Abstract:
An exhaust aftertreatment system may include an exhaust gas passageway and a mixer assembly. The exhaust gas passageway may receive exhaust gas output from a combustion engine. The mixer assembly may be disposed along the exhaust gas passageway and may receive the exhaust gas. The mixer assembly may include a mixer housing, a mixing bowl and an injector housing. The mixing bowl may be disposed within the mixer housing and may include an outer diametrical surface that engages an inner diametrical surface of a wall of the mixer housing. The injector housing may extend through the wall and into an aperture in the mixing bowl. The aperture may define a flow path through which at least a majority of the exhaust gas entering the mixer assembly flows. The mixing bowl may include an upstream end portion having contours directing the exhaust gas toward the injector housing.
EXHAUST AFTERTREATMENT SYSTEM HAVING MIXER ASSEMBLY

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This application claims priority to U.S. Utility Application No. 15/001,356, filed on January 20, 2016 and also claims the benefit of U.S. Provisional Application No. 62/106,398, filed on January 22, 2015. The entire disclosures of the above applications are incorporated herein by reference.

FIELD

[0002] The present disclosure relates to a mixer assembly for an exhaust aftertreatment system.

BACKGROUND

[0003] This section provides background information related to the present disclosure and is not necessarily prior art.

[0004] In an attempt to reduce the quantity of NOx and particulate matter emitted to the atmosphere during internal combustion engine operation, a number of exhaust aftertreatment devices have been developed. A need for exhaust aftertreatment systems particularly arises when diesel combustion processes are implemented. Typical aftertreatment systems for diesel engine exhaust may include a hydrocarbon (HC) injector, a diesel oxidation catalyst (DOC), a diesel particulate filter (DPF), and a selective catalytic reduction (SCR) system.

[0005] SCR technology has been used in conjunction with reducing nitrogen oxides present in the exhaust of combustion engines. Some of these systems are constructed using urea-based technology including a container for storing a reductant (e.g., urea) and a delivery system (including an injector, for example) for transmitting the reductant from the container to the exhaust stream. A mixer is typically provided for mixing the injected reductant with the exhaust gas before the reductant reaches a catalyst with which the reductant reacts. While these systems may have performed well in the past, it may be desirable to
provide an improved mixer to more efficiently and effectively mix the reductant with the exhaust stream.

SUMMARY

[0006] This section provides a general summary of the disclosure, and is not a comprehensive disclosure of its full scope or all of its features.

[0007] An exhaust aftertreatment system may include an exhaust gas passageway and a mixer assembly. The exhaust gas passageway may receive exhaust gas output from a combustion engine. The mixer assembly may be disposed along the exhaust gas passageway and may receive the exhaust gas.

The mixer assembly may include a mixer housing, a mixing bowl and an injector housing. The mixing bowl may be disposed within the mixer housing and may include an outer diametrical surface that engages an inner diametrical surface of a wall of the mixer housing. The injector housing may extend through the wall and into an aperture in the mixing bowl. The aperture may define a flow path through which at least a majority of the exhaust gas entering the mixer assembly flows. The mixing bowl may include an upstream end portion having contours directing the exhaust gas toward the injector housing.

[0008] In some configurations, the upstream end portion of the mixing bowl includes a pair of recesses that extend along lateral sides of the upstream end portion and diverge away from each other as the recesses extend toward a flange portion of the mixing bowl.

[0009] In some configurations, the upstream end portion of the mixing bowl includes a generally U-shaped recess.

[0010] In some configurations, all of the exhaust gas entering the mixer assembly flows through the aperture.

[0011] In some configurations, the injector housing is an annular member having a plurality of openings through which exhaust gas enters before flowing through the aperture in the mixing bowl. The plurality of openings may be defined by a plurality of louvers.

[0012] An injector may inject reagent (e.g., reductant or hydrocarbon fuel) into a mixing chamber defined by the injector housing and the mixing bowl.
The exhaust gas and the reagent may mix with each other in the mixing chamber.

[0013] In some configurations, the exhaust aftertreatment system includes an exhaust aftertreatment component (e.g., a selective catalytic reduction catalyst or an oxidation catalyst) disposed downstream of the mixing bowl and receiving the mixture of reductant and exhaust gas.

[0014] In some configurations, the mixer assembly includes a mixing element (e.g., a mixing plate or other mixing structure) disposed between the mixing bowl and the selective catalytic reduction catalyst, the mixing element including a plurality of louvers and openings.

[0015] In some configurations, the mixing bowl includes a flange portion and a collar portion. The flange portion may be disposed between the upstream end portion and the collar portion. The aperture may extend through the flange portion and is disposed between the collar portion and an inlet of the mixer housing.

