Title: THERAPEUTICALLY ACTIVE THIAZOLO-PYRIMIDINE DERIVATIVES

Abstract: A series of thiazolo[5,4-f][1,2,4]triazine derivatives of formula (I) or an N-oxide thereof, or a pharmaceutically acceptable salt or solvate thereof: (I) Q represents a group of formula (Qa), (Qb), (Qc), (Qd) or (Qe) are beneficial in the treatment and/or prevention of various human ailments, including inflammatory, autoimmune and oncological disorders; viral diseases; and organ and cell transplant rejection.

Published:

— with international search report (Art. 21(3))
THERAPEUTICALLY ACTIVE THIAZOLO-PYRIMIDINE DERIVATIVES

The present invention relates to a class of fused pyrimidine derivatives, and to their use in therapy. More particularly, the present invention provides thiazolo[5,4-<i><i>]pyrimidine derivatives that are unsubstituted at the 2-position, and substituted at the 7-position by a diaza monocyclic, bridged bicyclic or spirocyclic moiety. These compounds are of benefit as pharmaceutical agents, especially in the treatment of adverse inflammatory, autoimmune and oncological disorders, in the treatment of viral diseases, and in the management of organ and cell transplant rejection.

In addition, the compounds in accordance with the present invention may be beneficial as pharmacological standards for use in the development of new biological tests and in the search for new pharmacological agents. Thus, the compounds of this invention may be useful as radioligands in assays for detecting pharmacologically active compounds.

WO 2010/103130 describes a family of oxazolo[5,4-d]pyrimidine, thiazolo[5,4-<i><i>]pyrimidine, thieno[2,3-d]pyrimidine and purine derivatives that are active in a range of assays, including the Mixed Lymphocyte Reaction (MLR) test, and are stated to be effective for the treatment of immune and auto-immune disorders, and organ and cell transplant rejection. Copending international patent application PCT/EP2011/058276, published on 1 December 2011 as WO 2011/147753, discloses the same family of compounds as having significant antiviral activity. Furthermore, copending international patent application PCT/IB2011/002248, published on 22 March 2012 as WO 2012/035423, discloses the same family of compounds as having significant anticancer activity.

None of the prior art available to date, however, discloses or suggests the precise structural class of thiazolo[5,4-d]pyrimidine derivatives as provided by the present invention, in which the 2-position is unsubstituted.

The compounds in accordance with the present invention are active as inhibitors when subjected to the Mixed Lymphocyte Reaction (MLR) test. The MLR test is predictive of immunosuppression or immunomodulation. Thus, when subjected to the MLR test, the compounds of the present invention display an IC₅₀ value of 10 µM or less, generally of 5 µM or less, usually of 2 µM or less, typically of 1 µM or less, suitably of
500 nM or less, ideally of 100 nM or less, and preferably of 20 nM or less (the skilled person will appreciate that a lower IC₅₀ figure denotes a more active compound).

The present invention provides a compound of formula (I) or an N-oxide thereof, or a pharmaceutically acceptable salt or solvate thereof:

![Chemical Structure](image)

wherein

- Q represents a group of formula (Qa), (Qb), (Qc), (Qd) or (Qe):

![Chemical Structures](image)

in which the asterisk (*) represents the point of attachment to the remainder of the molecule;

- V represents -CH₂-, -C(CH₃)₂-, -CH₂CH₂- or -CH₂CH₂CH₂-;

- W represents the residue of a C₃₋₇ cycloalkyl group;
\(Y \) represents a covalent bond, or a linker group selected from \(-\text{C(O)}-\), \(-\text{S(O)}-\), \(-\text{S(0)}_2-\), \(-\text{C(0)O}-\), \(-\text{C(0)N(R)}_2-\) and \(-\text{S(0)}_2\text{N(R)}^2-\), or a linker group of formula (Y):

\[
\begin{align*}
\text{O} & \quad \text{O} \\
\text{R}^2 & \quad \text{N} \\
& \quad \ast
\end{align*}
\]

(Ya)

in which the asterisk (*) represents the point of attachment to the remainder of the molecule;

\(Z \) represents hydrogen; or \(\text{Ci}_{1-6} \) alkyl, \(\text{C}_{2-6} \) alkenyl, \(\text{C}_{3-7} \) cycloalkyl, \(\text{C}_{3-7} \) cycloalkyl(\(\text{Ci}_{6} \))alkyl, \(\text{C}_{3-7} \) heterocycloalkyl, \(\text{C}_{3-7} \) heterocycloalkyl(\(\text{Ci}_{6} \))alkyl, aryl, aryl(\(\text{Ci}_{6} \))alkyl, heteroaryl or heteroaryl(\(\text{Ci}_{6} \))alkyl, any of which groups may be optionally substituted by one or more substituents;

\(\text{A}^1 \) represents hydrogen, cyano or trifluoromethyl; or \(\text{A}^1 \) represents \(\text{Ci}_{1-6} \) alkyl, optionally substituted by one or more substituents independently selected from \(-\text{OR}^a\), \(-\text{NR}^b\text{R}^c\), \(-\text{C}^0\text{O}_2\text{R}^d\) and \(-\text{CONR}^b\text{R}^c\); or \(\text{A}^1 \) represents \(\text{C}_{3-7} \) cycloalkyl;

\(\text{A}^2 \) represents hydrogen or \(\text{Ci}_{1-6} \) alkyl;

\(\text{R}^1 \) represents hydrogen, halogen, cyano, nitro, hydroxy, trifluoromethyl, trifluoromethoxy, \(-\text{OR}^a\), \(-\text{SR}^a\), \(-\text{SOR}^a\), \(-\text{S0}_2\text{R}^a\), \(-\text{NR}^b\text{R}^c\), \(-\text{CH}_2\text{NR}^b\text{R}^c\), \(-\text{NR}^c\text{COR}^d\), \(-\text{NR}^c\text{C}^0\text{O}_2\text{R}^d\), \(-\text{NHCONR}^b\text{R}^c\), \(-\text{NR}^c\text{S}^0\text{S}_2\text{R}^e\), \(-\text{N(S0}_2\text{R}^e\text{)}^2\), \(-\text{NHS0}_2\text{NR}^b\text{R}^c\), \(-\text{COR}^d\), \(-\text{C}^0\text{O}_2\text{R}^d\), \(-\text{CONR}^b\text{R}^c\), \(-\text{CON(OR}^a)\text{R}^b\) or \(-\text{S0}_2\text{NR}^b\text{R}^c\); or \(\text{Ci}_{1-6} \) alkyl, aryl, aryl(\(\text{Ci}_{6} \))alkyl, heteroaryl or heteroaryl(\(\text{Ci}_{6} \))alkyl, any of which groups may be optionally substituted by one or more substituents;

\(\text{R}^2 \) represents hydrogen; or \(\text{Ci}_{1-6} \) alkyl, optionally substituted by one or more substituents independently selected from \(-\text{OR}^a\) and \(-\text{NR}^b\text{R}^c\);

\(\text{R}^a \) represents hydrogen; or \(\text{R}^a \) represents \(\text{Ci}_{1-6} \) alkyl, aryl, aryl(\(\text{Ci}_{6} \))alkyl, heteroaryl or heteroaryl(\(\text{Ci}_{6} \))alkyl, any of which groups may be optionally substituted by one or more substituents;

\(\text{R}^b \) and \(\text{R}^c \) independently represent hydrogen or trifluoromethyl; or \(\text{Ci}_{1-6} \) alkyl, \(\text{C}_{3-7} \) cycloalkyl, \(\text{C}_{3-7} \) cycloalkyl(\(\text{Ci}_{6} \))alkyl, aryl, aryl(\(\text{Ci}_{6} \))alkyl, \(\text{C}_{3-7} \) heterocycloalkyl, \(\text{C}_{3-7} \) heterocycloalkyl(\(\text{Ci}_{6} \))alkyl, aryl, aryl(\(\text{Ci}_{6} \))alkyl, heteroaryl or heteroaryl(\(\text{Ci}_{6} \))alkyl, any of which groups may be optionally substituted by one or more substituents;
heterocycloalkyl(Ci_6)alkyl, heteroaryl or heteroaryl(Ci_6)alkyl, any of which groups may be optionally substituted by one or more substituents; or

R^b and R^c, when taken together with the nitrogen atom to which they are both attached, represent azetidin-l-yl, pyrrolidin-l-yl, oxazolidin-3-yl, isoxazolidin-2-yl, thiazolidin-3-yl, isothiazolidin-2-yl, piperidin-l-yl, morpholin-4-yl, thiomorpholin-4-yl, piperazin-l-yl, homopiperidin-l-yl, homomorpholin-4-yl or homopiperazin-l-yl, any of which groups may be optionally substituted by one or more substituents;

R^d represents hydrogen; or Ci_6 alkyl, C3-7 cycloalkyl, aryl, C3-7 heterocycloalkyl or heteroaryl, any of which groups may be optionally substituted by one or more substituents; and

R^e represents Ci_6 alkyl, aryl or heteroaryl, any of which groups may be optionally substituted by one or more substituents.

The present invention also provides a compound of formula (I) as depicted above or an N-oxide thereof, or a pharmaceutically acceptable salt or solvate thereof, wherein:

Q represents a group of formula (Qa);

Y represents a covalent bond, or a linker group selected from -C(O)-, -S(O)-, -S(O)2-, -C(O)0-, -C(O)N(R2)- and -S(O)2N(R2)-;

Z represents hydrogen; or Ci_6 alkyl, C3-7 cycloalkyl, C3-7 cycloalkyl(Ci_6)alkyl, C3-7 heterocycloalkyl, C3-7 heterocycloalkyl(Ci_6)alkyl, aryl, aryl(Ci_6)alkyl, heteroaryl or heteroaryl(Ci_6)alkyl, any of which groups may be optionally substituted by one or more substituents;

A^1 represents hydrogen or trifluoromethyl; or Ci_6 alkyl, optionally substituted by one or more substituents independently selected from -OR^a and -NR^bR^c;

A^2 represents hydrogen;

R^a represents Ci_6 alkyl, aryl, aryl(Ci_6)alkyl, heteroaryl or heteroaryl(Ci_6)alkyl, any of which groups may be optionally substituted by one or more substituents; and

R^1, R^2, R^b, R^c, R^d and R^e are as defined above.

Where any of the groups in the compounds of formula (I) above is stated to be optionally substituted, this group may be unsubstituted, or substituted by one or more substituents. Typically, such groups will be unsubstituted, or substituted by one or two substituents.

For use in medicine, the salts of the compounds of formula (I) will be pharmaceutically acceptable salts. Other salts may, however, be useful in the preparation
of the compounds of the invention or of their pharmaceutically acceptable salts. Suitable pharmaceutically acceptable salts of the compounds of this invention include acid addition salts which may, for example, be formed by mixing a solution of the compound of the invention with a solution of a pharmaceutically acceptable acid such as hydrochloric acid, sulphuric acid, methanesulphonic acid, fumaric acid, maleic acid, succinic acid, acetic acid, benzoic acid, citric acid, tartaric acid or phosphoric acid. Furthermore, where the compounds of the invention carry an acidic moiety, e.g. carboxy, suitable pharmaceutically acceptable salts thereof may include alkali metal salts, e.g. sodium or potassium salts; alkaline earth metal salts, e.g. calcium or magnesium salts; and salts formed with suitable organic ligands, e.g. quaternary ammonium salts.

The present invention includes within its scope solvates of the compounds of formula (I) above. Such solvates may be formed with common organic solvents, e.g. hydrocarbon solvents such as benzene or toluene; chlorinated solvents such as chloroform or dichloromethane; alcoholic solvents such as methanol, ethanol or isopropanol; ethereal solvents such as diethyl ether or tetrahydrofuran; or ester solvents such as ethyl acetate. Alternatively, the solvates of the compounds of formula (I) may be formed with water, in which case they will be hydrates.

Suitable alkyl groups which may be present on the compounds of the invention include straight-chained and branched Ci-6 alkyl groups, for example Ci-4 alkyl groups. Typical examples include methyl and ethyl groups, and straight-chained or branched propyl, butyl, pentyl and hexyl groups. Particular alkyl groups include methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, tert-bu:XY\<2,2-dimethylpropyl and 3-methylbutyl. Derived expressions such as "Ci-6 alkoxy", "Ci-6 alkylthio", "Ci-6 alkylsulphonyl" and "Ci-6 alkylamino" are to be construed accordingly.

Suitable C2-6 alkenyl groups include vinyl, allyl and prop-1-en-2-yl.

Suitable C3-7 cycloalkyl groups, which may comprise benzo-fused analogues thereof, include cyclopropyl, cyclobutyl, cyclopentyl, indanyl, cyclohexyl and cycloheptyl.

Suitable aryl groups include phenyl and naphthyl, preferably phenyl.

Suitable aryl(Ci-6)alkyl groups include benzyl, phenylethyl, phenylpropyl and naphthylmethyl.

Suitable heterocycloalkyl groups, which may comprise benzo-fused analogues thereof, include oxetanyl, azetidinyl, tetrahydrofuran, dihydrobenzofuranyl, pyrrolidinyl, indoliny, thiazolidinyl, imidazolidinyl, tetrahydropyran, chromanyl, piperidinyl, 1,2,3,4-
tetrahydroquinolinyl, 1,2,3,4-tetrahydroisoquinolinyl, piperazinyl, 1,2,3,4-tetrahydro-
quinoxalinyl, homopiperazinyl, morpholinyl, benzoazinyl and thiomorpholinyl.

Suitable heteroaryl groups include furyl, benzofuryl, dibenzofuryl, thienyl, benzothienyl, dibenzothienyl, pyrrolyl, indolyl, pyrrolo[2,3-£]pyridinyl, pyrrolo[3,2-
c]pyridinyl, pyrazolyl, pyrazolo[1,5-a]pyridinyl, pyrazolo[3,4-d]pyrimidinyl, indazolyl, oxazolyl, benzoazolyl, isoazolyl, thiazolyl, benzothiazolyl, isothiazolyl, imidazolyl, imidazo[2,1-34]thiazolyl, benzimidazolyl, imidazo[1,2-a]pyridinyl, imidazo[4,5-
£]pyridinyl, purinyl, imidazo[1,2-a]pyrimidinyl, imidazo[1,2-a]pyrazinyl, oxadiazolyl, thiadiazolyl, triazolyl, benzotriazolyl, tetrazolyl, pyridinyl, quinolinyl, isoquinolinyl, naphthyridinyl, pyridazinyl, cinnolinyl, phthalazinyl, pyrimidinyl, quinazolinyl, pyrazinyl, quinoxalinyl, pteridinyl, triazinyl and chromenyl groups.

The term "halogen" as used herein is intended to include fluorine, chlorine, bromine and iodine atoms, typically fluorine, chlorine or bromine.

Where the compounds of formula (I) have one or more asymmetric centres, they may accordingly exist as enantiomers. Where the compounds of the invention possess two or more asymmetric centres, they may additionally exist as diastereomers. The invention is to be understood to extend to all such enantiomers and diastereomers, and to mixtures thereof in any proportion, including racemates. Formula (I) and the formulae depicted hereinafter are intended to represent all individual stereoisomers and all possible mixtures thereof, unless stated or shown otherwise. In addition, compounds of formula (I) may exist as tautomers, for example keto (CH2C=0)<→enol (CH=CHOH) tautomers or amide (NHC=0)<→hydroxyimine (N=COH) tautomers. Formula (I) and the formulae depicted hereinafter are intended to represent all individual tautomers and all possible mixtures thereof, unless stated or shown otherwise.

It is to be understood that each individual atom present in formula (I), or in the formulae depicted hereinafter, may in fact be present in the form of any of its naturally occurring isotopes, with the most abundant isotope(s) being preferred. Thus, by way of example, each individual hydrogen atom present in formula (I), or in the formulae depicted hereinafter, may be present as a 1H, 2H (deuterium) or 3H (tritium) atom, preferably 1H.

Similarly, by way of example, each individual carbon atom present in formula (I), or in the formulae depicted hereinafter, may be present as a 12C, 13C or 14C atom, preferably 12C.

In a particular embodiment, Q represents a group of formula (Qa) as defined above. In a second embodiment, Q represents a group of formula (Qb) as defined above. In a
third embodiment, Q represents a group of formula (Qc) as defined above. In a fourth embodiment, Q represents a group of formula (Qd) as defined above. In a fifth embodiment, Q represents a group of formula (Qe) as defined above.

Where Q represents a group of formula (Qa) as defined above, this may be a group of formula (Qa-1), (Qa-2), (Qa-3), (Qa-4), (Qa-5) or (Qa-6):

\[
\begin{align*}
(Qa-1) & \quad (Qa-2) & \quad (Qa-3) \\
(Qa-4) & \quad (Qa-5) & \quad (Qa-6)
\end{align*}
\]

in which the asterisk (*) represents the point of attachment to the remainder of the molecule; and

Y, Z, A1 and A2 are as defined above.

In a first embodiment, Q represents a group of formula (Qa-1) as defined above.

In a second embodiment, Q represents a group of formula (Qa-2) as defined above.

In a third embodiment, Q represents a group of formula (Qa-3) as defined above.

In a fourth embodiment, Q represents a group of formula (Qa-4) as defined above.

In a fifth embodiment, Q represents a group of formula (Qa-5) as defined above.

In a sixth embodiment, Q represents a group of formula (Qa-6) as defined above.

In one embodiment, V represents \(-\text{CH}_2\) or \(-\text{C(CH}_3\text{)}_2\). In a first aspect of that embodiment, V represents \(-\text{CH}_2\). In a second aspect of that embodiment, V represents \(-\text{C(CH}_3\text{)}_2\). Where Q represents a group of formula (Qb) and V represents \(-\text{CH}_2\) or
-C(CH₃)₂-, the bicyclic moiety containing the integer V is a 2,5-diazabicyclo[2.2.1]-heptane ring system. Where Q represents a group of formula (Qc) or (Qd) and V represents -CH₂⁻ or -C(CH₃)₂⁻, the bicyclic moiety containing the integer V is a 3,6-diazabicyclo[3.1.1]heptane ring system.

In another embodiment, V represents -CH₂CH₂⁻. Where Q represents a group of formula (Qb) and V represents -CH₂CH₂⁻, the bicyclic moiety containing the integer V is a 2,5-diazabicyclo[2.2.2]octane ring system. Where Q represents a group of formula (Qc) or (Qd) and V represents -CH₂CH₂⁻, the bicyclic moiety containing the integer V is a 3,8-diazabicyclo[3.2.1]octane ring system.

In a further embodiment, V represents -CH₂CH₂CH₂⁻. Where Q represents a group of formula (Qb) and V represents -CH₂CH₂CH₂⁻, the bicyclic moiety containing the integer V is a 6,8-diazabicyclo[3.2.2]nonane ring system. Where Q represents a group of formula (Qc) or (Qd) and V represents -CH₂CH₂CH₂⁻, the bicyclic moiety containing the integer V is a 7,9-diazabicyclo[3.3.1]nonane ring system.

Where Q represents a group of formula (Qe), the C₃₋₇ cycloalkyl group of which W is the residue is spiro-fused to the adjacent six-membered ring containing two nitrogen atoms. The cyclic group of which W is the residue is selected from cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl and cycloheptyl. Suitably, the cyclic group of which W is the residue is a C₄₋₆ cycloalkyl group. In a particular embodiment, the cyclic group of which W is the residue is cyclobutyl.

Typically, Y represents a covalent bond, or a linker group selected from -C(O)-, -C(0)O- and -C(0)N(R)₂-, or a linker group of formula (Ya) as defined above.

Suitably, Y represents a covalent bond, or a linker group selected from -C(O)- and -C(0)N(R)₂-.

Appositely, Y represents a covalent bond, or a linker group selected from -C(O)-, -S(O)-, -S(0)₂-, -C(0)O-, -C(0)N(R)₂- and -S(0)₂N(R)₂-.

Suitable values of Y include -C(O)-, -S(O)-, -S(0)₂-, -C(0)O-, -C(0)N(R)₂- and -S(0)₂N(R)₂-.

Selected values of Y include -C(O)- and -C(0)N(R)₂-.

In a first embodiment, Y represents a covalent bond. In a second embodiment, Y represents -C(O)-. In a third embodiment, Y represents -S(O)-. In a fourth embodiment, Y represents -S(0)₂-. In a fifth embodiment, Y represents -C(0)O-. In a sixth embodiment, Y represents -C(0)N(R)₂-. In a seventh embodiment, Y represents
-S(0) ₂N(R²)-. In an eighth embodiment, Y represents a group of formula (Ya) as defined above.

Generally, Z represents hydrogen; or Ci₆ alkyl, C₃₋₇ cycloalkyl, C₃₋₇ cycloalkyl(Ci₆)alkyl, C₃₋₇ heterocycloalkyl, C₃₋₇ heterocycloalkyl(Ci₆)alkyl, aryl, aryl(Ci₆)alkyl, heteroaryl or heteroaryl(Ci₆)alkyl, any of which groups may be optionally substituted by one or more substituents.

Appositely, Z represents Ci₆ alkyl, C₃₋₆ alkenyl, C₃₋₇ cycloalkyl, C₃₋₇ cycloalkyl(Ci₆)alkyl, C₃₋₇ heterocycloalkyl, C₃₋₇ heterocycloalkyl(Ci₆)alkyl, aryl, aryl(Ci₆)alkyl, heteroaryl or heteroaryl(Ci₆)alkyl, any of which groups may be optionally substituted by one or more substituents.

Typically, Z represents Ci₆ alkyl, C₃₋₇ cycloalkyl, C₃₋₇ cycloalkyl(Ci₆)alkyl, C₃₋₇ heterocycloalkyl, C₃₋₇ heterocycloalkyl(Ci₆)alkyl, aryl, aryl(Ci₆)alkyl, heteroaryl or heteroaryl(Ci₆)alkyl, any of which groups may be optionally substituted by one or more substituents.

Suitably, Z represents Ci₆ alkyl, C₃₋₇ cycloalkyl(Ci₆)alkyl, C₃₋₇ heterocycloalkyl-(Ci₆)alkyl, aryl, aryl(Ci₆)alkyl, heteroaryl or heteroaryl(Ci₆)alkyl, any of which groups may be optionally substituted by one or more substituents.

In a first embodiment, Z represents hydrogen. In a second embodiment, Z represents optionally substituted Ci₆ alkyl. In a third embodiment, Z represents optionally substituted C₂₋₆ alkenyl. In a fourth embodiment, Z represents optionally substituted C₃₋₇ cycloalkyl. In a fifth embodiment, Z represents optionally substituted C₃₋₇ cycloalkyl(Ci₆)alkyl. In a sixth embodiment, Z represents optionally substituted C₃₋₇ heterocycloalkyl. In a seventh embodiment, Z represents optionally substituted C₃₋₇ heterocycloalkyl(Ci₆)alkyl. In an eighth embodiment, Z represents optionally substituted aryl. In a ninth embodiment, Z represents optionally substituted aryl(Ci₆)alkyl. In a tenth embodiment, Z represents optionally substituted heteroaryl. In an eleventh embodiment, Z represents optionally substituted heteroaryl(Ci₆)alkyl.

Suitable values of Z include methyl, cyclopentylethyl, morpholinylmethyl, phenyl, benzyl, phenylethyl, pyrazolyl, indazolyl, isoxazolyl, imidazolyl, benzimidazolyl, imidazo[1,2-a]pyridinyl, pyridinyl, quinolinyl, isoquinolinyl, pyrazinyl, quinoxalinyl, pyridinylmethyl, furylethyl, benzimidazolylethyl and pyridinylethyl, any of which groups may be optionally substituted by one or more substituents. Additional values include ethyl, isopropenyl, cyclopropyl, indanyl, cyclopropylmethyl, ppyrrolidinyl, dihydrobenzo-
furanyl, indolinyl, dihydrobenzofuranyl methyl, morpholinylethyl, furyl, thienyl, indolyl, thiazolyl, benzothiazolyl, pyridazinyl, pyrimidinyl, indolylmethyl, thiazolylmethyl and imidazo[2,1-b]thiazolylmethyl, any of which groups may be optionally substituted by one or more substituents.

In a particular embodiment, Z is other than hydrogen.

In one embodiment, Z is unsubstituted. In another embodiment, Z is substituted by one or more substituents, typically by one, two or three substituents, suitably by one or two substituents. In one aspect of that embodiment, Z is monosubstituted. In another aspect of that embodiment, Z is disubstituted. In a further aspect of that embodiment, Z is trisubstituted.

Typical examples of optional substituents on Z include one or more substituents independently selected from halogen, cyano, nitro, C_{i-6} alkyl, trifluoromethyl, hydroxy, oxo, C_{i-6} alkoxy, difluoromethoxy, trifluoromethoxy, aryloxy, haloaryloxy, (C_{i-6})alkoxy-aryloxy, C_{i-3} alkylenedioxy, C_{i-6} alkythio, C_{i-6} alkylsulfanyl, C_{i-6} alkylsulfonyl, amino, C_{i-6} alkylamino, di(C_{i-6})alkylamino, arylamino, C_{2-6} alkylcarbonylamino, C_{2-6} alkoxy-carbonylamino, C_{i-6} alkylsulfonlamino, formyl, C_{2-6} alkylcarbonyl, C_{3-6} cycloalkyl-carbonyl, C_{3-6} heterocycloalkylcarbonyl, carboxy, C_{2-6} alkoxy carbonyl, aminocarbonyl, C_{i-6} alkylaminocarbonyl, di(C_{i-6})alkylaminocarbonyl, aminosulfonlamino, C_{i-6} alkylaminosulfonyl and di(C_{i-6})alkylaminosulfonyl. Additional examples include cyano(C_{i-6})alkyl,

(C_{3-7}) heterocycloalkyl, halo(C_{3-7}) heterocycloalkyl, (C_{i-6})alkyl(C_{3-7}) heterocycloalkyl, (C_{3-8}) alkoxy carbonyl(C_{3-7}) heterocycloalkyl, dihalo(C_{3-7}) heterocycloalkyl, (C_{3-7}) heterocycloalkyl(C_{i-6})alkyl, (C_{i-6})alkyl(C_{3-7}) heterocycloalkyl(C_{i-6})alkyl, heteroaryl, (C_{3-7}) heterocycloalkoxy, (C_{3-8}) alkoxy carbonyl(C_{3-7}) heterocycloalkoxy, (C_{3-7}) heterocycloalkoxy(C_{i-6}) alkoxy, dihalo(C_{i-6}) alkylenedioxy, arylcarbonyloxy,

di(C_{i-6}) alkylamino(C_{i-6}) alkyl and arylcarbonyl.

Selected examples of optional substituents on Z include one or more substituents independently selected from halogen, cyano, nitro, C_{i-6} alkyl, trifluoromethyl, cyano(C_{i-6}) alkyl, (C_{3-7}) heterocycloalkyl, halo(C_{3-7}) heterocycloalkyl, (C_{i-6}) alkyl(C_{3-7}) heterocycloalkyl, (C_{3-8}) alkoxy carbonyl(C_{3-7}) heterocycloalkyl, dihalo(C_{3-7}) heterocycloalkyl, heterocycloalkyl, (C_{3-7}) heterocycloalkyl(C_{i-6}) alkyl, (C_{i-6}) alkyl(C_{3-7}) heterocycloalkyl, (C_{3-7}) heterocycloalkoxy, (C_{3-8}) alkoxy carbonyl(C_{3-7}) heterocycloalkoxy, (C_{3-7}) heterocycloalkoxy(C_{i-6}) alkoxy, arylxy, haloarylxy, (C_{i-6}) alkoxyarylxy, C_{i-3}
alkylenedioxy, dihalo(Ci_3)alkylenedioxy, arylcarbonyloxy, di(Ci_6)alkylamino, di(Ci_6)-
alkylamino(Ci_6)alkyl, C_{2,6} alkylcarbonylamino, C_{2,6} alkoxy carbonyl, arloxy carbonyl
and amino carbonyl.

