
(19) United States
US 2006O200753A1

(12) Patent Application Publication (10) Pub. No.: US 2006/0200753 A1
Bhatia et al. (43) Pub. Date: Sep. 7, 2006

(54) SYSTEM AND METHOD FOR PROVIDING
DATA MANIPULATION ASA WEB SERVICE

(76) Inventors: Rishi Bhatia, Walpole, MA (US);
Matthew J. Schulze, Glen Ellyn, IL
(US); John M. Tomaszewski, Villa
Park, IL (US); Robert B. Kittredge,
Newton, MA (US); Davanum Srinivas,
Sharon, MA (US)

Correspondence Address:
BAKER BOTTS LLP.
2OO1 ROSS AVENUE
SUTE 6OO
DALLAS, TX 75201-2980 (US)

(21) Appl. No.: 11/369,792

(22) Filed: Mar. 7, 2006

Related U.S. Application Data

(60) Provisional application No. 60/659,264, filed on Mar.
7, 2005.

Publication Classification

(51) Int. Cl.
G06F 7/00 (2006.01)

(52) U.S. Cl. .. 71.5/505

(57) ABSTRACT

A method of transforming data includes receiving informa
tion defining a transformation of an input data object to an
output data object and generating, based on the received
information, a script operable when executed to implement
the defined transformation. The script is then stored. The
method also includes receiving a service request from a
remote client that requests a particular transformation and
identifies a request data object and identifying a script that
performs the requested transformation. Additionally, the
method includes generating a response data object by
executing the identified script on the request data object and
transmitting the response data object to the remote client.

File Edit View Program Tools

erson -
vid

venome
v-> address

X Output Window
For Help, Press F1

Window Help

PersonCors

(S PersonCars_Document
S. Person_Record

v-> Sld
v-> S Name

RCar-N-411
v-> ŠAddress

400

Patent Application Publication Sep. 7, 2006 Sheet 1 of 14 US 2006/02007S3 A1

FIG. I.

MAPPER
MODULE

206C 206b

in
206a

O)"
208a

FIG. 2
DATA

DEFINITION

MAPPNG
MODULE

SCRIPT
GENERATION
MODULE

208C

MAPPER MODULE

102

IDB

114

US 2006/02007S3 A1 Patent Application Publication Sep. 7, 2006 Sheet 2 of 14

Patent Application Publication Sep. 7, 2006 Sheet 3 of 14 US 2006/02007S3 A1

350

to Edit XML Object "Person Cars Document" Definition
Specify the XML Object definition below,
Elements can be moved between element parents by using the left and right arrows
or by "dragging" them using the mouse.

356

357 358 359 360 361 362 353
air his is first f . (. XML Object definition: I - X NN Component information:

S. PersonCars Document Type:
(i. Element

-i. Person Record Nome:
Address

Namespace prefix:
N/A
Namespace URI:
\cai.com
Use CDATA section:
No

Repeating element:
No

354

Patent Application Publication Sep. 7, 2006 Sheet 4 of 14 US 2006/02007S3 A1

ADT
File Edit View Program Tools Window Help

O
S. PersonCars Document

(š Person_Record
v-> Sld
v-> S. Name

Car N-411
v-> S Address

ECar. Person Record. PersonCars Document

X Output Window
For Help, Press F1

FIG. 4 N
400

600

XML INTERFACE
COMMUNICATION FUNCTION CALLS

HANDLERS 602 604 606 COMMENTS - 620
CONNECT -PROCESS

PARSER
NAMESPACE 622
-PROCESS

STACK CDATA
-PROCESS 624 630

COMPONENT
632 LIST START

ELEMENT 626
REPEATING
COMPONENT END

DISCONNECT 634 LIST ELEMENT 628

FIG. 6

Patent Application Publication Sep. 7, 2006 Sheet 5 of 14 US 2006/02007S3 A1

500 FIG. 5A
REM Structure definitions y
DEF PerSOn AS PerSOnDef
DEF Car AS CarDef
DIM PersonCars Document(10) ASXmlComponentDef
ARRAYCLEAR(PersonCars Document)

PersonCars Document(0).comp name = "PersonCars Document"
PersonCars Document(0).comp type = 1
PersonCars Document(0).comp_id = 0
PersonCars Document(0).comp parent = 0
PersonCars Document(0).comp level = 0
PersonCars Document(1).comp name = "Person Record"
PersonCars Document(1).comp type = 1
PersonCars Document(1).comp_id = 1
PersonCars Document(1).comp parent = 0
PersonCars Document(1).comp level = 1
PersonCars Document(2).comp name = "ld"
PersonCars Document(2).comp type = 1
PersonCars Document(2).comp id = 2
Person Cars Document(2).comp parent = 1
Person Cars Document(2).comp level = 2
PersonCars Document(3).comp name = "Name"
PersonCars Document(3).comp type = 1
PersonCars Document(3).compid = 3
PersonCars Document(3). Comp parent = 1.
PersonCars Document(3).comp level=2
PersonCars Document(4).comp name="Car"
PersonCars Document(4).comp type=1 502
PersonCars Document(4).comp_id=4
PersonCars Document(4).comp parent=1
Person Cars Document(4).comp isRepeating=TRUE
PersonCars Document(4).comp level=2
PersonCars Document(5).comp name="Make"
PerSonCars Document(5). Comp type=1
PersonCars Document(5).comp_id=5
PersonCars Document(5).comp parent= 4
PersonCars Document(5).comp level=3
PersonCars Document.(6).comp name="Model"
PersonCars Document(6). Comp type=1
PersonCars Document.(6).comp_id=6
PersonCars Document(6).comp parent= 4
PersonCars Document(6).comp level=3
PersonCars Document(7).comp name="Year"
PersonCars Document(7).comp type=1
PersonCars Document(7).comp_id=7
Person Cars Document(7).comp parent= 4
PersonCars Document(7).comp level=3
Person Cars Document(8).comp name="Address"
PersonCars Document(8).comp type=1
Person Cars Document(8).comp_id=8
Person Cars Document(8).comp parent=1
PersonCars Document(8).comp level=2
\=s=ava-y

TO FIG. 5B

Patent Application Publication Sep. 7, 2006 Sheet 6 of 14 US 2006/02007S3 A1

500
y FIG. 5B

FROM FIG. 5A
a F^==A
REM End of Structure definitions

REM *
REM Connect to data sources and targets
REM *

CONNECT Person Profile ()
CONNECT CarProfile () 509
CONNECT PersonCars DocumentProfile ()
Person Done = FALSE
REM * Request/query the resultSet to transfer
PersonQuery = "SELECT P.id, P.name, Paddress FROM Johnstestdatabase.dbo. Person" --
Ipt
SEND PersonProfile (#sql PersonQuery)-1 510
DOWHILE FALSE = Person Done

returnValue = LOAD PersonProfile (#data Person)- 512
IF PRET SUCCESS <> returnValue THEN
Person Done = TRUE
IF PRET NO DATA AVAIL = return Value THEN
FO = PerSOCOUnt THEN
MESSAGE("No rows read")

ELSE
MESSAGE(Person Count, "total rows read from Person")

END F
STRUCTCLEAR(Person) 504
REM DO NOT PROCESS THE LAST (NULL) RECORD
CONTINUE

ELSE
MESSAGE("LOAD returned", returnValue, "at line", ERL())
CONTINUE

END F
ELSE
PersonCount = Person Count + 1

END IF

Car Done = FALSE
REM * Request/query the result set to transfer

CarQuery = "SELECT C. make, C. model, C.year FROM JohnsTestDatabase.dbo. Car" --
"CWHERE" -- TOSTRING(Person.id) + "= Cid"

SEND CarProfile (#sql CarQuery) N. 510
D0 WHILE FALSE = Car Done
returnValue = LOAD CarProfile (# data Car) N. 512
IFIPRET SUCCESS <> returnValue THEN
Car Done = TRUE
IFIPRET NO DATA AVAIL = returnvalue THEN
\-s==v=-y

TO FIG 5C

Patent Application Publication Sep. 7, 2006 Sheet 7 of 14 US 2006/02007S3 A1

500
y FIG. 5C

FROM FIG. 5B
a F^ =a

IF O = CarCOunt THEN
MESSAGE("No rows read")

ELSE
MESSAGE(CarCount, "total rows read from Car")

END F
STRUCTCLEAR(Car)
REM DO NOT PROCESS THE LAST (NULL) RECORD
CONTINUE

ELSE
MESSAGE("LOAD returned", returnValue, "at line", ERL())
CONTINUE
END F

ELSE
CarCOUnt = CarCOunt -- 1

END F

PersonCars Document(5). Comp value = Car. make
PersonCars Document.(6). Comp value = Car. model
CONVERT(Caryear, Person Cars Document (7). Comp value)
returnValue = STORE PersonCars DocumentProfile (# data PersonCars Document,
/ #Create TRUE,

514 516 #map type TRUE,
N #mode PersonCars DocumentStoreMode, #file

"C:\\My Documents\WMLWPersonCars Document.xml", #repeating element index 4)
IFIPRET SUCCESS <> returnValue THEN
MESSAGE("STORE returned", returnValue, "at line", ERL()) 504

ELSE
PersonCars DocumentCount = PersonCars DocumentCount + 1

END F
LOOP

CONVERT(Person.id, PersonCars Document(2).comp value)
PersonCars Document(3).comp value = Person.name
PersonCars Document (8).comp value = Person.address
returnValue = STORE PersonCars DocumentProfile (#data PersonCars Document,

#Create TRUE,
#map type TRUE,
#mode PersonCars DocumentStoreMode, #file

"C:\\My Documents\WMLWPersonCars Document.xml")
IFIPRET SUCCESS <> returnValue THEN
MESSAGE("STORE returned", returnvalue, "at line", ERL())

ELSE
PersonCars Document Count = Person Cars DocumentCount + 1

END F
LOOP

REM DiSCOnnect

DISCONNECT PersonProfile ()
DISCONNECT CarProfile () 519
DISCONNECT PersonCars DocumentProfile ()

Patent Application Publication Sep. 7, 2006 Sheet 8 of 14 US 2006/02007S3 A1

FIG. 7A
(START

710 INITIATE EXECUTION

CSTART)

PERSON ROWS

LOAD PERSONNNO
ROW

DISCONNECT
FROM FILES 800

REOUEST ASSOCATED
CARROWS

TERMINATE EXECUTION
OF SCRIPT 810

LOAD CAR STORE CAR FINISH

3>. XML DATA CFINISH D
770 NO

780
STORE

PERSON CARXML

Patent Application Publication Sep. 7, 2006 Sheet 9 of 14 US 2006/02007S3 A1

<PersonCars Document> 798
<Person Recordd ?

<idd 1 <id/>
<Name> Jack Smith <Name/>
<Car>

<Maked Ford <Make/>
<Modeld Explorer <Model/>
<Year> 1998 - Year/>

<Card
<Maked Dodge <Make/>
<Modeld Ram <Model/>
<Yeard 2000 <Year/>

<Address> 125 Elm St, Smithsville, TX, 82671 <Address/>

<Person Record/> FIG. 7B
<Person Recordd

<idd 2 <id/>
<Name> Sue Jones <Name/>
<Card

<Maked Buick <Make/>
<Modeld Le Saber < Model/>
<Yeard 1999 <Year/>

<Card
<Maked Chevrolet <Make/>
<Modeld impala <Model/>
<Year> 2002 <Year/>

<Address> 5 Main St, CrOSStown, IA, 82671 <Address/>

<Person Record/>
<PersonCars Document/>

FROM FIG, 12A FIG. I.2B
a =/=a
D0 WHILE LOAD StockCompanies

1310e N in GetQuoteWS(2). Comp value = StockCompanies.StockSymbol

131 Of N WebServiceReturn = CallWebService1(GetQuoteWS, in GetQuoteWS, out GetQuoteWS)

IF WebServiceReturn <> 0 THEN
MESSAGE("Web Service GetQuoteWS returned", webServiceReturn, "at line", ERL())

131 Og MESSAGE(GetQuoteWS. errorMessage)
CONTINUE

END F

1310h-CONVERT (out GetQuoteWS(2).comp value, StockQuotes.StockPrice)
STORE StockOuotes

Patent Application Publication Sep. 7, 2006 Sheet 10 of 14

START FIG. 8

INITIATE EXECUTION 900
OF SCRIPT

CREATE ARRAY 910

CONNECT
INTERFACESTO 920
SOURCE AND
TARGET FILES

PARSE THE XML
SOURCE FILE

START
OFAN XML, DATA
COMPONENT

INCLUDE
DATA COMPONENT NO DISCARD DATA

IN TARGET2 COMPONENT

ANY
PROCESS HILDREN cir-Eis YES, CHILDREN 5 COMPONENTS

SET A FIELD OF
REPEATING MATCHED ARRAY
COMPONENT ELEMENT TO THE

TYPE? VALUE OF THE
DATA COMPONENT

YES

STORE VALUE
OF DETECTED
COMPONENT IN

TEMPORARY BUFFER

1000

1010

US 2006/02007S3 A1

1020

ADDITIONAL
DATA COMPONENTS

OF THIS TYPE?