[0016] In some configurations, the collar portion is disposed further downstream than the upstream end portion.

[0017] In another form, the present disclosure provides a mixer assembly receiving exhaust gas from an engine and mixing the exhaust gas with an injected fluid. The mixer assembly may include a mixer pipe, a mixing bowl and an injector housing. The mixing bowl may be disposed within the mixer pipe and may include an outer diametrical surface that engages an inner diametrical surface of a wall of the mixer pipe. The mixing bowl may have a diameter that is equal to an inner diameter of the mixer pipe. The injector housing may receive the injected fluid and may extend through the wall and into an aperture in the mixing bowl. The aperture may define a flow path through which exhaust gas flows. The mixing bowl may include contours directing the exhaust gas toward the injector housing.

[0018] In some configurations, an upstream end portion of the mixing bowl includes a pair of recesses that extend along lateral sides of the upstream end portion and diverge away from each other as the recesses extend toward a
flange portion of the mixing bowl. The aperture may be formed in the flange portion.

[0019] In some configurations, the upstream end portion of the mixing bowl includes a generally U-shaped recess.

[0020] In some configurations, all of the exhaust gas entering the mixer pipe flows through the aperture.

[0021] In some configurations, the injector housing is an annular member having a plurality of openings through which exhaust gas enters before flowing through the aperture in the mixing bowl.

[0022] In some configurations, the plurality of openings are defined by a plurality of louvers.

[0023] In some configurations, the mixer assembly includes an injector injecting the injected fluid into a mixing chamber defined by the injector housing and the mixing. The exhaust gas and the injected fluid mix with each other in the mixing chamber.

[0024] In some configurations, an outlet of the mixer pipe is connected to an inlet of a housing of a selective catalytic reduction catalyst. The selective catalytic reduction catalyst may receive the mixture of the injected fluid and exhaust gas.

[0025] In some configurations, the mixer assembly includes a mixing plate disposed between the mixing bowl and the selective catalytic reduction catalyst. The mixing plate may include a plurality of louvers and openings.

[0026] In some configurations, the mixing bowl includes a flange portion and a collar portion. The flange portion may be disposed between the upstream end portion and the collar portion. The aperture may extend through the flange portion and is disposed between the collar portion and an inlet of the mixer pipe.

[0027] In some configurations, the collar portion is disposed further downstream than the upstream end portion.

[0028] In another form, the present disclosure provides a mixer assembly receiving exhaust gas from an engine. The mixer assembly may include a mixer pipe, an injector housing and a mixing bowl. The mixer pipe may
include an inlet, an outlet and a longitudinal axis extending through the inlet and the outlet. The mixing pipe may receive exhaust gas flowing in a first direction parallel to the longitudinal axis through the inlet. The exhaust gas may flow through the outlet in the first direction. The injector housing may receive a reagent and extend into the mixer pipe between the inlet and outlet. The mixing bowl may be disposed within the mixer pipe between the inlet and the outlet and may include an aperture receiving a portion of the injector housing. The mixing bowl may include a first contoured surface directing the exhaust gas downstream of the inlet in a second direction toward the injector housing. The second direction may be angled relative to the first direction or substantially orthogonal to the first direction. The mixing bowl may include a second contoured surface downstream of the first contoured surface directing exhaust gas through the aperture in a third direction opposite the second direction.

[0029] In some configurations, the mixing bowl includes an outer diametrical surface that engages an inner diametrical surface of a wall of the mixer pipe. The mixing bowl may have a diameter that is equal to an inner diameter of the mixer pipe.

[0030] In some configurations, the first contoured surface is defined by an upstream end portion of the mixing bowl having a pair of recesses that extend along lateral sides of the upstream end portion and diverge away from each other as the recesses extend toward a flange portion of the mixing bowl. The aperture is formed in the flange portion.

[0031] In some configurations, the second contoured surface is defined by a collar portion of the mixing bowl, the aperture extends through the flange portion of the mixing bowl and is disposed between the collar portion and the upstream end portion.

[0032] In some configurations, the first contoured surface is defined by an upstream end portion of the mixing bowl having a generally U-shaped recess.

[0033] In some configurations, all of the exhaust gas entering the mixer pipe through the inlet flows through the aperture.
In some configurations, the injector housing is an annular member having a plurality of openings through which exhaust gas enters before flowing through the aperture in the mixing bowl.

In some configurations, the plurality of openings are defined by a plurality of louvers.

In some configurations, the mixer assembly includes an injector injecting reductant into a mixing chamber defined by the injector housing and the mixing bowl. The exhaust gas and the reductant may mix with each other in the mixing chamber.