Suitable examples of optional substituents on Z include one or more substituents
independently selected from halogen, Ci_{6} alkyl, hydroxy, Ci_{6} alkoxy, difluoromethoxy,
trifluoromethoxy, aryloxy, (Ci_6)alkoxyaryloxy, Ci_{3} alkylenedioxy and di(Ci_6)alkyl-
amino.

Typical examples of specific substituents on Z include fluoro, chloro, bromo,
cyano, nitro, methyl, isopropyl, trifluoromethyl, hydroxy, oxo, methoxy,
difluoromethoxy, trifluoromethoxy, phenoxy, chlorophenoxy, methoxyphenoxy,
methylenedioxy, ethylenedioxy, methylthio, methylsulfanyl, methylsulfonyl, amino,
methylamino, tert-butylamino, dimethylamino, phenylamino, acetylaminono,
methoxy carbonylamino, methylsulfonylamino, formyl, acetyl, cyclopropylcarbonyl,
azetidinylcarbonyl, pyrrolidinylcarbonyl, piperidinylcarbonyl, piperazinylcarbonyl,
morpholinylcarbonyl, carboxy, methoxycarbonyl, aminocarbonyl, methylaminocarbonyl,
dimethylaminocarbonyl, aminosulfanyl, methylsulfanyl and dimethylaminosul-
fonyl. Additional examples include ethyl, tert-butyl, cyanomethyl, azetidinyl,
pyrrolidinyl, piperazinyl, morpholinyl, fluoroazetidinyl, fluoropyrrolidinyl, methyl-
piperazinyl, tert-butoxycarbonylpiperazinyl, difluoroazetidinyl, difluoropyrrolidinyl,
difluoropiperidinyl, pyrrolidinylmethyl, piperidinylmethyl, morpholinylmethyl,
methylpiperazinylmethyl, pyrazolyl, imidazolyl, oxetanyloxy, azetidinyl,
tetrahydrofuranyloxy, pyrrolidinloxy, tert-butoxycarbonylazetidinloxy, tert-
butoxycarbonylpiperazinyl, tetrahydrofuranylmethoxy, morpholinylethoxy,
difluoromethylenedioxy, benzoyloxy, dimethylaminomethyl, ethoxycarbonyl, tert-
butoxycarbonyl and benzoxycarbonyl.

Selected examples of specific substituents on Z include fluoro, chloro, cyano,
nitro, methyl, ethyl, tert-butyl, trifluoromethyl, cyanomethyl, azetidinyl, pyrrolidinyl,
piperazinyl, morpholinyl, fluoroazetidinyl, fluoropyrrolidinyl, methylpiperazinyl, tert-
butoxycarbonylpiperazinyl, difluoroazetidinyl, difluoropyrrolidinyl, difluoropiperidinyl,
pyrrolidinylmethyl, piperidinylmethyl, morpholinylmethyl, methylpiperazinylmethyl,
pyrazolyl, imidazolyl, hydroxy, oxo, methoxy, difluoromethoxy, trifluoromethoxy,
oxetanyloxy, azetidinyl, tetrahydrofuranyloxy, pyrrolidinloxy, tert-butoxycarbonyl-
azetidinloxy, tert-butoxycarbonylpiperazinyl, tetrahydrofuranylmethoxy,
morpholinylethoxy, phenoxy, chlorophenoxy, methoxyphenoxy, methylenedioxy, ethylenedioxy, difluoromethylenedioxy, benzoyloxy, dimethylamino, dimethylaminomethyl, acetylamino, ethoxycarbonyl, tert-butoxycarbonyl, benzoyloxy carbonyl and amino carbonyl.

Suitable examples of specific substituents on Z include fluoro, methyl, hydroxy, methoxy, difluoromethoxy, trifluoromethoxy, phenoxy, methoxyphenoxy, ethylenedioxy and dimethylamino.

Selected values of Z include include phenoxy methyl, chlorophenoxy methyl, methoxyphenoxy methyl, tert-butoxycarbonylmethyl, benzoyloxy carbonylmethyl, phenoxyethyl, isopropenyl, cyclopropyl, indanyl, cyclopropylmethyl, cyclopentylethyl, (methyl)(oxo)pyrrolidinyl, dihydrobenzofuranyl, methylindolinyl, dihydrobenzofuranyl methyl, morpholinylmethyl, morpholinylethyl, phenyl, nitrophenyl, methylphenyl, ethylphenyl, cyanomethylphenyl, morpholinylphenyl, pyrazolylphenyl, imidazolylphenyl, methoxyphenyl, difluoromethoxyphenyl, trifluoromethoxyphenyl, morpholinylethoxyphenyl, ethylenedioxyphenyl, difluoromethylenedioxyphenyl, benzoyloxyphenyl, dimethylaminophenyl, acetylaminophenyl, aminocarbonylphenyl, (chloro)(methyl) phenyl, dimethylphenyl, (methyl)(trifluoromethyl)phenyl, bis(trifluoromethyl)phenyl, (fluoropyrrolidinyl)(methyl)phenyl, (methyl)(pyrrolidinylmethyl)phenyl, (methyl)(morpholinylmethyl)phenyl, (methyl)(methylpiperazinylmethyl)phenyl, (fluoro)-methoxyphenyl, (chloro)(methoxy)phenyl, (cyano)(methoxy)phenyl, (methoxy)(methyl)phenyl, (methoxy)(trifluoromethyl)phenyl, dimethoxyphenyl, (difluoromethoxy)(methyl)phenyl, (methyl)(oxetanyloxy)phenyl, (azetidinyloxy)(methyl)phenyl, (tert-butoxycarbonylazetidinyloxy)(methyl)phenyl, (methyl)(tetrahydrofuranylmethoxy)phenyl, (methyl)(morpholinylethoxy)phenyl, (dimethylaminomethyl)(methyl)phenyl, trimethoxyphenyl, benzyl, cyanobenzyl, methylbenzyl, methoxybenzyl, methylenedioxybenzyl, dimethylaminobenzyl, dimethoxybenzyl, phenylethyl, fluorophenylethyl, methylphenylethyl, (hydroxy)(phenyl)ethyl, methoxyphenylethyl, methylfuryl, thietyl, methylindolyl, pyrazolyl, methylpyrazolyl, dimethylpyrazolyl, indazolyl, dimethylisoazolyl, thiazolyl, methylthiazolyl, tert-butylthiazolyl, ethoxycarbonylthiazolyl, benzothiazolyl, methoxybenzothiazolyl, methylimidazolyl, benzimidazolyl, methylbenzimidazolyl, trifluoromethylbenzimidazolyl, piperidinylmethylbenzimidazolyl, morpholymethylbenzimidazolyl, imidazo[1,2-a]pyridinyl, pyridinyl, chloropyridinyl, methylpiperazinylpyridinyl, methoxy pyridinyl, dimethylpyridinyl, (methyl)-

Specific values of Z include include phenoxy-methyl, methoxy-phenoxy-methyl, cyclopentylethyl, morpholinylmethyl, phenyl, methylphenyl, methoxyphenyl, difluoromethoxyphenyl, trifluoromethoxyphenyl, ethylenedioxyphenyl, dimethylaminophenyl, (methoxy)(methyl)phenyl, dimethoxyphenyl, trimethoxyphenyl, benzyl, methoxybenzyl, phenylethyl, fluophenylethyl, methylphenylethyl, (hydroxy)(phenyl)ethyl, methoxyphenylethyl, pyrazolyl, methylpyrazolyl, indazolyl, dimethylisoxazolyl, methyl-imidazolyl, benzimidazolyl, imidazo[1,2-α]pyrimidinyl, pyridinyl, quinolinyl, isoquinolinyl, pyrazinyl, quinoxalinyl, pyridinylmethyl, furyl-ethyl, benzimidazolylethyl and pyridinylethyl.

One particular value of Z is methoxyphenyl, especially 4-methoxyphenyl.

Another particular value of Z is (methoxy)(methyl)phenyl, especially 4-methoxy-2-methylphenyl.

Another particular value of Z is (difluoroazetidinyl)(methyl)pyridinyl, especially 6-(3,3-difluoroazetidin-1-yl)-2-methylpyridin-3-yl.

Typically, A represents hydrogen or cyano; or A represents C_{i-4} alkyl, optionally substituted by one or more substituents independently selected from -OR, -CO₂R or -CONR_bR_c; or A represents C₃-₇ cycloalkyl.

Suitable values of A include hydrogen, methyl and trifluoromethyl.
In a particular embodiment, A₁ represents hydrogen. In another embodiment, A₁ represents cyano. In another embodiment, A₁ represents trifluoromethyl. In a further embodiment, A₁ represents C₁₋₆ alkyl, optionally substituted by one or more substituents independently selected from -OR, -NR²R³, -CO₂R² and -CONR²R³. In one aspect of that embodiment, A₁ represents C₁₋₆ alkyl, optionally substituted by one or more substituents independently selected from -OR, -CO₂R² and -CONR²R³. In another aspect of that embodiment, A₁ represents C₁₋₆ alkyl, optionally substituted by one or more substituents independently selected from -OR and -NR²R³. In another aspect of that embodiment, A₁ represents unsubstituted C₁₋₆ alkyl, typically methyl, ethyl, isopropyl or isobutyl, especially methyl. In another aspect of that embodiment, A₁ represents C₁₋₆ alkyl monosubstituted by -OR, -CO₂R² or -CONR²R³. In another aspect of that embodiment, A₁ represents C₁₋₆ alkyl monosubstituted by -OR or -NR²R³. In a further aspect of that embodiment, A₁ represents C₁₋₆ alkyl disubstituted by two substituents independently selected from -OR and -NR²R³. In an additional embodiment, A₁ represents C₃₋₇ cycloalkyl, especially cyclopentyl.

Selected values of A₁ include hydrogen, cyano, methyl, ethyl, isopropyl, isobutyl, -CH₂OR, -CH₂CH₂OR, -CH₂C₀₂R, -CH₂CONR²R³ and cyclopropyl.

Particular values of A₁ include hydrogen, methyl and hydroxymethyl.

In a particular embodiment, A² represents hydrogen. In another embodiment, A² represents C₁₋₆ alkyl, especially methyl.

Selected values of A² include hydrogen and methyl.

Suitably, R¹ represents hydrogen, halogen, cyano, nitro, hydroxy, trifluoromethyl, trifluoromethoxy, -OR, -S₀₂R, -NR²R³, -CH₂NR²R³, -NR²COR², -CH₂NR²COR², -NR²C₀₂R, -NHCONR²R³, -NR²S₀₂R², -NHS₀₂NR²R³, -COR², -C₀₂R, -CONR²R³, -CON(OR²)R² or -S₀₂NR²R³; or C₁₋₆ alkyl, aryl or heteroaryl, any of which groups may be optionally substituted by one or more substituents.

Typically, R¹ represents hydrogen, -NR²R³ or -NR²COR²; or C₁₋₆ alkyl, which group may be optionally substituted by one or more substituents.

Suitable values of R¹ include hydrogen and -NR²R³, especially -NR²R³.

In one embodiment, R¹ represents hydrogen. In another embodiment, R¹ represents -NR²R³. In a further embodiment, R¹ represents -NR²COR². In an additional embodiment, R¹ represents optionally substituted C₁₋₆ alkyl. In one aspect of that embodiment, R¹ represents optionally substituted methyl.
Examples of typical substituents on R\textsubscript{1} include one or more substituents independently selected from halogen, cyano, nitro, C\textsubscript{6} alkyl, trifluoromethyl, aryl(C\textsubscript{6})alkyl, hydroxy, C\textsubscript{6} alkoxy, difluoromethoxy, trifluoromethoxy, arylox, C\textsubscript{4} alkylenedioxy, C\textsubscript{6} alkoxy(C\textsubscript{6})alkyl, C\textsubscript{6} alkylthio, C\textsubscript{6} alkylsulphonyl, oxo, amino, C\textsubscript{6} alkylamino, di(C\textsubscript{6})alkylamino, C\textsubscript{2,6} alkyloxycarbonylamino, C\textsubscript{2,6} alkoxyacylamino, C\textsubscript{6} alkylsulphonylamino, formyl, C\textsubscript{2,6} alkylcarbonyl, carboxy, C\textsubscript{2,6} alkoxyacetyl, amino carbonyl, C\textsubscript{6} alkylaminocarbonyl, di(C\textsubscript{6})alkylaminocarbonyl, C\textsubscript{2,6} alkylaminosulphonyl, C\textsubscript{6} alkylaminosulphonyl and di(C\textsubscript{6})alkylaminosulphonyl.

Specific examples of typical substituents on R\textsubscript{1} include one or more substituents independently selected from fluoro, chloro, bromo, cyano, nitro, methyl, ethyl, tert-butyl, trifluoromethyl, benzyl, hydroxy, methoxy, difluoromethoxy, trifluoromethoxy, phenoxy, methylenedioxy, ethylenedioxy, methoxymethyl, methylthio, methylsulphonyl, oxo, amino, methylamino, dimethylamino, acetylamino, methoxycarbonylamino, ethoxycarbonylamino, benzoxycarbonylamino, ethylamino carbonylamino, butylaminocarbonylamino, phenylamino carbonylamino, methylsulphonylamino, formyl, acetyl, carboxy, methoxycarbonyl, aminocarbonyl, methylaminocarbonyl, dimethylamino carbonyl, aminosulphonyl, methylaminosulphonyl and dimethylaminosulphonyl.

Suitably, R\textsubscript{2} represents hydrogen or C\textsubscript{6} alkyl.

Suitable values of R\textsubscript{2} include hydrogen and methyl.

In one embodiment, R\textsubscript{2} represents hydrogen. In another embodiment, R\textsubscript{2} represents C\textsubscript{6} alkyl, optionally substituted by one or more substituents independently selected from -OR\textsubscript{a} and -NR\textsubscript{b}R\textsubscript{c}. In one aspect of that embodiment, R\textsubscript{2} represents unsubstituted C\textsubscript{6} alkyl, especially methyl. In another aspect of that embodiment, R\textsubscript{2} represents C\textsubscript{6} alkyl monosubstituted by -OR\textsubscript{a} or -NR\textsubscript{b}R\textsubscript{c}. In a further aspect of that embodiment, R\textsubscript{2} represents C\textsubscript{6} alkyl disubstituted by two substituents independently selected from -OR\textsubscript{a} and -NR\textsubscript{b}R\textsubscript{c}.

Typical examples of suitable substituents on R\textsubscript{a}, R\textsubscript{b}, R\textsubscript{c}, R\textsubscript{d} or R\textsubscript{e}, or on the heterocyclic moiety -NR\textsubscript{b}R\textsubscript{c} include halogen, C\textsubscript{6} alkyl, C\textsubscript{6} alkoxy, difluoromethoxy, trifluoromethoxy, C\textsubscript{6} alkoxy(C\textsubscript{6})alkyl, C\textsubscript{6} alkylthio, C\textsubscript{6} alkylsulphinyl, C\textsubscript{6} alkylsulphonyl, hydroxy, hydroxy(C\textsubscript{6})alkyl, amino(C\textsubscript{6})alkyl, cyano, trifluoromethyl, oxo, C\textsubscript{2,6} alkyloxycarbonyl, carboxy, C\textsubscript{2,6} alkoxyacetyl, C\textsubscript{2,6} alkyloxycarbonyl, amino, C\textsubscript{6}-
alkylamino, di(Ci_6)alkylamino, phenylamino, pyridinylamino, C\textsubscript{2,6} alkylcarbonylamino, C\textsubscript{2,6} alkylcarbonylamino(Ci_6)alkyl, C\textsubscript{2,6} alkoxy carbonylamino, C\textsubscript{2,6} alkysulphonylamino, aminocarbonyl, Ci\textsubscript{6} alkylaminocarbonyl and di(Ci_6)alkylaminocarbonyl.

Typical examples of specific substituents on Ra, Rb, Rc, Rd or Re, or on the heterocyclic moiety -NRbRc, include fluoro, chloro, bromo, methyl, ethyl, isopropyl, methoxy, isopropoxy, difluoromethoxy, trifluoromethoxy, methoxymethyl, methylthio, ethylthio, methylsulphinyl, methylsulphonyl, hydroxy, hydroxymethyl, hydroxyethyl, aminomethyl, cyano, trifluoromethyl, oxo, acetyl, carboxy, methoxycarbonyl, ethoxycarbonyl, tert-butoxycarbonyl, acetoxy, amino, methylamino, ethylamino, dimethylamino, phenylamino, pyridinylamino, acetylamino, acetylaminomethyl, tert-butoxycarbonylamino, methylsulphonylamino, aminocarbonyl, methylamino carbonyl and dimethylaminocarbonyl.

Typically, Ra represents hydrogen; or Ra represents Ci\textsubscript{6} alkyl, aryl(Ci\textsubscript{6})alkyl or heteroaryl(Ci\textsubscript{6})alkyl, any of which groups may be optionally substituted by one or more substituents.

Suitably, Ra represents Ci\textsubscript{6} alkyl, aryl(Ci\textsubscript{6})alkyl or heteroaryl(Ci\textsubscript{6})alkyl, any of which groups may be optionally substituted by one or more substituents.

Apposite values of Ra include hydrogen; and methyl, ethyl, benzyl or isoindolyl-propyl, any of which groups may be optionally substituted by one or more substituents.

Selected values of Ra include methyl, ethyl, benzyl and isoindolylpropyl, any of which groups may be optionally substituted by one or more substituents.

Selected examples of suitable substituents on Ra include Ci\textsubscript{6} alkoxy and oxo.

Selected examples of specific substituents on Ra include methoxy and oxo.

In one embodiment, Ra represents hydrogen. In another embodiment, Ra represents optionally substituted Ci\textsubscript{6} alkyl. In one aspect of that embodiment, Ra ideally represents unsubstituted Ci\textsubscript{6} alkyl, especially methyl. In another aspect of that embodiment, Ra ideally represents substituted Ci\textsubscript{6} alkyl, e.g. methoxyethyl. In another embodiment, Ra represents optionally substituted aryl. In one aspect of that embodiment, Ra represents unsubstituted aryl, especially phenyl. In another aspect of that embodiment, Ra represents monosubstituted aryl, especially methylphenyl. In another embodiment, Ra represents optionally substituted aryl(Ci\textsubscript{6})alkyl, ideally unsubstituted aryl(Ci\textsubscript{6})alkyl, especially benzyl. In a further embodiment, Ra represents optionally substituted heteroaryl. In a
further embodiment, R^a represents optionally substituted heteroaryl(Ci$_6$)alkyl, e.g. dioxoisindolylpropyl.

Specific values of R^a include methyl, methoxyethyl, benzyl and dioxoisindolylpropyl.

Appositely, R^a represents hydrogen or Ci$_{1-6}$ alkyl.

Individual values of R^a include hydrogen and methyl.

In a particular aspect, R^b represents hydrogen or trifluoromethyl; or Ci$_{1-6}$ alkyl, C$_{3-7}$ cycloalkyl, C$_{3-7}$ cycloalkyl(Ci$_6$)alkyl, aryl, aryl(Ci$_{1-6}$)alkyl, C$_{3-7}$ heterocycloalkyl, C$_{3-7}$ heterocycloalkyl(Ci$_6$)alkyl, heteroaryl or heteroaryl(Ci$_6$)alkyl, any of which groups may be optionally substituted by one or more substituents.

Selected values of R^b include hydrogen; or Ci$_{1-6}$ alkyl, aryl(Ci$_{1-6}$)alkyl, C$_{3-7}$ heterocycloalkyl or C$_{3-7}$ heterocycloalkyl(Ci$_6$)alkyl, any of which groups may be optionally substituted by one or more substituents.

Typical values of R^b include hydrogen and Ci$_{1-6}$ alkyl.

Illustratively, R^b represents hydrogen or trifluoromethyl; or methyl, ethyl, n-propyl, isopropyl, n-butyl, 2-methylpropyl, tert-butyl, pentyl, hexyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cyclopropylmethyl, cyclobutylmethyl, cyclopentylmethyl, cyclohexylmethyl, phenyl, benzyl, phenylethyl, azetidinyl, tetrahydrofurfuryl, tetrahydrothienyl, pyrrolidinyl, piperidinyl, homopiperidinyl, morpholinyl, azetidinylmethyl, tetrahydrofurymethyl, pyrrolidinylmethyl, pyrrolidinylethyl, pyrrolidinylpropyl, thiazolidinylmethyl, imidazolidinylethyl, pipеридинилметил, pipеридинилетил, tetrahydroquinolinylmethyl, piperazinylpropyl, morpholinylmethyl, morpholinylethyl, morpholinylpropyl, pyridinyl, indolylmethyl, pyrazolylmethyl, pyrazolylethyl, imidazolylmethyl, imidazolylethyl, benzimidazolylmethyl, triazolylmethyl, pyridinylmethyl or pyridinylethyl, any of which groups may be optionally substituted by one or more substituents.

Representative values of R^b include hydrogen; or methyl, ethyl, n-propyl, benzyl, pyrrolidinyl or morpholinylpropyl, any of which groups may be optionally substituted by one or more substituents.

Selected examples of suitable substituents on R^b include Ci$_{1-6}$ alkoxy, Ci$_{1-6}$ alkylthio, Ci$_{6}$ alkylsulphinyl, Ci$_{6}$ alkylsulphonyl, hydroxy, cyano, C$_{2-6}$ alkoxy carbonyl, di-(Ci$_6$)alkylamino and C$_{2-6}$ alkoxy carbonylamino.
Selected examples of specific substituents on R^b include methoxy, methylthio, methylsulphynyl, methylsulphonyl, hydroxy, cyano, \textit{tert}-butoxycarbonyl, dimethylamino and \textit{tert}-butoxycarbonylamino.

Specific values of R^b include hydrogen, methyl, methoxyethyl, methylthioethyl, methylsulphinylethyl, methylsulphonyl ethyl, \textit{tert}-butoxycarbonylaminoethyl, dihydroxypropyl, benzyl, pyrrolidinyl, \textit{tert}-butoxycarbonylpyrrolidinyl and morpholinylpropyl.

In one embodiment, R^b represents hydrogen. In another embodiment, R^b represents Ci_{1-6} alkyl, especially methyl.

Selected values of R^c include hydrogen; or Ci_{1-6} alkyl, C_{3-7} cycloalkyl or C_{3-7} heterocycloalkyl, any of which groups may be optionally substituted by one or more substituents.

In a particular aspect, R^c represents hydrogen, Ci_{1-6} alkyl or C_{3-7} cycloalkyl.

Representative values of R^c include hydrogen; or methyl, cyclobutyl, cyclopentyl, cyclohexyl, tetrahydropyranyl and piperidinyl, any of which groups may be optionally substituted by one or more substituents.

Selected examples of suitable substituents on R^c include C_{2-6} alkylcarbonyl and C_{2-6} alkoxy carbonyl.

Selected examples of specific substituents on R^c include acetyl and \textit{tert}-butoxycarbonyl.

Specific values of R^c include hydrogen, methyl, cyclobutyl, cyclopentyl, cyclohexyl, tetrahydropyranyl, acetyl piperidinyl and \textit{tert}-butoxycarbonylpiperidinyl.

Suitably, R^c represents hydrogen or Ci_{1-6} alkyl. In one embodiment, R^c is hydrogen. In another embodiment, R^c represents Ci_{1-6} alkyl, especially methyl or ethyl, particularly methyl. In a further embodiment, R^c represents C_{3-7} cycloalkyl, e.g. cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl.

Alternatively, the moiety \textit{-NR}^{b}R^c may suitably represent azetidin-1-yl, pyrrolidin-1-yl, oxazolidin-3-yl, isoxazolidin-2-yl, thiazolidin-3-yl, isothiazolidin-2-yl, piperidin-1-yl, morpholin-4-yl, thiomorpholin-4-yl, piperazin-1-yl, homopiperidin-1-yl, homomorpholin-4-yl or homopiperazin-1-yl, any of which groups may be optionally substituted by one or more substituents.

Selected examples of suitable substituents on the heterocyclic moiety \textit{-NR}^{b}R^c include Ci_{1-6} alkyl, Ci_{1-6} alkylsulphonyl, hydroxy, hydroxy(Ci_{1-6})alkyl, amino(Ci_{1-6})alkyl,
cyano, oxo, C₂₆ alkylcarbonyl, carboxy, C₂₆ alkoxy carbonyl, amino, C₂₆ alkylcarbonylamino, C₂₆ alkylcarbonylamino(C₆)alkyl, C₂₆ alkoxy carbonylamino, C₆ alkyl sulphonylamino and aminocarbonyl.

Selected examples of specific substituents on the heterocyclic moiety -NR²R⁶ include methyl, methylsulphonyl, hydroxy, hydroxymethyl, aminomethyl, cyano, oxo, acetyl, carboxy, ethoxycarbonyl, amino, acetylamino, acetylaminomethyl, tert-butoxy carbonylamino, methylsulphonylamino and aminocarbonyl.

Specific values of the moiety -NR²R⁶ include azetidin-1-yl, hydroxyazetidin-1-yl, hydroxymethylazetidin-1-yl, (hydroxy)(hydroxymethyl)azetidin-1-yl, aminomethylazetidin-1-yl, cyanomethylazetidin-1-yl, carboxyazetidin-1-yl, aminoazetidin-1-yl, cyanoazetidin-1-yl, oxoazetidin-1-yl, hydroxyisoxazolidin-2-yl, thiazolidin-3-yl, oxothiazolidin-3-yl, dioxoisothiazolidin-2-yl, piperidin-1-yl, hydroxy piperidin-1-yl, hydroxymethylpiperidin-1-yl, methyl sulphonylamopiperidin-1-yl, morpholin-4-yl, piperazin-1-yl, acetylpiperazin-1-yl, methylsulphonylpiperazin-1-yl, oxopiperazin-1-yl, acetylaminopiperazin-1-yl, ethoxycarbonylpiperazin-1-yl and oxohomopiperazin-1-yl.

Suitably, R⁴ represents hydrogen; or C₆ alkyl, aryl or heteroaryl, any of which groups may be optionally substituted by one or more substituents.

Selected examples of suitable values for R⁴ include hydrogen, methyl, ethyl, isopropyl, 2-methylpropyl, tert-butyl, cyclopropyl, cyclobutyl, phenyl, thiazolidinyl, thienyl, imidazolyl and thiazolyl, any of which groups may be optionally substituted by one or more substituents.

Selected examples of suitable substituents on R⁴ include halogen, C₆ alkyl, C₆ alkoxy, oxo, C₂₆ alkylcarbonyloxy and di(C₆)alkylamino.

Selected examples of particular substituents on R⁴ include fluoro, methyl, methoxy, oxo, acetoxy and dimethylamino.

In one embodiment, R⁴ represents hydrogen. In another embodiment, R⁴ represents optionally substituted C₆ alkyl. In one aspect of that embodiment, R⁴ ideally represents unsubstituted C₆ alkyl, e.g. methyl, ethyl, isopropyl, 2-methylpropyl or tert-butyl, especially methyl or ethyl, particularly methyl. In another aspect of that embodiment, R⁴ ideally represents substituted C₆ alkyl, e.g. substituted methyl or
substituted ethyl, including acetoxymethyl, dimethylaminomethyl and trifluoro ethyl. In another embodiment, \(R^d\) represents optionally substituted aryl. In one aspect of that embodiment, \(R^d\) represents unsubstituted aryl, especially phenyl. In another aspect of that embodiment, \(R^d\) represents mono substituted aryl, especially methylphenyl. In a further aspect of that embodiment, \(R^d\) represents disubstituted aryl, e.g. dimethoxyphenyl. In another embodiment, \(R^d\) represents optionally substituted heteroaryl, e.g. thienyl, chlorothienyl, methylthienyl, methylimidazolyl or thiazolyl. In another embodiment, \(R^d\) represents optionally substituted \(C_3-7\) cycloalkyl, e.g. cyclopropyl or cyclobutyl. In a further embodiment, \(R^d\) represents optionally substituted \(C_3-7\) heterocycloalkyl, e.g. thiazolidinyl or oxothiazolidinyl.