YES

ADD POINTER TO LAST
REPEATING ELEMENT 1050
TO ARRAY ELEMENT

STORE NON-REPEATING 1060
DATA OF PRESENT

ELEMENT IN TARGET FILE

REPEATING
CHILDREN2

1070 10 STORE DATA
FROM NEXT

N01 DONE REPEATING
PARSING2 CHILD IN

TARGET FILE
1090 YES
DISCONNECT FROM

SOURCE AND
1100 TARGET FILES

END EXECUTION
OF SCRIPT

(A)
STORE NEXT REPEATING

DATA COMPONENT

1110

1030 IN BUFFER

ADD POINTERBACK TO
PREVIOUSELEMENT 1040

US 2006/02007S3 A1 Patent Application Publication Sep. 7

US 2006/02007S3 A1

0 I 19I, I99||

rè=

Patent Application Publication Sep. 7, 2006 Sheet 12 of 14

US 2006/02007S3 A1

|sindin0|__ Sindu? IEELSM840n0|00 £, No.=-=----------------=y
Patent Application Publication Sep. 7, 2006 Sheet 13 of 14

Patent Application Publication Sep. 7, 2006 Sheet 14 of 14 US 2006/02007S3 A1

FIG. I2A
1310a N-INCLUDE "WebService Declarations"

DIM in GetQuoteWS(3) ASXmlComponentDef
ARRAYCLEAR(in GetQuoteWS)
in GetQuoteWS(0). Comp name = "getQuote"
in GetQuoteWS(0). Comp type = 1
in GetQuoteWS(0).comp_id = 0
in GetOuoteWS(0).comp parent = 0
in GetQuoteWS(0).comp namespaceURI = "urn:Xmethods-delayed-quotes"
in GetQuoteWS(1).comp name = "Xmlns"
in GetOuoteWS(1). Comp type = 2

131 Ob in GetQuoteWS(1). Comp_id = 1
in GetQuoteWS(1). Comp parent = 0
in GetQuoteWS(1). Comp namespaceURI = "urn:Xmethods-delayed-quotes"
in GetQuoteWS(1). Comp datatype = 14
in GetQuoteWS(2). Comp name = "symbol"
in GetQuoteWS(2). Comp type = 1
in GetQuoteWS(2). Comp_id = 2
in GetQuoteWS(2). Comp parent = 0
in GetQuoteWS(2). Comp namespaceURI = "urn:Xmethods-delayed-quotes"
in GetQuoteWS(2). Comp datatype = 14

Def GetQuoteWS AS WebServiceDef1
GetOuoteWS. location = "http://66.28.98.121:9090/soap"
GetQuoteWS.SOAPAction = "urn:Xmethods-delayed-quotes#getQuote"
GetQuoteWS.proxyHost = "caproxy.ca.com"
GetQuoteWS.proxyPort = "80"
GetQuoteWS.proxyProfile = "WSTProfile"
DIM out GetOuoteWS(3) ASXmlComponentDef
ARRAYCLEAR(out GetQuoteWS)
out GetQuoteWS(0). Comp name = "getQuoteResponse"
Out GetQuoteWS(0). Comp type = 1
out GetQuoteWS(0).comp_id = 0
out GetQuoteWS(0). Comp parent = 0
out GetQuoteWS(0).comp namespaceURI = "urn:xmethods-delayed-quotes"
out GetQuoteWS(O).comp NS Prefix = "n"
out GetQuoteWS(1). Comp name = "n"
out GetQuoteWS(1). Comp type = 2

13100 out GetQuoteWS(1).comp_id = 1
out GetQuoteWS(1). Comp parent = 0
out GetQuoteWS(1). Comp namespaceURI = "urn:xmethods-delayed-quotes"
out GetQuoteWS(1).comp. NS Prefix = "n"
out GetQuoteWS(1). Comp datatype = 14
out GetOuoteWS(2). Comp name = "Result"
out GetQuoteWS(2). Comp type = 1
out GetQuoteWS(2).comp_id = 2
out GetQuoteWS(2). Comp parent = 0
out GetQuoteWS(2). Comp datatype = 14

1310C

v=-a-sa-y

TO FIG 12B

US 2006/02007S3 A1

SYSTEMAND METHOD FOR PROVIDING DATA
MANIPULATION ASA WEB SERVICE

RELATED APPLICATIONS

0001. This application claims the priority under 35
U.S.C. S 119 of provisional application Ser. No. 60/659,264
filed Mar. 7, 2005, which is incorporated by reference.

TECHNICAL FIELD OF THE INVENTION

0002 This disclosure relates generally to the field of data
processing and, more particularly, to a system and method
for manipulating data.

BACKGROUND OF THE INVENTION

0003. In the rapidly-evolving competitive marketplace,
data is among an organization’s most valuable assets. Busi
ness success demands access to data and information, and
the ability to quickly and seamlessly distribute data through
out the enterprise to support business process requirements.
Organizations must extract, refine, manipulate, transform,
integrate and distribute data in formats Suitable for strategic
decision-making. This poses a unique challenge in hetero
geneous environments, where data is housed on disparate
platforms in any number of different formats and used in
many different contexts.

SUMMARY OF THE INVENTION

0004. In accordance with the present invention, the dis
advantages and problems associated with data processing
have been substantially reduced or eliminated. In particular,
methods and systems for transforming data are disclosed
that provide a flexible, robust manner for providing data
transformation functionality as a web service.

0005. In accordance with one embodiment of the present
invention, a method of transforming data includes receiving
information defining a transformation of an input data object
to an output data object and generating, based on the
received information, a script operable when executed to
implement the defined transformation. The script is then
stored. The method also includes receiving a service request
from a remote client that requests a particular transformation
and identifies a request data object and identifying a script
that performs the requested transformation. Additionally, the
method includes generating a response data object by
executing the identified script on the request data object and
transmitting the response data object to the remote client.

0006. In accordance with another embodiment of the
present invention, a method of transforming data includes
receiving information defining a transformation of an input
data object to an output data object and generating, based on
the received information, a script operable when executed to
implement the defined transformation based on the received
information. The script is then stored. The method also
includes receiving, from a remote client, a service request
that requests the defined transformation and identifies a
request data object and a requested execution time. Addi
tionally, the method includes generating a response data
object by executing the script on the request data object at
a time determined based on the requested execution time and
storing the response data object in memory.

Sep. 7, 2006

0007 Some embodiments of the present invention pro
vide numerous technical advantages. Other embodiments
may realize some, none, or all of these advantages. For
example, particular embodiments may provide a data extrac
tion, transformation, and load tool that features a flexible,
easy-to-use, and comprehensive application-development
environment. Particular embodiments may also reduce and/
or eliminate the programming complexities of extracting,
transforming, and loading data from disparate Sources and
targets and eliminate a need for users to learn XML pro
gramming or database-specific APIs. Embodiments of the
invention may facilitate seamless extraction and integration
of data from and to AS/400, DB2, DB2 MVS, DBASE, flat
files, COBOL files, Lotus Notes, Microsoft ODBC,
Microsoft SQL Server, Oracle, Sybase, Microsoft Access,
CA Ingres and UDB.

0008. In particular embodiments, some features provide
the ability to process and output a wide variety of different
types of input files and output files with significant flexibility
in how the data may be transformed. As one example,
particular embodiments of the described system may be
capable of accepting input files in an XML format, trans
forming the data, and outputting the transformed data in one
or more database tables or flat files. Similarly, particular
embodiments may be capable of accepting input database
tables or flat files, transforming the data contained in these
files, and outputting the transformed data in one more XML
files. As another example, particular embodiments of the
described system may be capable of reading and transform
ing documents having a variable number of instances of a
particular data object. As a result, the described system and
methods provide a powerful, robust data transformation
Solution

0009. Other technical advantages of the present invention
will be readily apparent to one skilled in the art from the
following figures, descriptions, and claims. Moreover, while
specific advantages have been enumerated above, various
embodiments may include all, some, or none of the enu
merated advantages.

BRIEF DESCRIPTION OF THE DRAWINGS

0010 FIG. 1 is a block diagram illustrating a system for
data manipulation according to one embodiment of the
invention;

0011 FIG. 2 is a block diagram illustrating a mapper for
data manipulation according to one embodiment of the
invention;

0012 FIGS. 3A and 3B are example screen shots illus
trating some functionality of an XML Object Definition of
the mapper of FIG. 2;

0013 FIG. 4 is an example screen shot illustrating some
functionality of an example Mapping module of the mapper
of FIG. 2;

0014 FIGS. 5A-5C illustrate an example script gener
ated by a particular embodiment of the data manipulation
system;

0015 FIG. 6 is a block diagram illustrating an XML
Interface for data manipulation according to one embodi
ment of the invention;

US 2006/02007S3 A1

0016 FIG. 7A is a flowchart illustrating an example
method of executing a script to perform a first transforma
tion of data from a database source file to an XML target file
according to one embodiment of the invention;
0017 FIG. 7B is an example output of the example
method of FIG. 7A according to one embodiment of the
invention;
0018 FIG. 8 is a flowchart illustrating an example
method of executing a script to perform a second transfor
mation of data from an XML source file to a database target
file according to one embodiment of the invention;
0.019 FIG. 9 shows a particular embodiment of a data
transformation system capable of providing data transfor
mation functionality to remote clients as a web service; and
0020 FIG. 10 show a particular embodiment of a data
transformation system capable of utilizing web services
offered by remote web servers as part of data transformation
functionality Supported by the system;
0021 FIG. 11 is an example screen shot illustrating some
functionality of an example Mapping module that may be
utilized by particular embodiments of the system shown in
FIG. 10; and
0022 FIGS. 12A and 12B show an example script that
may be generated by particular embodiments of the system
illustrated in FIG. 10.

DETAILED DESCRIPTION OF EXAMPLE
EMBODIMENTS

0023 FIG. 1 is a block diagram illustrating a system 100
for data manipulation according to one embodiment of the
present invention. Generally, system 100 includes a graphi
cal data movement tool that is referred to herein as Advan
tage Data Transformer (“ADT) 101. Some embodiments of
the invention facilitate extensible Markup Language
(XML) functionality with an ability to use XML document
files as either sources or targets and transform data between
XML format and database format, flat file format, or any
other appropriate formats. Various embodiments of system
100 and ADT 101 are described below in conjunction with
FIGS. 1 through 8.
0024. In the illustrated embodiment, ADT 101 includes a
mapper module 102, a script manager 104, a server 106,
interfaces 108, XML files 110, database tables or files 112,
and an internal database 114. The present invention contem
plates more, fewer, or different components associated with
ADT 101 than those illustrated in FIG. 1. In addition, any
of the elements or various functions of the elements of ADT
101 may be suitably distributed among one or more com
puters, servers, computer systems, and networks in any
Suitable location or locations. As such, any suitable number
of processors may be associated with, and perform the
functions of ADT 101.
0.025 Mapper module 102 includes any suitable hard
ware, software, firmware, or combination thereof operable
to receive a first data definition (or file format) of a source
file, receive a second data definition (or file format) of a
target file, and automatically generate a script 115 to repre
sent a movement of data from the source file to the target
file. For the purposes of this description and the claims that
follow, the term “file' may be used to refer to a collection of

Sep. 7, 2006

data structured in any suitable manner. As a result, a “file'
may contain data stored in a hierarchical structure, in a
relational form, or any other appropriate manner, and a “file'
may represent all or a portion of an XML file, a relational
database, a flat file, or any other appropriate collection of
data. Furthermore, as used herein, the term “automatically'
generally means that the appropriate processing is substan
tially performed by mapper module 102. However, in par
ticular embodiments, use of the term “automatically” may
contemplate appropriate user interaction with mapper mod
ule 102. As described in greater detail below, mapper
module 102 includes one or more suitable graphical user
interfaces (“GUIs) and, among other functions, allows a
user to design data formats, scan data formats from existing
definitions, edit existing data formats, and design data
transformation programs via drag-and-drop functionality.
Further details of mapper module 102 are described below
in conjunction with FIG. 2.