In some configurations, the outlet of the mixer pipe is connected to an inlet of a housing of a selective catalytic reduction catalyst. The selective catalytic reduction catalyst may receive the mixture of the reductant and exhaust gas.

In some configurations, the mixer assembly includes a mixing plate disposed between the mixing bowl and the selective catalytic reduction catalyst. The mixing plate may include a plurality of louvers and openings.

Further areas of applicability will become apparent from the description provided herein. The description and specific examples in this summary are intended for purposes of illustration only and are not intended to limit the scope of the present disclosure.

DRAWINGS

The drawings described herein are for illustrative purposes only of selected embodiments and not all possible implementations, and are not intended to limit the scope of the present disclosure.

Figure 1 is a schematic representation of an engine and exhaust aftertreatment system having a mixer assembly according to the principles of the present disclosure;

Figure 2 is a cross-sectional view of a portion of the aftertreatment system including the mixer assembly;

Figure 3 is an end view of the mixer assembly;
Figure 4 is a perspective view of a mixing bowl of the mixer assembly;

Figure 5 is a cross-sectional view of a portion of the aftertreatment system including another mixer assembly according to the principles of the present disclosure;

Figure 6 is an end view of the mixer assembly of Figure 5;

Figure 7 is a perspective view of a mixing bowl of the mixer assembly of Figure 5;

Figure 8 is a perspective view of another mixing bowl according to the principles of the present disclosure;

Figure 9 is an end view of the mixing bowl of Figure 8;

Figure 10 is an exploded perspective view of an alternate mixer assembly; and

Figure 11 is a fragmentary perspective view of the mixer depicted in Figure 10.

Corresponding reference numerals indicate corresponding parts throughout the several views of the drawings.

DETAILED DESCRIPTION

Example embodiments will now be described more fully with reference to the accompanying drawings.

Example embodiments are provided so that this disclosure will be thorough, and will fully convey the scope to those who are skilled in the art. Numerous specific details are set forth such as examples of specific components, devices, and methods, to provide a thorough understanding of embodiments of the present disclosure. It will be apparent to those skilled in the art that specific details need not be employed, that example embodiments may be embodied in many different forms and that neither should be construed to limit the scope of the disclosure. In some example embodiments, well-known processes, well-known device structures, and well-known technologies are not described in detail.
The terminology used herein is for the purpose of describing particular example embodiments only and is not intended to be limiting. As used herein, the singular forms "a," "an," and "the" may be intended to include the plural forms as well, unless the context clearly indicates otherwise. The terms "comprises," "comprising," "including," and "having," are inclusive and therefore specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof. The method steps, processes, and operations described herein are not to be construed as necessarily requiring their performance in the particular order discussed or illustrated, unless specifically identified as an order of performance. It is also to be understood that additional or alternative steps may be employed.

When an element or layer is referred to as being "on," "engaged to," "connected to," or "coupled to" another element or layer, it may be directly on, engaged, connected or coupled to the other element or layer, or intervening elements or layers may be present. In contrast, when an element is referred to as being "directly on," "directly engaged to," "directly connected to," or "directly coupled to" another element or layer, there may be no intervening elements or layers present. Other words used to describe the relationship between elements should be interpreted in a like fashion (e.g., "between" versus "directly between," "adjacent" versus "directly adjacent," etc.). As used herein, the term "and/or" includes any and all combinations of one or more of the associated listed items.

Although the terms first, second, third, etc. may be used herein to describe various elements, components, regions, layers and/or sections, these elements, components, regions, layers and/or sections should not be limited by these terms. These terms may be only used to distinguish one element, component, region, layer or section from another region, layer or section. Terms such as "first," "second," and other numerical terms when used herein do not imply a sequence or order unless clearly indicated by the context. Thus, a first element, component, region, layer or section discussed below could be termed a second element, component, region, layer or section without departing from the teachings of the example embodiments.
Spatially relative terms, such as "inner," "outer," "beneath," "below," "lower," "above," "upper," and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. Spatially relative terms may be intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, elements described as "below" or "beneath" other elements or features would then be oriented "above" the other elements or features. Thus, the example term "below" can encompass both an orientation of above and below. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.

With reference to Figure 1, an exhaust aftertreatment system 10 is provided that may treat exhaust gas output by a combustion engine 12. The exhaust aftertreatment system 10 may include an exhaust gas passageway 14, an oxidation catalyst (e.g., a diesel oxidation catalyst or DOC) 16, a filter (e.g., a diesel particulate filter (DPF)) 18, a mixer assembly 20 and a selective catalytic reduction (SCR) catalyst 22. The DOC 16, filter 18, mixer assembly 20 and SCR catalyst 22 are disposed within the exhaust gas passageway 14 such that some or all of the that exhaust gas output from engine 12 flows therethrough.