Selected examples of specific values for \(R^d\) include hydrogen, methyl, ethyl, acetoxymethyl, dimethylaminomethyl, ethyl, trifluoro ethyl, isopropyl, 2-methylpropyl, tert-butyl, cyclopropyl, cyclobutyl, phenyl, dimethoxyphenyl, thiazolidinyl, oxothiazolidinyl, thienyl, chlorothienyl, methylthienyl, methylimidazolyl and thiazolyl.

Appositely, \(R^d\) represents hydrogen or \(Ci_{\geq 6}\) alkyl.

Individual values of \(R^d\) include hydrogen and methyl.

A particular value of \(R^d\) is ethyl.

Suitably, \(R^e\) represents \(Ci_{\geq 6}\) alkyl or aryl, either of which groups may be optionally substituted by one or more substituents.

Selected examples of suitable substituents on \(R^e\) include \(Ci_{\geq 6}\) alkyl, especially methyl.

In one embodiment, \(R^e\) represents optionally substituted \(Ci_{\geq 6}\) alkyl, ideally unsubstituted \(Ci_{\geq 6}\) alkyl, e.g. methyl or propyl, especially methyl. In another embodiment, \(R^e\) represents optionally substituted aryl. In one aspect of that embodiment, \(R^e\) represents unsubstituted aryl, especially phenyl. In another aspect of that embodiment, \(R^e\) represents monosubstituted aryl, especially methylphenyl. In a further embodiment, \(R^e\) represents optionally substituted heteroaryl.

Selected values of \(R^e\) include methyl, propyl and methylphenyl.

In a particular aspect, the present invention provides a compound of formula (IA), or a pharmaceutically acceptable salt or solvate thereof:
wherein \(Q \) is as defined above.

One sub-class of compounds according to the invention is represented by the compounds of formula (IIA), and pharmaceutically acceptable salts and solvates thereof:

wherein

\[A^{11} \]

represents hydrogen, cyano, \(\text{C}_{1-6} \) alkyl, \(-\text{CH}_2\text{OR}^a\), \(-\text{CH}_2\text{CH}_2\text{OR}^a\), \(-\text{CH}_2\text{CO}_2\text{R}^d\), \(-\text{CH}_2\text{CONR}^b\text{R}^c\) or \(\text{C}_3\text{-7 cycloalkyl} \); and

\[Z, R^a, R^b, R^c \text{ and } R^d \]

are as defined above.

In a first embodiment, \(A^{11} \) represents hydrogen. In a second embodiment, \(A^{11} \) represents cyano. In a third embodiment, \(A^{11} \) represents \(\text{C}_{1-6} \) alkyl, typically methyl, ethyl, isopropyl or isobutyl, especially methyl. In a fourth embodiment, \(A^{11} \) represents \(-\text{CH}_2\text{OR}^a\). In a fifth embodiment, \(A^1 \) represents \(-\text{CH}_2\text{CH}_2\text{OR}^a\). In a sixth embodiment, \(A^{11} \) represents \(-\text{CH}_2\text{CO}_2\text{R}^d\). In a seventh embodiment, \(A^{11} \) represents \(-\text{CH}_2\text{CONR}^b\text{R}^c\). In an eighth embodiment, \(A^{11} \) represents \(\text{C}_3\text{-7 cycloalkyl} \), especially cyclopropyl.

Selected values of \(A^{11} \) include hydrogen, cyano, methyl, ethyl, isopropyl, isobutyl, \(-\text{CH}_2\text{OR}^a\), \(-\text{CH}_2\text{CH}_2\text{OR}^a\), \(-\text{CH}_2\text{CO}_2\text{R}^d\), \(-\text{CH}_2\text{CONR}^b\text{R}^c\) and cyclopropyl.
Particular values of A_{11} include hydrogen, methyl and hydroxymethyl.

Another sub-class of compounds according to the invention is represented by the compounds of formula (IIB), and pharmaceutically acceptable salts and solvates thereof:

\[
\begin{align*}
\text{O} & \quad \text{Z} \\
\text{A}_{11} & \\
\text{N} & \\
\text{N} & \\
\text{N} & \\
\text{N} & \\
\text{H}_2\text{N} &
\end{align*}
\]

(IIB)

wherein Z and A_{11} are as defined above.

A further sub-class of compounds according to the invention is represented by the compounds of formula (IIC), and pharmaceutically acceptable salts and solvates thereof:

\[
\begin{align*}
\text{Z} & \\
\text{A}_{11} & \\
\text{N} & \\
\text{N} & \\
\text{N} & \\
\text{H}_2\text{N} &
\end{align*}
\]

(IIC)

wherein Z and A_{11} are as defined above.

Specific novel compounds in accordance with the present invention include each of the compounds whose preparation is described in the accompanying Examples, and pharmaceutically acceptable salts and solvates thereof.

The compounds in accordance with the present invention are beneficial in the treatment and/or prevention of various human ailments. These include inflammatory,
autoimmune and oncological disorders; viral diseases; and organ and cell transplant rejection.

Inflammatory and autoimmune disorders include systemic autoimmune disorders, autoimmune endocrine disorders and organ-specific autoimmune disorders. Systemic autoimmune disorders include systemic lupus erythematosus (SLE), psoriasis, vasculitis, polymyositis, scleroderma, multiple sclerosis, ankylosing spondylitis, rheumatoid arthritis and Sjogren's syndrome. Autoimmune endocrine disorders include thyroiditis. Organ-specific autoimmune disorders include Addison's disease, haemolytic or pernicious anaemia, glomerulonephritis (including Goodpasture's syndrome), Graves' disease, idiopathic thrombocytopenic purpura, insulin-dependent diabetes mellitus, juvenile diabetes, uveitis, inflammatory bowel disease (including Crohn's disease and ulcerative colitis), pemphigus, atopic dermatitis, autoimmune hepatitis, primary biliary cirrhosis, autoimmune pneumonitis, autoimmune carditis, myasthenia gravis and spontaneous infertility.

Oncological disorders, which may be acute or chronic, include proliferative disorders, especially cancer, in animals, including mammals, especially humans. Particular categories of cancer include haematological malignancy (including leukaemia and lymphoma) and non-haematological malignancy (including solid tumour cancer, sarcoma, meningioma, glioblastoma multiforme, neuroblastoma, melanoma, gastric carcinoma and renal cell carcinoma). Chronic leukaemia may be myeloid or lymphoid. Varieties of leukaemia include lymphoblastic T cell leukaemia, chronic myelogenous leukaemia (CML), chronic lymphocytic/lymphoid leukaemia (CLL), hairy-cell leukaemia, acute lymphoblastic leukaemia (ALL), acute myelogenous leukaemia (AML), myelodysplastic syndrome, chronic neutrophilic leukaemia, acute lymphoblastic T cell leukaemia, plasmacytoma, immunoblastic large cell leukaemia, mantle cell leukaemia, multiple myeloma, acute megakaryoblastic leukaemia, acute megakaryocyte leukaemia, promyelocytic leukaemia and erythroleukaemia. Varieties of lymphoma include malignant lymphoma, Hodgkin's lymphoma, non-Hodgkin's lymphoma, lymphoblastic T cell lymphoma, Burkitt's lymphoma, follicular lymphoma, MALT1 lymphoma and marginal zone lymphoma. Varieties of non-haematological malignancy include cancer of the prostate, lung, breast, rectum, colon, lymph node, bladder, kidney, pancreas, liver, ovary, uterus, cervix, brain, skin, bone, stomach and muscle.
Viral diseases include infections caused by various families of virus, including the *Retroviridae, Flaviviridae, Picornaviridae*. Various genera within the *Retroviridae* family include *Alpharetrovirus, Betaretrovirus, Gammaretrovirus, Deltaretrovirus, Epsilonretrovirus, Lentivirus* and *Spumavirus*. Members of the *Lentivirus* genus include human immunodeficiency virus 1 (HIV-1) and human immunodeficiency virus 2 (HIV-2). Various genera within the *Flaviviridae* family include *Flavivirus, Pestivirus, Hepacivirus* and *Hepatitis G Virus*. Members of the *Flavivirus* genus include Dengue fever virus, yellow fever virus, West Nile encephalitis virus and Japanese encephalitis virus. Members of the *Pestivirus* genus include bovine viral diarrhoea virus (BVDV), classical swine fever virus and border disease virus 2 (BDV-2). Members of the *Hepacivirus* genus include hepatitis C virus (HCV). Members of the *Hepatitis G Virus* genus include hepatitis G virus. Various genera within the *Picornaviridae* family include *Aphthovirus, Avihepatovirus, Cardiovirus, Enterovirus, Erbovirus, Hepatovirus, Kobuvirus, Parechovirus, Sapelovirus, Senecavirus, Teschovirus* and *Tremovirus*. Members of the *Enterovirus* genus include poliovirus, coxsackie A virus, coxsackie B virus and rhinovirus.

Organ transplant rejection includes the rejection of transplanted or grafted organs or cells (both allografts and xenografts), including graft-versus-host reaction disease. The term "organ" as used herein means all organs or parts of organs in mammals, particularly humans, including kidney, lung, bone marrow, hair, cornea, eye (vitreous), heart, heart valve, liver, pancreas, blood vessel, skin, muscle, bone, intestine and stomach. The term "rejection" as used herein means all reactions of the recipient body or the transplanted organ which ultimately lead to cell or tissue death in the transplanted organ, or adversely affect the functional ability and viability of the transplanted organ or the recipient. In particular, this means acute and chronic rejection reactions.

Cell transplant rejection includes the rejection of cell transplants and xenotransplantation. The major hurdle for xenotransplantation is that even before the T lymphocytes (responsible for the rejection of allografts) are activated, the innate immune system (especially T-independent B lymphocytes and macrophages) is activated. This provokes two types of severe and early acute rejection, referred to as hyperacute rejection and vascular rejection respectively. Conventional immunosuppressant drugs, including cyclosporine A, are ineffective in xenotransplantation. The compounds in accordance with the present invention are not liable to this drawback. The ability of the compounds of this invention to suppress T-independent xeno-antibody production as well as
macrophage activation may be demonstrated by their ability to prevent xenograft rejection in athymic, T-deficient mice receiving xenogenic hamster-heart grafts.

The present invention also provides a pharmaceutical composition which comprises a compound in accordance with the invention as described above, or a pharmaceutically acceptable salt or solvate thereof, in association with one or more pharmaceutically acceptable carriers.

Pharmaceutical compositions according to the invention may take a form suitable for oral, buccal, parenteral, nasal, topical, ophthalmic or rectal administration, or a form suitable for administration by inhalation or insufflation.

For oral administration, the pharmaceutical compositions may take the form of, for example, tablets, lozenges or capsules prepared by conventional means with pharmaceutically acceptable excipients such as binding agents (e.g. pregelatinised maize starch, polyvinylpyrrolidone or hydroxypropyl methyl cellulose); fillers (e.g. lactose, microcrystalline cellulose or calcium hydrogenphosphate); lubricants (e.g. magnesium stearate, talc or silica); disintegrants (e.g. potato starch or sodium glycollate); or wetting agents (e.g. sodium lauryl sulphate). The tablets may be coated by methods well known in the art. Liquid preparations for oral administration may take the form of, for example, solutions, syrups or suspensions, or they may be presented as a dry product for constitution with water or other suitable vehicle before use. Such liquid preparations may be prepared by conventional means with pharmaceutically acceptable additives such as suspending agents, emulsifying agents, non-aqueous vehicles or preservatives. The preparations may also contain buffer salts, flavouring agents, colouring agents or sweetening agents, as appropriate.

Preparations for oral administration may be suitably formulated to give controlled release of the active compound.

For buccal administration, the compositions may take the form of tablets or lozenges formulated in conventional manner.

The compounds of formula (I) may be formulated for parenteral administration by injection, e.g. by bolus injection or infusion. Formulations for injection may be presented in unit dosage form, e.g. in glass ampoules or multi-dose containers, e.g. glass vials. The compositions for injection may take such forms as suspensions, solutions or emulsions in oily or aqueous vehicles, and may contain formulatory agents such as suspending, stabilising, preserving and/or dispersing agents. Alternatively, the active ingredient may
be in powder form for constitution with a suitable vehicle, e.g. sterile pyrogen-free water, before use.

In addition to the formulations described above, the compounds of formula (I) may also be formulated as a depot preparation. Such long-acting formulations may be administered by implantation or by intramuscular injection.

For nasal administration or administration by inhalation, the compounds according to the present invention may be conveniently delivered in the form of an aerosol spray presentation for pressurised packs or a nebuliser, with the use of a suitable propellant, e.g. dichlorodifluoromethane, fluorotrichloromethane, dichlorotetrafluoroethane, carbon dioxide or other suitable gas or mixture of gases.

The compositions may, if desired, be presented in a pack or dispenser device which may contain one or more unit dosage forms containing the active ingredient. The pack or dispensing device may be accompanied by instructions for administration.

For topical administration the compounds of use in the present invention may be conveniently formulated in a suitable ointment containing the active component suspended or dissolved in one or more pharmaceutically acceptable carriers. Particular carriers include, for example, mineral oil, liquid petroleum, propylene glycol, polyoxyethylene, polyoxypropylene, emulsifying wax and water. Alternatively, the compounds of use in the present invention may be formulated in a suitable lotion containing the active component suspended or dissolved in one or more pharmaceutically acceptable carriers. Particular carriers include, for example, mineral oil, sorbitan monostearate, polysorbate 60, cetyl esters wax, cetearyl alcohol, benzyl alcohol, 2-octyldodecanol and water.

For ophthalmic administration the compounds of use in the present invention may be conveniently formulated as micronized suspensions in isotonic, pH-adjusted sterile saline, either with or without a preservative such as a bactericidal or fungicidal agent, for example phenylmercuric nitrate, benzylalkonium chloride or chlorhexidine acetate. Alternatively, for ophthalmic administration compounds may be formulated in an ointment such as petrolatum.

For rectal administration the compounds of use in the present invention may be conveniently formulated as suppositories. These can be prepared by mixing the active component with a suitable non-irritating excipient which is solid at room temperature but liquid at rectal temperature and so will melt in the rectum to release the active component. Such materials include, for example, cocoa butter, beeswax and polyethylene glycols.
The quantity of a compound of use in the invention required for the prophylaxis or treatment of a particular condition will vary depending on the compound chosen and the condition of the patient to be treated. In general, however, daily dosages may range from around 10 ng/kg to 1000 mg/kg, typically from 100 ng/kg to 100 mg/kg, e.g. around 0.01 mg/kg to 40 mg/kg body weight, for oral or buccal administration, from around 10 ng/kg to 50 mg/kg body weight for parenteral administration, and from around 0.05 mg to around 1000 mg, e.g. from around 0.5 mg to around 1000 mg, for nasal administration or administration by inhalation or insufflation.

The compounds of formula (I) above may be prepared by a process which comprises reacting a compound of formula (III):

![Formula (III)](image)

wherein Q and R^1 are as defined above, and L^1 represents a suitable leaving group; with Lawesson's reagent, i.e. 2,4-bis(4-methoxyphenyl)-1,3-dithia-2,4-diphosphetane-2,4-disulfide.

The leaving group L^1 is typically a halogen atom, e.g. chloro.

The reaction is conveniently effected at an elevated temperature in a suitable solvent, e.g. a cyclic ether solvent such as tetrahydrofuran.

The intermediates of formula (III) above may be prepared by a process which comprises reacting a compound of formula (IV) with a compound of formula (V):

![Formula (IV)](image)

![Formula (V)](image)
wherein Q, R^1 and L^1 are as defined above, and L^2 represents a suitable leaving group.

The leaving group L^2 is typically a halogen atom, e.g. chloro.

The reaction will generally be carried out in the presence of a base, typically an organic amine such as N,N-diisopropylethylamine. The reaction is conveniently effected at an elevated temperature in a suitable solvent, e.g. a cyclic ether solvent such as 1,4-dioxane, or a dipolar aprotic solvent such as N,N-dimethylformamide.

In an alternative procedure, the compounds of formula (I) above may be prepared by a process which comprises reacting a compound of formula (V) as defined above with a compound of formula (VI):

\[
\begin{align*}
\text{(VI)} & \quad \text{wherein } R^1 \text{ and } L^2 \text{ are as defined above; under conditions analogous to those described above for the reaction between compounds (IV) and (V). Alternatively, the reaction may be effected at an elevated temperature in a suitable solvent, e.g. a chlorinated solvent such as chloroform, in the presence of a catalytic quantity of } \text{/?-toluenesulfonic acid.}
\end{align*}
\]

In a further procedure, the compounds of formula (I) above wherein Y represents -C(O)-, -S(0) _2- or -C(0)0- may be prepared by a process which comprises reacting a compound of formula L^3-C(0)-Z, L^3-S(0) _2-Z or L^3-C(0)0-Z respectively with a compound of formula (VIIA), (VIIB), (VIIC), (VIID) or (VIIE):

\[
\begin{align*}
\text{(VIIA)} & \quad \text{(VIIB)} & \quad \text{(VIIC)} \\
\text{(VIID)} & \quad \text{(VIIE)}
\end{align*}
\]
wherein \(V, W, Z, A^1, A^2 \) and \(R^1 \) are as defined above, and \(L^3 \) represents a suitable leaving group.

The leaving group \(L^3 \) is typically a halogen atom, e.g. chloro.

The reaction is conveniently effected at ambient temperature in a suitable solvent, e.g. an ethereal solvent such as 1,4-dioxane, or a chlorinated solvent such as dichloromethane, typically in the presence of a base. A suitable base for use in the reaction may be an organic base such as \(N,N \)-diisopropylethylamine, or an inorganic base such as potassium carbonate.

Alternatively, the leaving group \(L^3 \) may be 2-methyl-3-(trifluoromethylsulfonyl)-1H-imidazol-3-ium-1-yl, in which case the reaction may conveniently be effected at ambient temperature in an organic solvent such as acetonitrile.

In a variant procedure, the compounds of formula (I) above wherein \(Y \) represents -C(O)- may be prepared by a process which comprises reacting a compound of formula (VIIA), (VIIB), (VIIC), (VIID) or (VIIE) as defined above with a compound of formula \(Z-C0_2_H \).

The reaction is conveniently effected at ambient temperature in a suitable solvent, e.g. a dipolar aprotic solvent such as \(N,N \)-dimethylformamide, typically in the presence of a coupling reagent and a base. A suitable coupling reagent for use in the reaction may be 0-(7-azabenzotriazol-1-yl)-\(N,N,N',N' \)-tetramethyluronium hexafluorophosphate (HATU). A suitable base for use in the reaction may be an organic base such as \(N,N \)-diisopropylethylamine.

In another procedure, the compounds of formula (I) above wherein \(Y \) represents -C(0)NH- may be prepared by a process which comprises reacting a compound of formula
(VIIA), (VIIB), (VIIC), (VIID), or (VIIE) as defined above with an isocyanate derivative of formula Z-N=\(\text{C}=0\), wherein Z is as defined above.

The reaction is conveniently effected at ambient temperature in a suitable solvent or mixture of solvents. Such solvent or solvents may typically be selected as appropriate from an ethereal solvent such as 1,4-dioxane or tetrahydrofuran, a chlorinated solvent such as dichloromethane, a nitrile-containing solvent such as acetonitrile, and a dipolar aprotic solvent such as \(N,N\)-dimethylformamide. The reaction may optionally be performed in the presence of a base, e.g. an organic base such as diisopropylamine, \(N,N\)-diisopropylethylamine or triethylamine.

Alternatively, the compounds of formula (I) above wherein Y represents -C(0)NH-may be prepared by a process which comprises reacting a compound of formula (VIIA), (VIIB), (VIIC), (VIID), or (VIIE) as defined above with a compound of formula Z-NH\(_2\), wherein Z is as defined above, in the presence of triphosgene or 1,1'-carbonyldimidazol.

The reaction is conveniently effected at ambient temperature in a suitable solvent, e.g. a chlorinated solvent such as dichloromethane, or a dipolar aprotic solvent such as \(N,N\)-dimethylformamide, typically in the presence of a base, e.g. an organic base such as \(N,N\)-diisopropylethylamine.

Alternatively, the compounds of formula (I) above wherein Y represents -C(0)NH-may be prepared by a two-step process which comprises: (i) reacting a compound of formula Z-NH\(_2\), wherein Z is as defined above, with phenyl chloroformate; and (ii) reacting the material thereby obtained with a compound of formula (VIIA), (VIIB), (VIIC), (VIID), or (VIIE) as defined above.

Step (i) of the above process is conveniently effected at a temperature in the region of 0°C in a suitable solvent, e.g. a cyclic ether solvent such as tetrahydrofuran, typically in the presence of pyridine. Step (ii) is conveniently effected at an elevated temperature in a suitable solvent, e.g. a sulfoxide solvent such as dimethyl sulfoxide, typically in the presence of a base, e.g. an organic base such as \(N,N\)-diisopropylethylamine.

In a further procedure, the compounds of formula (I) above wherein Y represents -S(0\(_2\))NH-may be prepared by a two-step process which comprises: (i) reacting a compound of formula (VIIA), (VIIB), (VIIC), (VIID), or (VIIE) as defined above with methyl trifluoromethanesulfonate; and (ii) reacting the material thereby obtained with a compound of formula Z-NH\(_2\), wherein Z is as defined above.
Step (i) of the above process is conveniently effected at a temperature in the region of 0°C in a suitable solvent, typically a chlorinated solvent such as dichloromethane. Step (ii) is conveniently effected at an elevated temperature in a suitable solvent, e.g. a nitrile-containing solvent such as acetonitrile.

In a further procedure, the compounds of formula (I) above wherein Y represents a covalent bond, and Z represents optionally substituted C3-7 cycloalkyl(Ci_6)alkyl, optionally substituted c3-7 heterocycloalkyl(Ci_6)alkyl, optionally substituted aryl(Ci_6)alkyl or optionally substituted heteroaryl(Ci_6)alkyl, may be prepared by a process which comprises reacting a compound of formula (VIIC), (VIIB), (VIIC), (VIID) or (VIIE) as defined above with a compound of formula Z^1-L^4 wherein Z^1 represents Ci_{6} alkyl, C3-7 cycloalkyl(Ci_6)alkyl, aryl(Ci_6)alkyl, C3-7 heterocycloalkyl(Ci_6)alkyl or heteroaryl(Ci_6)alkyl, any of which groups may be optionally substituted by one or more substituents, and L^4 represents a suitable leaving group.

The leaving group L^4 is typically a halogen atom.

The reaction is conveniently effected at ambient temperature in a suitable solvent, e.g. a dipolar aprotic solvent such as N,N-dimethylformamide, or a chlorinated solvent such as dichloromethane, typically in the presence of a base. A suitable base for use in the reaction may be an organic base such as triethylamine, or an inorganic base such as caesium carbonate.

In a variant procedure, the compounds of formula (I) above wherein Y represents a covalent bond, and Z represents optionally substituted Ci_{6} alkyl, optionally substituted C3-7 cycloalkyl(Ci_6)alkyl, optionally substituted C3-7 heterocycloalkyl(Ci_6)alkyl, optionally substituted aryl(Ci_6)alkyl or optionally substituted heteroaryl(Ci_6)alkyl, may be prepared by a two-step process which comprises: (i) reacting a compound of formula (VIIA), (VIIB), (VIIC), (VIID) or (VIIE) as defined above with a compound of formula Z^2-CHO, wherein Z^2-CH_2^- corresponds to a group of formula Z^1- as defined above; and (ii) reacting the material thereby obtained with a reducing agent.

Steps (i) and (ii) of the above process are conveniently effected at ambient temperature in a suitable solvent, e.g. a C3-7 alkanol such as methanol. Step (i) is typically performed in the presence of a base, e.g. an organic base such as triethylamine. The reducing agent for use in step (ii) may suitably be an alkali metal borohydride such as sodium borohydride.
The compounds of formula (I) above wherein Y represents a linker group of formula (Ya) as defined above may be prepared by a process which comprises reacting a compound of formula (VIIA), (VIIB), (VIIC), (VIID) or (VIIE) as defined above with a compound of formula (VIII):

\[
\text{O} \quad \text{O} \\
\text{L}^5 \quad \text{N-Z} \\
\text{R}^2
\]

(VIII)

wherein Z and R² are as defined above, and L⁵ represents a suitable leaving group.

The leaving group L⁵ is typically a C₁₋₄ alkoxy group, e.g. ethoxy.

The reaction is conveniently effected at ambient temperature in a suitable solvent, e.g. a lower alkanol such as ethanol, typically in the presence of a base, e.g. an organic base such as triethylamine.

The intermediates of formula (VIIA), (VIIB), (VIIC), (VIID) or (VIIE) above may be prepared by reacting a compound of formula (VI) as defined above with a compound of formula (IXA), (IXB), (IXC), (IXD) or (IXE):

\[
\text{A}^1 \quad \text{A}^2 \\
\text{N} \quad \text{H}
\]

(IXA)

\[
\text{R}^p \\
\text{N} \quad \text{V} \\
\text{H}
\]

(KB)

\[
\text{R}^p \\
\text{N} \quad \text{V} \\
\text{H}
\]

(IXC)

\[
\text{R}^p \\
\text{N} \quad \text{V} \\
\text{H}
\]

(IXD)

\[
\text{R}^p \\
\text{N} \quad \text{V} \\
\text{H}
\]

(IXE)
wherein V, W, A¹ and A² are as defined above, and Rᵖ represents hydrogen or an N-
protecting group; followed, as necessary, by removal of the N-protecting group Rᵖ.

The N-protecting group Rᵖ is typically tert-butoxycarbonyl (BOC).

The reaction between compound (VI) and compound (IXA), (IXB), (IXC), (IXD) or (IXE) is conveniently accomplished under conditions analogous to those described above for the reaction between compounds (V) and (VI).

Alternatively, the reaction between compound (VI) and compound (IXA), (IXB), (IXC), (IXD) or (IXE) may be accomplished at a suitable temperature (ambient or elevated) in a solvent such as acetonitrile or N,N-dimethylformamide, ideally in the presence of a coupling agent such as benzotriazol-1-ylxyloxy(dimethylamino)-phosphonium hexafluorophosphate (BOP) or (benzotriazol-1-ylxy)tripyrrolidino-phosphonium hexafluorophosphate (PyBOP), and a base, e.g. an organic base such as 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU).

Where the N-protecting group Rᵖ is BOC, subsequent removal of the BOC group may typically be accomplished by treatment with an acid, e.g. a mineral acid such as hydrochloric acid, or an organic acid such as trifluoroacetic acid. Alternatively, the BOC group may be removed by treatment with trimethylsilyl trifluoromethanesulfonate and 2,6-lutidine, typically at ambient temperature in a suitable solvent, e.g. a chlorinated solvent such as dichloromethane.

As will be appreciated, the intermediates of formula (VIIA), (VIIB), (VIIC), (VIID) and (VIIE) correspond to compounds in accordance with the present invention wherein Y represents a covalent bond and Z is hydrogen. Similarly, the intermediates of formula (IXA), (IXB), (IXC), (IXD) or (IXE) wherein Rᵖ is hydrogen correspond to intermediates of formula (V) wherein Y represents a covalent bond and Z is hydrogen. Likewise, the intermediates of formula (IXA), (IXB), (IXC), (IXD) or (IXE) wherein Rᵖ is BOC correspond to intermediates of formula (V) wherein Y represents -C(0)O- and Z is tert-butyl.

Where they are not commercially available, the starting materials of formula (IV), (V), (VI), (VII), (IXA), (IXB), (IXC), (IXD) and (IXE) may be prepared by methods analogous to those described in the accompanying Examples, or by standard methods well known from the art.
It will be understood that any compound of formula (I) initially obtained from any of the above processes may, where appropriate, subsequently be elaborated into a further compound of formula (I) by techniques known from the art. By way of example, a compound of formula (I) comprising a N-BOC moiety may be converted into the corresponding compound comprising a N-H moiety by treatment with an acid, e.g. a mineral acid such as hydrochloric acid, or an organic acid such as trifluoroacetic acid.

