucket member 241 having opposed side walls 244 and 244 suitably secured to those side plates and sliding front and back walls 242 and 243. The top edges of side walls 244, 244 are provided with inwardly and downwardly sloping panels 239, 239 to guide a pole point to the slot between those side walls when stabbed into the clip, and the tip recess is provided by a hole 246 in the bottom of the slot that extends from front and back walls 242 and 243 merge. Separate spring clips 58, 58 are provided to form the anchorage abutments, each located in a slot 59 in one of the side walls 244 with its bottom portion anchored to the latter as shown, with each spring clip having its top free edge turned inwardly and downwardly to provide sloped flange 339 with the curved bottom edge 340 thereof serving as one of the pair of abutment shoulders to engage pole attachment 224. It will be noted that the abutment edges 340, 340 of clips 58, 58 preferably extend generally along arcs of circles circumscribed about hole 246 through much smaller angles than the relatively large angle defined between front and back sloping walls 242 and 243. As a result swing of the pole between the latter will permit freeing of the pole both forward of and to the rear of spring clips 58, 58, anchorage of the pole by the latter being assured only in the plurality of upright positions normally satisfying the changing crouch of the skier in normal operation. All advantageous features of the embodiment illustrated may be substituted for clip structure shown and by this modification except stop means to limit backward swing at an acute angle with a vertical line through the clip means of the order of that first embodiment. Further, this last embodiment provides greater strength in the side structure which resists lateral swing of the pole relative to the ski which may be desired for the edging control of the latter and recovery action in excessive sideways overbalancing. It is contemplated that advantages of the present invention may be attained by clip devices of the type shown in Figs. 1 to 4 inclusive, without attendant disengagement of the poles so as to check excessive rickrack. For this purpose, there may be provided a limiting means, such as that proposed in Fig. 9, which may comprise a crossbar 56 suitably secured to the abutment flanges 139, 139 to bridge across the rear mouth of slot 54 therebetween, and there may be provided in such crossbar a notch 57 to shank 23 of point 21 as it is forced from opposed notches 55, 55. Also, it will be understood that stop bar structure, such as 56, may be located closely adjacent to, or immediately behind notches 55, 55, so that the point shank 23 may be prevented from moving to the rear thereof.

Advantages of the present invention may be attained by clip embodiments in which no particular provision is made for longitudinal swing-limiting stops. As is shown in Figs. 10 to 13 inclusive, the clip means may be in the form of attachment 214, wherein side plates 235, 235 are shown provided with flanges 236, 236 suitably anchored to the top of a ski, forward of a boot platform. There is mounted between side plates 235, 235 a relatively shallow bucket member 241 having opposed side walls 244 and 244 suitably secured to those side plates and sliding front and back walls 242 and 243. The top edges of side walls 244, 244 are provided with inwardly and downwardly sloping panels 239, 239 to guide a pole point to the slot between
also to experts who find equipment of the present invention greatly relieves the strain of controlling balance and skis with legs only and particularly so in maintaining control by “snow plowing.”

It will thus be seen that the objects set forth above and those indicated in the above description, among others made apparent from the present disclosure, are efficiently attained, and, since certain changes may be made in the above construction and different embodiments of the invention could be made without departing from the scope thereof, it is intended that all matter contained in the above description or shown in the accompanying drawings shall be interpreted as illustrative and not in a limiting sense.

It is also to be understood that the following claims are intended to cover all of the generic and specific features of the invention herein described, and all statements of the scope of the invention which, as a matter of language, might be said to fall therebetween.

Having described my invention, what I claim as new and desire to secure by Letters Patent is:

1. Ski pole engaging means for a ski comprising means to be secured on the top side of a ski appreciably forward of its boot platform, said means being cupped to provide a flared pocket readily receivable of a pole point stabbed into it and having point-engaging means to limit downward point movement while permitting free pole swing longitudinally of the ski between a plurality of upright positions, said pole engaging means having side abutment means to limit lateral pole swing to either side.

2. Ski pole engaging means as defined in claim 1 characterized by said clip means being automatically releasable of said pole point when the pole is swung forward beyond a critical upwardly-extending position.

4. Guidable ski construction comprising a ski substantially of conventional form having a boot platform, a ski pole substantially of conventional form having an anchoring attachment at its point, and an anchoring clip on said clip in front of said platform detachably to engage said attachment when the point is stabbed into said clip, said clip permitting longitudinal swinging motion of said pole through a longitudinal arc between backward and forward upright positions while substantially preventing lateral swing of said pole relative to said ski.

5. The guidable ski construction as defined in claim 4 characterized by said pole attachment being automatically releasable by said clip when said pole is swung forward beyond a critical upright position.