A hydrocarbon (HC) injector 24 may be disposed at least partially within the exhaust gas passageway 14 upstream of the DOC 16. The HC injector 24 may receive hydrocarbon fuel from a fuel source 26 and may inject into the fuel into the stream of exhaust gas upstream of the DOC 16. A burner (not shown) may be disposed at least partially within the exhaust gas passageway 14 upstream of the DOC 16 at or adjacent the HC injector 24. The burner may ignite the fuel injected by the HC injector 24 to regenerate the DOC 16 and/or the filter 18.

A reductant injector 28 may be disposed adjacent to or partially within the mixer assembly 20 upstream of the SCR catalyst 22. The reductant injector 28 may receive a reductant (e.g., urea) from a reductant tank 30 and
inject the reductant into an exhaust stream in the mixer assembly 20. As will be
described in more detail below, reductant may mix with exhaust gas within the
mixer assembly 20 prior to flowing through the SCR catalyst 22.

[0062] Referring now to Figures 2-4, the mixer assembly 20 may
include a mixer housing or pipe 32, an injector housing 34, a mixing bowl 36, a
first mixing plate 38 and a second mixing plate 40. The mixer housing 32 can be
generally cylindrical and may be directly or indirectly connected to a housing 42
of the SCR catalyst 22. The mixer housing 32 may include an injector opening
44 through which the injector housing 34 and/or the reductant injector 28 may
extend.

[0063] The injector housing 34 may be an annular member including a
flange 46, a generally cylindrical portion 48, and a generally frustoconical portion
50. As shown in Figure 2, a cap 52 may engage a first end 54 of the cylindrical
portion 48. While not specifically shown in Figure 2, the reductant injector 28
may extend through an aperture 56 in the cap 52 and spray reductant into the
cylindrical and frustoconical portions 48, 50. The cylindrical portion 48 may
include a plurality of apertures 58 extending therethrough. The frustoconical
portion 50 may include a plurality of louvers 60 defining openings into the injector
housing 34. A distal end 62 of the frustoconical portion 50 may engage the
mixing bowl 36 and may extend through an aperture 64 in the mixing bowl 36. In
some configurations, the distal end 62 may include a static mixer having louvers
and apertures, for example, to provide additional turbulence.

[0064] The mixing bowl 36 may be a generally bowl-shaped structure
that may be stamped and/or otherwise formed from sheet metal, for example. It
will be appreciated that the mixing bowl could be formed by any suitable process
and from any suitable material. The mixing bowl 36 may include an upstream
end portion 66, a collar portion 68, a step or flange portion 70 and a downstream
rim 72 that cooperate to define a mixing chamber 74. The flange portion 70 may
be disposed between the upstream end portion 66 and the collar portion 68 and
may include the aperture 64 through which the injector housing 34 extends. An
outer diametrical surface of the rim 72 can be welded, fastener or pressed into
engagement with the inner diametrical surface of the mixer housing 32, for example.

[0065] As shown in Figure 4, an exterior surface 75 of the collar portion 68 (e.g., the surface of the collar portion 68 that generally faces an inlet 77 of the mixer housing 32) may be generally concave such that a central portion 71 of the exterior surface 75 is disposed further downstream than lateral portions 73 of an exterior surface 76. As shown in Figure 2, the exterior surface 76 of the upstream end portion 66 (e.g., the surface of the upstream end portion 66 that generally faces an inlet 77 of the mixer housing 32) may be generally convex such that an upper end 78 of the exterior surface 76 is disposed further upstream than a lower end 80 of the exterior surface 76.

[0066] As shown in Figures 3 and 4, a pair of recesses 82 may be formed in lateral side portions of the upstream end portion 66. The recesses 82 extend along the perimeter of the upstream end portion 66 and generally diverge from each other as they extend from a lower portion of the upstream end portion 66 toward the flange portion 70. In this manner, the recesses 82 are shaped to funnel or direct exhaust gas flowing into the mixer housing 32 toward the injector housing 34 and the collar portion 68 (as indicated by arrows A in Figure 3) so that exhaust gas will flow into the injector housing 34 (i.e., between the louvers 60 and/or through the apertures 58) and flow into the mixing chamber 74 through the aperture 64 in the flange portion 70. In the particular embodiment depicted in Figures 2-4, all of the exhaust gas that enters the mixer housing 32 through the inlet 77 will be directed into the injector housing 34 and through the aperture 64 as indicated by the arrows A in Figure 2. In this manner, the exhaust gas will be thoroughly mixed with the reductant from reductant injector 28 into the injector housing 34 and in the mixing chamber 74. Mixing bowl 36 includes a curved interior or downstream surface 83 shaped in such a manner that exhaust passing through aperture 64 is redirected substantially ninety degrees to flow toward SCR 22.