A compound of formula (I) comprising a -C0₂H moiety may be converted into the corresponding compound comprising a -CONH₂ moiety by treatment with ammonium chloride, typically in the presence of a coupling agent such as 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC) and an additive such as 1-hydroxybenzotriazole hydrate (HOBT), suitably in the presence of a base, e.g. an organic base such as diisopropylamine or N,N-diisopropylethylamine. Likewise, a compound of formula (I) comprising a -C0₂H moiety may be converted into the corresponding compound comprising a -CONH₂⁺R⁻ moiety by treatment with an amine of formula H-NR³R⁵, typically in the presence of a coupling agent such as EDC and an additive such as HOBT, suitably in the presence of a base, e.g. an organic base such as diisopropylamine or N,N-diisopropylethylamine.

Where a mixture of products is obtained from any of the processes described above for the preparation of compounds according to the invention, the desired product can be separated therefrom at an appropriate stage by conventional methods such as preparative HPLC; or column chromatography utilising, for example, silica and/or alumina in conjunction with an appropriate solvent system.

Where the above-described processes for the preparation of the compounds according to the invention give rise to mixtures of stereoisomers, these isomers may be separated by conventional techniques. In particular, where it is desired to obtain a particular enantiomer of a compound of formula (I) this may be produced from a corresponding mixture of enantiomers using any suitable conventional procedure for resolving enantiomers. Thus, for example, diastereomeric derivatives, e.g. salts, may be produced by reaction of a mixture of enantiomers of formula (I), e.g. a racemate, and an appropriate chiral compound, e.g. a chiral base. The diastereomers may then be separated by any convenient means, for example by crystallisation, and the desired enantiomer recovered, e.g. by treatment with an acid in the instance where the diastereomer is a salt. In another resolution process a racemate of formula (I) may be separated using chiral
HPLC. Moreover, if desired, a particular enantiomer may be obtained by using an appropriate chiral intermediate in one of the processes described above. Alternatively, a particular enantiomer may be obtained by performing an enantiomer-specific enzymatic biotransformation, e.g. an ester hydrolysis using an esterase, and then purifying only the enantiomerically pure hydrolysed acid from the unreacted ester antipode.

Chromatography, recrystallisation and other conventional separation procedures may also be used with intermediates or final products where it is desired to obtain a particular geometric isomer of the invention.

During any of the above synthetic sequences it may be necessary and/or desirable to protect sensitive or reactive groups on any of the molecules concerned. This may be achieved by means of conventional protecting groups, such as those described in Protective Groups in Organic Chemistry, ed. J.F.W. McOmie, Plenum Press, 1973; and T.W. Greene & P.G.M. Wuts, Protective Groups in Organic Synthesis, John Wiley & Sons, 3rd edition, 1999. The protecting groups may be removed at any convenient subsequent stage utilising methods known from the art.

The following Examples illustrate the preparation of compounds according to the invention.

The compounds in accordance with this invention are potent inhibitors when measured in the MLR test described below.

The Mixed Lymphocyte Reaction (MLR) Test

Human peripheral blood mononuclear cells (PBMCs) were isolated from buffy coats, obtained from healthy blood donors by Ficoll (Lymphoprep, Axis-Shield PoC AS, Oslo, Norway) density-gradient centrifugation. The cells at the Ficoll-plasma interface were washed three times and used as "Responder" cells. RPMI 1788 (ATCC, N° CCL-156) cells were treated with mitomycin C (Kyowa, Nycomed, Brussels, Belgium) and used as "Stimulator" cells. Responder cells (0.12 x 106), Stimulator cells (0.045 x 106) and compounds (in different concentrations) were cocultured for 6 days in RPMI 1640 medium (BioWhittaker, Lonza, Belgium) supplemented with 10% fetal calf serum, 100 U/ml Geneticin (Gibco, LifeTechnologies, UK). Cells were cultured in triplicate in flat-bottomed 96-well microtiter tissue culture plates (TTP, Switzerland). After 5 days, cells were pulsed with 1 Ci of methyl-3H thymidine (MP Biomedicals, USA), harvested 18 h later on glass filter paper and counted. Proliferation values were expressed as counts per
minute (cpm), and converted to % inhibition with respect to a blank MLR test (identical but without added compound). The IC$_{50}$ was determined from a graph with at least four points, each derived from the mean of 2 experiments. The IC$_{50}$ value represents the lowest concentration of test compound (expressed in µM) that resulted in a 50% inhibition of the MLR.

The compounds of the accompanying Examples were all found to generate IC$_{50}$ values in the MLR test of 10 µM or better.

EXAMPLES

Abbreviations

- THF: tetrahydrofuran
- MeOH: methanol
- EtOH: ethanol
- EtOAc: ethyl acetate
- DMF: N,N-dimethylformamide
- DMA: N,N-dimethylacetamide
- DMSO: dimethylsulfoxide
- DCM: dichloromethane
- DIPEA: N,N-diisopropylethylamine
- TFA: trifluoroacetic acid
- HOBT: 1-hydroxybenzotriazole
- CDI: 1,1'-carbonyldiimidazole
- HATU: 0-(7-azabenzotriazol-1-yl)-N,N,N',N'-tetramethyluronium hexafluorophosphate
- EDC: 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide
- TMSOTf: trimethylsilyl trifluoromethanesulfonate
- Lawesson's reagent: 2,4-bis(4-methoxyphenyl)-1,3-dithia-2,4-diphosphetane 2,4-disulfide
- h: hour
- MS: Mass Spectrometry
- M: mass
- LCMS: Liquid Chromatography Mass Spectrometry
- ES+: Electrospray Positive Ionisation
- RT: retention time

Analytical Methods

Method 1 (5 minutes)

Column: Waters X Bridge, 20 x 2.1 mm, 2.5 µm.

Column ID: E-AC-3/1 l/COL/035

Mobile Phase A: 10 mM ammonium formate in water + 0.1% ammonia

Mobile Phase B: acetonitrile + 5% solvent A + 0.1% ammonia

Injection Volume: 5.0 µL; Flow Rate: 1.00 mL/minute
Gradient Program: 5% B to 95% B in 3.0 minutes; hold until 4.00 minutes; at 4.01 minutes B cone. is 5%; hold until 5 minutes.

Method 2

5 High pH (approximately pH 9.5)
Solvent A2: 10 mM ammonium formate in water + 0.1% ammonia solution
Solvent B2: acetonitrile + 5% solvent A2 + 0.1% ammonia solution

Gradient Program:

<table>
<thead>
<tr>
<th>Time</th>
<th>A%</th>
<th>B%</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>95.0</td>
<td>5.0</td>
</tr>
<tr>
<td>4.00</td>
<td>5.0</td>
<td>95.0</td>
</tr>
<tr>
<td>5.00</td>
<td>5.0</td>
<td>95.0</td>
</tr>
<tr>
<td>5.10</td>
<td>95.0</td>
<td>5.0</td>
</tr>
</tbody>
</table>

15 Method 3

High pH (approximately pH 9.5)
Solvent A2: 10 mM ammonium formate in water + 0.1% ammonia solution
Solvent B2: acetonitrile + 5% solvent A2 + 0.1% ammonia solution

Gradient Program:

<table>
<thead>
<tr>
<th>Time</th>
<th>A%</th>
<th>B%</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>95.0</td>
<td>5.0</td>
</tr>
<tr>
<td>1.50</td>
<td>5.0</td>
<td>95.0</td>
</tr>
<tr>
<td>2.50</td>
<td>5.0</td>
<td>95.0</td>
</tr>
<tr>
<td>3.00</td>
<td>95.0</td>
<td>5.0</td>
</tr>
</tbody>
</table>

25 Method 4

Machine: Waters 2795
Column: Waters X Bridge C18, 2.1 x 20 mm, 2.5 µη

Gradient Program:

<table>
<thead>
<tr>
<th>Time</th>
<th>A%</th>
<th>B%</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>0.18</td>
<td>5</td>
<td>95</td>
</tr>
<tr>
<td>1.80</td>
<td>95</td>
<td>5</td>
</tr>
</tbody>
</table>
Mobile Phase: Eluent B-acetonitrile

Eluent B: pH 10 buffer, ammonium hydrogen carbonate

Run Time: 3.1 minutes
Flow Rate: 1 mL/minute
Temperature: 25°C
Injection Volume: 5 µL

INTERMEDIATE 1

4-[2-Amino-6-chloro-5-(formylamino)pyrimidin-4-yl]piperazine-1-carboxylic acid tert-butyl ester

To a suspension of N-(2-amino-4,6-dichloropyrimidin-5-yl)formamide (10.0 g, 48.3 mmol) in 1,4-dioxane (400 mL) were added N,N-diisopropylethylamine (12.7 mL, 72.5 mmol) and piperazine-1-carboxylic acid tert-butyl ester (9.8 g, 53.1 mmol). The mixture was stirred at 55°C for 1 h. The solvent was removed in vacuo and the residue was partitioned between DCM and water. The aqueous phase was extracted with further DCM and the combined organic fractions were washed with brine, then dried (Na₂SO₄) and evaporated in vacuo to give the title compound (17.1 g, 100%) as a white solid. LCMS (ES+) 357.4 (M+H)⁺, RT 1.08 minutes (method 3).

INTERMEDIATE 2

4-(5-Aminothiazol-5,4-dipyrimidin-7-yl)piperazine-1-carboxylic acid tert-butyl ester

To a solution of Intermediate 1 (17.1 g, 48.0 mmol) in THF (400 mL) was added Lawesson's reagent (14.57 g, 36.0 mmol). The mixture was stirred at 70°C for 1.5 h. The mixture was allowed to cool to room temperature and the resulting precipitate was filtered off, washing with EtOAc (x 3) and diethyl ether (x 3), to give the title compound (14.4 g, 89%) as a white solid. LCMS (ES+) 337.4 (M+H)⁺, RT 1.29 minutes (method 3).
INTERMEDIATE 3

7-(Piperazin-1-yDthiazolo[5,4-d]pyrimidin-5-yl)amine hydrochloride

Intermediate 2 (12.4 g, 36.8 mmol) in THF (400 mL) was taken up in 4N HCl/1,4-dioxane. The mixture was stirred at room temperature for 1 h. The solvent was removed in vacuo to give the title compound (10.8 g, quant.) as an off-white solid. LCMS (ES+) 237.0 (M+H)+, RT 0.734 minutes (method 2).

INTERMEDIATE 4

7-Chloro thiazolo[5,4-d]pyrimidin-5-amine

To a solution of N-(2-amino-4,6-dichloropyrimidin-5-yl)formamide (12 g, 57 mmol) in THF (250 mL) was added Lawesson's reagent (17.5 g, 43 mmol). The reaction mixture was stirred at 65°C for 30 minutes. The reaction mixture was then filtered, and the filtrate was concentrated. The crude yellow solid obtained was triturated using diethyl ether to afford the title compound (10 g, 93.4%) as a pale yellow solid. LCMS (ES+) 186.95 (M+H)+, RT 1.31 minutes (method 1).

INTERMEDIATE 5

tert-Butyl (3y)-4-(5-aminothiazolo[5,4-d]pyrimidin-7-yl)-3-methylpiperazine-1-carboxylate

To a solution of Intermediate 4 (5 g, 26 mmol) in 1,4-dioxane (50 mL) was added DIPEA (7 mL, 40 mmol), followed by tert-butyl (35)-3-methylpiperazine-1-carboxylate (5.9 g, 29 mmol). The reaction mixture was heated under microwave irradiation at 120°C for 45 minutes. The reaction mixture was then concentrated, and diluted with DCM. The organic layer was washed with water and 5% aqueous acetic acid solution, then concentrated. The crude material obtained was purified by column chromatography (silica: 100-200 mesh, MeOH:DCM 1%) to afford the title compound (6.5 g, 69%) as a solid. LCMS (ES+) 350.95 (M+H)+, RT 1.89 minutes (method 1).
7-[(26^-2-Methylpiperazin-1-yllthiazolo[5,4-Jlpyrimidin-5-amine hydrochloride

To a solution of Intermediate 5 (2 g, 5.7 mmol) in 1,4-dioxane (5 mL) was added 4N
HC1 in 1,4-dioxane (20 mL) and the reaction mixture was stirred at room temperature for 12 h. The reaction mixture was then concentrated, and the crude material obtained was triturated with diethyl ether, to afford the title compound (1.2 g, 85%). LCMS (ES+) 250.95 (M+H)^+, RT 0.53 minutes (method 1).

TINTERMEDTATE 7

tert-Butyl (3y)-4-(5-aminothiazolo[5,4-á]pyrimidin-7-yl)-3-ethylpiperazine-1-carboxylate

Intermediate 4 (2.33 mmol) and tert-butyl (35)-3-ethylpiperazine-1-carboxylate (0.5 g, 2.33 mmol) in DMF (10 mL) were heated at 80°C with DIPEA (3.5 mmol) for 6 h. After cooling, the reaction mixture was stirred at room temperature for 2 days, then concentrated in vacuo. The residue was partitioned between EtOAc and brine, then the organic layers were dried over sodium sulfate and concentrated in vacuo. The resulting crude material was purified by column chromatography (silica gel: 100-200 mesh, 100% EtOAc) to give the title compound (200 mg, 23.5%) as a white foam. LCMS (ES+) 365(M+H)^+, RT 1.02 minutes (method 3).

TINTERMEDTATE 8

7-[(2y)-2-Isopropylpiperazin-1-yllthiazolo[5,4-á]pyrimidin-5-amine hydrochloride

Intermediate 4 (2.2 mmol) and tert-butyl (35)-3-isopropylpiperazine-1-carboxylate (0.5 g, 2.2 mmol) in DMF (10 mL) and DIPEA (0.34 g, 2.63 mmol) were heated at 110°C for 6 h. The reaction mixture was allowed to cool, then stirred overnight at room temperature. The reaction mixture was concentrated in vacuo, then partitioned between EtOAc and water. The organic layers were dried over sodium sulfate and concentrated in vacuo, then the crude material was purified by column chromatography (silica gel: 100-200 mesh, isohexanes:EtOAc, gradient 50% to 100% EtOAc) to give an off-white foam. This was taken up in 4N HC1 in 1,4-dioxane (5 mL) and methanol (1 mL), and stirred for
The reaction mixture was concentrated \textit{in vacuo} and triturated with diethyl ether to give the \textit{title compound} (0.08 g, 12\%). LCMS (ES+) 279 (M+H)+, RT 0.91 minutes (method 3).

TINTERMEDTATE 9

\textit{t}ert-Butyl (3\textit{y})-4-(5-aminothiazolo[5,4-\textit{g}1pyrimidin-7-yl]-3-cyclopropylpiperazine-1-carboxylate

Intermediate 4 (2 mmol), \textit{t}ert-butyl (35)-3-cyclopropylpiperazine-1-carboxylate (0.5 g, 2 mmol) and DIPEA (4 mmol) in DMF (10 mL) were heated at 90°C for 6 h. The reaction mixture was cooled and stirred at room temperature for 2 days, then reheated at 90°C for a further 6 h. The reaction was allowed to cool again, stirred at room temperature for 3 days, then concentrated \textit{in vacuo} and partitioned between EtOAc and water. The organic layers were dried over sodium sulphate, concentrated \textit{in vacuo} onto silica, then purified by column chromatography (silica gel: 100-200 mesh, isohexanes:EtOAc, gradient 50\% to 100\%, EtOAc), to give the \textit{title compound} (0.18 g, 30\%) as a gum. LCMS (ES+) 377 (M+H)+, RT 1.074 minutes (method 3).

TINTERMEDTATE 10

\textit{t}ert-Butyl (3\textit{y})-4-(5-aminothiazolo[5,4-\textit{g}1pyrimidin-7-yl]-3-isobutylpiperazine-1-carboxylate

Intermediate 4 (2.06 mmol) and \textit{t}ert-h\textit{v}Xy\textbackslash (35)-3-isobutylpiperazine-1-carboxylate (0.5 g, 2.06 mmol) in DMF (10 mL) and DIPEA (3.09 mmol) were heated at 90°C for 8 h, then allowed to cool. The reaction mixture was partitioned between EtOAc and brine. The organic layers were dried over sodium sulfate and concentrated onto silica, then purified by column chromatography (silica gel: 100-200 mesh, isohexanes:EtOAc, gradient 50\% to 100\% EtOAc), to give the \textit{title compound} (0.24 g, 29.6\%) as a pale yellow foam. LCMS (ES+) 393 (M+H)+, RT 1.16 minutes (method 3).
2-[1-(5-Aminothiazolo[5,4-J]pyrimidin-7-yl)piperazin-2-yllethanol trifluoracetate salt

To a solution of Intermediate 4 (0.38 g, 2.06 mmol) in DMF (20 mL) were added tert-butyl 3-(2-hydroxyethyl)piperazine-1-carboxylate (1 g, 4.12 mmol) and DIPEA (0.4 g, 3.0 mmol). The reaction mixture was heated at 100°C for 5 h, allowed to cool, then stirred at room temperature for 2 days. The reaction mixture was concentrated in vacuo, then partitioned between water and DCM. The organic phase was separated and concentrated in vacuo. The resulting crude material was purified by column chromatography (silica gel: 100-200 mesh, MeOH:DCM gradient 0% to 20%) to give a pale yellow foam. The foam was dissolved in DCM (1 mL) and TFA (2 mL) and stirred for 1 h. The reaction mixture was concentrated in vacuo, then triturated with diethyl ether, to give the title compound (0.6 g) as a sticky yellow solid. LCMS (ES+) 281 (M+H)^+, RT 0.361 minutes (method 3).

INTERMEDIATE 12

di-tert-butyl dicarbonate (1.0 g, 4.54 mmol) was added to a mixture of diataspire[3.5]nonane dihydrochloride (1.0 g, 5.0 mmol) and DIPEA (2.2 mL, 13.0 mmol) in DCM (20 mL), and the reaction mixture was stirred for 20 h. The reaction mixture was concentrated in vacuo, and the residue was purified by column chromatography on silica gel, with a gradient of 2% increasing to 10% [10% (25% NH₄OH in water) in MeOH] in DCM over 20 column volumes, to give a mixture of the title compound and DIPEA (2.50 g) as an orange oil. The resulting material was utilised without further purification. LCMS (ES+) 171.0 (M+H)^+, RT 1.69 minutes (method 3).
INTERMEDIATE 13

Tert-Butyl 9-(2-amino-6-chloro-5-formamidopyrimidin-4-yl)-6,9-diazaspiro[3.51-nonane-6-carboxylate

A mixture of *Intermediate 12* (1.13 g, 5.02 mmol) and *N-(2-amino-4,6-dichloropyrimidin-5-yl)formamide* (1.04 g, 5.02 mmol) in 1,4-dioxane (40 mL) was treated with DIPEA (1.30 mL, 7.53 mmol) and heated at 100°C for 7 days, then cooled to room temperature and concentrated *in vacuo*. The residue was dissolved in DCM (20 mL), washed with water (20 mL) and brine (20 mL), then dried over MgSC⁺ and concentrated *in vacuo*. The residue was purified by column chromatography on silica gel, with a gradient of 20% increasing to 70% EtOAc in isohexane over 20 column volumes, to give the *title compound* (0.44 g, 22%) as an off-white solid. LCMS (ES+) 397.2 (M+H)⁺, RT 1.24 minutes (method 3).

INTERMEDIATE 14

Tert-Butyl 9-(5-aminothiazolo[5,4-ßpyrimidin-7-yl]-6,9-diazaspiro[3.5]nonane-6-carboxylate

Intermediate 13 (0.44 g, 1.11 mmol) was dissolved in THF (20 mL) and treated with Lawesson's reagent. The reaction mixture was heated to 70°C and stirred for 3 h, then cooled to room temperature and concentrated *in vacuo*. The residue was dissolved in DCM (20 mL) and washed with brine (2 x 20 mL), then passed through a phase separator cartridge and evaporated. The residue was purified by column chromatography on silica gel, with a gradient of 20% increasing to 70% EtOAc in isohexane over 20 column volumes, to give the *title compound* (0.44 g, >99%) as a yellow oil. LCMS (ES+) 377.4 (M+H)⁺, RT 1.44 minutes (method 3).

INTERMEDIATE 15

7-(6,9-Diazaspiro[3.5]nonan-9-yl)thiazolo[5,4-ßpyrimidin-5-amine hydrochloride

Intermediate 14 (0.41 g, 1.11 mmol) was dissolved/suspended in 4M HCl in 1,4-dioxane (10 mL) and stirred for 2 h, then concentrated *in vacuo*. The *title compound*
(0.47 g, >99%) was obtained as a cream-coloured powder, and this material was utilised without purification. LCMS (ES+) 277.4 (M+H)+, RT 1.01 minutes (method 3).

TINTERMEDTATE! 6

fer-t-Butyl (3i?,561-4-(2-amino-6-chloro-5-fornidopyrimidin-4-yI)-3,5-dimethyl-
piperazine-1-carboxylate

Prepared from tert-butyl (3i?,5S)-3,5-dimethylpiperazine-1-carboxylate (1.10 g, 5.13 mmol) following the method used to prepare Intermediate 13. LCMS (ES+) 385.8 (M+H)+, RT 1.64 minutes (method 3).

TINTERMEDTATE! 1

fer-t-Butyl (3i?,5S)-4-(5-aminothiazolo[5,4-d]pyrimidin-7-yl)-3,5-dimethylpiperazine-1-
carboxylate

Prepared from Intermediate 16 following the method used to prepare Intermediate 14. LCMS (ES+) 365.8 (M+H)+, RT 2.24 minutes (method 3).

TINTERMEDTATE! 8

7-[(2i?,65)-2,6-Dimethylpiperazin-1-yl]thiazolo[5,4-â]pyrimidin-5-amine hydrochloride

Prepared from Intermediate 17 following the method used to prepare Intermediate 15. LCMS (ES+) 265.2 (M+H)+, RT 0.53 minutes (method 3).

TINTERMEDTATE! 9

7-[(2i?)]-2-Methylpiperazin-1-yl]thiazolo[5,4-â]pyrimidin-5-amine trifluoroacetate salt

To a solution of Intermediate 4 (0.5 g, 2.68 mmol) in 1,4-dioxane (10 mL) were added tert-butyl (3i?)-3-methylpiperazine-1-carboxylate (2.14 mmol) and DIPEA (0.86 mL). The reaction mixture was heated at 100°C for 8 h, after which time the reaction was filtered hot and the solid discarded. The filtrate was concentrated in vacuo, and partitioned between DCM and water. The organic layers were dried and further concentrated in
The residue was purified by column chromatography on silica gel, with a gradient of 20% increasing to 100% EtOAc in isohexane, to yield a foam. The material was taken up in DCM (2 mL) and TFA (2 mL), then stirred at room temperature overnight. The reaction mixture was concentrated in vacuo, then tritivated with diethyl ether, to yield the title compound (470 mg, 52%). LCMS (ES+) 251.2 (M+H)+, RT 0.58 minutes (method 3).

INTERMEDIATE 20

3-(Cyclopropylamino)-4-ethoxycyclobut-3-ene-1,2-dione

To a solution of 3,4-diethoxycyclobut-3-ene-1,2-dione (0.596 g, 3.5 mmol) in EtOH (5 mL) was added cyclopropylamine (0.2 g, 3.5 mmol), followed by triethylamine (0.49 mL, 3.5 mmol). The reaction mixture was stirred at room temperature for 30 minutes. The title compound (0.13 g, 20%) formed as a white precipitate that was collected by filtration and washed with diethyl ether. LCMS (ES+) 182 (M+H)+, RT 1.42 minutes (method 1).

INTERMEDIATE 21

3-Anilino-4-ethoxycyclobut-3-ene-1,2-dione

Prepared from aniline following the method used to prepare Intermediate 20. LCMS (ES+) 218 (M+H)+, RT 2.01 minutes (method 1).

INTERMEDIATE 22

5-Methoxypyrazin-2-amine

To a solution of 5-chloropyrazin-2-amine (0.2 g, 1.54 mmol) in MeOH (3 mL) was added Cu powder (0.13 g, 2.07 mmol), followed by a solution of sodium methoxide in MeOH (0.38 mL, 1.75 mmol). The reaction mixture was stirred at 150°C in a sealed tube for 24 h. The reaction mixture was then filtered through Celite, and the filtrate was concentrated in vacuo. The crude product obtained was purified by column chromatography (silica: 100-200 mesh, MeOH:DCM 2-3%) to afford the title compound (0.13 g, 67%). LCMS (ES+) 126 (M+H)+, RT 1.06 minutes (method 1).
5-Methoxy-3-methylpyrazin-2-amine
Prepared from 5-chloro-3-methylpyrazin-2-amine following the method used to prepare Intermediate 22. LCMS (ES+) 140 (M+H)+, RT 1.25 minutes (method 1).

2-Methoxy-4-methylpyrimidin-5-amine
Prepared from 2-chloro-4-methylpyrimidin-5-amine following the method used to prepare Intermediate 22. LCMS (ES+) 140 (M+H)+, RT 1.25 minutes (method 1).

2-Methoxypyrimidin-5-amine
Prepared from 2-chloropyrimidin-5-amine following the method used to prepare Intermediate 22. LCMS (ES+) 125.95 (M+H)+, RT 0.748 minutes (method 1).

6-Methoxypyridazin-3-amine
Prepared from 6-chloropyridazin-3-amine following the method used to prepare Intermediate 22. LCMS (ES+) 126 (M+H)+, RT 0.735 minutes (method 1).

(3-Methyl-4-nitrophenyl)(pyrrolidin-1-yl)methanone
To a solution of 3-methyl-4-nitrobenzoic acid (0.5 g, 2.76 mmol) in DMF (4 mL) was added DIPEA (0.9 mL, 5.79 mmol), followed by HOBT (0.39 g, 2.89 mmol), EDC (0.44 g, 2.89 mmol) and pyrrolidine (0.196 g, 2.76 mmol). The reaction mixture was stirred at room temperature for 12 h. The reaction mixture was then diluted with water and extracted with EtOAc. The organic layer was washed with brine, then concentrated
to provide crude material which was further purified by column chromatography (silica: 100-200 mesh, MeOH:DCM 8-10%), to afford the *title compound* (0.31 g, 48.1%). LCMS (ES+) 235.05 (M+H)+, RT 2.04 minutes (method 1).

TINTERMEDTATE 28

(3-Methyl-4-nitrophenyl)(4-methylpiperazin-1-yl)methanone

Prepared from 3-methyl-4-nitrobenzoic acid and 1-methylpiperazine following the method used to prepare *Intermediate 27*. \(\delta_H \text{(DMSO-d}_6\text{)} 8.03 \text{ (d, } J 8.3 \text{ Hz, } 1\text{H)}, 7.52 \text{ (d, } J 1.9 \text{ Hz, } 1\text{H)}, 7.44 \text{ (dd, } J 8.4, 1.9 \text{ Hz, } 1\text{H)}, 3.66 \text{ (m, } 2\text{H)}, 3.26 \text{ (s, } 2\text{H)}, 2.53 \text{ (s, } 3\text{H)}, 2.37 \text{ (s, } 2\text{H)}, 2.25 \text{ (s, } 2\text{H)}, 2.19 \text{ (s, } 3\text{H}).

TINTERMEDTATE 29

N,N,3-Trimethyl-4-nitrobenzamide

To a solution of 3-methyl-4-nitrobenzoic acid (0.5 g, 2.76 mmol) in DMF (5 mL) was added DIPEA (1.06 g, 8.28 mmol), followed by HATU (1.57 g, 4.14 mmol) and dimethylamine (0.24 g, 5.52 mmol). The reaction mixture was stirred at room temperature for 12 h. The reaction mixture was then diluted with water and extracted with EtOAc. The organic layer was washed with brine, then concentrated to provide crude material which was further purified by column chromatography (silica: 100-200 mesh, MeOH:DCM 8-10%), to afford the *title compound* (0.42 g, 73.17%). LCMS (ES+) 209 (M+H)+, RT 1.92 minutes (method 3).