0026. Script manager 104 includes any suitable hard
ware, software, firmware, or combination thereof operable
to manage scripts 115 generated by mapper module 102.
This may include storing scripts 115 in internal database 114
or other Suitable storage locations, and may include sched
uling scripts 115 for execution by server 106. Script manager
104 may also provide database connection information to
Source tables and target tables through Suitable database
profiles. In particular embodiments, database profiles may
specify a particular interface, server name, database name,
user ID, and password for a particular program.

0027 Server 106 includes any suitable hardware, soft
ware, firmware, or combination thereof operable to execute
scripts 115 when directed by script manager 104. The
transformation of data formats takes place in scripts 115
when executed by server 106. In other words, server 106
may perform the data movements from one or more source
files to one or more target files. As used herein. Other
functionalities performed by server 106 are contemplated by
the present invention.

0028. In one embodiment, the flow between script man
ager 104 and server 106 is as follows: script manager 104
puts a script run request in a queue in internal database 114
when a user selects a script to run. A scheduler function
within server 106 picks up the run request and verifies the
script is valid to run. Server 106 then starts an interpreter
function to run the relevant script. The interpreter pulls the
compiled Script from internal database 114 and starts inter
preting (i.e., running) the Script. The interpreter loads inter
faces 108 during script execution. The interfaces 108 access
files based on the Script. Messages from the script get logged
in internal database 114. The scheduler logs script return
code in internal database 114, and Script manager 104
inspects internal database 114 logs for Script messages and
return codes. Script manager 104 can view the execution and
message logs from internal database 114 to report on status
and completion of Script execution.

0029 Interfaces 108, in the illustrated embodiment,
include an XML interface 600 and a database interface 116.
However, the present invention contemplates other suitable
interfaces. Interfaces 108 include any suitable hardware,
software, firmware, or combination thereof operable to load
and store a particular format of data when called by server
106 in accordance with scripts 115. Interfaces 108 may

US 2006/02007S3 A1

couple to Source files and target files during execution of
scripts 115. For example, in the embodiment illustrated in
FIG. 1, XML interface 600 is coupled to XML files 110 and
database interface 116 is coupled to database tables 112.
XML files 110 and database tables 112 are representative of
various data stored in various file formats and may be
associated with any suitable platform including, but not
limited to, Windows NT, Windows 2000, Windows 2003,
Windows XP, Linux, AIX, HP-UX, and Sun Solaris. The
present invention contemplates interfaces 108 having other
suitable functionalities. Further details of XML interface
600 are described below in conjunction with FIG. 6.
0030 FIG. 2 is a block diagram illustrating mapper
module 102 according to one embodiment of the invention.
In the illustrated embodiment, mapper module 102 includes
one or more editors 208 and Script Generation module 204.
Mapper module 102 also includes one or more data defini
tions 200, a Mapping module 202, and one or more scanners
206 each associated with one or more data formats that
mapper module 102 is capable of receiving and/or output
ting. For example, in the illustrated example mapper module
102 includes or stores an XML Object Definition 200a, and
an XML Scanner 206a for supporting functionality associ
ated with the transformation of XML data. Similarly, the
illustrated example also includes additional data definitions
200 (e.g. relational table definition 200b and flat file record
definition 200c), and scanners 206 associated with DBMS
files and flat files respectively. Although FIG. 2 illustrates a
particular embodiment of mapper module 102 that includes
particular components capable of Supporting a number of
specific data formats, alternative embodiments may include
mapper modules 102 capable of Supporting any appropriate
number and types of data formats.

0031 Data Definitions 200, in particular embodiments,
are each operable to receive a data definition (or file format)
of a source file and/or a target file. This may be accom
plished in any suitable manner and particular embodiments
may allow a user to define or design such data format. Two
ways to define a particular data format may be via scanning
with an appropriate Scanner 206 or by manual entry with the
help of an appropriate editor 208. Pre-existing data defini
tions (i.e., file formats) may also be stored in internal
database 114.

0032 Scanners 206 are each operable to automatically
generate a data format from an existing definition that
contains the associated data format. One example of Such
data format Scanning is described in U.S. patent application
Ser. No. 11/074,502, which is herein incorporated by refer
ence. The manual definition of an example XML document
file format is shown and described below in conjunction
with FIGS. 3A and 3B. Manual definitions for files of other
formats maybe entered in a similar fashion with appropriate
modifications using an editor 208 corresponding to the
relevant file format.

0033 Mapping module 202 is operable to allow a user to
design a transformation program to transform data of a
particular format (e.g. XML) via mappings from one or
more source files to one or more target files. This may be
accomplished via a GUI having a program palette in which
a user is allowed to drag and drop source data definitions
into a target data definition therein in order to perform the
desired connection. Such a program palette is shown and

Sep. 7, 2006

described below in conjunction with FIG. 4. These graphi
cal mappings by a user represents a desired movement of
data from the source files to the target file.
0034 Script Generation module 204 is operable to auto
matically convert the mappings captured by Mapping mod
ule 202 into a script to represent the movement of data from
the Source files to the target file. An example script is shown
and described below in conjunction with FIGS. 5A-5C.

0035 FIGS. 3A and 3B are example screen shots illus
trating some functionality of XML Object Definition 200
according to a particular embodiment. Although the descrip
tion below focuses for purposes of illustration on the trans
formation of XML data, as noted above, mapper module 102
may be configured to utilize any appropriate form of data for
input and output files. Referring first to FIG. 3A, a “Create
New XML Object” dialog 300 is illustrated. Dialog 300
allows a user to create a new XML object. The user may
select the target folder where the XML object is to be created
by using a window 302. A browser tree may be associated
with window 302 from which a user may select a desired
XML folder. The user may enter a name for the new XML
object into window 304. A list of existing XML objects in
the selected folder may be displayed in a window 306 to aid
the user when defining the name of a new XML object. The
XML objects fully qualified path and name may be also
shown in a window 308. Other suitable windows may be
associated with dialog 300, such as a status window 310 and
a version window 312. Once all the desired information is
entered into dialog 300, a user clicks on a Finish button 314
to create the XML object. XML Object Definition 200 then
launches an “XML Object Definition” dialog 350, as illus
trated in FIG. 3B below.

0036) XML Object Definition dialog 350 allows a user to
define elements, attributes, namespaces, comments, and/or
other markup language components (generically referred to
here as “data components”) that define the layout of an XML
object that the user may later use as a source or target on a
program palette. The XML Object definition defines the
layout of the object and controls how the data is read/written
when used in a program. In the illustrated embodiment,
dialog 350 illustrates an XML file format 351 in a window
352 for the PersonCars Document file that is shown in the
Create New XML Object dialog 300 above. The XML
Object Definition dialog 350 allows a user to create and/or
modify XML data components of an XML object that
include elements, repeating elements, attributes,
namespaces, and comments. An icon with a particular letter
or symbol may be displayed for each component in XML file
format 351. In the illustrated embodiment, an 'E' is used to
illustrate an element type, an “R” is used to illustrate a
repeating element type, an 'A' is used to illustrate an
attribute of an element, an 'N' is used to illustrate a
namespace, and an “” is used to illustrate a comment.
Nonetheless, particular embodiments of XML Object Defi
nition dialog 350 may use other appropriate designations.

0037 Component information 353 describing character
istics of a particular component in XML file format 351 is
displayed in a component information window 354 as a user
moves a cursor over a particular component or when a user
selects a single item in XML file format 351. Component
information window 354 shows component information,
Such as the type, name, value, namespace prefix, namespace

US 2006/02007S3 A1

URI, use CDATA, and whether or not it is a repeating
element. Dialog 350 may have a number of suitable opera
tions 356 associated with it. A “New” operation 357 invokes
an XML component dialog to create a new XML component
using the currently selected element or element parent. An
“Edit” operation 358 invokes an XML component dialog to
edit an existing XML component. In this case, the XML file
format 351 may be synchronized with the updated compo
nent data. A “Delete' operation 359 deletes the selected
component and children, if desired. Deleting an element
may result in deleting other XML components, such as
children elements, attributes, comments, or namespaces.
0038. Additionally, a “Validate XML file format” opera
tion360 may perform validation of a current file format 351.
For example, in particular embodiments, the “Validate XML
file format operation 360 may perform the following
checks for a particular file format, report the appropriate
results, and select the offending component in the file format
for further correction:

0039) 1. Verify that the namespace prefixes and URIs
are correct for their relevant scope

0040 2. Verifies that the XML data component names
are valid and do not contain invalid characters.

0041) 3. Verifies that the XML data component names
are unique for the scope under which they are defined.

0042. 4. Performs special tests for element names
including, for example, determining whether second
level (record) qualified element names are unique and
determining whether the qualified names for “repeat
ing elements at the third level or lower are unique.

0043 5. Checks to see if an XML file format contains
valid second level elements. The definition may be
invalid if it contains two or more second level elements
and has repeating elements designated.

Alternative embodiments may utilize additional or alter
native checks to Verify the data component.

0044) A “Repeating Element” operation 361 is used to
designate an element as repeating or not repeating. The
handling of repeating elements is described in further detail
below. “Movement” operations 362 move a single or group
of components in a particular direction to change the order
of hierarchy of data components within file format 351.
0045 Although the above description focuses on a par
ticular embodiment of ADT 101 that supports certain func
tionality for “Create New XML Object” dialog 300 and
XML Object Definition dialog 350, alternative embodiments
may support any appropriate functionality for the creation
and definition of XML objects. For example, in particular
embodiments, a user may be able to drag and drop one or
more data components in a single operation. In addition, a
context menu or other Suitable menu may be shown when a
user right clicks on components of file format 351. This
menu may have Suitable menu items that are comparable to
the operations 356 discussed above.
0046 FIG. 4 is an example screen shot 400 illustrating
Some functionality of Mapping module 202 according to one
embodiment of the invention. Screen shot 400 includes a
GUI with a program palette 402 that allows a user to design
a desired movement of data from one or more source

Sep. 7, 2006

database tables 404 to a target data definition 406 using one
or more graphical mappings. These mappings are first facili
tated by a simple dragging and dropping of data definitions
into program palette 402. For example, in the illustrated
embodiment, source tables 404a, 404b are dragged-and
dropped into program palette 402. In addition, a target data
definition 406 is dragged-and-dropped into program palette
402. Then the individual “fields' from source tables 404a,
404b are mapped to individual elements in target data
definition 406. As indicated by the arrows in program palette
402, the “id field in source table 404a is mapped by the user
to the “Id’ element in target data definition 406, the “name’
field in source table 404a is mapped to the “Name' element
in target data definition 406, and the “address' field in source
table 404a is mapped to the “Address' element in target data
definition 406. In this example, a car element 411 in target
data definition 406 is designated as a repeating element and
has its own repeating element definition 408. Thus, there are
mappings from source table 404b to repeating element
definition 408. Any suitable mappings are contemplated by
the present invention and are controlled by the desires of the
USC.

0047 A connection indicator 410 indicates that target
data definition 406 and repeating element definition 408 are
related and also shows the dependency between elements
and the direction of the dependency. In addition to showing
the relationship between target data definition 406 and
repeating element definition 408, connection indicator 410
may also maintain and enforce the correct process order for
the parent/child relationships between components on pro
gram palette 402, and may enforce the correct process order
when the order is manually updated in a suitable process
order dialog. More specifically, the order of script statements
that is produced in the resulting script uses a process order
algorithm that uses the program palette Source to target
relationships (e.g., mappings, user-constraints, foreign keys,
and repeating element connections) and produces the
required DO/WHILE loops, CONNECT, SEND, LOAD,
STORE, DISCONNECT, nested loops, source to target
column/element assignment statements, conditional State
ments, transformations and other script constructs. In one
embodiment, a user may be prohibited from deleting con
nection indicator 410.

0048. In particular embodiments, an expand/collapse
usability feature allows a user to expand and collapse the
display of target object definition 406 and repeating element
definition 408 on program palette 402. This feature may
allow a user to see target object definition 406 in a single
palette object in the same form as shown in XML Object
Definition dialog 350. The collapsed view presents target
object definition 406 in a form that may help aid the user
when viewing the mapping relationships between other
objects on program palette 402.

0049. In the embodiment illustrated in FIG. 4, source
table 404a is a database table that contains the IDs, names,
and addresses of persons, and source table 404b is a database
table that contains the IDs, makes, models, and years of cars
associated with those persons in source table 404a. The data
in source tables 404a, 404b are desired to be transformed
into an XML document that has a format defined by target
data definition 406, which may have been designed using the
XML Object Definition 200 illustrated in FIG. 2. The
example mappings in FIG. 4 are examples that illustrate the

US 2006/02007S3 A1

use of program palette 402 to perform graphical mappings
that correspond to a transformation of data from one format
to another format. Any suitable mappings are contemplated
by the present invention and transformations from any
suitable format to any other suitable format are contem
plated by the present invention. For example, transforma
tions may be desired from database tables to XML files,
XML files to database tables, XML files to other XML files,
database tables to other database tables, and/or any other
Suitable transformations.