[0067] The first mixing plate 38 may include a plurality of louvers 84 and apertures 86 through which the mixture of reductant and exhaust gas may flow. The second mixing plate 40 may include a plurality of apertures 88 through
which the mixture of reductant and exhaust gas may flow. The first and second mixing plates 38, 40 may increase the turbulence of the flow upstream of the SCR catalyst 22 to facilitate further mixing of the exhaust gas and the reductant prior to entering the SR catalyst 22. The mixing plates 38, 40 may also spread the mixture of reductant and exhaust gas over a larger cross-sectional area so that the mixture will flow into the SCR catalyst 22 over a larger cross-sectional area. It will be appreciated that the mixer assembly 20 could include any number of mixing plates and/or static mixers configured in any desired manner. In some embodiments, the contours of the mixing bowl and/or the shape and position of one or more mixing plates 38, 40 may direct the mixture of exhaust gas and reductant away from a lower portion (from the frame of reference of Figure 2) of the SCR catalyst 22 and toward a central region of the SCR catalyst 22.

[0068] While the mixer assembly 20 is described above as mixing exhaust gas with reductant from the reductant injector 28 and providing the mixture to the SCR catalyst 22, it will be appreciated that the mixer assembly 20 could be used in conjunction with the HC injector 24 rather than the reductant injector 28. That is, the mixer assembly 20 could be provided upstream of the DOC 16, and the HC injector 24 could inject fuel into the injector housing 34 and mixing chamber 74 to be mixed with the exhaust gas prior to being ignited.

[0069] Figures 5-7 depict another configuration of the mixing bowl 36 in which apertures 90 and louvers 92 are formed in the recesses 82 to allow a relatively small portion of the exhaust gas to flow therethrough rather than flowing into the injector housing 34 and the aperture 64. Louvers 92 redirect the exhaust flowing through apertures 90 to flow along curved interior surface 83. This flow pattern minimizes the number of large urea droplets contacting surface 83. If liquid urea droplets do impinge upon surface 83, the modified flow pattern quickly causes the liquid to evaporate.

[0070] Additionally or alternatively, apertures and louvers could be formed in the exterior surface 76 between the recesses 82. Additionally or alternatively, one or more bypass apertures or passages could be formed in the mixing bowl 36 at or near the aperture 64 and/or at or near the rim 72 so that
relatively small amounts of exhaust gas can bypass the injector housing 34. Additionally or alternatively, one or more bypass apertures or passages could be formed in the inner diametrical surface of the mixer housing 32 so that relatively small amounts of exhaust gas can bypass the injector housing 34 and the mixing chamber 74.

[0071] While the mixer assemblies 20 shown in Figures 2 and 5 are oriented horizontally, it will be appreciated that these assemblies could be oriented vertically. As shown in Figure 2, the injector housing 34 may have an axis of rotation (i.e., a longitudinal axis) that is disposed at a non-perpendicular angle relative to the longitudinal axis of the mixer housing 32. In the vertical orientation, this configuration may be particularly advantageous in that liquid droplets can fall away from the injector 28 rather than forming deposits on the injector 28.

[0072] Figures 8 and 9 depict yet another configuration of a mixing bowl 136 that includes one continuous recess 182 in upstream end portion 166 instead of the pair of recesses 82 described above. Like the recesses 82 of the mixing bowl 36 described above, the recess 182 is shaped to funnel or direct exhaust gas outward and upward so that the exhaust gas will flow around collar portion 168 and into the injector housing 34 and through aperture 164 in flange portion 170 in a similar manner as described above and shown in Figures 2 and 3.

[0073] Figure 10 and 11 depict an alternate mixer assembly 220 including a mixer housing or pipe 232, an injector housing 234, a mixing bowl 236, a first mixing plate 238, and a second mixing plate 240. Mixer housing 232 is substantially similar to previously described mixing housing 32. Similarly, injector housing 234 is substantially similar to the previously described injector housing 34. In particular, injector housing 234 includes a flange 246 coupled to a swirling device 247. Swirling device 247 includes a cylindrical portion 248 and a frustoconical portion 250. A cap 252 is fixed to flange 246 and cylindrical portion 248. Please refer to the earlier sections of the specification for greater detail.
Mixing bowl 236 is substantially similar to previously described mixing bowl 236 and the alternate configurations depicted in Figures 4-9. Mixing bowl 236, however, includes an aperture 290 associated with a louver 292 extending across pipe 232 a distance approximately half of the inner diameter of the pipe. Aperture 290 and louver 292 are positioned centrally within the circular cross-section of pipe 232. Exhaust gas flows through aperture 290 and is redirected by louver 292. As described in detail with relation to the other embodiments, exhaust gas also flows through apertures extending through cylindrical portion 248, frustoconical portion 250 to pass through aperture 264 of mixing bowl 236.