TINTERMEDTATE 30

(3-Methyl-4-nitrophenyl)(morpholin-4-yl)methanone

Prepared from 3-methyl-4-nitrobenzoic acid and morpholine following the method used to prepare *Intermediate 29*. \(\delta_H \text{(DMSO-d}_6\text{)} 8.03 \text{ (d, } J 8.3 \text{ Hz, } 1\text{H)}, 7.60-7.52 \text{ (m, } 1\text{H)}, 7.47 \text{ (dd, } J 8.4, 1.9 \text{ Hz, } 1\text{H)}, 3.50-3.70 \text{ (m, } 6\text{H)}, 3.28 \text{ (m, } 2\text{H)}, 2.53 \text{ (s, } 3\text{H}).
1-[(3-Methyl-4-nitrophenyl)methyl]piperazine

To a solution of Intermediate 27 (0.3 g, 1.28 mmol) in THF (10 mL) was added borane dimethyl sulphide complex (2M solution in THF, 3.8 mL) at room temperature. The reaction mixture was heated at reflux for 15 minutes. To the reaction mixture was added 6M HCl dropwise and the reaction mixture was heated under reflux for a further 2 h. The reaction mixture was then cooled to room temperature and 4N NaOH solution was added. The reaction mixture was extracted with EtOAc and the organic layer was concentrated, to provide crude material which was further purified by column chromatography (silica: 100-200 mesh, MeOH:DCM 5-7%), to afford the title compound (0.25 g, 88.6%). LCMS (ES+) 221 (M+H)+, RT 2.83 minutes (method 1).

N,N-Dimethyl- 1-(3-methyl-4-nitrophenyl) methanamine

Prepared from Intermediate 29 following the method used to prepare Intermediate 31. LCMS (ES+) 195 (M+H)+, RT 2.75 minutes (method 1).

4-[(3-Methyl-4-nitrophenyl)methyl]morpholine

Prepared from Intermediate 30 following the method used to prepare Intermediate 31. LCMS (ES+) 237 (M+H)+, RT 2.39 minutes (method 1).
2-Methyl-4-(pyrrolidin-1-ylmethyl)aniline

To a solution of Intermediate 31 (0.25 g, 1.13 mmol) in MeOH (5 mL) was added Pd/C (0.04 g). The reaction mixture was stirred under a hydrogen atmosphere for 4 h at room temperature. The reaction mixture was then filtered through Celite and the organic layer was concentrated, to provide the title compound (0.2 g, 93.0%). LCMS (ES+) 191 (M+H)^+, RT 2.09 minutes (method 1).

2-Methyl-4-[(4-methylpiperazin-1-yl)methyl]aniline

Prepared from Intermediate 32 following the method used to prepare Intermediate 35. LCMS (ES+) 220.05 (M+H)^+, RT 1.21 minutes (method 1).

4-(Dimethylaminomethyl)-2-methylaniline

Prepared from Intermediate 33 following the method used to prepare Intermediate 35. LCMS (ES+) 165.10 (M+H)^+, RT 2.15 minutes (method 1).

2-Methyl-4-(morpholin-4-ylmethyl)aniline

Prepared from Intermediate 34 following the method used to prepare Intermediate 35. LCMS (ES+) 207.05 (M+H)^+, RT 1.23 minutes (method 1).

6-Methyl-5-nitropyridine-2-carbaldehyde

A solution of 2,6-dimethyl-3-nitropyridine (1.5 g, 9.85 mmol) and SeO_2 (1.4 g, 12.81 mmol) in 1,4-dioxane (15 mL) was heated at reflux for 16 h. The reaction mixture was then filtered through Celite and the solvent was evaporated. The crude material
obtained was purified by column chromatography (silica: 100-200 mesh, EtOAc:hexane 20-25%) to afford the *title compound* (0.61 g, 37.4%). \(\delta_H (\text{CDCl}_3) \) 10.09 (s, 1H), 8.39 (d, \(J = 8.3 \) Hz, 1H), 7.97 (d, \(J = 8.3 \) Hz, 1H), 2.94 (s, 3H).

TINTERMEDIATE40

2-Methyl-3-nitro-6-(pyrrolidin-1-ylmethyl)pyridine

To a solution of *Intermediate 39* (0.35 g, 2.1 mmol) in 1,2-dichloroethane (5 mL) were added pyrrolidine (0.2 g, 3.1 mmol) and a catalytic amount of glacial acetic acid. The reaction mixture was stirred for 30 minutes at room temperature. The reaction mixture was then cooled to 0°C, sodium cyanoborohydride (0.15 g, 2.5 mmol) was added, and the reaction mixture was stirred for a further 1 h. The reaction mixture was then quenched with water and the aqueous layer was extracted with DCM. The organic layer was concentrated and the crude material obtained was purified by column chromatography (silica: 100-200 mesh, MeOH:DCM 4-5%), to afford the *title compound* (0.16 g, 34.4%). LCMS (ES+) 222.05 (M+H)\(^+\), RT 2.33 minutes (method 1).

TINTERMEDIATE41

1-Methyl-4-[(6-methyl-5-nitropyridin-2-yl)methyl]piperazine

Prepared from *Intermediate 39* and 1-methylpiperazine following the method used to prepare *Intermediate 40*. LCMS (ES+) 251.10 (M+H)\(^+\), RT 1.69 minutes (method 1).

TINTERMEDIATE42

4-[(6-Methyl-5-nitropyridin-2-yl)methyl]morpholine

Prepared from *Intermediate 39* and morpholine following the method used to prepare *Intermediate 40*. LCMS (ES+) 238.05 (M+H)\(^+\), RT 1.79 minutes (method 1).
2-Methyl-6-(pyrrolidin-l-ylmethyl)pyridin-3-amine

To a solution of Intermediate 40 (0.15 g, 0.67 mmol) in MeOH (5 mL) was added Pd/C (0.02 g). The reaction mixture was stirred under a hydrogen atmosphere for 6 h at room temperature. The reaction mixture was filtered through Celite and the organic layer was concentrated to obtain the title compound (0.1 g, 77.5%). LCMS (ES+) 192.1 (M+H)+, RT 1.24 minutes (method 1).

2-Methyl-6-[(4-methylpiperazin-l-yl)methyllpyridin-3-amine

Prepared from Intermediate 41 following the method used to prepare Intermediate 43. LCMS (ES+) 221.1 (M+H)+, RT 0.78 minutes (method 1).

2-Methyl-6-(morpholin-4-ylmethyl)pyridin-3-amine

Prepared from Intermediate 42 following the method used to prepare Intermediate 43. LCMS (ES+) 208.05 (M+H)+, RT 0.66 minutes (method 1).

N,N,6-Trimethyl-5-nitropyridin-2-amine

To a solution of 6-chloro-2-methyl-3-nitropyridine (0.5 g, 2.9 mmol) in MeOH (5 mL) was added dimethylamine in water (1.2 mL, 11.6 mmol) and the reaction mixture was heated at 60°C for 4 h. The reaction mixture was then diluted with EtOAc, extracted with water and washed with brine. The organic layer was dried over sodium sulphate and concentrated to yield the title compound (0.5 g, 95%). LCMS (ES+) 182 (M+H)+, RT 2.74 minutes (method 1).
6-(Azetidin-1-yl)-2-methyl-3-nitropyridine
Prepared from 6-chloro-2-methyl-3-nitropyridine and azetidine following the method used to prepare Intermediate 46. LCMS (ES+) 194 (M+H)+, RT 2.55 minutes (method 1).

2-Methyl-3-nitro-6-(pyrrolidin-1-yl)pyridine
To a solution of 6-chloro-2-methyl-3-nitropyridine (0.5 g, 2.9 mmol) in pyrrolidine (0.7 mL, 8.7 mmol) was added K₂CO₃ (0.8 g, 5.8 mmol). The reaction mixture was heated at 110°C for 2 h. Water (2 mL) was then added and the title compound (0.6 g, 99%) was collected by filtration. LCMS (ES+) 208 (M+H)+, RT 3.019 minutes (method 1).

6-(3-Fluoroazetidin-1-yl)-2-methyl-3-nitropyridine
To a solution of 6-chloro-2-methyl-3-nitropyridine (0.5 g, 2.9 mmol) in DMF (5 mL) was added Cs₂CO₃ (1.9 g, 5.8 mmol) followed 3-fluoroazetidine (0.64 g, 5.8 mmol) and the reaction mixture was heated for 2 h at 80°C. The reaction mixture was then diluted with EtOAc and the organic layer was washed with saturated aqueous sodium bicarbonate solution. The organic layer was then dried over sodium sulphate and concentrated. The crude material obtained was purified by column chromatography (silica: 100-200 mesh, MeOFLDCM 2-3%) to afford the title compound (0.6 g, 92%). LCMS (ES+) 211.95 (M+H)+, RT 2.33 minutes (method 1).
6-(3,3-Difluoroazetidin-1-yl)-2-methyl-3-nitropyridine

Prepared from 6-chloro-2-methyl-3-nitropyridine and 3,3-difluoroazetidine following the method used to prepare Intermediate 49. LCMS (ES+) 230 (M+H)+, RT 2.57 minutes (method 1).

6-(3,3-Difluoropyrrolidin-1-yl)-2-methyl-3-nitropyridine

To a solution of 6-chloro-2-methyl-3-nitropyridine (0.3 g, 1.74 mmol) in DMF (2 mL) was added K₂CO₃ (0.72 g, 5.23 mmol) followed by 3,3-difluoropyrrolidine hydrochloride (0.74 g, 5.23 mmol) and the reaction mixture was heated for 4 h at 80°C. The reaction mixture was then diluted with ethyl acetate and the organic layer was washed with saturated aqueous sodium bicarbonate solution. The organic layer was then dried over sodium sulphate and concentrated. The crude material obtained was purified by column chromatography (silica: 100-200 mesh, MeOH:DCM 2-3%) to afford the title compound (0.2 g, 47%). LCMS (ES+) 244.05 (M+H)+, RT 3.028 minutes (method 1).

6-(3,3-Difluoropiperidin-1-yl)-2-methyl-3-nitropyridine

Prepared from 6-chloro-2-methyl-3-nitropyridine and 3,3-difluoropiperidine following the method used to prepare Intermediate 51. LCMS (ES+) 258.05 (M+H)+, RT 3.069 minutes (method 1).

The title compound was prepared from 6-chloro-2-methyl-3-nitropyridine and 3-fluoropyrrolidine following the method used to prepare Intermediate 51. LCMS (ES+) 226 (M+H)+, RT 2.847 minutes (method 1).
TNTERMEDTATE 54

3-Fluoro-l-(3-methyl-4-nitrophenyl)pyrrolidine

Prepared from 4-chloro-2-methyl-l-nitrobenzene and 3-fluoropyrrolidine following the method used to prepare Intermediate 49. LCMS (ES+) 224.90 (M+H)+, RT 2.90 minutes (method 1).

TNTERMEDTATE 55

$N_2,N_2,6$-Trimethylpyridine-2,5-diamine

To a stirred solution of Intermediate 46 (0.5 g, 2.8 mmol) in MeOH (10 mL) was added Pd/C (0.05 g) and reaction mixture was stirred under a hydrogen atmosphere for 4 h. The reaction mixture was then filtered through Celite and concentrated to yield the title compound (0.38 g, 91%). LCMS (ES+) 152 (M+H)+, RT 1.338 minutes (method 1).

TNTERMEDTATE 56

6-(Azetidin-1-yl)-2-methylpyridin-3-amine

Prepared from Intermediate 47 following the method used to prepare Intermediate 55. LCMS (ES+) 164 (M+H)+, RT 1.026 minutes (method 1).

TNTERMEDTATE 57

2-Methyl-6-(pyrroldin-1-yl)pyridin-3-amine

Prepared from Intermediate 48 following the method used to prepare Intermediate 55. LCMS (ES+) 178 (M+H)+, RT 1.7 minutes (method 1).

TNTERMEDTATE 58

6-(3-Fluoroazetidin-1-yl)-2-methylpyridin-3-amine

Prepared from Intermediate 49 following the method used to prepare Intermediate 55. LCMS (ES+) 182.05 (M+H)+, RT 1.09 minutes (method 1).
6-(3,3-Difluoroazetidin-1-yl)-2-methylpyridin-3-amine
Prepared from Intermediate 50 following the method used to prepare Intermediate 55. LCMS (ES+) 200 (M+H)^+, RT 1.55 minutes (method 1).

6-(3,3-Difluoropyrrolidin-1-yl)-2-methylpyridin-3-amine
Prepared from Intermediate 51 following the method used to prepare Intermediate 55. LCMS (ES+) 214 (M+H)^+, RT 2.07 minutes (method 1).

6-(3,3-Difluoropiperidin-1-yl)-2-methylpyridin-3-amine
Prepared from Intermediate 52 following the method used to prepare Intermediate 55. LCMS (ES+) 228.05 (M+H)^+, RT 2.19 minutes (method 1).

6-(3-Fluoropyrrolidin-1-yl)-2-methylpyridin-3-amine
Prepared from Intermediate 53 following the method used to prepare Intermediate 55. LCMS (ES+) 196 (M+H)^+, RT 1.799 minutes (method 1).

4-(3-Fluoropyrrolidin-1-yl)-2-methylaniline
Prepared from Intermediate 54 following the method used to prepare Intermediate 55. LCMS (ES+) 195.05 (M+H)^+, RT 2.28 minutes (method 1).
TINTERMEDIATE 64

6-(Difluoromethoxy)-2-methyl-3-nitropyridine

To a solution of 6-methyl-5-nitropyridin-2-ol (0.5 g, 3.2 mmol) in acetonitrile (10 mL) was added NaH (0.35 g, 8.64 mmol) and the reaction mixture was stirred for 15 minutes at room temperature. To the reaction mixture was added 2,2-difluoro-2-(fluorosulfonyl)acetic acid (1.1 mL, 5.5 mmol) dropwise. The reaction mixture was stirred for a further 15 minutes. The reaction mixture was then quenched by the addition of water, and diluted with EtOAc. The organic layer was washed with water and brine, dried over sodium sulphate and concentrated. The crude material obtained was purified by column chromatography (silica: 100-200 mesh, MeOH:DCM 2-4%) to afford the title compound (0.5 g, 75%) as a white solid. LCMS (ES-) 202.85 (M-H)^-, RT 2.75 minutes (method 1).

TINTERMEDIATE 65

6-(Difluoromethoxy)-2-methylpyridin-3-amine

Prepared from Intermediate 64 following the method used to prepare Intermediate 55. δH (CDCl3) 7.32-7.18 (t, J 74.2 Hz, 1H), 7.00 (d, J 8.4 Hz, 1H), 6.61 (d, J 8.4 Hz, 1H), 3.45 (br s, 2H), 2.32 (s, 3H).

TINTERMEDIATE 66

Tetrahydrofuran-3-y1methane sulfonate

To a solution of 3-tetrahydrofuranol (1 g, 6.5 mmol) in DCM (10 mL) was added triethylamine (1.9 mL, 13.6 mmol). The reaction mixture was stirred for 15 minutes at room temperature. To the reaction mixture was added methanesulfonyl chloride (1.08 mL, 13.6 mmol) at 0°C. The reaction mixture was stirred for a further 18 h. The reaction mixture was then quenched by addition of water, and diluted with EtOAc. The organic layer was washed with water and brine, dried over sodium sulphate and concentrated to yield the title compound (1.9 g, 88%). δH (CDCl3) 5.32 (m, 1H), 4.10-3.80 (m, 4H), 3.70 (s, 3H), 2.30-2.20 (m, 2H).
INTERMEDIATE 67

2-Methyl-3-nitro-6-(tetrahydrofuran-3-yloxy)pyridine

To a solution of 6-methyl-5-nitropyridin-2-ol (1 g, 6.5 mmol) in DMA (5 mL) was added Cs₂CO₃ (4 g, 13.1 mmol) and the reaction mixture was stirred for 10 minutes. To the reaction mixture was added Intermediate 66 (1.2 g, 7.2 mmol) and the reaction mixture was heated at 90°C for a further 18 h. The reaction mixture was then filtered through Celite using ethyl acetate. The organic layer was washed with water and brine, dried over sodium sulphate and concentrated. The crude material obtained was purified by column chromatography (silica: 100-200 mesh, MeOH:DCM 2-4%) to afford the **title compound** (1.2 g, 82%) as a yellow solid. δH (CDCl₃) 5.32 (m, 1H), 4.10-3.80 (m, 4H), 3.70 (s, 3H), 2.30-2.20 (m, 2H).

INTERMEDIATE 68

2-Methyl-6-(tetrahydrofuran-3-yloxy)pyridin-3-amine

Prepared from Intermediate 67 following the method used to prepare Intermediate 55. LCMS (ES+) 194.10 (M+H)⁺, RT 1.24 minutes (method 1).

INTERMEDIATE 69

6-Methoxy-3-nitro-2-(trifluoromethyl)pyridine

To a solution of 2-chloro-6-methoxy-3-nitropyridine (0.6 g, 3.2 mmol) in DMF (1.2 mL) were added CuI (0.73 g, 3.8 mmol) and KF (0.37 g, 6.4 mmol), followed by methyl chlorodifluoroacetate (1.15 g, 7.97 mmol). The reaction mixture was heated for 13 h at 120°C. The reaction mixture was then cooled to room temperature and poured onto a mixture of NH₄OH and saturated aqueous NH₄Cl solution (1:1). The resulting solution was stirred for 1.5 h at room temperature. The organic layer was washed with water and brine, dried over sodium sulphate and concentrated. The crude material obtained was purified by column chromatography (silica: 100-200 mesh, DCM:hexane 3-4%) to afford the **title compound** (0.5 g, 71%) as a colourless oil. δH (CDCl₃) 8.17 (d, J 8.9 Hz, 1H), 7.03 (d, J 8.9 Hz, 1H), 4.09 (s, 3H).
6-Methyl-3-nitro-2-(trifluoromethyl)pyridine

Prepared from 2-chloro-6-methyl-3-nitropyridine following the method used to prepare Intermediate 69. δ\textsubscript{H} (CDCl\textsubscript{3}) 8.11 (d, J 8.3 Hz, IH), 7.53 (d, J 8.3 Hz, IH), 2.74 (s, 3H).

6-Methoxy-2-(trifluoromethyl)pyridin-3-amine

Prepared from Intermediate 69 following the method used to prepare Intermediate 55. LCMS (ES+) 193 (M+H)+, RT 2.37 minutes (method 1).

6-Methyl-2-(trifluoromethyl)pyridin-3-amine

Prepared from Intermediate 70 following the method used to prepare Intermediate 55. LCMS (ES+) 177 (M+H)+, RT 1.47 minutes (method 1).

N,N,6-Trimethyl-3-nitropyridin-2-amine

Prepared from 2-chloro-6-methyl-3-nitropyridine following the method used to prepare Intermediate 46. LCMS (ES+) 182 (M+H)+, RT 2.83 minutes (method 1).

N2,N2,6-Trimethylpyridin-2,3-diamine

Prepared from Intermediate 73 following the method used to prepare Intermediate 55. LCMS (ES+) 152 (M+H)+, RT 1.63 minutes (method 1).
TINTERMEDIATE 75

tert-Butyl 4-((5-aminothiazolo[5,4-c]pyrimidin-7-yl)-3-(2-methoxy-2-oxoethyl)-piperazine-1-carboxylate

DIPEA (1.35 mL, 7.78 mmol) was added to a solution of Intermediate 4 (0.97 g, 5.18 mmol) and 4-((tert-butoxycarbonyl)piperazin-2-yl)acetic acid methyl ester (1.34 g, 5.18 mmol) in 1,4-dioxane (40 mL). The reaction mixture was heated at 100°C for 4 days, then cooled to room temperature and concentrated in vacuo. The residue was partitioned between DCM (20 mL) and water (20 mL), then separated. The organic phase was washed with brine (20 mL), then dried over MgSO₄ and evaporated. The residue was purified by column chromatography on silica gel, with a gradient of 20% increasing to 70% EtOAc in isohexane over 20 column volumes, to give the title compound (0.91 g, 43%) as a yellow oil. LCMS (ES+) 409.4 (M+H)+, RT 0.32 minutes (method 3).

TINTERMEDIATE 76

2-[1-(5-Amino thiazolo [5,4-c]pyrimidin-7-yl)piperazin-2-yl]acetic acid hydrochloride and Methyl 2-[1-(5-aminothiazolo[5,4-c]pyrimidin-7-yl)piperazin-2-yl]acetate hydrochloride

Intermediate 75 (0.91 g, 2.23 mmol) was dissolved/suspended in 4M HCl in 1,4-dioxane (20 mL) and stirred for 6 h, then concentrated in vacuo. A mixture of the two title compounds (0.81 g) was obtained as a brown foaming gum, which was utilised without further purification. LCMS (ES+) 295.2 (M+H)+, RT 0.23 minutes; and 309.2 (M+H)+, RT 0.90 minutes (method 3).

TINTERMEDIATE 77

tert-Butyl (3S)-4-(5-amino thiazolo [5,4-c]pyrimidin-7-yl)-3-(hydro xymethyl)-piperazine-1-carboxylate

Prepared from (5)-3-(hydroxymethyl)piperazine-1-carboxylic acid tert-butyl ester and Intermediate 4 following the method used to prepare Intermediate 75. LCMS (ES+) 367.8 (M+H)+, RT 1.65 minutes (method 3).
INTERMEDIATE 78

t_{tert}-Butyl (3i?)-4-(5-amino thiazolo [5,4-Jlpyrimidin-7-yl)-3-(hydroxymethyl)-piperazine-1-carboxylate

To a solution of Intermediate 4 (4.63 mmol) and (i?)-3-(hydroxymethyl)-piperazine-1-carboxylic acid _{tert}-butyl ester (1 g, 4.62 mmol) in DMF (20 mL) was added DIPEA (6.94 mmol). The reaction mixture was heated at 100°C for 7 h, then cooled and stirred at room temperature for 2 days. The reaction mixture was concentrated in vacuo and partitioned between EtOAc and water. The organic layers were dried over sodium sulfate and concentrated again. The resulting orange oil was purified by column chromatography on silica gel, with a gradient of 1% increasing to 20% MeOH in DCM, to yield the title compound (0.42 g, 24.8%) as a yellow gummy solid. LCMS (ES+) 367.8 (M+H)⁺, RT 0.8 minutes (method 3).

INTERMEDIATE 79

[(2y)-1-(5-Aminothiazolo[5,4-Å]pyrimidin-7-yl)piperazin-2-yl]methanol hydrochloride

Prepared from Intermediate 77 following the method used to prepare Intermediate 15. LCMS (ES+) 267.2 (M+H)⁺, RT 0.34 minutes (method 3).

INTERMEDIATE 80

[(2i?)-1-(5-Aminothiazolo[5,4-Å]pyrimidin-7-yl)piperazin-2-yl]methanol hydrochloride

Prepared from Intermediate 78 following the method used to prepare Intermediate 15. LCMS (ES+) 267.2 (M+H)⁺, RT 0.35 minutes (method 3).
INTERMEDIATE 8!

tert-Butyl (16',5i?)N-(4-methoxyphenyl)-3,8-diazabicyclo[3.2.1]octane-3-carboxamide hydrochloride

DIPEA (0.53 mL, 3.0 mmol) was added to a suspension of tert-butyl (1S,5R)-3,8-diazabicyclo[3.2.1]octane-8-carboxylate hydrochloride (0.50 g, 2.00 mmol) in DCM (20 mL). To the mixture was added 4-methoxyphenyl isocyanate (0.26 mL, 2.0 mmol) dropwise, and the reaction mixture was stirred for 20 h. The reaction mixture was washed with brine (2 x 20 mL), then passed through a phase separator and evaporated. The crude material was purified by flash chromatography on silica, with a gradient of 25% increasing to 75% EtOAc/isohexane over 20 column volumes. The **title compound** (0.74 g, >99%) was obtained as a white solid. LCMS (ES+) 362.8 (M+H)+, RT 2.02 minutes (method 3).

INTERMEDIATE 82

(16',5i?)-3-(3-Methyl-4-nitrophenoxy)oxetane hydrochloride

Prepared from Intermediate 81 following the method used to prepare Intermediate 15. LCMS (ES+) 260.2 (M+H)+, RT 0.47 minutes (method 3).

INTERMEDIATE 83

Sodium hydride (0.084 g, 2.11 mmol) was added to a solution of oxetan-3-ol (0.12 g, 1.62 mmol) in THF (10 mL) at 0°C. The mixture was stirred at 0°C for 20 minutes, after which time a solution of 5-fluoro-2-nitrotoluene (0.26 g, 1.62 mmol) in THF (10 mL) was added. The mixture was allowed to warm to room temperature, and stirring was continued for 16 h. The reaction mixture was diluted with water and extracted with DCM. The organic layer was washed with brine. The organic layer was concentrated under vacuum and the resulting crude material was purified by column chromatography (silica gel: 100-200 mesh, 8-30% EtOAc/hexane) to give the **title**
compound (0.18 g, 54%) as a yellow gum. LCMS (ES+) no mass ion observed, RT 1.71 minutes (method 2).

TINTERMEDITATE 84

2-Methyl-4-(oxetan-3-yloxy)aniline

Intermediate 83 (0.18 g, 0.875 mmol) was dissolved in MeOH (30 mL). 10% Palladium on carbon (0.02 g, 0.188 mmol) was added and the mixture was stirred under an atmosphere of hydrogen for 16 h. The reaction mixture was filtered through a pad of Celite and the solvent was removed *in vacuo*, to give the *title compound* (0.14 g, 89%) as an off-white solid. LCMS (ES+) 180.8 (M+H)+, RT 0.80 minutes (method 2).

TINTERMEDITATE 85

tert-Butyl 4-(4-methyl-5-nitropyridin-2-yl)piperazine-1-carboxylate

2-Fluoro-4-methyl-5-nitropyridine (0.8 g, 5.12 mmol), *tert*-butyl piperazine-1-carboxylate (1.05 g, 5.64 mmol) and potassium carbonate (0.85 g, 6.15 mmol) were taken up in acetonitrile (15 mL) and heated at 60°C for 1.5 h. After this time, the reaction was quenched with water (20 mL) and extracted with EtOAc (2 x 30 mL). The organic layers were combined and dried over sodium sulphate, then concentrated *in vacuo*. The crude material was purified by column chromatography (silica gel: 100-200 mesh, 1:1 EtOAc/heptane) to give the *title compound* (1.57 g, 97%). LCMS (ES+) 323.1 (M+H)+, RT 1.71 minutes (method 4).

TINTERMEDITATE 86

1-Methyl-4-(4-methyl-5-nitropyridin-2-yl)piperazine

Prepared from 1-methylpiperazine following the method used to prepare *Intermediate 85*. LCMS (ES+) 237.17 (M+H)+, RT 1.30 minutes (method 4).
TINTERMEDIATE87

tert-Butyl 3-[(4-methyl-5-nitropyridin-2-yl)oxylazetidine-1-carboxylate]

Prepared from *tert*-butyl 3-hydroxyazetidine-1-carboxylate following the method used to prepare *Intermediate 85*. LCMS (ES+) 310.3 (M+H)+, RT 1.67 minutes (method 4).

TINTERMEDIATE88

tert-Butyl 3-[(4-methyl-5-nitropyridin-2-yl)oxylpyrrolidine-1-carboxylate]

A suspension of sodium hydride (60% in oil, 11.54 mmol) in THF (2 mL) was added to *tert*-butyl 3-hydroxyprrolidine-1-carboxylate (1.59 g, 8.46 mmol) in THF (15 mL) at 0°C. Once the bubbling had subsided, a solution of 2-fluoro-4-methyl-5-nitropyridine (1.2 g, 7.69 mmol) in THF (3 mL) was added over 5 minutes. After 1 h, more sodium hydride (60% in oil, 0.15 g) was added. After a further 1 h, the reaction was quenched with aqueous ammonium chloride solution and extracted with EtOAc (3 x 20 mL). The combined organic extracts were dried over sodium sulfate and concentrated to give a yellow solid. Purification by column chromatography (silica gel: 100-200 mesh, 1:4 EtOAc:heptane) yielded the *title compound* (1.62 g, 65%) as a yellow solid. LCMS (ES+) 323.3 (M+H)+, RT 1.71 minutes (method 4).