6. Ski pole anchorage means for a ski comprising clip means to be secured on the top side of a ski forward of its boot platform and having means detachably to engage the point of a ski pole pivotally to anchor the latter against longitudinal pull thereon when its shaft projects upward within a longitudinally-extending swing arc the forward limit of which forms an acute angle with a vertical line through said clip means, said means permitting freeing of said pole from the longitudinal swinging of the ski pole through the swing arc preventing any substantial amount of lateral swinging of the pole relative to the ski within that arc so that the ski may be edged by lateral pressure on the pole handle, said engagement means being readily disengageable from the pole when the latter is swung forward beyond the limit of the swing arc.

7. The ski pole anchorage means defined in claim 6 characterized by provision of said engagement means as comprising a pair of opposed, laterally-spaced abutments on said clip means to receive therebetween the pole point with shoulders on the latter engaged below said abutments within the swing arc, said abutments permitting freeing of the pole when the latter is swung forward beyond the swing arc to carry the pole shoulders from beneath said abutments.

8. The ski pole anchorage means defined in claim 7 adapted for disengageable attachment of a ski pole having a point terminating in a tip, characterized by provision of a socket below said abutments to receive the tip of the point when the shoulders on the point are placed below said abutments.

9. The ski pole anchorage means defined in claim 8 adapted for disengageable attachment of a ski pole having a point comprising a shank structure terminating in a tapered portion constituting the tip, characterized by the provision of said socket as a hole in the clip structure below said abutments with the hole diameter being substantially less than the diameter of the point shank to provide stop means limiting downward movement of the pole in said clip means.

10. The ski pole anchorage means defined in claim 9 characterized by the provision of said abutments in the form of resilient flanges turned laterally in toward each other with the opposed edges directed downwardly readily to receive the pole point therebetween and to be sprung apart by downward pole movement until they are permitted to snap toward each other above said anchoring shoulders.

11. A guidable ski comprising, in combination, a ski substantially of conventional form having the usual boot platform, anchorage means mounted on the top of said ski ahead of said platform, a pole pivotally mounted at its lower end on said anchorage means for swinging movement longitudinally of said ski with said pole being of a length about sufficient to reach the vicinity of the waist of a skier using said equipment when the pole is in an upright position for convenient gripping of the pole handle, said anchorage means substantially preventing any substantial amount of lateral swinging of said pole when in an upright position relative to said ski so that the latter may be edged by lateral pressure on the pole handle while permitting collapse of said pole downwardly upon said ski toward the tip thereof when swung longitudinally forward, and stop means on said pole preventing means to limit backward longitudinal swinging of said pole from an upright position toward the ski tail.

12. The guidable ski construction defined in claim 11 characterized by the provision of said anchorage means with friction means to resist forward swinging of said pole from an upright position.

13. A guidable ski comprising, in combination, a ski substantially of conventional form having the usual boot platform, a clip base fastened to said ski ahead of said platform and having laterally-spaced arms projecting upward from the top side of said ski, a pair of laterally-spaced abutments on said arms extending laterally inward toward each other, a ski pole substantially
of conventional form with a shaft of normal length having a point comprising a shank terminating in a tip, shoulder means on opposite sides of the shank of said point slidably to be engaged below said pair of abutments with said shank received between the latter in an upright position, and point-receiving means below said abutments disengageably to receive said tip and prevent motion thereof longitudinally of said ski when said shoulder means are slidably located below said abutments while permitting swinging motion of said pole longitudinally of said ski.

14. The guidable ski construction as defined in claim 13 characterized by the provision of said pair of abutments in the form of resilient longitudinally-extending flanges turned laterally in toward each other with their inner opposed edges directed downwardly readily to receive the point shank therebetween.

15. The guidable ski construction defined in claim 14 characterized by the provision of said abutment flanges in arcuate form with their opposed edges lying substantially along arcs of circles circumscribed about said point-receiving means as a center and of such length as to permit anchored swinging of said pole longitudinally of said ski through a swing arc the limits of which form acute angles with a vertical line through said point-receiving means, said shoulders being freeable from behind said abutment flanges when said pole is swung forward toward the ski tip beyond the swing arc with disengagement of said point permitted by longitudinal motion of said shaft.

16. The guidable ski construction defined in claim 15 characterized by the provision of said point-receiving means in the form of a socket in said clip base with said arcuate abutment flanges thereabove sloped inwardly toward the socket to permit ready anchoring engagement of said pole with said clip when said point is stabbed into the latter.

17. The guidable ski construction defined in claim 16 characterized by the provision in said clip means of a pair of point-guiding surfaces extending longitudinally of the ski with one sloping downward and forward and the other sloping downward and backward toward the socket to serve as guides for said point when stabbed into said clip.

18. The guidable ski construction defined in claim 17 characterized by the provision of supplemental sloping guide means on both sides of the socket between said front and back sloping surfaces.

WILLIAM H. WHEELER.

No references cited.