First mixing plate 238 includes a stepped shape when viewed from the side such that a first portion 243 is positioned axially closer to injector housing 234 than a second portion 245. An intermediate portion 251 interconnects first portion 243 and second portion 245. Intermediate portion 251 is spaced apart from a collar portion 268 of mixing bowl 236 to define a pinch point or orifice therebetween. The orifice generates a region of increased gas velocity to entrain the smaller droplets of reductant and urge these droplets toward second portion 245 positioned on the same side of pipe as the injector. First portion 243 includes a plurality of louvers 284 and apertures 286 through which the mixture of reductant and exhaust gas may flow. Second portion 245 includes a plurality of substantially cylindrically-shaped apertures 249 provided to allow reductant and exhaust gas to flow therethrough. Louvers 284 are substantially crescent shaped and arranged in an arc to create a swirling exhaust gas motion. As larger droplets of reductant attempt to increase their distance from the injector, the swirling exhaust gas pattern generated by louvers 284 urges the droplets toward the injector such that they evaporate near the center of the pipe 232.

Second mixing plate 240 may include a plurality of apertures 288 through which the mixture of reductant and exhaust gas may flow. The shape, size, and position of various apertures 288 are defined to further mix the exhaust gas and reductant prior to entering a downstream catalyst. Mixing plates 238, 240 may distribute the mixture of reductant and exhaust gas over a
desired inlet area of the downstream catalyst to optimize efficiency of catalyst operation.

[0077] The foregoing description of the embodiments has been provided for purposes of illustration and description. It is not intended to be exhaustive or to limit the disclosure. Individual elements or features of a particular embodiment are generally not limited to that particular embodiment, but, where applicable, are interchangeable and can be used in a selected embodiment, even if not specifically shown or described. The same may also be varied in many ways. Such variations are not to be regarded as a departure from the disclosure, and all such modifications are intended to be included within the scope of the disclosure.
CLAIMS

What is claimed is:

1. An exhaust aftertreatment system comprising:
 - an exhaust gas passageway receiving exhaust gas output from a combustion engine; and
 - a mixer assembly disposed along the exhaust gas passageway and receiving the exhaust gas, the mixer assembly including a mixer housing, a mixing bowl and an injector housing, the mixing bowl disposed within the mixer housing and including an outer diametrical surface that engages an inner diametrical surface of a wall of the mixer housing, the injector housing extending through the wall and into an aperture in the mixing bowl, the aperture defining a flow path through which at least a majority of the exhaust gas entering the mixer assembly flows, the mixing bowl including an upstream end portion having contours directing the exhaust gas toward the injector housing.

2. The exhaust aftertreatment system of Claim 1, wherein the upstream end portion of the mixing bowl includes a pair of recesses that extend along lateral sides of the upstream end portion and diverge away from each other as the recesses extend toward a flange portion of the mixing bowl.

3. The exhaust aftertreatment system of Claim 1, wherein the upstream end portion of the mixing bowl includes a generally U-shaped recess.

4. The exhaust aftertreatment system of Claim 1, wherein all of the exhaust gas entering the mixer assembly flows through the aperture.

5. The exhaust aftertreatment system of Claim 1, wherein the injector housing is an annular member having a plurality of openings through which exhaust gas enters before flowing through the aperture in the mixing bowl.

6. The exhaust aftertreatment system of Claim 5, wherein the plurality of openings are defined by a plurality of louvers.
7. The exhaust aftertreatment system of Claim 5, further comprising an injector injecting reagent into a mixing chamber defined by the injector housing and the mixing bowl, wherein the exhaust gas and the reagent mix with each other in the mixing chamber.

8. The exhaust aftertreatment system of Claim 7, further comprising an exhaust aftertreatment component disposed downstream of the mixing bowl and receiving the mixture of reagent and exhaust gas.

9. The exhaust aftertreatment system of Claim 8, wherein the mixer assembly includes a mixing element disposed between the mixing bowl and the exhaust aftertreatment component, the mixing element including a plurality of louvers and openings.

10. The exhaust aftertreatment system of Claim 1, wherein the mixing bowl includes a flange portion and a collar portion, the flange portion disposed between the upstream end portion and the collar portion, the aperture extends through the flange portion and is disposed between the collar portion and an inlet of the mixer housing.

11. The exhaust aftertreatment system of Claim 10, wherein the collar portion is disposed further downstream than the upstream end portion.