TINTERMEDIATE89

4-Methyl-6-(4-methylpiperazin-1-yl)pyridin-3-amine

To a solution of *Intermediate 86* (1.15 g, 4.87 mmol) in methanol (150 mL) was added Pd/C (0.17 g) as a slurry in toluene (0.2 mL). The mixture was stirred under an atmosphere of hydrogen until no starting material remained by TLC. After this time, the reaction mixture was filtered through Celite and concentrated. The crude material was purified by column chromatography (silica gel: 100-200 mesh, 15% MeOH in DCM) to give the *title compound* (0.58 g, 58%) as a red powder. LCMS (ES+) 207.14 (M+H)+, RT 0.45 minutes (method 4).
TINTERMEDTATE 90

tert-Butyl 4-(5-amino-4-methylpyridin-2-yl)piperazine-1-carboxylate

Prepared from *Intermediate* 85 following the method used to prepare *Intermediate* 89. LCMS (ES+) 293.15 (M+H)⁺, RT 0.67 minutes (method 4).

TINTERMEDTATE 91

tert-Butyl 3-[(5-amino-4-methylpyridin-2-yl)oxy]azetidine-1-carboxylate

Prepared from *Intermediate* 87 following the method used to prepare *Intermediate* 89. LCMS (ES+) 294.2 (M+H)⁺, RT 1.38 minutes (method 4).

TINTERMEDTATE 92

tert-Butyl 3-[(5-amino-4-methylpyridin-2-yl)oxypyrrolidine-1-carboxylate

Prepared from *Intermediate* 88 following the method used to prepare *Intermediate* 89. LCMS (ES+) 294.2 (M+H)⁺, RT 1.38 minutes (method 4).

TINTERMEDTATE 93

tert-Butyl (3i?)-4-(5-aminothiazolo[5,4-d]pyrimidin-7-yl)-3-cyanopiperazine-1-carboxylate

Intermediate 4 (0.45 g, 2.40 mmol) and *tert*-butyl (3i?)-3-cyanopiperazine-1-carboxylate (0.51 g, 2.40 mmol) were taken up in chloroform (20 mL). ?-Toluene-sulfonic acid monohydrate (0.046 g, 0.24 mmol) was added and the mixture was stirred under nitrogen at 65°C for 10 days. The reaction mixture was allowed to cool to room temperature, diluted with DCM and washed with water. The organic layer was washed with brine, and dried over sodium sulphate. The organic layer was concentrated under vacuum and the resulting crude material was purified by column chromatography (silica gel: 100-200 mesh, 40-100% EtOAc/isohexane) to give the title compound (0.165 g, 19%) as a colourless gum. LCMS (ES+) 362.8 (M+H)⁺, RT 1.95 minutes (method 3).
(2R,1S)-1-(5-Aminothiazolo[5,4-d]pyrimidin-7-yl)piperazine-2-carbonitrile hydrochloride

Intermediate 93 (0.165 g, 0.457 mmol) was taken up in 4N HCl/1,4-dioxane (5 mL). The mixture was stirred at room temperature for 2 h. The solvent was removed in vacuo to give the title compound (0.15 g, quant.) as a yellow solid. LCMS (ES+) 262.2 (M+H)+, RT 0.64 minutes (method 3).

TINTERMEDTATE 94

TINTERMEDTATE 95

tert-Butyl 5-(5-aminothiazolo[5,4-d]pyrimidin-7-yl)-2,5-diazabicyclo[2.2.1]heptane-2-carboxylate

To a solution of Intermediate 4 (1 g, 5.37 mmol) in 1,4-dioxane (7 mL) was added DIPEA (1.32 mL, 8.046 mmol), followed by tert-butyl 2,5-diazabicyclo[2.2.1]heptane-2-carboxylate (1.17 g, 5.90 mmol). The reaction mixture was heated at 55°C for 3 h. The reaction mixture was then concentrated, and diluted with DCM. The organic layer was washed with water and 5% aqueous acetic acid solution, then concentrated. The crude material obtained was purified by column chromatography (silica: 100-200 mesh, MeOH: DCM 2%) to afford the title compound (1 g, 55.5%). LCMS (ES+) 349.1 (M+H)+, RT 1.70 minutes (method 1).

TINTERMEDTATE 96

tert-Butyl 4-(5-aminothiazolo[5,4-d]pyrimidin-7-yl)-3-(hydroxymethyl)piperazine-1-carboxylate

Prepared from Intermediate 4 and tert-butyl 3-(hydroxymethyl)piperazine-1-carboxylate following the method used to prepare Intermediate 95. LCMS (ES+) 367.1 (M+H)+, RT 1.63 minutes (method 1).
INTERMEDIATE 97

trt-Butyl 4-(5-aminothiazolo[5,4-J]pyrimidin-7-yl)-2-methylpiperazine-1-carboxylate

Prepared from Intermediate 4 and trt-butyl 2-methylpiperazine-1-carboxylate following the method used to prepare Intermediate 95. LCMS (ES+) 351.05 (M+H)^+, RT 1.87 minutes (method 1).

INTERMEDIATE 98

trt-Butyl (2i)-4-(5-aminothiazolo[5,4-J]pyrimidin-7-yl)-2-(hydroxymethyl)-piperazine-1-carboxylate

Prepared from Intermediate 4 and trt-butyl (2i)-2-(hydroxymethyl)piperazine-1-carboxylate following the method used to prepare Intermediate 95. LCMS (ES+) 367.1 (M+H)^+, RT 1.64 minutes (method 1).

INTERMEDIATE 99

trt-Butyl (2y)-4-(5-aminothiazolo[5,4-J]pyrimidin-7-yl)-2-(hydroxymethyl)-piperazine-1-carboxylate

Prepared from Intermediate 4 and trt-butyl (25)-2-(hydroxymethyl)piperazine-1-carboxylate following the method used to prepare Intermediate 95. LCMS (ES+) 367.1 (M+H)^+, RT 1.55 minutes (method 1).

INTERMEDIATE 100

trt-Butyl 4-(5-aminothiazolo[5,4-J]pyrimidin-7-yl)-3-methylpiperazine-1-carboxylate

Prepared from Intermediate 4 and trt-butyl 3-methylpiperazine-1-carboxylate following the method used to prepare Intermediate 95. LCMS (ES+) 351.15 (M+H)^+, RT 1.91 minutes (method 1).
TNTERMEDTATE 101

tert-Butyl 4-(5-aminothiazolo[5,4-Jlpyrimidin-7-yl)-2,3-dimethylpiperazine-1-carboxylate

Prepared from Intermediate 4 and tert-butyl 2,3-dimethylpiperazine-1-carboxylate following the method used to prepare Intermediate 95. LCMS (ES+) 365.15 (M+H)⁺, RT 1.98 minutes (method 1).

TNTERMEDTATE 102

tert-Butyl (2i?,5y)-4-(5-aminothiazolo[5,4-iland pyrimidin-7-yl)-2,5-dimethylpiperazine-1-carboxylate

Prepared from Intermediate 4 and tert-butyl (2i?,5s)-2,5-dimethylpiperazine-1-carboxylate following the method used to prepare Intermediate 95. LCMS (ES+) 365.25 (M+H)⁺, RT 2.11 minutes (method 1).

TNTERMEDTATE 103

7-(2,5-Diazabicyclo[2.2.1]heptan-2-yl)thiazolo[5,4-iland pyrimidin-5-amine

To a solution of Intermediate 95 (1 g, 2.86 mmol) in DCM (10 mL) was added TMSOTf (1.56 mL, 8.58 mmol) followed by 2,6-lutidine (0.8 mL, 7.1 mmol), and the reaction mixture was stirred at room temperature for 12 h. The reaction mixture was then concentrated, and the crude material obtained was purified by column chromatography (silica: 100-200 mesh, MeOH:DCM 5% to 7%), to afford the title compound (0.5 g, 70.4%). LCMS (ES+) 249.05 (M+H)⁺, RT 0.52 minutes (method 1).

TNTERMEDTATE 104

[1-(5-Aminothiazolo[5,4-iland pyrimidin-7-yl)piperezin-2-yl]methanol

Prepared from Intermediate 96 following the method used to prepare Intermediate 103. LCMS (ES+) 267 (M+H)⁺, RT 0.71 minutes (method 1).
7-(3-Methylpiperazin-1-yl)thiazolo[5,4-J]pyrimidin-5-amine
Prepared from Intermediate 97 following the method used to prepare Intermediate 103. LCMS (ES+) 249.05 (M+H)⁺, RT 0.52 minutes (method 1).

[(2i?)-4-(5-Aminothiazolo[5,4-α]pyrimidin-7-yl)piperazin-2-yl]methylamine
Prepared from Intermediate 98 following the method used to prepare Intermediate 103. LCMS (ES+) 267.05 (M+H)⁺, RT 0.71 minutes (method 1).

[(2y)-4-(5-Aminothiazolo[5,4-α]pyrimidin-7-yl)piperazin-2-yl]methylamine
Prepared from Intermediate 99 following the method used to prepare Intermediate 103. LCMS (ES+) 267.05 (M+H)⁺, RT 0.69 minutes (method 1).

7-(2-Methylpiperazin-1-yl)thiazolo[5,4-α]pyrimidin-5-amine
Prepared from Intermediate 100 following the method used to prepare Intermediate 103. LCMS (ES+) 250.95 (M+H)⁺, RT 0.53 minutes (method 1).

7-(2,3-Dimethylpiperazin-1-yl)Dthiazolo[5,4-α]pyrimidin-5-amine
Prepared from Intermediate 101 following the method used to prepare Intermediate 103. LCMS (ES+) 265.1 (M+H)⁺, RT 0.65 minutes (method 1).
TNTERMEDTATE 110

7-[(2S,5iO-2,5-Dimethylpiperazin-1-yl)m^ azolo[5,4-d]pyrimidin-5-amine

Prepared from Intermediate 102 following the method used to make Intermediate 103. LCMS (ES+) 265.1 (M+H)^+, RT 0.69 minutes (method 1).

EXAMPLES 1 TO 248

General experimental procedures

Procedure 1: Acid-amine coupling reaction

To a solution of the appropriate carboxylic acid (0.762 mmol) in DMF (2 mL), maintained at 0°C, were added HATU (1.14 mmol) and DIPEA (2.28 mmol). After 5 minutes, Intermediate 3 or Intermediate 6 (as appropriate; 0.635 mmol) was added and the reaction mixture was stirred at room temperature for 12 h. The progress of the reaction was monitored by LCMS. Upon completion, the reaction mixture was diluted with water and extracted with ethyl acetate. The organic layer was washed with brine, then water, and dried over sodium sulphate. The organic layer was concentrated under vacuum and the resulting crude material was purified by column chromatography (silica gel: 100-200 mesh, MeOH:DCM 1:9) to afford the desired compound.

Procedure 2: Isocyanate-amine coupling reaction

To a solution of Intermediate 3 (200 mg, 0.735 mmol) in DMF (2 mL) were added triethylamine (2.20 mmol) and the appropriate isocyanate (0.735 mmol). The reaction mixture was stirred at room temperature for 4 h. The progress of the reaction was monitored by LCMS. Upon completion, the reaction mixture was concentrated and the resulting material was purified by column chromatography (silica gel: 100-200 mesh, MeOFLDCM 1:9) to afford the desired compound.

Procedure 3: N-Alkylation reaction

To a stirred solution of Intermediate 3 (50 mg, 0.18 mmol) in DMF (2 mL), maintained at 0°C, was added Cs₂CO₃ (0.73 mmol) followed by the appropriate alkyl halide (0.24 mmol). The reaction mixture was stirred at room temperature for 12 h. The progress of the reaction was monitored by LCMS. Upon completion, the reaction mixture...
was diluted with water and extracted with ethyl acetate. The organic layer was washed with water and brine. The organic layer was then dried over sodium sulphate and concentrated under vacuum. The resulting crude material was purified by column chromatography (silica gel: 100-200 mesh, MeOH:DCM 1:9) to afford the desired compound.

Procedure 4: Displacement reaction

To a stirred solution of Intermediate 6 (0.1 g, 0.4 mmol) in EtOH was added Intermediate 20 or Intermediate 21 (as appropriate; 1 eq) followed by triethylamine (1 eq). The resulting mixture was stirred at room temperature for 30 minutes. The reaction mixture was then concentrated, and the resulting crude material was diluted with DCM. The organic layer was washed with water and brine. The organic layer was then concentrated and the resulting crude material was purified by column chromatography (silica: 100-200 mesh, MeOH:DCM 2-4%) to afford the desired compound.

Procedure 5: Ureaformation using amine and CDI

To a stirred solution of the appropriate amine (0.48 mmol) in DMF (1 mL) were added DIPEA (0.075 mL, 0.44 mmol) and CDI (0.077 g, 0.48 mmol). The reaction mixture was stirred at room temperature for 30 minutes. To this mixture was added a solution of Intermediate 3 or Intermediate 6 (as appropriate; 0.4 mmol) and DIPEA (0.1 mL, 0.48 mmol) in DMF (1 mL). The reaction mixture was stirred at room temperature for a further 12 h. The reaction mixture was then diluted with EtOAc, and the organic layer was washed with water and brine. The organic layer was dried over anhydrous sodium sulphate, then concentrated. The resulting crude material was purified by column chromatography (silica: 100-200 mesh, MeOFLDCM 5-7%) to afford the desired compound.

Procedure 6: Ureaformation using amine and phenyl chloroformate

To a solution of the appropriate amine (1.05 mmol) in THF (5 mL) at 0°C was added pyridine (0.11 mL, 1.32 mmol), followed by phenyl chloroformate (0.14 mL, 1.11 mmol). The reaction mixture was stirred at 0°C for 2 h. The reaction mixture was then diluted with EtOAc and washed successively with 2M HCl solution, then water, then saturated aqueous sodium bicarbonate solution. The organic layer was concentrated.
a solution of the resulting crude material (0.48 mmol) and Intermediate 6 (0.1 g, 0.4 mmol) in DMSO (2 mL) was added DIPEA (0.061 mL, 1.2 mmol) and the reaction mixture was heated at 60°C for 3 h. The reaction mixture was then diluted with EtOAc, and the organic layer was washed with water. The organic layer was separated and concentrated, and the resulting crude material was purified by column chromatography (silica: 100-200 mesh, MeOH:DCM 3-7%) to afford the desired compound.

Procedure 7: Isocyanate-amine coupling: alternative reaction conditions

To a solution of Intermediate 6 or Intermediate 80 (as appropriate; 0.6 mmol) in DCM (10 mL) was added DIPEA (0.2 mL), followed by the appropriate isocyanate (1 eq). The reaction mixture was stirred at room temperature for 48 h. After this time, the reaction mixture was partitioned between DCM and water. The organic layers were separated and dried, then the resulting crude material was purified by preparative HPLC to afford the desired compound.

Procedure 8: Ureaformation using amine and triphosgene

To a solution of the appropriate amine (0.404 mmol) in DCM (2 mL) were added DIPEA (0.104 g, 0.807 mmol) and triphosgene (39 mg, 0.132 mmol). The mixture was stirred at room temperature for 30 minutes. A solution of Intermediate 3 (0.1 g, 0.367 mmol) in DCM (3 mL) and DIPEA (0.104 g, 0.807 mmol) was added. The mixture was stirred at room temperature for 2 h. The reaction mixture was diluted with water and extracted with EtOAc. The organic layer was washed with brine and then water, and dried over sodium sulphate. The organic layer was concentrated in vacuo, and the resulting crude material was purified by column chromatography (silica gel: 100-200 mesh, MeOH:DCM 1:9) to afford the desired compound.

Procedure 9: Carbamate synthesis

To a solution of Intermediate 3 (0.2 g, 0.735 mmol) in DCM (10 mL) were added DIPEA (1.83 mmol) and the appropriate chloroformate (0.771 mmol). The reaction mixture was stirred at room temperature for 1 h. The reaction mixture was then diluted with water, and extracted with EtOAc. The organic layer was washed with brine, then water, and dried over sodium sulphate. The organic layer was concentrated under
vacuum, and the resulting crude material was purified by column chromatography (silica gel: 100-200 mesh, MeOH:DCM 1:9) to afford the desired compound.

Procedure 10: Removal of BOC protecting group

The appropriate BOC-protected amine was stirred with 4N HCl in 1,4-dioxane until no starting material remained. The reaction mixture was then concentrated *in vacuo* and triturated with diethyl ether to yield the desired compound as the HCl salt.

EXAMPLES 1 TO 44

The following compounds were synthesised from *Intermediate 3* and commercial reagents in accordance with the specified procedure.

<table>
<thead>
<tr>
<th>Ex.</th>
<th>Name</th>
<th>Expt. Procedure</th>
<th>LCMS Data</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Method</td>
<td>RT</td>
</tr>
<tr>
<td>1</td>
<td>1-[4-(5-Aminothiazolo[5,4-i]pyrimidin-7-yl)piperazin-1-yl]-2-(4-methoxyphenoxy)ethanone</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>4-(5-Aminothiazolo[5,4-i]pyrimidin-7-yl)piperazine-l-carboxylic acid/tolylamide</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>4-(5-Aminothiazolo[5,4-i]pyrimidin-7-yl)piperazine-l-carboxylic acid (3-methoxyphenyl)amide</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>4-(5-Aminothiazolo[5,4-i]pyrimidin-7-yl)piperazine-l-carboxylic acid (3,4,5-trimethoxyphenyl)amide</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>4-(5-Aminothiazolo[5,4-i]pyrimidin-7-yl)piperazine-l-carboxylic acid (3,5-dimethylisoxazol-4-yl)amide</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>4-(5-Aminothiazolo[5,4-i]pyrimidin-7-yl)piperazine-l-carboxylic acid (2,5-dimethoxyphenyl)amide</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>4-(5-Aminothiazolo[5,4-i]pyrimidin-7-yl)piperazine-l-carboxylic acid (3,5-dimethoxyphenyl)amide</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>1-[4-(5-Aminothiazolo[5,4-i]pyrimidin-7-yl)piperazin-1-yl]-2-(pyridin-4-yl)ethanone</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>1-[4-(5-Aminothiazolo[5,4-i]pyrimidin-7-yl)piperazin-1-yl]-2-phenoxyethanone</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>1-[4-(5-Aminothiazolo[5,4-i]pyrimidin-7-yl)piperazin-1-yl]-3-((1 H-benzo[d]imidazol-2-yl)propan-1-one</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>1-[4-(5-Aminothiazolo[5,4-i]pyrimidin-7-yl)piperazin-1-yl]-3-phenylpropan-1-one</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>4-(5-Aminothiazolo[5,4-i]pyrimidin-7-yl)piperazin-1-ylmethanone</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>4-(5-Aminothiazolo[5,4-i]pyrimidin-7-yl)piperazin-1-ylmethanone</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>7-[4-(Pyridin-3-ylmethyl)piperazin-1-yl]thiazolo[5,4-i]pyrimidin-5-amine</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>1-[4-(5-Aminothiazolo[5,4-i]pyrimidin-7-yl)piperazin-1-yl]-3-(4-fluorophenyl)-propan-1-one</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>1-[4-(5-Aminothiazolo[5,4-i]pyrimidin-7-yl)piperazin-1-yl]-3-(4-methoxyphenyl)-propan-1-one</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>17</td>
<td>1-[4-(5-Aminothiazolo[5,4-i]pyrimidin-7-yl)piperazin-1-yl]-3-(2-methoxyphenyl)-propan-1-one</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>18</td>
<td>1-[4-(5-Aminothiazolo[5,4-i]pyrimidin-7-yl)piperazin-1-yl]-3-(p-tolyl)propan-1-one</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>19</td>
<td>1-[4-(5-Aminothiazolo[5,4-i]pyrimidin-7-yl)piperazin-1-yl]-3-(furan-2-yl)propan-1-one</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>20</td>
<td>4-(5-Aminothiazolo[5,4-i]pyrimidin-7-yl)piperazin-1-ylmethanone</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>21</td>
<td>1-[4-(5-Aminothiazolo[5,4-i]pyrimidin-7-yl)piperazin-1-yl]-2-(morpholin-4-yl)ethanone</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>22</td>
<td>[4-(5-Aminothiazolo[5,4-i]pyrimidin-7-yl)-</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Structure</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>23</td>
<td>1-[4-(5-Aminothiazolo[5,4-i]pyrimidin-7-yl)piperazin-1-yl]-3-(pyridin-3-yl)propan-1-one</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>24</td>
<td>4-(5-Aminothiazolo[5,4-i]pyrimidin-7-yl)piperazin-1-ylmethanone</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>25</td>
<td>4-(5-Aminothiazolo[5,4-i]pyrimidin-7-yl)-N-(o-tolyl)piperazine-1-carboxamide</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>26</td>
<td>4-(5-Aminothiazolo[5,4-i]pyrimidin-7-yl)-N-benzylpiperazine-1-carboxamide</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>27</td>
<td>4-(5-Aminothiazolo[5,4-i]pyrimidin-7-yl)-N-(m-tolyl)piperazine-1-carboxamide</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>28</td>
<td>4-(5-Aminothiazolo[5,4-i]pyrimidin-7-yl)-N-(1-phenylethyl)piperazine-1-carboxamide</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>29</td>
<td>4-(5-Aminothiazolo[5,4-i]pyrimidin-7-yl)-N-[4-(difluoromethoxy)phenyl]piperazine-1-carboxamide</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>30</td>
<td>4-(5-Aminothiazolo[5,4-i]pyrimidin-7-yl)-N-[4-(trifluoromethoxy)phenyl]piperazine-1-carboxamide</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>31</td>
<td>4-(5-Aminothiazolo[5,4-i]pyrimidin-7-yl)-N-(4-methoxybenzyl)piperazine-1-carboxamide</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>32</td>
<td>4-(5-Aminothiazolo[5,4-i]pyrimidin-7-yl)piperazin-1-ylmethanone</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>33</td>
<td>1-[4-(5-Aminothiazolo[5,4-i]pyrimidin-7-yl)piperazin-1-yl]-3-(o-tolyl)propan-1-one</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>34</td>
<td>4-(5-Aminothiazolo[5,4-i]pyrimidin-7-yl)piperazin-1-ylmethanone</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>35</td>
<td>4-(5-Aminothiazolo[5,4-i]pyrimidin-7-yl)piperazin-1-ylmethanone</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>36</td>
<td>1-[4-(5-Aminothiazolo[5,4-i]pyrimidin-7-yl)piperazin-1-yl]-3-(3-methoxyphenyl)-</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>propan-1-one</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>37</td>
<td>[4-(5-Aminothiazolo[5,4-i]pyrimidin-7-yl)-piperazin-1-yl](l-methyl-l H-imidazol-2-yl)methanone</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>38</td>
<td>1-[4-(5-Aminothiazolo[5,4-i]pyrimidin-7-yl)piperazin-1-yl]-3-cyclopentylpropan-1-one</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>39</td>
<td>4-(5-Aminothiazolo[5,4-i]pyrimidin-7-yl)-piperazin-1-ylmethanone</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>40</td>
<td>(S)-1-[4-(5-Aminothiazolo[5,4-i]pyrimidin-7-yl)piperazin-1-yl]-3-hydroxy-3-phenylpropan-1-one</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>41</td>
<td>4-(5-Aminothiazolo[5,4-i]pyrimidin-7-yl)-piperazin-1-ylmethanone</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>42</td>
<td>4-(5-Aminothiazolo[5,4-i]pyrimidin-7-yl)-piperazin-l-ylmethanone</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>43</td>
<td>[4-(5-Aminothiazolo[5,4-i]pyrimidin-7-yl)-piperazin-1-yl](l H-indazol-3-yl)methanone</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>44</td>
<td>4-(5-Aminothiazolo[5,4-i]pyrimidin-7-yl)-piperazin-1-ylmethanone</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

EXAMPLES 45 TO 51

The following compounds were synthesised from *Intermediate 3* and commercial reagents in accordance with the specified procedure.

Example 45: 4-(5-Aminothiazolo[5,4-i]pyrimidin-7-yl)piperazine-l-carboxylic acid (2,3-dihydrobenzo [1,4]dioxin-6-yl)amide

Procedure 2. δ_H(DMSO-d$_6$) 8.71 (s, 1H), 8.38 (s, 1H), 7.06 (d, J 2.4 Hz, IH), 6.88 (dd, J 2.5, 8.8 Hz, IH), 6.72 (d, J 8.7 Hz, IH), 6.38 (s, 2H), 4.27-4.12 (m, 8H), 3.60-3.50 (m, 4H). LCMS (ES+) 414.0 (M+H)$^+$, RT 1.58 minutes (method 2).
Example 46: 4-(5-Aminothiazolo[5,4-<i>i</i>pyrimidin-7-yl)piperazine-1-carboxylic acid (3,4-dimethoxyphenyl)amide

Procedure 2. \(\delta_H (DMSO-d_6)\) 8.71 (s, IH), 8.42 (s, IH), 7.18 (d, J 2.4 Hz, IH), 6.98 (dd, J 2.4, 8.7 Hz, IH), 6.86-6.81 (m, IH), 6.38 (s, 2H), 4.30-4.12 (m, 4H), 3.72 (s, 3H), 3.70 (s, 3H), 3.60-3.53 (m, 4H). LCMS (ES+) 416.0 (M+H)^+, RT 1.49 minutes (method 2).

Example 47: 4-(5-Aminothiazolo[5,4-<i>ii</i>pyrimidin-7-yl)piperazine-1-carboxylic acid [4-(dimethylamino)phenyl]amide

Procedure 2. \(\delta_H (DMSO-d_6)\) 8.71 (s, IH), 8.27 (s, IH), 7.25 (d, J 9.1 Hz, 2H), 6.67 (d, J 9.1 Hz, 2H), 6.38 (s, 2H), 4.27-4.18 (m, 4H), 3.60-3.53 (m, 4H), 2.83 (s, 6H). LCMS (ES+) 399.0 (M+H)^+, RT 1.62 minutes (method 2).

Example 48: 4-(5-Aminothiazolo[5,4-<i>i</i>pyrimidin-7-yl)piperazine-1-carboxylic acid (2,4-dimethoxyphenyl)amide

Procedure 2. \(\delta_H (DMSO-d_6)\) 8.71 (s, IH), 7.65 (s, IH), 7.35 (d, J 8.7 Hz, IH), 6.59 (d, J 2.7 Hz, IH), 6.46 (dd, J 2.7, 8.7 Hz, IH), 6.38 (s, 2H), 4.27-4.18 (m, 4H), 3.78 (s, 3H), 3.74 (s, 3H), 3.58-3.50 (m, 4H). LCMS (ES+) 416.0 (M+H)^+, RT 1.64 minutes (method 2).

Example 49: 4-(5-Aminothiazolo[5,4-<i>i</i>pyrimidin-7-yl)piperazine-1-carboxylic acid (4-methoxy-2-methylphenyl)amide

Procedure 2. \(\delta_H (DMSO-d_6)\) 8.71 (s, IH), 8.01 (s, IH), 7.06 (d, J 8.6 Hz, IH), 6.78 (d, J 2.9 Hz, IH), 6.71 (dd, J 2.9, 8.6 Hz, IH), 6.39 (s, 2H), 4.30-4.18 (m, 4H), 3.73 (s, 3H), 3.60-3.53 (m, 4H), 2.15 (s, 3H). LCMS (ES+) 400.0 (M+H)^+, RT 1.67 minutes (method 2).