0050. Once the desired mappings are entered by a user,
Script generation module 204 may then, in response to a
selection by the user, automatically convert the mappings
into a script to represent the movement of data from Source
tables 404 to target data definition 406. An example script
500 is shown and described below in conjunction with
FIGS 5A-5C.

0051. Thus, target data definition 406 and repeating ele
ment definition 408 on program palette 402 allow a user to
graphically see DO WHILE loops and corresponding
LOAD/STORE units that are implicit in the transformation
defined by the user to be implemented by the generated
Script. Repeating element connections, as indicated by con
nection indicator 410, show control sequence of execution
operations and corresponding execution loops.
0.052 Mapping module 202 supports other suitable
operations and/or mapping gestures for adding, deleting, and
modifying data definitions defined in a transformation pro
gram. Mapping module 202 also contains special operations
for selecting, updating, and moving objects on program
palette 402. In addition, it includes a unique “Generate
Layout feature that arranges the palette objects for main
data definition 406 and repeating element definition 408
using non-overlapping hierarchical representation as defined
in XML file format 351 (FIG. 3B). This feature is useful for
automatically generating a layout that shows the parent/child
relationships and hierarchy without using dialog 350 as a
reference.

0053 FIGS.5A, 5B, and 5C illustrate an example script
500 for transforming XML data according to one embodi
ment of the invention that is generated by Script generation
module 204 (FIG. 2). As described above, in particular
embodiments, a user may define a transformation program
via the graphical mappings by dragging various source data
definitions and target data definitions onto a program palette.
In one embodiment, each definition on the program palette

(
comp name
comp value
comp type

Sep. 7, 2006

is represented in memory as a C++ object, which includes
information about whether the file is a source or a target,
whether the data is a table in a relational database or an XML
file, and what columns or elements participate in the trans
formation. When the user maps a column or element of one
Source to a column or element of a target, an in-memory C++
connection object is created containing the Source/target
information.

0054 During script generation, the information in the
in-memory palette source/target and connection objects is
translated into data structures that are used to define the
corresponding script code and corresponding script struc
tures used during the Script creation process. Whereas the
first in-memory palette and connection objects represent the
appearance of the program on the program palette, the later
Script data structures represent the processing implied by
that appearance. A list of Script data structures may be used
to represent such granular pieces of processing as CON
NECTing to a database table, starting a DO WHILE loop to
LOAD a row of a source table, assigning the value of one
script variable to another, STORing a row to a target table,
or terminating a DO WHILE loop.

0055 Finally, a number of passes are made through the
array of Script data structures to write out actual script
statements to define the standard Script constants, script
structures to hold table column values, data profile names,
and the actual CONNECT/DO WHILE/LOAD/IF/assign
ment/STORE/DISCONNECT processing statements.
0056. As shown in FIGS. 5A-5C, example script 500
may define an array 502 and a transformation routine 504.
The array 502 is an example of how an XML file format or
data definition may be defined within the programming
code. Whereas LOAD and STORE handlers for other inter
faces, such as database interface 116, may take a #DATA
parameter (as shown by the line of code at reference
numerals 512) that specifies a structure within which each
field corresponds to a column within a database table, the
iDATA parameter (as shown by the line of code at reference
numeral 514) for XML LOAD and STORE handlers,
according to particular embodiments, specifies an array of
structures. Each of the structures in the array corresponds to
an element, attribute, namespace, or comment specified in
the XML document. As one example, the structure may look
like this:

0057 TYPE xmlComponentlDef AS STRUCTURE

STRING, REM* Element tag, attribute name, or null
STRING, REM* character value of element or attribute
INT, REM*

O=attribute, 1=element.2=namespace.3=comment
comp id
comp parent
comp namespaceURI
comp. NS Prefix
comp IsCDATA
tags
comp datatype
comp IsRepeating
comp level
)

INT, REM* id of the component
INT, REM id of the parent element-type component
STRING, REM full URI of namespace
STRING, REM prefix for namespace qualification
BOOLEAN, REM* TRUE = data to be wrapped in CDATA

INT, REM datatype of element
BOOLEAN, REM* TRUE = element may repeat
INT, REM* level of the component

US 2006/02007S3 A1

-continued

CONST comptype attribute = 0
CONST COMPTYPE ATTRIBUTE = 0
CONST comptype element = 1
CONST COMPTYPE ELEMENT = 1
CONST comptype namespace = 2
CONST COMPTYPE NAMESPACE = 2
CONST comptype comment = 3
CONST COMPTYPE COMMENT = 3

0058
follows:

In the illustrated example, the fields are defined as

COil Ilale simple name of element or attribute or text
of comment

comp value character value of element or attribute
comp type O => element, 1 => attribute, 2 =>

namespace component, 3 => comment
comp id a unique number to identify a component;

sequentially assigned starting with Zero
id of this component's parent component
the Uniform Resource Identifier for the
component's namespace
the prefix associated with the namespaceURI
used to indicate that the character value
may contain problematic characters
like <, >, ', ', or &
indicates an element may repeat Zero or more
times in the XML definition
hierarchical level of the component, starting
with zero for the root element

comp parent
comp namespaceURI

comp. NS Prefix
comp IsCDATA

comp IsRepeating

comp level

0059. As described further below, by creating an array of
xmlComponent Def structures and then setting the value of
the various fields based on the data read from the source file,
XML interface 600 can create a data structure holding all of
the data necessary for the defined transformation.
0060 Since data is being transformed into XML format,
XML interface 600 (FIG. 1), in this example, is called by
server 106 to help perform the transformation. Details of
XML interface 600 and its associated communication han
dlers are described in greater detail below in conjunction
with FIG. 6.

0061 The CONNECT handler (see reference numeral
509) establishes a connection to XML interface 600 and
references an XML profile. The SEND handler (see refer
ence numerals 510) is called before the LOAD handler (see
reference numerals 512), and prepares the XML interface
600 for the load. The LOAD handler 512 loads data from a
Source file into an array element that is passed by the
example script 500. The STORE handler 514 is used to
create the specified target file from the target data definition
that is passed by example script 500 to XML interface 600.
The DISCONNECT handler (see reference numeral 519)
disconnects from the XML interface 600.

0062). With respect to the LOAD handler, #FILE may be
used to specify the name of the file from which the XML
document may be read. iDATA may be required to specify
the array of structures that describe the XML document to be
read. Firepeating element index is used on the LOAD of a
repeating element and specifies the elements index in the
array of structures.

Sep. 7, 2006

0063. While parsing the XML file, particular embodi
ments of the LOAD handler may set the values of the
various structure fields according to the following guide
lines:

for elements and attributes, this field stores
the name of the relevant data component
initialized to NULL by the LOAD handler at
the beginning of the load. May be set to the
value contained in the document if the
corresponding data component is contained
in the document
elements (O), attributes (1), namespaces (2),
and comments (3).

comp id, comp parent
and comp level
comp namespaceURI

comp name

comp value

comp type

can be specified if the document contains
a namespace URI: otherwise may be left
NULL or set to a null string (“)
set to TRUE if the element repeats; set to
FALSE otherwise

comp IsRepeating

0064. With respect to the STORE handler, #FILE may be
used to specify the name of the file to which the XML
document may be written (see reference numeral 516).
iDATA may be used to specify the array of structures that
define the components of the XML document to be created.
firepeating element index may be used on the STORE of a
repeating element and specifies the elements index in the
array of structures. Special notes on the use of structure
fields for the STORE handler is as follows:

required for elements, attributes,
and comments; namespace prefix
name for namespaces
optional for elements; required for
attributes; ignored for namespaces
and comments
all required

COil lale

comp value

comp type, comp id,
comp parent and comp level
comp namespaceURI ignored for elements, attributes,

and comments; required for
namespaces
optional for elements, attributes,
and namespaces; ignored for
comments

may be specified as TRUE if the
element value is to be wrapped in
CDATA delimiters. May be set to
FALSE or left NULL otherwise
set as TRUE if the element repeats;
set to FALSE otherwise

comp. NS Prefix

comp IsCDATA

comp IsRepeating

0065. After the generation of example script 500, mapper
module 102 (FIG. 1) stores example script 500 in internal

US 2006/02007S3 A1

database 114 for later execution by server 106. Script
manager 104 may later schedule example script 500 for
execution by server 106. When server 106 is ready to
execute example script 500, it calls on XML interface 600 as
shown and described below in conjunction with FIG. 6.
Repeating Elements—Additional Information
0.066 As described above, XML Object definitions may
have an additional “repeating property added to an element
in an XML Object definition (for example, Car element in
XML file format 352). This property is used to indicate if a
particular element (and its children) in the XML Object
definition has data that repeats in the associated XML
document. The repeating property of the element is later
used when the XML Object definition is added to a program
(see, e.g., repeating element definition 408 in FIG. 4) to
create “repeating element XML definitions for each ele
ment with the “repeating property. Repeating element XML
definitions in a program provide the means of accessing a
particular repeating element and its children for structure
assignments in a script and processing distinct LOAD and
STORE operations inside a program. This feature may
provide the necessary control and flexibility in the program
to handle special LOAD/STORE processing required for the
repeating data.

0067. In particular embodiments of ADT 101, all ele
ments in the XML definition except for the document root
and any second level elements may be defined as repeating.
The repeating property is not applicable to attributes,
namespaces, and comments. The repeating property may be
designated on child elements that are designated as repeating
and so forth down the hierarchy as needed. A user may
specify if an element is repeating or non-repeating in the
XML Object Definition dialog (e.g., dialog 350 in FIG.3B).
The user may specify the repeating property from an XML
Component dialog or directly from the element component
in the XML Object Definition dialog via a context menu.
0068 Moreover, in particular embodiments of ADT 101,
the following rules may govern the use of repeating ele
ments:

0069. 1) Root and second level elements can not be
designated as repeating. Consequently, second level element
names are assigned unique.

0070). 2) Element names for third or lower level elements
do not have to be unique as long as they are not designated
as repeating.

0071 3) Elements designated as repeating are assigned
unique names for a given parent element.

0072 4) XML Object definitions can only have a single
second level element if that second level element includes
one or more “repeating elements. By contrast, multiple
second level elements may be supported for XML objects
without repeating elements.

0073. The main element (such as main element 406 in
FIG. 4) and repeating-element (Such as the repeating Car
element 408 in FIG. 4) XML palette objects are considered
a single entity for LOAD and STORE processing. That is, a
single XML definition structure is used in the script to
set/get values in common memory for LOAD and STORE
processing of the XML document stream.

Sep. 7, 2006

0074 Each repeating-element definition may allow
operations to be performed Such as mappings, user con
straints and process order specification and may follow the
existing rules consistent with other objects on the palette
Such as tables, records, and views. When user drags and
drops the XML object definition containing elements with
the repeating property onto a program palette, the main
XML definition 406 and all the associated repeating-element
definitions 408 are shown, as illustrated in FIG. 4.
0075. The name of the palette objects for repeating
element definitions may be derived from the name of the
main XML definition. For example, “PersonCars' main
XML Object definition is the name of the XML object in the
illustrated example. The repeating-element definition may
use the element name for the repeated-element definition
followed by the parent elements up to the document root in
the main XML Object definition with a period".’ separating
each name.