12. The exhaust aftertreatment system of Claim 1, wherein the upstream end portion of the mixing bowl includes a through aperture and a louver urging exhaust gas passing through the aperture to flow in a direction away from the injector housing.

13. The exhaust aftertreatment system of claim 1, wherein the mixing bowl includes a downstream surface shaped to change a direction of the exhaust
gas flow exiting the injector housing to a direction entering a downstream exhaust aftertreatment component.

14. A mixer assembly receiving exhaust gas from an engine and mixing the exhaust gas with an injected fluid, the mixer assembly comprising:

 a mixer pipe;

 a mixing bowl disposed within the mixer pipe and including an outer diametrical surface that engages an inner diametrical surface of a wall of the mixer pipe, the mixing bowl having a diameter that is equal to an inner diameter of the mixer pipe; and

 an injector housing receiving the injected fluid and extending through the wall and into an aperture in the mixing bowl, the aperture defining a flow path through which exhaust gas flows, the mixing bowl having contours directing the exhaust gas toward the injector housing.

15. The mixer assembly of Claim 14, wherein an upstream end portion of the mixing bowl includes a pair of recesses that extend along lateral sides of the upstream end portion and diverge away from each other as the recesses extend toward a flange portion of the mixing bowl, and wherein the aperture is formed in the flange portion.

16. The mixer assembly of Claim 14, wherein the mixing bowl includes an upstream end portion having a generally U-shaped recess.

17. The mixer assembly of Claim 14, wherein all of the exhaust gas entering the mixer pipe flows through the aperture.

18. The mixer assembly of Claim 14, wherein an upstream end portion of the mixing bowl includes a through aperture and a louver urging exhaust gas passing through the aperture to flow in a direction away from the injector housing.
19. The mixer assembly of Claim 14, wherein the injector housing is an annular member having a plurality of openings through which exhaust gas enters before flowing through the aperture in the mixing bowl.

20. The mixer assembly of Claim 19, wherein the plurality of openings are defined by a plurality of louvers.

21. The mixer assembly of Claim 19, further comprising an injector injecting the injected fluid into a mixing chamber defined by the injector housing and the mixing bowl, wherein the exhaust gas and the injected fluid mix with each other in the mixing chamber.

22. The mixer assembly of Claim 19, wherein an outlet of the mixer pipe is connected to an inlet of a housing of an exhaust aftertreatment component, the exhaust aftertreatment component receiving the mixture of the injected fluid and exhaust gas.

23. The mixer assembly of Claim 22, further comprising a mixing element disposed between the mixing bowl and the exhaust aftertreatment component, the mixing element including a plurality of louvers and openings.

24. The mixer assembly of Claim 14, wherein the mixing bowl includes a flange portion and a collar portion, the aperture extends through the flange portion and is disposed between the collar portion and an inlet of the mixer pipe.

25. A mixer assembly receiving exhaust gas from an engine, the mixer assembly comprising:

 a mixer pipe having an inlet, an outlet and a longitudinal axis extending through the inlet and the outlet, the mixing pipe receiving exhaust gas flowing in a first direction parallel to the longitudinal axis through the inlet, the exhaust gas flowing through the outlet in the first direction;
an injector housing receiving a reagent and extending into the mixer pipe between the inlet and outlet; and

a mixing bowl disposed within the mixer pipe between the inlet and the outlet and including an aperture receiving a portion of the injector housing, the mixing bowl having a first contoured surface directing the exhaust gas downstream of the inlet in a second direction toward the injector housing, the second direction is substantially orthogonal to the first direction, the mixing bowl having a second contoured surface downstream of the first contoured surface directing exhaust gas through the aperture in a third direction opposite the second direction.

26. The mixer assembly of Claim 25, wherein the first contoured surface is defined by an upstream end portion of the mixing bowl having a pair of recesses that extend along lateral sides of the upstream end portion and diverge away from each other as the recesses extend toward a flange portion of the mixing bowl, and wherein the aperture is formed in the flange portion.

27. The mixer assembly of Claim 26, wherein the second contoured surface is defined by a collar portion of the mixing bowl, the aperture extends through the flange portion of the mixing bowl and is disposed between the collar portion and the upstream end portion.

28. The mixer assembly of Claim 27, wherein the mixing bowl includes an outer diametrical surface that engages an inner diametrical surface of a wall of the mixer pipe, the mixing bowl having a diameter that is equal to an inner diameter of the mixer pipe.

29. The mixer assembly of Claim 25, wherein the first contoured surface is defined by an upstream end portion of the mixing bowl having a generally U-shaped recess.
30. The mixer assembly of Claim 25, wherein all of the exhaust gas entering the mixer pipe through the inlet flows through the aperture.