Example 50: 4-(5-Aminothiazolo[5,4-<i>i</i>pyrimidin-7-yl)piperazine-1-carboxylic acid (4-methoxyphenyl)amide

Procedure 2. \(\delta_H (DMSO-d_6)\) 8.71 (s, IH), 8.42 (s, IH), 7.36 (d, J 9.0 Hz, 2H), 6.84 (d, J 9.1 Hz, 2H), 6.39 (s, 2H), 4.30-4.18 (m, 4H), 3.72 (s, 3H), 3.60-3.54 (m, 4H). LCMS (ES+) 386.0 (M+H)^+, RT 1.57 minutes (method 2).
Example 51: 4-(5-Aminothiazolo[5,4-J]pyrimidin-7-yl)-N-(2-methoxyphenyl)-piperazine-1-carboxamide

Procedure 2. δ_H (DMSO-d_6) 8.71 (s, 1H), 7.73 (s, 1H), 7.67-7.65 (m, 1H), 7.05-7.00 (m, 2H), 6.90-6.86 (m, 1H), 6.38 (s, 2H), 4.25 (s, 4H), 3.82 (s, 3H), 3.59-3.56 (m, 4H). LCMS (ES+) 386.3 (M+H)^+, RT 1.30 minutes (method 2).

EXAMPLES 52 TO 86

The following compounds were synthesised from Intermediate 3 and commercial reagents (except for Example 81, which was derived from Example 80) in accordance with the specified procedure.

<table>
<thead>
<tr>
<th>Ex.</th>
<th>Name</th>
<th>Expt. Procedure</th>
<th>LCMS Data</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Method</td>
<td>RT</td>
</tr>
<tr>
<td>52</td>
<td>1-[4-(5-Aminothiazolo[5,4-i]pyrimidin-7-yl)piperazin-1-yl]-2-(4-chlorophenoxy)-ethanone</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>53</td>
<td>4-(5-Aminothiazolo[5,4-i]pyrimidin-7-yl)-N-(2,4-dimethylphenyl)piperazine-1-carboxamide</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>54</td>
<td>4-(5-Aminothiazolo[5,4-i]pyrimidin-7-yl)-N-[4-{2-(morpholin-4-yl)ethoxy}phenyl]-piperazine-1-carboxamide</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>55</td>
<td>Isopropenyl 4-(5-aminothiazolo[5,4-i]-pyrimidin-7-yl)piperazine-1-carboxylate</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>56</td>
<td>4-(5-Aminothiazolo[5,4-i]pyrimidin-7-yl)-N-(cyclopropylmethyl)piperazine-1-carboxamide</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>57</td>
<td>4-(5-Aminothiazolo[5,4-i]pyrimidin-7-yl)-N-[4-(morpholin-4-yl)phenyl]piperazine-1-carboxamide</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>58</td>
<td>4-(5-Aminothiazolo[5,4-i]pyrimidin-7-yl)-N-[4-(imidazol-1-yl)phenyl]piperazine-1-carboxamide</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>59</td>
<td>4-(5-Aminothiazolo[5,4-i]pyrimidin-7-yl)-</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>Number</td>
<td>Compound</td>
<td>Charge</td>
<td>Retention Time</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>--------</td>
<td>----------------</td>
</tr>
<tr>
<td>60</td>
<td>4-(5-Aminothiazolo[5,4-i]/pyrimidin-7-y)-N-(quinoxalin-6-y)piperazine-1-carboxamide</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>61</td>
<td>4-(5-Aminothiazolo[5,4-i]/pyrimidin-7-y)-N-(2-phenoxyethyl)piperazine-1-carboxamide</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>62</td>
<td>4-(5-Aminothiazolo[5,4-i]/pyrimidin-7-y)-N-(3-fluoro-4-methoxyphenyl)piperazine-1-carboxamide</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>63</td>
<td>4-(5-Aminothiazolo[5,4-i]/pyrimidin-7-y)-N-(1-methylbenzimidazol-2-yl)piperazine-1-carboxamide</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>64</td>
<td>4-(5-Aminothiazolo[5,4-i]/pyrimidin-7-y)-N-[4-(pyrazol-1-y)phenyl]piperazine-1-carboxamide</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>65</td>
<td>4-(5-Aminothiazolo[5,4-i]/pyrimidin-7-y)-N-(imidazo[1,2-fl]pyridin-3-yl)piperazine-1-carboxamide</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>66</td>
<td>4-(5-Aminothiazolo[5,4-i]/pyrimidin-7-y)-N-[2-(piperidin-1-ylmethyl)-3 H-benzimidazol-5-yl)piperazine-1-carboxamide</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>67</td>
<td>4-(5-Aminothiazolo[5,4-i]/pyrimidin-7-y)-N-[2-(morpholin-4-ylmethyl)-3 H-benzimidazol-5-yl)piperazine-1-carboxamide</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>68</td>
<td>4-(5-Aminothiazolo[5,4-i]/pyrimidin-7-y)-N-(indan-5-yl)piperazine-1-carboxamide</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>69</td>
<td>4-(5-Aminothiazolo[5,4-i]/pyrimidin-7-y)-N-(4-methoxy-1,3-benzothiazol-2-yl)piperazine-1-carboxamide</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>70</td>
<td>4-(5-Aminothiazolo[5,4-i]/pyrimidin-7-y)-N-(3-methyl-1H-pyrazol-5-yl)piperazine-1-carboxamide</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Formula</td>
<td>R</td>
<td>R'</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>----</td>
<td>-----</td>
</tr>
<tr>
<td>71</td>
<td>4-(5-Aminothiazolo[5,4-i/pyrimidin-7-yl]-N-(1H-indazol-6-yl)piperazine-1-carboxamide</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>72</td>
<td>4-(5-Aminothiazolo[5,4-i/pyrimidin-7-yl]-N-(1-methyl-2-oxopyrrolidin-3-yl)-piperazine-1-carboxamide</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>73</td>
<td>4-(5-Aminothiazolo[5,4-i/pyrimidin-7-yl]-N-(4-tert-butylthiazol-2-yl)piperazine-1-carboxamide</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>74</td>
<td>Ethyl 2-[[4-(5-aminothiazolo[5,4-i/-pyrimidin-7-yl)piperazine-1-carbonyl]-amino]thiazole-5-carboxylate</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>75</td>
<td>Benzyl 2-[[4-(5-aminothiazolo[5,4-i/-pyrimidin-7-yl)piperazine-1-carbonyl]-amino] acetate</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>76</td>
<td>tert-Butyl 2-[[4-(5-aminothiazolo[5,4-i/-pyrimidin-7-yl)piperazine-1-carbonyl]-amino] acetate</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>77</td>
<td>4-(5-Aminothiazolo[5,4-i/pyrimidin-7-yl]-N-(4-methylthiazol-2-yl)piperazine-1-carboxamide</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>78</td>
<td>4-(5-Aminothiazolo[5,4-i/pyrimidin-7-yl]-N-(6-methoxypyridin-3-yl)piperazine-1-carboxamide</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>79</td>
<td>4-(5-Aminothiazolo[5,4-i/pyrimidin-7-yl]-N-(pyridin-4-yl)piperazine-1-carboxamide</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>80</td>
<td>tert-Butyl 3-(4-[[4-(5-aminothiazolo[5,4-i/pyrimidin-7-yl)piperazine-1-carbonyl]-amino]-3-methylphenoxy)azetidine-1-carboxylate</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>81</td>
<td>4-(5-Aminothiazolo[5,4-i/pyrimidin-7-yl]-N-[4-(azetidin-3-yloxy)-2-methylphenyl] -piperazine-1-carboxamide</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>82</td>
<td>4-(5-Aminothiazolo[5,4-i/pyrimidin-7-yl]-N-(1-methylindolin-5-yl)piperazine-1-carboxamide</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>
The following compounds were synthesised from Intermediate 6 in accordance with the specified procedure.

- **Examples 87-122, 125-138, 163, 166-174 and 182 utilised commercial reagents.**
- **Examples 123, 124, 139-162, 164, 165, 175, 176, 179, 181 and 183 utilised Intermediates 21, 20, 23, 22, 24-26, 37, 35, 36, 38, 43-45, 55-63, 65, 68, 71, 72, 74, 89, 84 and 90-92 respectively.**
- **Example 177 utilised an amine disclosed in WO 2008/042282.**
- **Examples 178, 180 and 184 were derived from Examples 177, 179 and 183 respectively.**

<table>
<thead>
<tr>
<th>Ex.</th>
<th>Name</th>
<th>Expt. Procedure</th>
<th>LCMS Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>83</td>
<td>4-(5-Aminothiazolo[5,4-i]pyrimidin-7-yl)-N-(2,3-dihydrobenzofuran-5-yl)piperazine-1-carboxamide</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>84</td>
<td>4-(5-Aminothiazolo[5,4-i]pyrimidin-7-yl)-N-(1-methylindol-6-yl)piperazine-1-carboxamide</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>85</td>
<td>4-(5-Aminothiazolo[5,4-i]pyrimidin-7-yl)-N-(3-methylfuran-2-yl)piperazine-1-carboxamide</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>86</td>
<td>4-(5-Aminothiazolo[5,4-i]pyrimidin-7-yl)-N-(thien-3-yl)piperazine-1-carboxamide</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Formula</td>
<td>N</td>
<td>M</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>90</td>
<td>(S)-4-(5-Aminothiazolo[5,4-i]/pyrimidin-7-yl)-3-methyl-N-(pyrimidm-2-yl)piperazine-1-carboxamide</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>91</td>
<td>(S)-4-(5-Aminothiazolo[5,4-i]/pyrimidin-7-yl)-3-methyl-N-(pyridin-3-yl)piperazine-1-carboxamide</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>92</td>
<td>(S)-N-(4-Acetamidophenyl)-4-(5-aminothiazolo[5,4-i]/pyrimidin-7-yl)-3-methylpiperazine-1-carboxamide</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>93</td>
<td>(S)-4-(5-Aminothiazolo[5,4-i]/pyrimidin-7-yl)-N-(4-ethylphenyl)-3-methylpiperazine-1-carboxamide</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>94</td>
<td>(S)-4-(5-Aminothiazolo[5,4-i]/pyrimidin-7-yl)-N-(2,2-difluorobenzo[i]/[1,3]dioxol-5-yl)-3-methylpiperazine-1-carboxamide</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>95</td>
<td>(S)-4-(5-Aminothiazolo[5,4-i]/pyrimidin-7-yl)-3-methyl-N-[2-(trifluoromethyl)-1H-benzo[i]/limidazol-6-yl]piperazine-1-carboxamide</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>96</td>
<td>(S)-4-(5-Aminothiazolo[5,4-i]/pyrimidin-7-yl)-N-(benzo[i]/thiazol-6-yl)-3-methylpiperazine-1-carboxamide</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>97</td>
<td>(S)-4-(5-Aminothiazolo[5,4-i]/pyrimidin-7-yl)-3-methyl-N-(thiazol-2-yl)piperazine-1-carboxamide</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>98</td>
<td>(S)-4-(5-Aminothiazolo[5,4-i]/pyrimidin-7-yl)-3-methyl-N-[2-(morpholin-4-yl)ethyl]piperazine-1-carboxamide</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>99</td>
<td>(S)-4-(5-Aminothiazolo[5,4-i]/pyrimidin-7-yl)-3-methyl-N-(4-nitrophenyl)piperazine-1-carboxamide</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>100</td>
<td>(S)-4-(5-Aminothiazolo[5,4-i]/pyrimidin-7-yl)-N-(4-carbamoylphenyl)-3-methylpiperazine-1-carboxamide</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>101</td>
<td>(S)-4-(5-Aminothiazolo[5,4-i]/pyrimidin-7-yl)carboxamide</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>No.</td>
<td>Formula</td>
<td>Rf</td>
<td>Molar Mass</td>
</tr>
<tr>
<td>-----</td>
<td>---</td>
<td>-----</td>
<td>------------</td>
</tr>
<tr>
<td>102</td>
<td>(S)- [4-(5-Aminothiazolo [5,4-i]pyrimidin-7-yl)-3-methylpiperazin-1-yl] (imidazo [1,2-a]-pyridin-2-yl)methanone</td>
<td>1</td>
<td>1.61</td>
</tr>
<tr>
<td>103</td>
<td>(S)- [4-(5-Aminothiazolo [5,4-i]pyrimidin-7-yl)-3-methylpiperazin-1-yl] (pyridin-3-yl)methanone</td>
<td>1</td>
<td>1.3</td>
</tr>
<tr>
<td>104</td>
<td>(S)- [4-(5-Aminothiazolo [5,4-i]pyrimidin-7-yl)-3-methylpiperazin-1-yl] (5-methyl-1H-pyrazol-3-yl)methanone</td>
<td>1</td>
<td>1.40</td>
</tr>
<tr>
<td>105</td>
<td>(S)-1-[4-(5-Aminothiazolo[5,4-i]pyrimidin-7-yl)-3-methylpiperazin-1-yl]-2-(pyridin-4-yl)ethanone</td>
<td>1</td>
<td>1.35</td>
</tr>
<tr>
<td>106</td>
<td>(S)-1-[4-(5-Aminothiazolo[5,4-i]pyrimidin-7-yl)-3-methylpiperazin-1-yl]-2-(pyridin-3-yl)ethanone</td>
<td>1</td>
<td>1.46</td>
</tr>
<tr>
<td>107</td>
<td>(S)-1-[4-(5-Aminothiazolo[5,4-i]pyrimidin-7-yl)-3-methylpiperazin-1-yl]-2-(4-(dimethylamino)phenyl)ethanone</td>
<td>1</td>
<td>1.96</td>
</tr>
<tr>
<td>108</td>
<td>(S)-4-(5-Aminothiazolo[5,4-i]pyrimidin-7-yl)-N-benzyl-3-methylpiperazine-1-carboxamide</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>109</td>
<td>(S)-4-(5-Aminothiazolo[5,4-i]pyrimidin-7-yl)-3-methyl-N-(4-methylbenzyl)piperazine-1-carboxamide</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>110</td>
<td>(S)-4-(5-Aminothiazolo[5,4-i]pyrimidin-7-yl)-N-(benzo[i][1,3]dioxol-5-ylmethyl)-3-methylpiperazine-1-carboxamide</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>111</td>
<td>(S)-4-(5-Aminothiazolo[5,4-i]pyrimidin-7-yl)-N-[(2,3-dihydrobenzofuran-5-yl)methyl]-3-methylpiperazine-1-carboxamide</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>112</td>
<td>(S)-N-[(1H-Indol-5-yl)methyl]-4-(5-aminothiazolo[5,4-i]pyrimidin-7-yl)-3-methylpiperazine-1-carboxamide</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>113</td>
<td>(S)-4-(5-Aminothiazolo[5,4-i]pyrimidin-7-yl)-3-methylpiperazin-1-yl] (imidazo [1,2-a]-pyridin-2-yl)methanone</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>Compound</td>
<td>R1</td>
<td>R2</td>
<td>R3</td>
</tr>
<tr>
<td>---</td>
<td>---------------------</td>
<td>---------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>(S)-4-(5-Aminothiazolo[5,4-i]pyrimidin-7-yl)-3-methyl-N-(dimethylamino)benzyl-3-methyl-piperazine-1-carboxamide</td>
<td>6</td>
<td>1</td>
<td>1.54</td>
</tr>
<tr>
<td>(S)-4-(5-Aminothiazolo[5,4-i]pyrimidin-7-yl)-3-methyl-N-(thiazol-2-ylmethyl)-piperazine-1-carboxamide</td>
<td>6</td>
<td>1</td>
<td>1.59</td>
</tr>
<tr>
<td>(S)-4-(5-Aminothiazolo[5,4-i]pyrimidin-7-yl)-N-(4-cyanobenzyl)-3-methylpiperazine-1-carboxamide</td>
<td>6</td>
<td>1</td>
<td>1.68</td>
</tr>
<tr>
<td>(S)-4-(5-Aminothiazolo[5,4-i]pyrimidin-7-yl)-N-(3,4-dimethoxybenzyl)-3-methylpiperazine-1-carboxamide</td>
<td>6</td>
<td>1</td>
<td>1.69</td>
</tr>
<tr>
<td>(S)-4-(5-Aminothiazolo[5,4-i]pyrimidin-7-yl)-N-(imidazo[2,1-6]thiazol-5-ylmethyl)-3-methylpiperazine-1-carboxamide</td>
<td>5</td>
<td>1</td>
<td>1.56</td>
</tr>
<tr>
<td>(S)-1-[4-(5-Aminothiazolo[5,4-i]pyrimidin-7-yl)-3-methylpiperazin-1-yl]-2-phenoxoethanone</td>
<td>1</td>
<td>1</td>
<td>1.88</td>
</tr>
<tr>
<td>(S)-1-[4-(5-Aminothiazolo[5,4-i]pyrimidin-7-yl)-3-methylpiperazin-1-yl]-2-(4-methoxyphenoxo)ethanone</td>
<td>1</td>
<td>1</td>
<td>1.86</td>
</tr>
<tr>
<td>(S)-7-[2-Methyl-4-(pyridin-3-ylmethyl)piperazin-1-yl]thiazolo[5,4-i]pyrimidin-5-amine</td>
<td>3</td>
<td>1</td>
<td>1.79</td>
</tr>
<tr>
<td>(S)-7-[2-Methyl-4-(pyridin-2-ylmethyl)piperazin-1-yl]thiazolo[5,4-i]pyrimidin-5-amine</td>
<td>3</td>
<td>1</td>
<td>1.82</td>
</tr>
<tr>
<td>(S)-3-[4-(5-Aminothiazolo[5,4-i]pyrimidin-7-yl)-3-methylpiperazin-1-yl]-4-(phenylamino)cyclobut-3-ene-1,2-dione</td>
<td>4</td>
<td>1</td>
<td>1.73</td>
</tr>
<tr>
<td>(S)-3-[4-(5-Aminothiazolo[5,4-i]pyrimidin-7-yl)-3-methylpiperazin-1-yl]-4-(cyclopropylamino)cyclobut-3-ene-1,2-dione</td>
<td>4</td>
<td>1</td>
<td>1.40</td>
</tr>
<tr>
<td>(S)-4-(5-Aminothiazolo[5,4-i]pyrimidin-7-yl)-3-methyl-piperazine-1-carboxamide</td>
<td>6</td>
<td>1</td>
<td>2.02</td>
</tr>
<tr>
<td>No.</td>
<td>Formula</td>
<td>Molecular Weight</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>---</td>
<td>------------------</td>
<td></td>
</tr>
<tr>
<td>126</td>
<td>(3S)-4-(5-Aminothiazolo[5,4-i]pyrimidin-7-yl)-3-methyl-N-2-methyl-[(tetrahydrofuran-3-yl)methoxy]phenyl]-3-methylpiperazine-1-carboxamide</td>
<td>484.3</td>
<td></td>
</tr>
<tr>
<td>127</td>
<td>(S)-4-(5-Aminothiazolo[5,4-i]pyrimidin-7-yl)-3-methyl-N-2-methyl-[(2-morpholin-4-yl)ethoxy]phenyl]-3-methylpiperazine-1-carboxamide</td>
<td>513.3</td>
<td></td>
</tr>
<tr>
<td>128</td>
<td>(S)-4-(5-Aminothiazolo[5,4-i]pyrimidin-7-yl)-N-[4-methoxy-2-(trifluoromethyl)phenyl]-3-methylpiperazine-1-carboxamide</td>
<td>468.2</td>
<td></td>
</tr>
<tr>
<td>129</td>
<td>(S)-4-(5-Aminothiazolo[5,4-i]pyrimidin-7-yl)-N-(2-chloro-4-methoxyphenyl)-3-methylpiperazine-1-carboxamide</td>
<td>434.1</td>
<td></td>
</tr>
<tr>
<td>130</td>
<td>(S)-4-(5-Aminothiazolo[5,4-i]pyrimidin-7-yl)-N-(2-cyano-4-methoxyphenyl)-3-methylpiperazine-1-carboxamide</td>
<td>425.2</td>
<td></td>
</tr>
<tr>
<td>131</td>
<td>(S)-4-(5-Aminothiazolo[5,4-i]pyrimidin-7-yl)-N-(6-methoxy-2-methylpyridin-3-yl)-3-methylpiperazine-1-carboxamide</td>
<td>415.2</td>
<td></td>
</tr>
<tr>
<td>132</td>
<td>(S)-4-(5-Aminothiazolo[5,4-i]pyrimidin-7-yl)-N-(6-methoxy-4-methylpyridin-3-yl)-3-methylpiperazine-1-carboxamide</td>
<td>415.2</td>
<td></td>
</tr>
<tr>
<td>133</td>
<td>(S)-4-(5-Aminothiazolo[5,4-i]pyrimidin-7-yl)-N-(2-chloro-6-methoxypyridin-3-yl)-3-methylpiperazine-1-carboxamide</td>
<td>435.1</td>
<td></td>
</tr>
<tr>
<td>134</td>
<td>(S)-4-(5-Aminothiazolo[5,4-i]pyrimidin-7-yl)-N-(2,6-dimethoxypyridin-3-yl)-3-methylpiperazine-1-carboxamide</td>
<td>431.2</td>
<td></td>
</tr>
<tr>
<td>135</td>
<td>(S)-4-(5-Aminothiazolo[5,4-i]pyrimidin-7-yl)-N-(1,3-dimethyl-1H-pyrazol-4-yl)-3-methylpiperazine-1-carboxamide</td>
<td>388.2</td>
<td></td>
</tr>
<tr>
<td>136</td>
<td>(S)-4-(5-Aminothiazolo[5,4-i]pyrimidin-7-yl)-N-(1,5-dimethyl-1H-pyrazol-4-yl)-3-methylpiperazine-1-carboxamide</td>
<td>388.3</td>
<td></td>
</tr>
<tr>
<td>Compound</td>
<td>Structure</td>
<td>MW</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>-----</td>
<td></td>
</tr>
<tr>
<td>methylpiperazine-1-carboxamide</td>
<td>(S)-4-(5-Aminothiazolo[5,4-i]pyrimidin-7-yl)-3-methyl-N-[5-(4-methylpiperazin-1-yl)pyridin-2-yl]piperazine-1-carboxamide</td>
<td>469.3</td>
<td></td>
</tr>
<tr>
<td>137</td>
<td>(S)-4-(5-Aminothiazolo[5,4-i]pyrimidin-7-yl)-3-methyl-N-[6-(4-methylpiperazin-1-yl)pyridin-3-yl]piperazine-1-carboxamide</td>
<td>469.2</td>
<td></td>
</tr>
<tr>
<td>138</td>
<td>(S)-4-(5-Aminothiazolo[5,4-i]pyrimidin-7-yl)-N-[5-methoxy-3-methylpyrazin-2-yl]-3-methylpiperazine-1-carboxamide</td>
<td>416.2</td>
<td></td>
</tr>
<tr>
<td>139</td>
<td>(S)-4-(5-Aminothiazolo[5,4-i]pyrimidin-7-yl)-N-[6-methoxypyrazin-2-yl]-3-methylpiperazine-1-carboxamide</td>
<td>402.0</td>
<td></td>
</tr>
<tr>
<td>140</td>
<td>(S)-4-(5-Aminothiazolo[5,4-i]pyrimidin-7-yl)-N-[2-methoxy-4-methylpyrimidin-5-yl]-3-methylpiperazine-1-carboxamide</td>
<td>416.2</td>
<td></td>
</tr>
<tr>
<td>141</td>
<td>(S)-4-(5-Aminothiazolo[5,4-i]pyrimidin-7-yl)-N-[2-methoxy-4-methylpyrimidin-5-yl]-3-methylpiperazine-1-carboxamide</td>
<td>402.0</td>
<td></td>
</tr>
<tr>
<td>142</td>
<td>(S)-4-(5-Aminothiazolo[5,4-i]pyrimidin-7-yl)-N-[6-methoxypyridazin-3-yl]-3-methylpiperazine-1-carboxamide</td>
<td>402.0</td>
<td></td>
</tr>
<tr>
<td>143</td>
<td>(S)-4-(5-Aminothiazolo[5,4-i]pyrimidin-7-yl)-N-[4-[(dimethylamino)methyl]-2-methylphenyl]-3-methylpiperazine-1-carboxamide</td>
<td>441.3</td>
<td></td>
</tr>
<tr>
<td>144</td>
<td>(S)-4-(5-Aminothiazolo[5,4-i]pyrimidin-7-yl)-3-methyl-N-[2-methyl-4-(pyrrolidin-1-ylmethyl)phenyl]piperazine-1-carboxamide</td>
<td>467.3</td>
<td></td>
</tr>
<tr>
<td>145</td>
<td>(S)-4-(5-Aminothiazolo[5,4-i]pyrimidin-7-yl)-3-methyl-N-[2-methyl-4-[(4-methylpiperazin-1-yl)methyl]phenyl]piperazine-1-carboxamide</td>
<td>496.4</td>
<td></td>
</tr>
<tr>
<td>146</td>
<td>(S)-4-(5-Aminothiazolo[5,4-i]pyrimidin-7-yl)-3-methyl-N-[2-methyl-4-[(morpholin-4-ylmethyl)phenyl]piperazine-1-carboxamide</td>
<td>483.3</td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>Formula</td>
<td>pKa</td>
<td>MW</td>
</tr>
<tr>
<td>-----</td>
<td>---</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>148</td>
<td>(S)-4-((5-Aminothiazolo[5,4-i]pyrimidin-7-yl)-3-methyl-N-[2-methyl-6-(pyrrolidin-1-ylmethyl)pyridin-3-yl]piperazine-1-carboxamide</td>
<td>6</td>
<td>1.63 468.3</td>
</tr>
<tr>
<td>149</td>
<td>(S)-4-((5-Aminothiazolo[5,4-i]pyrimidin-7-yl)-3-methyl-N-[2-methyl-6-[(4-methylpiperazin-1-yl)methyl]pyridin-3-yl]piperazine-1-carboxamide</td>
<td>6</td>
<td>1.42 497.3</td>
</tr>
<tr>
<td>150</td>
<td>(S)-4-((5-Aminothiazolo[5,4-i]pyrimidin-7-yl)-3-methyl-N-[2-methyl-6-(morpholin-4-ylmethyl)pyridin-3-yl]piperazine-1-carboxamide</td>
<td>6</td>
<td>1.45 484.3</td>
</tr>
<tr>
<td>151</td>
<td>(S)-4-((5-Aminothiazolo[5,4-i]pyrimidin-7-yl)-N-[6-(dimethylamino)-2-methylpyridin-3-yl]-3-methylpiperazine-1-carboxamide</td>
<td>6</td>
<td>1.65 428.2</td>
</tr>
<tr>
<td>152</td>
<td>(S)-4-((5-Aminothiazolo[5,4-i]pyrimidin-7-yl)-N-[6-(azetidin-1-yl)-2-methylpyridin-3-yl]-3-methylpiperazine-1-carboxamide</td>
<td>6</td>
<td>1.67 440.3</td>
</tr>
<tr>
<td>153</td>
<td>(S)-4-((5-Aminothiazolo[5,4-i]pyrimidin-7-yl)-3-methyl-N-[2-methyl-6-(pyrrolidin-1-yl)pyridin-3-yl]piperazine-1-carboxamide</td>
<td>6</td>
<td>1.82 454.3</td>
</tr>
<tr>
<td>154</td>
<td>(S)-4-((5-Aminothiazolo[5,4-i]pyrimidin-7-yl)-N-[6-(3-fluoroazetidin-1-yl)-2-methylpyridin-3-yl]-3-methylpiperazine-1-carboxamide</td>
<td>6</td>
<td>1.63 458.3</td>
</tr>
<tr>
<td>155</td>
<td>(S)-4-((5-Aminothiazolo[5,4-i]pyrimidin-7-yl)-N-[6-(3,3-difluorooazetidin-1-yl)-2-methylpyridin-3-yl]-3-methylpiperazine-1-carboxamide</td>
<td>6</td>
<td>1.82 476.1</td>
</tr>
<tr>
<td>156</td>
<td>(S)-4-((5-Aminothiazolo[5,4-i]pyrimidin-7-yl)-N-[6-(3,3-difluoropyrrolidin-1-yl)-2-methylpyridin-3-yl]-3-methylpiperazine-1-carboxamide</td>
<td>6</td>
<td>1.97 490.3</td>
</tr>
<tr>
<td>157</td>
<td>(S)-4-((5-Aminothiazolo[5,4-i]pyrimidin-7-yl)-N-[6-(3,3-difluoropiperidin-1-yl)-2-methylpyridin-3-yl]-3-methylpiperazine-1-carboxamide</td>
<td>6</td>
<td>2.08 504.3</td>
</tr>
<tr>
<td>Entry</td>
<td>Chemical Structure</td>
<td>MW</td>
<td>Log P</td>
</tr>
<tr>
<td>-------</td>
<td>--------------------</td>
<td>-----</td>
<td>-------</td>
</tr>
<tr>
<td>158</td>
<td>(S)-4-(5-Aminothiazolo[5,4-i]pyrimidin-7-yl)-N-[6-(3-fluoropyrrolidin-1-yl)-2-methylpyridin-3-yl]-3-methylpiperazine-1-carboxamide</td>
<td>472.2</td>
<td>1.78</td>
</tr>
<tr>
<td>159</td>
<td>(S)-4-(5-Aminothiazolo[5,4-i]pyrimidin-7-yl)-N-[4-(3-fluoropyrrolidin-1-yl)-2-methylphenyl]-3-methylpiperazine-1-carboxamide</td>
<td>471.3</td>
<td>1.98</td>
</tr>
<tr>
<td>160</td>
<td>(S)-4-(5-Aminothiazolo[5,4-i]pyrimidin-7-yl)-N-[6-(difluoromethoxy)-2-methylpyridin-3-yl]-3-methylpiperazine-1-carboxamide</td>
<td>451.2</td>
<td>1.99</td>
</tr>
<tr>
<td>161</td>
<td>(S)-4-(5-Aminothiazolo[5,4-i]pyrimidin-7-yl)-3-methyl-N-[2-methyl-6-(tetrahydrofuran-3-yl oxy)pyridin-3-yl]piperazine-1-carboxamide</td>
<td>471.3</td>
<td>1.62</td>
</tr>
<tr>
<td>162</td>
<td>(S)-4-(5-Aminothiazolo[5,4-i]pyrimidin-7-yl)-N-[6-methoxy-2-(trifluoromethyl)pyridin-3-yl]-3-methylpiperazine-1-carboxamide</td>
<td>469.4</td>
<td>2.04</td>
</tr>
<tr>
<td>163</td>
<td>(S)-4-(5-Aminothiazolo[5,4-i]pyrimidin-7-yl)-N-[2,6-dimethylpyridin-3-yl]-3-methylpiperazine-1-carboxamide</td>
<td>399.3</td>
<td>1.47</td>
</tr>
<tr>
<td>164</td>
<td>(S)-4-(5-Aminothiazolo[5,4-i]pyrimidin-7-yl)-3-methyl-N-[6-methyl-2-(trifluoromethyl)pyridin-3-yl]piperazine-1-carboxamide</td>
<td>453.3</td>
<td>1.79</td>
</tr>
<tr>
<td>165</td>
<td>(S)-4-(5-Aminothiazolo[5,4-i]pyrimidin-7-yl)-N-[2-(dimethylamino)-6-methylpyridin-3-yl]-3-methylpiperazine-1-carboxamide</td>
<td>428.3</td>
<td>1.81</td>
</tr>
<tr>
<td>166</td>
<td>(S)-4-(5-Aminothiazolo[5,4-i]pyrimidin-7-yl)-3-methyl-N-phenylpiperazine-1-carboxamide</td>
<td>370.1</td>
<td>1.82</td>
</tr>
<tr>
<td>167</td>
<td>(S)-4-(5-Aminothiazolo[5,4-i]pyrimidin-7-yl)-3-methyl-N-(w-tolyl)piperazine-1-carboxamide</td>
<td>384.2</td>
<td>1.99</td>
</tr>
<tr>
<td>Entry</td>
<td>Formula</td>
<td>Molecular Weight</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>---------</td>
<td>------------------</td>
<td></td>
</tr>
<tr>
<td>168</td>
<td>(S)-4-(5-Aminothiazolo[5,4-i]pyrimidin-7-yl)-N-(3-methoxyphenyl)-3-methylpiperazine-1-carboxamide</td>
<td>400.2</td>
<td></td>
</tr>
<tr>
<td>169</td>
<td>(S)-4-(5-Aminothiazolo[5,4-i]pyrimidin-7-yl)-N-(2-methoxyphenyl)-3-methylpiperazine-1-carboxamide</td>
<td>400.2</td>
<td></td>
</tr>
<tr>
<td>170</td>
<td>(S)-4-(5-Aminothiazolo[5,4-i]pyrimidin-7-yl)-N-(2-chloro-4-methylphenyl)-3-methylpiperazine-1-carboxamide</td>
<td>418.1</td>
<td></td>
</tr>
<tr>
<td>171</td>
<td>(S)-4-(5-Aminothiazolo[5,4-i]pyrimidin-7-yl)-3-methyl-N-(p-tolyl)piperazine-1-carboxamide</td>
<td>384.1</td>
<td></td>
</tr>
<tr>
<td>172</td>
<td>(S)-4-(5-Aminothiazolo[5,4-i]pyrimidin-7-yl)-3-methyl-N-[4-methyl-2-(trifluoromethyl)phenyl]piperazine-1-carboxamide</td>
<td>452.2</td>
<td></td>
</tr>
<tr>
<td>173</td>
<td>(S)-4-(5-Aminothiazolo[5,4-i]pyrimidin-7-yl)-N-[2,4-bis(trifluoromethyl)phenyl]-3-methylpiperazine-1-carboxamide</td>
<td>506.2</td>
<td></td>
</tr>
<tr>
<td>174</td>
<td>(S)-4-(5-Aminothiazolo[5,4-i]pyrimidin-7-yl)-N-(6-chloropyridin-3-yl)-3-methylpiperazine-1-carboxamide</td>
<td>405.6</td>
<td></td>
</tr>
<tr>
<td>175</td>
<td>(S)-4-(5-Aminothiazolo[5,4-i]pyrimidin-7-yl)-3-methyl-N-[4-methyl-6-(4-methylpiperazin-1-yl)pyridin-3-yl]piperazine-1-carboxamide</td>
<td>483.8</td>
<td></td>
</tr>
<tr>
<td>176</td>
<td>(S)-4-(5-Aminothiazolo[5,4-i]pyrimidin-7-yl)-3-methyl-N-[2-methyl-4-(oxetan-3-yl-oxy)phenyl]piperazine-1-carboxamide</td>
<td>456.8</td>
<td></td>
</tr>
<tr>
<td>177</td>
<td>tert-Butyl 3-(4-[[3(S)-4-(5-aminothiazolo[5,4-i]pyrimidin-7-yl]-3-methylpiperazine-1-carbonylamino]-3-methylphenoxy)azetidine-1-carboxylate</td>
<td>555.8</td>
<td></td>
</tr>
<tr>
<td>178</td>
<td>(S)-4-(5-Aminothiazolo[5,4-i]pyrimidin-7-yl)-N-[4-(azetidin-3-yloxy)-2-methylphenyl]-3-methylpiperazine-1-carboxamide</td>
<td>455.8</td>
<td></td>
</tr>
</tbody>
</table>
EXAMPLES 185 TO 188