0.076 For example, “Car. Person Record. PersonCar
Document” is the name derived for the repeating-element

definition for the repeating Car element shown in FIG. 4. If
the final name is not unique for the palette object, a number
may be appended to the element name to make it unique
(e.g., Car2. Person Record. PersonCar Document). In par
ticular embodiments, the name of the palette objects regard
less of type (tables, records, views, Reusable Transforma
tions, Lookups, etc.) will be unique in a given program. The
unique palette name is used to identify the object to pro
cessing steps (LOAD, STORE, INVOKE) in a program.
0077. In the “Car.Person Record. PersonCar Document”
repeating-element definition 408, the fully qualified path for
the Car element to Person Record (parent) 408 and Person
Cars Document (grandparent) is shown in the palette object
name. The fully qualified path uniquely identifies a repeat
ing-element definition such that the user may differentiate
between two or more repeated-element definitions having
the same element name but different parents. In particular
embodiments, the user may be prevented from creating
mappings and user constraints to/from the parent component
for Car in the parent element of the repeating-element
definition in this example. That is, in Such embodiments,
mappings and user constraints may not be created on the Car
element in the Person Cars palette instance, they may be
create on the Car element in the Car. Person Record. Person
Car Document repeating-element definition.
0078. The format for repeating-element definitions is
considered separate but implicitly associated with the
repeating-element definitions in the related main XML defi
nition and may be visible in the program palette. That is, the
format maintained in the main XML definition is used to
define the corresponding repeating element definitions on
the program palette and “appear” as separate addressable
palette objects (406 and 408) from the user's perspective.
This approach keeps all the formats in a single location in
the metadata store for the repeating-element structure and
reduces the amount of duplicated data that would be needed
in an approach that uses separate repeating-element XML
object metadata definitions in the metadata store.
0079 When a user makes a modification to a main XML
Object definition (such as by using the XML Object editor
shown in FIG. 3B), the program palette objects are updated
to reflect the new structure. The program synchronization

US 2006/02007S3 A1

routines may recreate/restructure the main/repeating ele
ment definitions while trying to maintain existing mappings
and preserve existing repeating element definitions if pos
sible. Synchronization of the XML Object definitions occurs
on program open, program import, and when XML objects
are edited while programs are open.
0080. The use of “repeating-element” XML Object defi
nitions is important to allow the user to graphically see the
implied DO WHILE loops that may be generated in the
Script. In addition, this construct may allow the user to
control how each “repeating-element XML Object defini
tion may be processed in program and resulting Script.
Handling of multiple repeating elements in a single XML
definition may require having separate LOAD/STORE loops
for each repeating element. The user may create as many
repeating-element XML definitions as necessary to correctly
processing the XML definition.
0081. In particular embodiments, the LOAD and STORE
calls generated in the Script may have additional parameters
and structures to uniquely identify each part of the XML
definition (main or repeating-element) being processed for a
particular LOAD and STORE call. This may be handled by
passing the index of the “repeating element to be processed
as an additional parameter to the LOAD or STORE state
ments (for example, using firepeating element index
parameter as shown at reference numeral 514). A single
profile may be used for the main and repeating-element
XML Object definitions on the program palette since they
use the same script structure and memory for the “related”
LOAD or STORE statements in the script. However, the
“PersonCars' (main) and “Car.Person Record. PersonCars
Document' (repeating-element) XML Object definitions

from above are handled using separate LOAD or STORE
operations in the script.
0082 An XML interface 600 may save/stage the data for
repeating child elements to cache both on LOAD and
STORE calls in the script. In particular embodiments,
STORE statements for repeating-element definitions always
stage the data to the memory. When the main record is
STOREd then all of its data, including the staged repeating
elements, gets written to the XML target file. The LOAD
process begins with the LOAD of the entire record. All of the
non-repeating data for the root record is returned, while the
data for repeating child elements is staged to a cache. On
subsequent LOADs for the child portions, this data is
extracted from cache and returned.

0.083 FIG. 6 is a block diagram illustrating XML inter
face 600 according to one embodiment of the invention. In
the illustrated embodiment, XML interface 600 includes a
plurality of communication handlers 602, a parser 604, a
plurality of function calls 606, and a cache 608. The present
invention contemplates more, fewer, or different compo
nents than those shown in FIG. 6.

0084 As described above, rather than passing data
through a structure in which each structure field translates to
a table column or file field, XML interface 600 may pass an
array structure, and each element of the array may corre
spond to an XML component. The array structure may
contain the information required to format an XML file, and
may be derived from the XML file format 351 as described
above (FIG. 3B).
0085 For the STORE handler, XML interface 600 may
simply traverse the array structure and write out the structure

Sep. 7, 2006

to the file in XML format. For the LOAD handler, XML
interface 600 may first parse a given XML object until
locating an element corresponding to the root node of the
record passed in. XML interface 600 may then parse the
XML file and try to map the components encountered to
their corresponding fields in the array. In one embodiment,
XML components that have no corresponding field may be
discarded. Array fields that have no counterpart in the XML
file may be left NULL.

0086 Communication handlers 602 generally provide a
common function set that enables Server 106 to interact with
different databases or data formats. Communication han
dlers 602 may establish and terminate connections, issue
queries and other Suitable commands, and move data to and
from a database or other Suitable data repository. A particular
interface converts these common Script functions into data
base-specific code. In the illustrated embodiment, commu
nication handlers 602 include a CONNECT handler 610, a
SEND handler 612, a LOAD handler 614, a STORE handler
616, and a DISCONNECT handler 618.

0087 Generally, CONNECT handler 610 allows the con
nection to XML interface 600 in order to connect with
source files and target files when server 106 desires to
execute a script. SEND handler 612 prepares XML interface
600 for a LOAD call by passing initial information to parser
604. This call may initialize the “XML file' object, and
prepare the XML file to be a source file. LOAD handler 614
works in conjunction with parser 604 and may iteratively
parse each Successive element until the end of a record is
reached. At that point, parsing may wait and the array
described above may be returned with the data portion filled
in. STORE handler 616 may cause the passed array of
element structures to be written to the XML file format or
cache 608 depending on the type of element being pro
cessed. The structure may contain the field names, hierarchy
information, and the data. XML interface 600 may run this
structure and generate the indicated XML to the XML file
associated with the profile. DISCONNECT handler 618
writes out any element tags that are still pending, frees any
parser resources, closes the Source and target files, and
disconnects server 106 from XML interface 600.

0088 Parser 604 may be any suitable computer program
operable to read one data line at a time during the LOADing
of data from a source file. Parser 604 makes particular calls
to function calls 606 based on the data read in order to
perform its functions. For example, function calls 606 may
include a comments-process function call 620, a namespace
process function call 622, a CDATA-process function call
624, a start element function call 626, and an end element
function call 628.

0089 Cache 608 may be any suitable storage unit or
database and may take the form of volatile or non-volatile
memory including, without limitation, magnetic media, opti
cal media, random access memory, read-only memory,
removable memory, or any other Suitable local or memory
component. In the illustrated embodiment, cache 608
includes a stack 630, a component list 632, and a repeating
component list 634. Stack 630 functions to keep track of
where parser 604 is in an XML tree structure when XML
interface 600. Component list 632 temporarily caches data
from a particular source file or target file during a LOAD call
and repeating component list 634 temporarily caches data

US 2006/02007S3 A1

for the repeating elements during a particular LOAD call.
This is described in further detail below in conjunction with
FIGS. 7A and 8 below.

0090. To support STORing of repeating elements, repeat
ing records, and nested repeating records, example script
500 stores the repeating data first followed by the non
repeating data. First, example script 500 determines what
type of data is being processed, e.g., a repeating record,
repeating element or non-repeating data. Example Script 500
determines this by using a repeating index passed on the
STORE call from example script 500. Next, if example
script 500 determines that a repeating record is being
processed then the size of the record (that is, the start and
end indexes of the record) is calculated.
0.091 Repeating component list 634 maintains the list of
all active repeating records being processed. Any time a
repeating record is parsed, the parsing routines add a new
reference to repeating component list 634. When a repeating
component is parsed, repeating component list 634 is
scanned to determine if the record is a member of this list
(has been processed before). If so, XML interface 600
identifies the parent of the repeating component from repeat
ing component list 634. On STORE of the main component,
the non-repeating data is recorded in component list 632. A
call is subsequently made to STORE handler 616 to write
out the XML record.

0092. While processing a repeating record, a check for
nested repeating record Scans for any nestings of repeating
data. All repeating data may have their own LOADs, which
may each cause a new in-memory cache data area to be
added in the component. Parsing routines, while building the
list, will save the component data in the in-memory cache
and LOAD handler 614 will then process the data if the
Component Ids match a Component Id that is to be pro
cessed next.

0093 FIGS. 7A-7B and 8 illustrate example operation of
XML interface 600 in executing a transformation script such
as the one shown in FIGS. 5A-5C. In particular, FIG. 7A
illustrates example operation of XML interface 600 in
executing an example script to transform input data stored in
rows from a database table into an XML output file, while
FIG. 8 illustrates example operation of XML interface 600
in executing another example Script to transform input data
stored in an XML-format source file to rows in a database
table. In general, however, XML interface 600 may be
configured to transform input data from an XML-format
Source file into a target file of any appropriate format. As
indicated above other possible target file-to-source file com
binations may include, but are not limited to XML file-to
XML file, flat file-to-XML file, and XML file-to-flat-file
transformations.

0094 FIG. 7A is a flowchart illustrating steps that may
be taken by server 106 and XML Interface 600 in executing
the example script 500 shown in FIGS. 5A-5C to transform
a portion of a particular set of database tables (referred to
generically here as the “source files' for this transformation)
into an XML document having a particular format (referred
to generically as the “target file' in this transformation).
More specifically, FIG. 7A illustrates the transformation of
a plurality of PERSON rows from a PERSON table and a
plurality of associated CAR rows from a CAR table into a

Sep. 7, 2006

plurality of XML records that each includes information
about a particular person and one or more cars associated
with that person.
0.095 The process begins at step 710 with server 106
initiating execution of the generated Script. At step 720,
server 106 creates array 502 describing the target data
definition (here, the PersonCars XML Object definition) and
initializes one or more values of its various array elements.
For example, using example script 500 illustrated in FIGS.
5A-5C as an example, during initialization server 106 cre
ates the “PersonCars Document' array and sets the “name,
“type.”“id,”“parent,” and “level of each element of the
“PersonCars Document” array based on the PersonCars
XML data definition that was supplied at the time of script
creation.

0096] At step 730, the relevant interfaces CONNECT to
the source file and target file. In particular here, XML
interface 600 issues a CONNECT to connect to the XML
target file, while database interface 116 issues CONNECTs
to the “Person’ table and the “Cars’ table in the relational
database associated with database interface 116. At this
point, server 106 may also initialize other operational vari
ables, clear temporary memory, and/or perform any other
steps appropriate to facilitate input and output to the relevant
files.

0097. The appropriate interface then begins reading data
from the source file. Here, database interface 116 begins
reading data from the relevant database tables. In particular,
database interface 116 transmits a SEND request to the
PERSON table to request all PERSON rows at step 740.
These PERSON rows may then be buffered in temporary
memory by database interface 116 until needed.
0098. At step 750, server 106 determines whether another
PERSON row can be loaded from those stored in memory by
issuing a LOAD call on the PERSON table. If server 106
determines that no more rows remain to be processed, server
106 continues operation at step 800. If, instead, server 106
determines that additional rows remain to be processed,
server 106 accesses the next remaining PERSON row and
transforms the data in this PERSON row for output to the
target XML file. As part of this process, server 106 may also
iteratively process any repeating data elements associated
with this PERSON row.

0099 For example, in the illustrated example, server 106
transmits a SEND request to the CARS DBMS table to
request the CAR rows having a particular ID value at step
760. These CAR rows may then be buffered in temporary
memory. At step 770, server 106 determines whether any
CAR repeating elements remain to be processed by issuing
a LOAD on the identified CAR rows. If server 106 deter
mines that no more CAR rows remain to be processed for
this particular PERSON row, server 106 continues operation
at step 790. If, instead server 106 determines that additional
CAR rows remain to be processed for this particular PER
SON row, server 106 accesses the data in the next remaining
CAR row and issues a STORE for the relevant CAR row at
step 780. As a result of the STORE, data from this CAR row
will be cached internally by XML interface 600 along with
other data previously cached for the repeating XML data
component type associated with these CAR rows. In par
ticular embodiments, this data may saved in the buffer until
being written to the target XML file when the STORE for the

US 2006/02007S3 A1

parent data component is processed (e.g., at Step 790 in this
example). Additionally, in particular embodiments, server
106 may also format or otherwise modify the data extracted
from the relevant CAR rows to match the target data
definition associated with the target file. For example, server
106 may modify the format of a model year stored in a
particular CAR row to match the target year format associ
ated with the data definition for the target XML file.
0100. Once the appropriate data for a particular data
component in the target XML file has been buffered, includ
ing any appropriate repeating elements, XML interface 600
writes the data component to the target XML file. More
specifically, in the illustrated example, XML interface 600
writes out a Person Car XML record to the target XML file
at step 790. Operation then returns to step 750 and server
106 attempts to LOAD another PERSON row.
0101. Once data for all of the XML data components has
been LOADed from the appropriate source files, database
interface 116, XML interface 600 and server 106 may
complete any steps appropriate to finalize the transformation
and close the source file and target file. In the illustrated
example, as part of this process, server 106 performs a write
of the last remaining XML data component to the target
XML file, and XML interface 600 and database interface 116
issue DISCONNECTs to the target XML file and source
database tables respectively at step 800. At step 810, server
106 completes execution of the example script and termi
nates operation with respect to this particular data transfor
mation. The target XML file may now be viewed by an
appropriate XML editor.
0102 FIG. 7B is an example output of the example
method of FIG. 7A according to one embodiment of the
invention. As indicated in FIG. 7B, an XML file 798 is
illustrated in which car data for particular persons are
arranged in an XML format. This data was extracted from
database tables, such as source tables 404a, 404b (FIG. 4).
0103 FIG. 8, as noted above, illustrates an example
operation of XML interface 600 in executing another trans
formation. In particular, FIG. 8 illustrates operation of
server 106 and XML Interface 600 in executing another
example script (not shown) generated to transform the data
in the XML file shown in FIG. 7B (representing the source
file for this transformation) into an arrangement of DBMS
rows (representing the target files in this transformation)
having a particular format. Moreover, FIG. 8 provides
additional detail for some of the high-level steps identified
in FIG. 7, with respect to how these steps might be imple
mented in a particular embodiment of system 100.
0104. The process begins at step 900 with server 106
initiating execution of the Script generated to perform this
transformation. At step 910, server 106 creates an array
describing desired data that will be stored in the target files
(here, the fields of the PERSONS rows and the associated
CARS rows) based on the target data definition defined by
the executing script. Server 106 additionally initializes one
or more values of the various array elements in this array.
0105. At step 920, the relevant interfaces CONNECT to
the source file and target file. In particular here, XML
interface 600 issues a CONNECT to connect to the XML
source file, while database interface 116 issues CONNECTs
to the “Person’ table and the “Cars’ table in the relational

Sep. 7, 2006

database associated with database interface 116. At this
point, server 106 may also initialize other operational vari
ables, clear temporary memory, and/or perform any other
steps appropriate to facilitate input and output to the relevant
files.