31. The mixer assembly of Claim 25, wherein the injector housing is an annular member having a plurality of openings through which exhaust gas enters before flowing through the aperture in the mixing bowl.

32. The mixer assembly of Claim 31, wherein the plurality of openings are defined by a plurality of louvers.

33. The mixer assembly of Claim 31, further comprising an injector injecting reagent into a mixing chamber defined by the injector housing and the mixing bowl, wherein the exhaust gas and the reagent mix with each other in the mixing chamber.

34. The mixer assembly of Claim 33, wherein the outlet of the mixer pipe is connected to an inlet of a housing of an exhaust aftertreatment component, the exhaust aftertreatment component receiving the mixture of the reagent and exhaust gas.

35. The mixer assembly of Claim 34, further comprising a mixing element disposed between the mixing bowl and the exhaust aftertreatment component, the mixing element including a plurality of louvers and openings.

36. The mixer assembly of Claim 25, further comprising a mixing element positioned downstream from the mixing bowl a predetermined distance to define an orifice therebetween, wherein a portion of the exhaust gas flows through the orifice and apertures extending through the mixing element.
A. CLASSIFICATION OF SUBJECT MATTER
F01N 3/20(2006.01)i, F01N 13/08(2010.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
F01N 3/20; F01N 3/00; F01N 3/08; F01N 3/28; F01N 3/10; B01F 5/04; F01N 13/08

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean utility models and applications for utility models
Japanese utility models and applications for utility models

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
eKOMPASS(KIPO internal) & keywords: exhaust gas, aftertreatment, SCR, reductant, injector, mixer, and bowl

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>JP 2011-032970 A (MITSUBISHI FUSO TRUCK & BUS CORP.) 17 February 2011 See abstract, paragraphs [0021][0025] [0039] and figures 1-2, 5.</td>
<td>1-36</td>
</tr>
<tr>
<td>Y</td>
<td>US 2013-0167516 Al (LOMAN, PETER) 04 July 2013 See paragraphs [0030]-[0037] and figures 1, 3.</td>
<td>1-36</td>
</tr>
<tr>
<td>A</td>
<td>US 6449947 Bl (LIU et al.) 17 Sept ember 2002 See abstract, column 1, line 58 - column 2, line 3, and figure 1.</td>
<td>1-36</td>
</tr>
<tr>
<td>A</td>
<td>US 2011-0094206 Al (LIU et al.) 28 April 2011 See abstract, paragraphs [0039]-[0043] and figures 1-2.</td>
<td>1-36</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents:
"A" document defining the general state of the art which is not considered to be of particular relevance
"E" earlier application or patent but published on or after the international filing date
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
"O" document referring to an oral disclosure, use, exhibition or other means
"P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
"&" document member of the same patent family

Date of the actual completion of the international search
23 April 2016 (23.04.2016)

Date of mailing of the international search report
25 April 2016 (25.04.2016)

Name and mailing address of the ISA/KR
International Application Division
Korean Intellectual Property Office
189 Cheongsa-ro, Seo-gu, Daejeon, 35208, Republic of Korea
Facsimile No. +82-42-481-8578

Authorized officer
LEE, Dal Kyong
Telephone No. +82-42-481-8440

Form PCT/ISA /210 (second sheet) (January 2015)
INTERNATIONAL SEARCH REPORT

Information on patent family members

<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>US 2013-0167516 Al</td>
<td>04/07/2013</td>
<td>CN 103154457 A</td>
<td>12/06/2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2625398 Al</td>
<td>14/08/2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2013-540230 A</td>
<td>31/10/2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 5562489 B2</td>
<td>30/07/2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RU 2528933 CI</td>
<td>20/09/2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SE 1051048 Al</td>
<td>07/04/2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SE 535219 C2</td>
<td>29/05/2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 9194267 B2</td>
<td>24/11/2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2012-047159 Al</td>
<td>12/04/2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 102013204189 Al</td>
<td>19/09/2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RU 136493 UT</td>
<td>10/01/2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2013-239546 Al</td>
<td>19/09/2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 8800276 B2</td>
<td>12/08/2014</td>
</tr>
<tr>
<td>US 6449947 Bl</td>
<td>17/09/2002</td>
<td>DE 10248294 Al</td>
<td>22/05/2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 10248294 B4</td>
<td>27/10/2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB 2385545 A</td>
<td>27/08/2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB 2386845 A</td>
<td>01/10/2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2003-0079467 Al</td>
<td>01/05/2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 6722123 B2</td>
<td>20/04/2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2011-056676 A2</td>
<td>12/05/2011</td>
</tr>
</tbody>
</table>

Form PCT/ISA/2 10 (patent family annex) (January 2015)