0106. At step 930, XML interface 600 begins parsing the
XML source file 798 which includes multiple XML data
records. While parsing, XML interface 600 determines at
step 940 whether XML interface 600 has reached the start of
an XML data component (e.g., based on the detection of a
start delimiter in the parsed data). When XML interface 600
determines that it has detected the beginning of an XML data
component, XML interface 600 determines, at step 950,
whether this data component should be included in the target
file. In particular embodiments, XML interface 600 may
determine whether to include the detected data component
by traversing the array and determining whether the “Name”
field of any array element matches the name of the detected
XML component. If not, XML interface 600 discards the
detected data component at step 960 and proceeds with
parsing at step 1060.
0.107) If, instead, XML interface 600 is able to match the
name of the detected XML component to the “Name” field
of one of the array elements, XML interface 600 processes
the data component for inclusion in the array. As part of this
process, XML interface 600 determines, at step 970, whether
the detected data component has any children components.
If so, XML interface 600 parses and processes the children
components, at step 980, in a similar fashion deciding
whether each should be included in the array. (Although
shown, for the sake of simplicity, as a single box, this
process may, depending on the hierarchy of the detected
children, be an iterative process that follows a flow similar
to that taken to process the detected parent component.)
0108) XML interface 600 then determines at step 990
whether the detected data component is of a repeating
component type. In particular embodiments, XML interface
600 may determine this by checking a field, such as an
“IsRepeating field of the array 502 illustrated in FIG. 5A.
If XML interface 600 determines that the detected data
component is not of a repeating component type, XML
interface 600 sets a field (e.g., a “Value” field) of the
matched array element to the value of the detected data
component at step 1000. As a result, data from matched data
components will be stored in their corresponding array
elements.

0109) If XML interface 600 determines that the detected
component is of a repeating component type, XML interface
600 stores the value of the detected component in a tempo
rary buffer at step 1010. XML interface 600 then determines
if there are additional data components of the same compo
nent type immediately following the detected component at
step 1020. If so, XML interface 600 stores the next repeating
data component in the buffer at step 1030 and adds a pointer
back to the previous repeating element at step 1040. XML
interface 600 then returns to step 1020. Once all repeating
elements of that component type have been stored in the
buffer, XML interface 600 adds a pointer to the last repeating
element of that type to a field (e.g., a “Value” field) of the
matched array element (i.e., the array element that originally
matched the name of the first data component of this
repeating type) at step 1050. XML interface 600 then returns
to parsing the remainder of the source XML file.

US 2006/02007S3 A1

0110. At step 1060, the interface 108 associated with the
target file, in this case data base interface 116, issues a
STORE on any non-repeating data from the currently-parsed
data component, thereby writing the non-repeating data to
the target file. XML interface 600 then determines whether
the currently-parsed data component has any repeating chil
dren at step 1070. If so, XML interface 600 retrieves, from
the memory buffer, data from one of the repeating children
and database interface 116 issues a STORE on this repeating
child data, writing the data to the target file at step 1080.
XML interface 600 and database interface 116 repeat this
process until all of the repeating children have been stored,
returning to step 1070 until no more children remain in
memory.

0111. As one example, in the described configuration, the
target files represent associated rows in the PERSONS and
CARS tables. As a result, database interface 116 may write
the values stored in a particular field (e.g., a “Value” field)
of the array elements associated with non-repeating compo
nent types to a PERSON row in the PERSON table. Data
base interface 116 then accesses the memory location iden
tified by the pointer stored in the array elements associated
with any repeating component types, here the CARS data
components, and writes the values stored at that location to
the target files in the appropriate manner based on the type
of target files. In the illustrated example, database interface
116 creates a CAR row for each CAR data component and
adds it to the CARS table. Because the associated PERSON
row was already created and added to the PERSONS table,
database interface 116 can also incorporate an ID identifying
the associated PERSON row into each of the newly-created
CAR rows.

0112 After database interface 116 stores or saves the
appropriate data, XML interface 600 determines whether it
has completed parsing the XML source file at step 1090. For
example, in particular embodiments, XML interface 600
may determine if it has completed parsing the last data
component based on whether or not XML interface 600 has
detected an end delimiter associated with the root data
component. If XML interface 600 has not completed parsing
the XML source file, XML interface 600 returns to step 930
and continues parsing the XML source file.

0113) If, instead, XML interface 600 determines that it
has finished parsing the XML source file, XML interface
600, database interface 116, and server 106 may complete
any steps appropriate to finalize the transformation and close
the source file and target file. As part of this process, XML
interface 600 and database interface 116 issue DISCON
NECTs to the target XML file and source database tables
respectively at step 1100. At step 1110, server 106 completes
execution of the example Script and terminates operation
with respect to this particular data transformation.

0114 FIGS. 9-12 illustrate the operation of particular
embodiments of data transformation systems that may uti
lize web services in various ways to Supplement the trans
formation functionality described above with respect FIGS.
1-8. FIG. 9 illustrates the operation of a system 120 capable
of generating data transformation scripts that are similar to
those described above but that may be executed as web
services. Meanwhile, FIGS. 10-12 illustrate the operation of
a system 160 capable of generating data transformation
scripts that are also similar to those described above but that

Sep. 7, 2006

may invoke web services offered by other servers to com
plete requested data transformations. The incorporation of
web service features into ADT systems such as these may
increase the flexibility of these ADT systems and may
further reduce the amount of design required of ADT users.

0115 FIG. 9 illustrates a system 120 that allows trans
formation scripts (referred to herein as “web-invoked scripts
125') to be executed via a web service call. In general, the
ability to execute such web-invoked scripts 125 as a web
service may allow the existing program execution architec
ture of system 100 to be accessed by remote devices through
a call handled by a web server 124 with execution-specific
data passed in and out. Additionally such a configuration
may allow system 120 to schedule the execution of a
web-invoked script 125 for a future time and/or add other
forms of flexibility to the transformation functionality
described above. As shown in FIG. 9, system 120 includes
ADT 121, web server 124, client 122, and network 123.
Moreover, web server 124 includes network interface mod
ule 128 and messaging module 129, while ADT 121 includes
mapper module 142, Script manager 144, server 146, inter
faces 148, and internal database 154. Except as explicitly
noted below, mapper module 142, Script manager 144,
server 146, interfaces 148, and internal database 154 may, in
particular embodiments, all operate in a similar fashion to
that described above with respect to similarly-labeled com
ponents of ADT 101. In addition, ADT 121 includes sched
uler 138.

0116. In general, web server 124 receives service
requests 130 from one or more clients 122 requesting data
transformation service. Web server 124, in turn, requests
these data transformation services from server 146. After
server 146 completes the desired data transformation using
web-invoked scripts 125, web server 124 may also transmit
a service response 131 to client 122 with the results of the
requested data transformation services. Web server 124 may
represent any appropriate combination of Software and/or
hardware suitable to provide the described functionality. For
example, in particular embodiments, web server 124 may
represent a server running Apache Tomcat. Additionally, in
particular embodiments, web server 124 may represent the
same physical component as ADT 121. For example, ADT
121 and web server 124 may represent applications running
on the same computer. Alternatively, as Suggested by dotted
line 127 between ADT 121 and web server 124, in particular
embodiments, ADT 121 and web server 124 may represent
separate physical devices, or applications running on sepa
rate physical devices, operable to communicate with one
another.

0.117 Client 122 may represent a software application
executing on a suitably configured personal computer (PC),
networked terminal, or any other appropriate device capable
of accessing web services. Although the description below
focuses on embodiment of system 120 in which client 122
is running on a separate physical device remote from ADT
121, in particular embodiments, client 122 may represent a
Software application running on the same computer as ADT
121 and/or web server 124. Network 123 may represent a
local area network (LAN), portions of the Internet, or any
other suitable public or private communications network.
Web server 124, server 146, network interface module 128,

US 2006/02007S3 A1

and messaging module 129 represent any appropriate com
bination of hardware and/or software suitable to provide the
described functionality.

0118. In operation, ADT 121 generates web-invoked
scripts 125 to perform user-defined data transformations. A
user of system 120 may define the relevant transformations
and ADT 121 may generate the corresponding web-invoked
Scripts 125 in any appropriate manner. In particular embodi
ments, a GUI similar to the one described in FIGS. 3A-3C
and 4A-4B, may be modified for used in creating web
invoked scripts 125. For example, the GUI of FIG. 4 may
be modified to include a “Web Services select box that the
user may select, when creating a script using the process
described above with respect to FIG. 4, to indicate that the
transformation currently being defined is intended to be
provided as a web service. When the user selects the box to
indicate that this script is to be executed as a web service, the
GUI may enable a number of GUI inputs for defining
web-invoked scripts 125. As a result, in particular embodi
ments, server 146 may receive information identifying web
service-capable transformation web-invoked scripts 125 in a
similar fashion to that described above with respect to
scripts 115.

0119 Furthermore, web-invoked scripts 125 may also be
similar in structure to scripts 115 described above with
respect to FIGS. 5A-5C with suitable modifications made to
the code to allow web-invoked scripts 125 to utilize data
from web service messages as the target and source files of
the relevant data transformation. For example, in particular
embodiments, the LOAD and STORE functions for the
XML interface described above accept a "#ws xml field
that indicates whether the target or source file, respectively,
should be retrieved from a web service request or transmit
ted as a web service response. For web-invoked scripts 125
this field is set true when the web-invoked script 125 is
generated.

0120 ADT 121 may be configured to generate web
invoked scripts 125 that accept input data from client 122
and/or provide output data to client 122. In particular
embodiments, a particular web-invoked script 125 may be
configured not to accept input data from client 122 and/or
not provide output data to client 122, depending on the
configuration of ADT 121 and the transformation defined for
the relevant web-invoked script 125. In such embodiments,
web-invoked scripts 125 may be configured to retrieve input
data from local memory and/or to store output data to local
memory as an alternative to exchanging data with client 122.
0121 Additionally, once a particular web-invoked script
125 has been generated, system 120 may be configured to
create a service definition 134 that can be used to provide
client 122 with information regarding the appropriate man
ner for communicating with web server 124 to request the
associated transformation as a web service. Service defini
tion 134 may represent a Web Services Description Lan
guage (WSDL) file, and XML schema, and/or any other
appropriate collection of information identifying for client
122 the appropriate inputs to use and/or outputs to anticipate
when requesting the execution of the relevant web-invoked
script 125 as a web service. In particular embodiments,
service definition 134 may be generated by mapper module
142 when a particular data transformation is defined and a
user requests the associated Script be made available as a

Sep. 7, 2006

web service. In particular embodiments, when the user
chooses to have service definition 134 generated, mapper
module 142 may generate this service definition 134“auto
matically in the sense that mapper module 142 may gen
erate service definition 134 based on mappings in the
program palette without any additional input from the user
beyond the initial request for generation of service definition
134. Server 146, web server 124, or any other appropriate
component of system 120 may then publish service defini
tion 134 at an appropriate registry (e.g., in a Universal
Description, Discovery, and Integration (UDDI) repository)
for access by clients 122 in system 120, transmit service
definition 134 to requesting clients 122, or otherwise make
service definition 134 available to clients 122.

0.122. After one or more web-invoked scripts 125 have
been generated, client 122 may request data transformation
services by transmitting a service request 130 to web server
124 over network 123. Service request 130 may represent a
Simple Object Access Protocol (“SOAP) message, an Elec
tronic Business using eXtensible Markup Language
(“ebXML') message, or a message of any other type or
format appropriate for requesting web services. Service
request 130 may include request data 132, such as one or
more XML data components; one or more DBMS table
entries, rows, or columns; or any other appropriate collec
tion of data. In particular embodiments, web server 124 may
also be configured to support Scheduled processing of Ser
vice requests 130, and service request 130 may also specify
that the request is for a scheduled execution and Supply a
requested execution time 139.

0123) A network interface module 128 of web server 124
receives service request 130 and processes service request
130 to facilitate execution of the request by ADT 121.
Network interface module 128 may represent any appropri
ate hardware and/or software suitable to provide the
described functionality. In particular embodiments, network
interface module 128 comprises a Java servlet that handles
initial message decoding and a Java Native Interface (JNI)
for communicating with messaging module 129.

0.124 Network interface module 128 performs any
appropriate decoding of service request 130 and extracts
request data 132. For example, as noted above, in particular
embodiments, service request 130 represents a SOAP mes
sage, and network interface module 128 performs initial
SOAP decoding of service request 130 and extracts request
data 132 from the service request 130. Network interface
module 128 then passes request data 132 and any other
appropriate information from the service request 130, such
as the requested execution time 139, to a messaging module
129 of web server 124. In particular embodiments, a Java
servlet of network interface module 128 passes the request
data 132 to messaging module 129 using JNI.

0.125 Messaging module 129 receives request data 132
from network interface module 128 and interacts with server
146 to facilitate completion of the requested data transfor
mation. In particular embodiments, messaging module 129
may interact with server 146 using threaded messages 135.
For example, in particular embodiments, web server 124 and
server 146 may be operating in a system using Computer
Associate's Platinum Enterprise Communicator (PEC), and
threaded messages 135 may represent PEC messages trans
mitted between messaging module 129 and server 146.

US 2006/02007S3 A1

Additionally, threaded messages 135 may each include a
thread identifier and/or a source identifier to allow both web
server 124 and server 146 to coordinate communication and
processing related to service request 130.

0126 Thus, after receiving the decoded service request
130, messaging module 129 transmits one or more threaded
messages 135 to server 146 to request transformation ser
vices. As part of one or more of the threaded messages 135,
messaging module 129 communicates the request data 132
to server 146. In particular embodiments, server 146 may be
able to identify, based on the name and/or structure of
request data 132, an appropriate web-invoked script 125 to
execute from among a plurality of web-invoked scripts 125
currently stored in internal database 154. Alternatively,
messaging module 129 may also communicate additional
information to server 146 to allow server 146 to determine
the appropriate data transformation to be completed. For
example, in particular embodiments, messaging module 129
may also include the name of a particular web-invoked
script 125 to be executed by server 146 in completing the
desired data transformation.

0127 Server 146 receives threaded messages 135 from
web server 124 and initiates one of web-invoked scripts 125
using request data 132 as the Source file. As noted above, in
particular embodiments, web-invoked scripts 125 may be
generated with LOAD statements that are configured to
receive input data from service requests 130 and/or with
STORE statements that are configured to write output data
to service responses 131. Once server 146 has completed
execution of the appropriate web-invoked script 125, server
146 may communicate back any appropriate output, includ
ing any response data 133 generated as a result of the
execution of the relevant web-invoked script 125, to the
messaging module 129 of web server 124 in one or more
threaded messages 135. Alternatively, server 146 may store
any output of the executed web-invoked script 125 locally
and may not communicate any response data 133 back to
web server 124. In particular embodiments, response data
133 for all scheduled data transformations may be stored
local to ADT 121, and clients 122 may not receive any
response data 133 when requesting scheduled data transfor
mation services.

0128 Messaging module 129 receives threaded messages
135 from server 146 and forwards threaded message 135 (or
information obtained from the threaded message 135) to
network interface module 128. Network interface module
128 then determines an appropriate client 122 to which a
service response 131 should be transmitted. Network inter
face module 128 generates a service response 131 and
transmits service response 131 to the client 122 that origi
nally transmitted the corresponding service request 130.
Service response 131 includes the response data 133
received from server 146. As a result of this process, a
remote user using client 122 may be able to remotely access
and utilize the data transformation capabilities of ADT
servers using web service calls.
0129. Additionally, as suggested above, particular
embodiments of web server 124 and server 146 may support
scheduled execution of the data transformations requested
via web service calls. More specifically, web server 124 may
receive service requests 130 that include an execution time
139. Server 146 may then execute the web-invoked script

Sep. 7, 2006

125 corresponding to the requested transformation at a time
determined based on execution time 139. For example,
particular embodiments of server 146 may include a sched
uler 138. Messaging module 129 may determine, based on
the inclusion of execution time 139 in particular service
requests 130, that those requests are to be scheduled for
execution at a later time. For these service requests 130,
messaging module 129 may transmit, to scheduler 138,
threaded messages 135 that include the request data 132 and
execution time 139. Scheduler 138 may then store request
data 132, execution time 139, and any other appropriate
information to allow server 146 to properly execute the
desired transformation. At an appropriate time, Scheduler
138 may then initiate the desired web-invoked script 125 or
instruct other components of server 146 to initiate the
desired web-invoked script 125. If the service request 130
included a request data 132, scheduler 138 may provide this
to the relevant components as well.
0.130. Additionally, scheduler 138 may determine the
appropriate time to begin execution of the relevant Script
based in any suitable manner on execution time 139. For
example, execution time 139 may represent an initiation
time at which scheduler 138 will execute the web-invoked
script 125, a completion time at which the web-invoked
script 125 must be completed, or a priority level that server
146 will use to order the various tasks server 146 currently
has scheduled.

0131 Thus, system 120 provides a flexible solution for
data transformation solutions. As a result, system 120 may
be capable of providing a variety of services to remote users
using standardized interfaces. Moreover, system 120 may be
configured to provide clients 122 information as to the
services offered by server 146 and the proper manner for
accessing those services through the use of a service defi
nition 134. Additionally, system 120 may be capable of
timing the execution of the relevant data transformation
based on the desires of the requesting user. As a result,
system 120 may provide a number of operational benefits.
0132 FIG. 10 illustrates a system 160 that utilizes web
services to provide functionality for transformation pro
grams (referred to herein as “web-utilizing scripts 155). In
general, system 160 allows a user to identify a web service
to be called to provide all or a portion of a particular data
transformation. In particular embodiments, web-utilizing
scripts 155 may be identical to particular types of scripts 115
described above with respect to FIGS. 1-8 with the added
ability to invoke external web services based on a defined
data transformation. The web service is identified during
mapping and a particular web-utilizing Script 155 is gener
ated to perform the defined data transformation using the
specified web service.
0133. In the illustrated embodiment, system 160 includes
an ADT 181, a web server 162, a network 163, and a proxy
server 164. ADT 181 includes server mapper module 182,
script manager 184, server 186, interfaces 188, and internal
database 194. Except as explicitly noted below, mapper
module 182, script manager 184, server 186, interfaces 188,
and internal database 194 may, in particular embodiments,
all operate in a similar fashion to that described above with
respect to similarly-labeled components of ADT 101. In
addition, ADT 181 includes service interface module 183.
0.134 Service interface module 183 is responsible for
receiving input parameters from server 186 during execution

US 2006/02007S3 A1

of a web-utilizing script 155, packaging input parameters,
invoking the web service, and un-packaging output param
eters. Although the description below focuses on examples
in which ADT 181 transmits input data to the requested web
service and receives particular output data back from the
web service, particular web services may be configured to
receive no input data and/or to transmit no output data back
to ADT 181. In particular embodiments, service interface
module 183 includes a dynamically-linked C++ library
capable of receiving appropriate input data (as described
further below), structuring the input data in an appropriate
manner for the particular web service to be invoked, and
communicating the data to a SOAP tool, which in turn
transmits a SOAP message containing the data to the des
ignated web server 162. In particular, the dynamically
linked library may support a generic web execution function
capable of calling any web service identified by function
parameters 174 received by the generic web execution
function. In general, however service interface module 183
may represent any Suitable hardware and/or Software appro
priate to communicate with web servers and utilize web
services.

0135 Web server 162 may represent any appropriate
component providing any functionality (generically referred
to herein as “web services 175') that can be utilized through
the transmission of a suitably-structured request and the
receipt of a corresponding response. For example, in par
ticular embodiments, web server 162 may comprise an
Apache Axis or Microsoft NET server supporting web
services 175. In general, however, web server 162 may
represent any appropriate combination of Software and/or
hardware suitable to provide the described functionality.

0136. In operation, mapper module 182 receives infor
mation defining a data transformation that utilizes a web
service 175 and generates a web-utilizing script 155 that
invokes the relevant web service 175 to execute the defined
transformation. Web-utilizing scripts 165 may be similar in
content and operation to scripts 115 described above with
respect to FIGS. 1-8, but with the addition of web service
calls to, in part, transform data extracted from source data
files into data to be written into target data files. An example
of a particular web-utilizing script 165 is shown in FIG. 12
and discussed below.

0137 More specifically, mapper module 182 allows a
user to design a transformation program to transform data
via mappings from one or more source files to one or more
target files utilizing one or more specified web services. In
particular embodiments, the mapping may be defined via a
GUI having a program palette (as shown in FIG. 11) in
which a user is allowed to select a source object definition,
a target object definition, and a web service definition 178.
In particular embodiments, web service definition 178 may
comprise information defining inputs expected by and out
puts transmitted by the corresponding web service 175. The
user may then drag and drop data components from a
graphical representation of the Source object definition into
a graphical representation of the web service definition 178,
and then drag and drop outputs of web service definition 178
into a graphical representation of the target object definition
in order to define the desired transformation.

0138. As part of the information the user provides the
define the transformation, the user may identify a source

Sep. 7, 2006

object definition, a target object definition, and a web service
definition 178 that will be utilized as part of the transfor
mation. With respect to the web service, the user may
identify such information as the web service Uniform
Resource Indicator (URI) location, the method to invoke for
the web service, a proxy server to contact, and/or any other
appropriate information to facilitate communication
between the web-utilizing script 155 and the relevant web
Service 175.

0.139. The user may also provide a web service definition
178 to be displayed in a GUI associated with ADT 181. Web
service definition 178 defines the inputs and outputs asso
ciated with a particular web service 175 and any additional
information service interface module 183 may need to
request web services from a particular web server 162. The
user may provide web service definition 178 to ADT 181 in
any suitable manner. In particular embodiments, ADT 181
may be capable of parsing a WDSL, XML schema, or other
Suitable description of a web service to automatically gen
erate web service definition 178. In alternative embodi
ments, the user may provide web service definition 178 to
ADT 181 manually, identify a previously-saved web service
definition 178, or provide web service definition 178 to ADT
181 in any appropriate manner.

0140. After the user has provided one or more source
object definitions, one or more target object definitions, and
one or more web service definitions 178, the user specifies
mappings between source file components and target file
components, between source file components and web ser
Vice inputs, and/or between web service outputs and target
file components. Once the user has provided the appropriate
information to define the transformation, mapper module
182 generates a web-utilizing script 155 to perform the
defined data transformation. This web-utilizing script 155
will include calls to the identified web service 175 through
service interface module 183.

0.141 Web-utilizing scripts 155 may be stored by mapper
module 182 until a user requests the corresponding data
transformation be executed. When a particular web-utilizing
script 155 is executed, server 186 will execute that web
utilizing script 155 and as part of this process will perform
data transformations that utilize web services. More specifi
cally, in particular embodiments, web-utilizing script 155
will include a call to service interface module 183 that will
transfer various function parameters 174 to service interface
module 183 for use in generating a service request 166. The
exact data that is included in function parameters 174 may
depend on the configuration of server 186, web server 162,
and/or service interface module 183. In particular embodi
ments, function parameters 174 includes the URI for the
relevant web service, the method to be invoked by that web
service, any input data 168, and/or empty output data
structures to be filled with the results of the web service.
Input data 168 may represent data of any appropriate format
including, but not limited to, one or more XML data
components, one or more database rows, or any portion of
a flat file. Similarly, the output data structures may represent
empty XML data components, empty rows, empty variables,
or any other suitable structure for holding data. Particular
data transformations may not require input data or return
output data, and the web service calls executed by web
utilizing scripts 155 may be tailored to reflect this fact.

US 2006/02007S3 A1

0142. After receiving function parameters 174 from
server 186, service interface module 183 invokes the des
ignated web service 175. In particular embodiments, this
process includes connecting to the URI specified in the
function parameters 174, transferring the input data 168 into
a service request 166, and transmitting service request 166
to a particular web server 162 associated with the specified
URI. In particular embodiments, service request 166 repre
sents a SOAP message that contains input data 168. Alter
native embodiments may use other appropriate communi
cation protocols to request web services and otherwise
interact with web server 162.

0143 Web server 162 receives service request 166 and
unpacks data included in service request 166. Web server
162 identifies the appropriate method to invoke based on
information in the received service request 166 and invokes
the identified method with respect to input data 168, if any,
that is included in service request 166. After the method has
been invoked, web server 162 transmits output data 169, if
any, back to service interface module 183 as part of a service
response 167.

0144. Service interface module 183 receives service
response 167 and completes the data transformation
requested by the user. In particular, service interface module
183 receives service response 167, performs any appropriate
unpacking of service response 167, and transfers output data
169, if any, into the empty data structures passed to service
interface module 183. Service interface module 183 then
transmits the output data 169 back to server 186 for use in
completing execution of web-utilizing script 155. In par
ticular embodiments, service interface module 183 transmits
the output data 169 to server 186 as the return value of the
generic web execution function originally called by service
interface module 183.

0145. In addition, particular embodiments of service
interface module 183 may support the use of proxy servers
164 (e.g., for use with firewalls) to communicate with web
server 162. More specifically, in particular embodiments of
system 160, function parameters 174 passed to service
interface module 183 may include information that allows
service interface module 183 to identify a proxy server 164
to use when invoking a particular web service. This infor
mation may include a proxy server host name, an appropri
ate port number to use when communicating with the
designated proxy server 164, a user identifier recognized by
the designate proxy server 164, a password associated with
the designated proxy server 164, and/or any other suitable
information to facilitate communication between server 186
and proxy server 164. Alternatively, some or all of this type
of information may be stored in a proxy profile, and function
parameters 174 may identify the appropriate profile to use
when invoking the relevant web service. Server 186 may
then direct any communication with web server 162 through
proxy server 164. This may allow users to utilize publicly
available web services 175 for data transformations without
compromising the security of their own systems.

0146 Thus, system 160 provides additional flexibility
and user ease with respect to the execution of data trans
formations. By allowing a user to access and utilize avail
able web services, system 160 may further reduce the
amount of programming and/or design the user must com
plete. Automated parsing of web service definitions may

Sep. 7, 2006

improve ease-of-use even further in Some embodiments.
Additionally, particular embodiments may be configured to
interact with web service through a proxy server, thereby
making web-service functionality available for data trans
formations without compromising security.
0147 FIG. 11 illustrates an example screen shot 1200
illustrating functionality of a GUI that may be used, in
particular embodiments of system 160, to define a data
transformation that utilizes one or more web services. In
particular, FIG. 11 illustrates a program palette 1202 that
allows a user to design a desired data transformation from
one or more source files to one or more target files using one
or more web services. The illustrated embodiment includes
a graphical representation of a source object definition 1204.
a target object definition 1206, a reusable transformation
1207, and a web service definition 1208. Although FIG. 11
and the description below focus, for purposes of illustration,
on a particular type of GUI that allows a user to enter certain
information in a specific manner, system 160 may utilize any
appropriate form of GUI to facilitate interaction with a user.
Moreover, particular embodiments of system 160 may
include no GUI and users may enter information manually,
instruct system 160 to retrieve saved information, and/or
provide information to system 160 in any other suitable
manner. Furthermore, FIG. 11 illustrates, for purposes of
example, a scenario in which a web service is utilized to
transform portions of a source database table into a target
database table. Nonetheless, the described techniques may
be utilized with target and source files of any appropriate
format including XML files and flat files.
0.148 With respect to the particular GUI illustrated in
FIG. 11, a user may begin entering information by dragging
and dropping of object definitions 1204 and 1206, reusable
data transformation 1207, and web service definition 1208
into program palette 1202. For example, in the illustrated
example, a user has dragged a source object definition 1204
named “StockCompanies' and a target object definition
1206 named “StockQuotes' into program palette 1202.
Additionally, the user has dragged a web service definition
1208 named “GetOuoteWS and a reusable data transfor
mation 1207 named “GetCurrentTime' into program palette
1202. The “GetOuoteWS web service definition 1208 in the
illustrated example is associated with a web service 175 that
provides Stock prices for specified stock symbols. In addi
tion, particular embodiments of ADT 181 may support
Scripted, reusable functionality, such as one or more reusable
data transformations 1207, that provide data transformations
and/or custom outputs that may be used to execute fre
quently-used data transformations or to generate frequently
used data outputs. Here reusable data transformation 1207
provides the current time as output 1218b.
0.149 Once the appropriate object definitions 1204 and
1206, any reusable transformations 1207, and any web
service definitions 1208 have been introduced to program
palette 1202, the user may define connections 1210 between
specific data components 1212 of source object definitions
1204 and target object definitions 1206 and particular inputs
1216 and outputs 1218 of web service 175. In particular
embodiments, the user may do this by dragging and drop
ping components of Source object definition 1204 onto
inputs 1216 of web service definition 1208 or reusable data
transformation 1207 or onto components of target object
definition 1206, and by dragging and dropping outputs 1218

US 2006/02007S3 A1

of web service definition 1208 or reusable data transforma
tion 1207 onto components of target object definition 1206.

0150. For example, in the illustrated scenario, the user
has dragged the “Stock Symbol data component 1212b
from the “StockCompanies' source object definition 1204 to
the “symbol input 1216 of “GetOuoteWS web service
definition 1208 forming connection 1210a. The user has also
dragged the “Stock Symbol data component 1212b from
the “StockCompanies' source object definition 1204 to the
“StockSymbol data component 1212c of the “Stock
Quotes' target object definition 1206 forming connection
1210b. Additionally, the user has dragged the “Result
output 1218a of the “GetQuoteWS web service definition
1208 to the “StockPrice' data component 1212e of the
“StockQuotes” target object definition 1206 forming con
nection 1210c. The user also has dragged the “timestamp'
output 1218b of the “GetCurrentTime' reusable transforma
tion 1207 to the “Quote|DateTime' data component 1212d of
the “StockQuotes' target object definition 1206 to create
connection 1210d.

0151. After moving the relevant object definitions 1204
and 1206, web service definitions 1208, and reusable data
transformations 1207 to program palette 1202 and creating
the appropriate connections 1210, the user may then utilize
system 160 to generate a web-utilizing script 155 to imple
ment the defined transformation. In particular embodiments,
the GUI for defining the transformation may additionally
include a "Generate Script button or other input the user
can use to request a web-utilizing script 155 be generated
from the mappings the user has created on program palette
1202. Alternative embodiments may use any appropriate
mechanism for the user to request Script generation.

0152 FIGS. 12A and 12B collectively illustrate an
example of a web-utilizing script 155 that may be generated
by a particular embodiment of system 160 based on the
transformation defined in FIG. 11. Although FIGS. 12A
and 12B illustrate one example of a particular web-utilizing
script 155 that may be generated to implement the transfor
mation defined in FIG. 11, alternative embodiments of
system 160 may generate other types of web-utilizing Scripts
155 to implement the illustrated transformation based on the
configuration and capabilities of system 160. For purposes
of description, the web-utilizing script 155 is broken into
multiple sections 1310.

0153. Section 1310a identifies a code fragment that
defines various variables and structures to be used during
execution of web-utilizing script 155. Section 1310b gen
erates the array that will be used to pass XML data from
server 186 to service interface module 183 as part of
function parameters 174. This array will store any input data
that will be transmitted by service interface module 183 to
the appropriate web service 175. ser. Section 1310c con
structs the data structure that will be used to pass informa
tion about the relevant web service to service interface
module 183 as another part of function parameters 174.
Section 1310d constructs the empty data structure that will
be filled with output data 169 and passed to service interface
module 183 as yet another part of function parameters 174.
Section 1310e sets the input values that will be sent to
service interface module 183 as part of function parameters
174. In the illustrated example, section 1310e is defined by
connection 1210a in the associated mapping shown in FIG.

Sep. 7, 2006

11. Section 1310f calls service interface module 183 using
function parameters 174. Section 1310g verifies that the call
to service interface module 183 was successful. Section
1310h processes output data 169 received back from service
interface module 183. In the illustrated example, section
1310h is defined by connection 1210c in the associated
mapping shown in FIG. 11.
0154 Although the present invention has been described
with several embodiments, a myriad of changes, variations,
alterations, transformations, and modifications may be Sug
gested to one skilled in the art, and it is intended that the
present invention encompass such changes, variations, alter
ations, transformations, and modifications as fall within the
Scope of the appended claims.
What is claimed is:

1. A method of transforming data:
receiving information defining a transformation of an

input data object to an output data object;
generating, based on the received information, a script

operable when executed to implement the defined
transformation;

storing the Script;
receiving a service request from a remote client, wherein

the service request requests a particular transformation
and identifies a request data object;

identifying a script that performs the requested transfor
mation;

generating a response data object by executing the iden
tified script on the request data object; and

transmitting the response data object to the remote client.
2. The method of claim 1, wherein receiving a service

request from a remote client comprises receiving a service
request invoking a web service.

3. The method of claim 1, wherein the service request
identifies a request data object by including the request data
object.

4. The method of claim 1, wherein receiving a service
request comprises receiving a Simple Object Access Proto
col (SOAP) message from the remote client, and wherein
transmitting the service response to the remote client com
prises transmitting a SOAP message to the remote client.

5. The method of claim 1, wherein:
generating a script capable of implementing the defined

transformation comprises:
generating a service definition describing a request data

object and a response data object associated with the
Script; and

transmitting the service definition to the remote client;
receiving a service request comprises receiving a service

request that includes a request data object that con
forms with the service definition; and

generating a response data object comprises generating a
response data object that conforms with the service
definition.

6. The method of claim 5, wherein the service definition
comprises a Web Services Description Language (WSDL)
file.

US 2006/02007S3 A1

7. The method of claim 1, wherein identifying a script
associated with the service request comprises identifying,
based on a name of the request data object, a script associ
ated with the service request.

8. The method of claim 1, further comprising storing the
response data object in memory.

9. The method of claim 1, wherein receiving information
defining a transformation of an input data object to an output
data object comprises

receiving, from a user, through a graphical user interface
(GUI) information describing an input data object
associated with the transformation;

receiving, from the user, through the GUI information
describing an output data object associated with the
transformation; and

receiving, from the user, through the GUI information
identifying a mapping of components in the input data
object to components in the output data object.

10. The method of claim 1, wherein the request data
object and the response data object comprise extensible
Markup Language (XML) data objects.

11. A method of transforming data:

receiving information defining a transformation of an
input data object to an output data object;

generating, based on the received information, a script
operable when executed to implement the defined
transformation based on the received information;

storing the script;

receiving a service request from a remote client, wherein
the service request requests the defined transformation
and identifies a request data object and a requested
execution time;

generating a response data object by executing the Script
on the request data object at a time determined based on
the requested execution time; and

storing the response data object in memory.
12. The method of claim 11, wherein receiving a service

request from a remote client comprises receiving a service
request invoking a web service.

13. The method of claim 11, wherein receiving a service
request comprises receiving a Simple Object Access Proto
col (SOAP) message from the remote client.

Sep. 7, 2006

14. The method of claim 11, wherein:
generating a script capable of implementing the defined

transformation comprises:
generating a service definition describing a request data

object and a response data object associated with the
Script; and

transmitting the service definition to the remote client;
and

receiving a service request comprises receiving a service
request that includes a request data object that con
forms with the service definition.

15. The method of claim 14, wherein the service definition
comprises a Web Services Description Language (WSDL)
file.

16. The method of claim 11, wherein storing the script
comprises storing the Script in a database that includes a
plurality of scripts each operable when executed to imple
ment a different transformation; and wherein generating the
response data object comprises:

identifying, in the database, a script associated with the
service request, and

generating a response data object by executing the iden
tified script on the request data object.

17. The method of claim 16, wherein identifying a script
associated with the service request comprises identifying,
based on a name of the request data object, a script associ
ated with the service request.

18. The method of claim 11, wherein receiving informa
tion defining a transformation of an input data object to an
output data object comprises

receiving, from a user, through a graphical user interface
(GUI) information identifying an input data object;

receiving, from the user, through the GUI information
identifying an output data object; and

receiving, from the user, through the GUI information
identifying a mapping of components in the input data
object to components in the output data object.

19. The method of claim 11, wherein the response data
object comprises a database row, and wherein storing the
response data object comprises storing the database row in
a database table specified by the script.

20. The method of claim 11, wherein the request data
object and the response data object comprise eXtensible
Markup Language (XML) data objects.

k k k k k