The following compounds were synthesised from *Intermediate 6* and commercial reagents in accordance with the specified procedure.

Example 185: \((3S)-4-(5\text{-Aminothiazolo}[5,4-i/\text{pyrimidin-7-yl}]-3\text{-methylpiperazine-1-carboxylamino})\text{-N-(4-methoxy-2-methyl-phenyl)-3\text{-methylpiperazine-1-carboxamid}} \)

Procedure 7. \(\delta_H (\text{DMSO-d}_6) 8.69 (s, IH), 7.97 (s, IH), 7.04 (d, J 8.6 Hz, IH), 6.77 (d, J 2.7 Hz, IH), 6.71 (dd, J 2.9, 8.6 Hz, IH), 6.35 (s, 2H), 5.50 (br s, IH), 5.20 (br s, IH), 4.12 (d, J 12.8 Hz, IH), 3.98 (d, J 13.7 Hz, IH), 3.71 (s, 3H), 3.20-3.50 (m, 3H), 3.12-2.90 (m, IH), 2.14 (s, 3H), 1.22 (d, J 6.6 Hz, 3H). LCMS (ES+) 414.8 (M+H)\(^+\), RT 1.609 minutes (method 2).
Example 186: (3S)-4-(5-Aminothiazolo[5,4-J]pyrimidin-7-yl)-N-[4-(difluoromethoxy)phenyl]-3-methylpiperazine-1-carboxamide

Procedure 7. δH (DMSO-d6) 8.70 (s, 1H), 8.61 (s, 1H), 7.51 (d, J 9 Hz, 2H), 7.09 (t, J 79.6 Hz, 1H), 7.08 (d, J 14 Hz, 2H), 6.36 (s, 2H), 5.60 (br s, 1H), 5.15 (br s, 1H), 4.15 (d, J 13.5 Hz, 1H), 4.01 (d, J 14 Hz, 2H), 6.36 (s, 2H), 5.60 (br s, 1H), 5.15 (br s, 1H), 4.15 (d, J 13.5 Hz, 1H), 4.01 (d, J 14 Hz, 2H), 3.49-3.22 (m, 2H), 3.22-3.01 (m, 1H), 1.22 (d, J 6.6 Hz, 3H). LCMS (ES+) 436.8 (M+H)+, RT 1.869 minutes (method 2).

Example 187: (35)-4-(5-Aminothiazolo[5,4-J]pyrimidin-7-yl)-N-(4-methoxyphenyl)-3-methylpiperazine-1-carboxamide

Procedure 7. δH (DMSO-d6) 8.70 (s, 1H), 8.38 (s, 1H), 7.35 (d, J 9 Hz, 2H), 6.83 (d, J 9 Hz, 2H), 6.36 (s, 2H), 5.57 (br s, 1H), 5.22 (br s, 1H), 4.12 (d, J 12.9 Hz, 1H), 3.71 (s, 3H), 3.61-3.29 (m, 3H), 1.23 (d, J 6.6 Hz, 3H). LCMS (ES+) 400.8 (M+H)+, RT 1.594 minutes (method 2).

Example 188: (35)-4-(5-Aminothiazolo[5,4-J]pyrimidin-7-yl)-N-(2,3-dihydrobenzofuran-5-yl)-3-methylpiperazine-1-carboxamide

Procedure 7. δH (DMSO-d6) 8.78 (s, 1H), 8.32 (s, 1H), 7.32 (s, 1H), 7.06 (d, J 9 Hz, 1H), 6.80 (br s, 2H), 6.64 (d, J 8.5 Hz, 1H), 5.57 (br s, 1H), 5.22 (br s, 1H), 4.50 (t, J 8.7 Hz, 2H), 4.12 (d, J 13.3 Hz, 1H), 3.99 (d, J 13.3 Hz, 1H), 3.52-3.39 (m, 1H), 3.27 (dd, J 3.8, 13.5 Hz, 1H), 3.17-3.01 (m, 1H), 1.25 (d, J 6.6 Hz, 3H). LCMS (ES+) 412.8 (M+H)+, RT 1.581 minutes (method 2).

EXAMPLES 189 & 190

The following compounds were synthesised from Intermediate 103 and commercial reagents in accordance with the specified procedure.

<table>
<thead>
<tr>
<th>Ex.</th>
<th>Name</th>
<th>Expt. Procedure</th>
<th>LCMS Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>189</td>
<td>1-[5-(5-Aminothiazolo[5,4-i/]pyrimidin-7-yl)-2,5-diazabicyclo[2.2.1]heptan-2-yl]-2-(4-methoxyphenoxy)ethanone</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
The following compounds were synthesised from Intermediate 104 and commercial reagents in accordance with the specified procedure.

<table>
<thead>
<tr>
<th>Ex.</th>
<th>Name</th>
<th>Expt. Procedure</th>
<th>LCMS Data</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Method</td>
<td>RT</td>
</tr>
<tr>
<td>190</td>
<td>5-(5-Aminothiazolo[5,4-i]pyrimidin-7-yl)-N-(4-methoxyphenyl)-2,5-diazabicyclo[2.2.1]heptane-2-carboxamide</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

The following compounds were synthesised from Intermediate 105 and commercial reagents in accordance with the specified procedure.

<table>
<thead>
<tr>
<th>Ex.</th>
<th>Name</th>
<th>Expt. Procedure</th>
<th>LCMS Data</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Method</td>
<td>RT</td>
</tr>
<tr>
<td>191</td>
<td>1-[4-(5-Aminothiazolo[5,4-d]pyrimidin-7-yl)-3-(hydroxymethyl)piperazin-1-yl]-2-(3-methoxyphenoxy)ethanone</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>192</td>
<td>1-[4-(5-Aminothiazolo[5,4-d]pyrimidin-7-yl)-3-(hydroxymethyl)piperazin-1-yl]-2-(3-methoxyphenoxy)ethanone</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>193</td>
<td>1-[4-(5-Aminothiazolo[5,4-d]pyrimidin-7-yl)-3-(hydroxymethyl)piperazin-1-yl]-3-(4-methoxyphenyl)propan-1-one</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>194</td>
<td>4-(5-Aminothiazolo[5,4-d]pyrimidin-7-yl)-3-(hydroxymethyl)-N-(4-methoxyphenyl)piperazine-1-carboxamide</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>195</td>
<td>4-(5-Aminothiazolo[5,4-d]pyrimidin-7-yl)-3-(hydroxymethyl)-N-(3-methoxyphenyl)piperazine-1-carboxamide</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>196</td>
<td>4-(5-Aminothiazolo[5,4-d]pyrimidin-7-yl)-3-(hydroxymethyl)-N-(p-tolyl)piperazine-1-carboxamide</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Ex.</td>
<td>Name</td>
<td>Expt. Procedure</td>
<td>Method</td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
<td>-----------------</td>
<td>--------</td>
</tr>
<tr>
<td>197</td>
<td>1-[4-(5-Aminothiazolo[5,4-i/]pyrimidin-7-yl)-2-methylpiperazin-1-yl]-2-(4-methoxyphenoxy) ethanone</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>198</td>
<td>1-[4-(5-Aminothiazolo[5,4-i/]pyrimidin-7-yl)-2-methylpiperazin-1-yl]-2-(3-methoxyphenoxy) ethanone</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>199</td>
<td>4-(5-Aminothiazolo[5,4-i/]pyrimidin-7-yl)-N-(4-methoxyphenyl)-2-methylpiperazine-1-carboxamide</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>4-(5-Aminothiazolo[5,4-i/]pyrimidin-7-yl)-N-(3-methoxyphenyl)-2-methylpiperazine-1-carboxamide</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>201</td>
<td>4-(5-Aminothiazolo[5,4-i/]pyrimidin-7-yl)-2-methyl-N-(p-tolyl)piperazine-1-carboxamide</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

EXAMPLES 202 TO 206

The following compounds were synthesised from *Intermediate 106* and commercial reagents in accordance with the specified procedure.

<table>
<thead>
<tr>
<th>Ex.</th>
<th>Name</th>
<th>Expt. Procedure</th>
<th>Method</th>
<th>RT</th>
<th>[M+H]$^+$</th>
</tr>
</thead>
<tbody>
<tr>
<td>202</td>
<td>(R)-l-[4-(5-Aminothiazolo[5,4-i/]pyrimidin-7-yl)-2-(hydroxymethyl)piperazin-1-yl]-2-(4-methoxyphenoxy) ethanone</td>
<td>1</td>
<td></td>
<td>1.88</td>
<td>431.3</td>
</tr>
<tr>
<td>203</td>
<td>(R)-l-[4-(5-Aminothiazolo[5,4-i/]pyrimidin-7-yl)-2-(hydroxymethyl)piperazin-1-yl]-2-(3-methoxyphenoxy) ethanone</td>
<td>1</td>
<td></td>
<td>1.95</td>
<td>431.3</td>
</tr>
<tr>
<td>204</td>
<td>(R)-4-(5-Aminothiazolo[5,4-i/]pyrimidin-7-yl)-2-(hydroxymethyl)-N-(4-methoxy-</td>
<td>2</td>
<td></td>
<td>1.77</td>
<td>416.2</td>
</tr>
</tbody>
</table>
The following compounds were synthesised from Intermediate 107 and commercial reagents in accordance with the specified procedure.

<table>
<thead>
<tr>
<th>Ex.</th>
<th>Name</th>
<th>Expt. Procedure</th>
<th>LCMS Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>207</td>
<td>(S)-1-[4-(5-Aminothiazolo[5,4-i]pyrimidin-7-yl)-2-(hydroxymethyl)piperazin-l-yl]-2-(4-methoxyphenoxy)ethanone</td>
<td>1 1</td>
<td>1.83 431.2</td>
</tr>
<tr>
<td>208</td>
<td>(S)-1-[4-(5-Aminothiazolo[5,4-i]pyrimidin-7-yl)-2-(hydroxymethyl)piperazin-l-yl]-2-(3-methoxyphenoxy)ethanone</td>
<td>1 1</td>
<td>1.89 431.2</td>
</tr>
<tr>
<td>209</td>
<td>(S)-1-[4-(5-Aminothiazolo[5,4-i]pyrimidin-7-yl)-2-(hydroxymethyl)piperazin-l-yl]-3-(4-methoxyphenyl)propan-1-one</td>
<td>1 1</td>
<td>1.94 451.2 (M+23 adduct)</td>
</tr>
<tr>
<td>210</td>
<td>(S)-4-(5-Aminothiazolo[5,4-i]pyrimidin-7-yl)-2-(hydroxymethyl)-N-(4-methoxyphenyl)piperazine-1-carboxamide</td>
<td>2 1</td>
<td>1.73 416.4</td>
</tr>
<tr>
<td>211</td>
<td>(S)-4-(5-Aminothiazolo[5,4-i]pyrimidin-7-yl)-2-(hydroxymethyl)-N-(3-methoxyphenyl)piperazine-1-carboxamide</td>
<td>2 1</td>
<td>1.81 416.2</td>
</tr>
<tr>
<td>212</td>
<td>(S)-4-(5-Aminothiazolo[5,4-i]pyrimidin-7-yl)-2-(hydroxymethyl)-N-(p-tolyl)piperazine-1-carboxamide</td>
<td>2 1</td>
<td>2.04 400.2</td>
</tr>
</tbody>
</table>
The following compounds were synthesised from Intermediate 108 and commercial reagents in accordance with the specified procedure.

<table>
<thead>
<tr>
<th>Ex.</th>
<th>Name</th>
<th>Expt. Procedure</th>
<th>LCMS Data</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Method</td>
<td>RT</td>
</tr>
<tr>
<td>213</td>
<td>1-[4-(5-Aminothiazolo[5,4-d]pyrimidin-7-yl)-3-methylpiperazin-1-yl]-2-(4-methoxyphenoxo)ethanone</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>214</td>
<td>1-[4-(5-Aminothiazolo[5,4-d]pyrimidin-7-yl)-3-methylpiperazin-1-yl]-2-(4-methoxyphenoxo)ethanone</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>215</td>
<td>4-(5-Aminothiazolo[5,4-d]pyrimidin-7-yl)-N-(4-methoxyphenyl)-3-methylpiperazine-1-carboxamide</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>216</td>
<td>4-(5-Aminothiazolo[5,4-d]pyrimidin-7-yl)-N-(3-methoxyphenyl)-3-methylpiperazine-1-carboxamide</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>217</td>
<td>4-(5-Aminothiazolo[5,4-d]pyrimidin-7-yl)-3-methyl-N-(p-tolyl)piperazine-1-carboxamide</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>218</td>
<td>4-(5-Aminothiazolo[5,4-d]pyrimidin-7-yl)-N-(4-methoxy-2-methylphenyl)-3-methylpiperazine-1-carboxamide</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

The following compounds were synthesised from Intermediate 109 and commercial reagents in accordance with the specified procedure.

<table>
<thead>
<tr>
<th>Ex.</th>
<th>Name</th>
<th>Expt. Procedure</th>
<th>LCMS Data</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Method</td>
<td>RT</td>
</tr>
<tr>
<td>219</td>
<td>1-[4-(5-Aminothiazolo[5,4-i]pyrimidin-7-yl)-2,3-dimethylpiperazin-1-yl]-2-(4-</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
The following compounds were synthesised from Intermediate 110 and commercial reagents in accordance with the specified procedure.

<table>
<thead>
<tr>
<th>Ex.</th>
<th>Name</th>
<th>Expt. Procedure</th>
<th>LCMS Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>224</td>
<td>1-[(2R,5S)-4-(5-Aminothiazolo[5,4-i]pyrimidin-7-yl)-2,5-dimethylpiperazin-1-yl]-2-(3-methoxyphenoxy)ethanone</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>225</td>
<td>1-[(2R,5S)-4-(5-Aminothiazolo[5,4-i]pyrimidin-7-yl)-2,5-dimethylpiperazin-1-yl]-2-(3-methoxyphenoxy)ethanone</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>226</td>
<td>(2R,5S)-4-(5-Aminothiazolo[5,4-i]pyrimidin-7-yl)-N-(4-methoxyphenyl)-2,5-dimethylpiperazine-1-carboxamide</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>227</td>
<td>(2R,5S)-4-(5-Aminothiazolo[5,4-i]pyrimidin-7-yl)-N-(3-methoxyphenyl)-2,5-dimethylpiperazine-1-carboxamide</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>228</td>
<td>(2R,5S)-4-(5-Aminothiazolo[5,4-i]pyrimidin-7-yl)-2,5-dimethyl-N-(p-tolyl)piperazine-1-carboxamide</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>
(35V4-(5-Aminothiazolo[5^-^pyrimidin-7-y^)-3-ethyl-N-(4-methoxyphenyl)piperazine-
1 -carboxamide

Intermediate 7 (0.2 g, 0.55 mmol) was dissolved/suspended in 4N HCl in 1,4-
dioxane (5 mL), and methanol was added to aid solubility. The reaction mixture was
stirred for 2 h, then concentrated **in vacuo**. The residue was dissolved in DMF (5 mL),
then 4-methoxyphenyl isocyanate (0.083 g, 0.55 mmol) and DIPEA (0.14 g, 1.1 mmol)
were added. The reaction mixture was stirred for a further 2 h at room temperature, then
concentrated **in vacuo**. The residue was partitioned between EtOAc and water, then the
organic layers were dried over sodium sulfate and concentrated **in vacuo** onto silica.
Purification by column chromatography on silica gel with 100% EtOAc was followed by
preparative HPLC, to yield the **title compound** (0.063 g, 27.7%) as a white solid. δH
(DMSO-dg) 8.69 (s, 1H), 8.39 (s, 1H), 7.34 (d, J 9 Hz, 2H), 6.83 (d, J 9 Hz, 2H), 6.36 (s,
2H), 5.30 (br s, 2H), 4.12 (d, J 13.2 Hz, 2H), 3.70 (s, 3H), 3.52-3.01 (m, 3H), 1.71-1.59
(m, 2H), 0.82 (t, J 13 Hz, 3H). LCMS (ES+) 414.5 (M+H)+, RT 1.77 minutes (method 2).

EXAMPLE 230

(3S)-4-(5-Aminothiazolo[5,4-ä]pyrimidin-7-yl)-3-isopropyl-N-(4-methoxyphenyl) -
piperazine- 1-carboxamide

Prepared from **Intermediate 8** (0.26 mmol) using **Procedure 2**. δH (DMSO-d$_6$)
8.69 (s, 1H), 8.40 (s, 1H), 7.33 (d, J 9 Hz, 2H), 6.83 (d, J 9 Hz, 2H), 6.36 (s, 2H), 5.75 (br
s, 1H), 4.93 (br s, 1H), 4.33 (d, J 13.3 Hz, 1H), 4.16 (br s, 1H), 3.70 (s, 3H), 2.22-2.09
(m, 1H), 1.01 (d, 3H), 0.82 (t, J 6.6 Hz, 3H), 0.7 (br s, 3H). LCMS (ES+) 428.5 (M+H)+,
RT 1.92 minutes (method 2).
EXAMPLE 231

(35V4-(5-Aminothiazolo[5^-^pyrimidin-7-y^]
piperazine- 1-carboxamide

Intermediate 9 (0.18 g, 0.48 mmol) was stirred in TFA (2 mL, 25.8 mmol) for 4 h, then concentrated \textit{in vacuo} and triturated with diethyl ether. The recovered solid was dissolved in DMF (5 mL) and DIPEA (0.13 g, 1.0 mmol), then 4-methoxyphenyl isocyanate (0.46 mmol) was added. The reaction was stirred for 48 h, then concentrated \textit{in vacuo}. The residue was slurried in water. Collection by filtration provided the \textit{title compound} (0.099 g, 50%) as a white solid. δ\textsubscript{H} (DMSO-\textit{d\textsubscript{6}}) 8.75 (s, 1H), 8.46 (s, 1H), 7.34 (d, J 9 Hz, 2H), 6.83 (d, J 9 Hz, 2H), 6.81 (br s, 2H), 5.21 (br s, 2H), 4.23 (d, J 12.6 Hz, 2H), 3.70 (s, 3H), 3.61-2.98 (m, 3H), 1.49-1.21 (m, 1H), 0.61-0.51 (m, 1H), 0.49-0.28 (m, 3H). LCMS (ES+) 426.8 (M+H)+, RT 1.81 minutes (method 2).

EXAMPLE 232

(3S)-4-(5-Aminothiazolo[5,4-a \textit{I}pyrimidin-7-y]l)-3-isobutyl-N-(4-methoxyphenyl)-piperazine- 1-carboxamide

Intermediate 10 (0.2 g, 0.5 mmol) was dissolved/suspended in 4N HCl in 1,4-dioxane (5 mL) and stirred for 2 h. After this time, the reaction mixture was concentrated \textit{in vacuo} and redissolved in DMF (5 mL) with DIPEA (2 eq) and 4-methoxyphenyl isocyanate (0.08 g, 0.55 mmol). The reaction mixture was stirred for 5 h, then concentrated \textit{in vacuo} and partitioned between water and EtOAc. The organic layers were dried over sodium sulfate and concentrated onto silica. The resulting crude material was purified by column chromatography on silica gel with 100% EtOAc, then by preparative HPLC, to give the \textit{title compound} (0.123 g, 50%) as white solid. δ\textsubscript{H} (DMSO-\textit{d\textsubscript{6}}) 8.69 (s, 1H), 8.37 (s, 1H), 7.34 (d, J 9 Hz, 2H), 6.83 (d, J 9 Hz, 2H), 6.34 (s, 2H), 5.21 (br s, 2H), 4.21-4.01 (m, 2H), 3.70 (s, 3H), 3.31-2.89 (m, 3H), 1.61-1.42 (m, 3H), 0.95-0.75 (m, 6H). LCMS (ES+) 426.8 (M+H)+, RT 1.81 minutes (method 2).
EXAMPLE 233

4-(5-Aminothiazolo[5,4-d]pyrimidin-7-yl)-3-(2-hydroxyethyl)-N-(4-methoxyphenyl)piperazine-1-carboxamide

Prepared from Intermediate 11 using Procedure 2. \(\delta H (DMSO-d_6) \) 8.70 (s, 1H), 8.41 (s, 1H), 7.34 (d, \(J \) 9 Hz, 2H), 6.83 (d, \(J \) 9 Hz, 2H), 6.36 (s, 2H), 5.44 (br s, 2H), 4.56 (t, \(J \) 5.3 Hz, 1H), 4.17-4.05 (m, 2H), 3.70 (s, 3H), 3.19-3.11 (m, 1H), 3.07-2.91 (m, 1H), 1.91-1.72 (m, 2H). LCMS (ES+) 430.7 (M+H)^+, RT 1.16 minutes (method 2).

EXAMPLE 234

9-(5-Aminothiazolo[5,4-d]pyrimidin-7-yl)-N-(4-methoxyphenyl)-6,9-diazaspiro[3.5]nonane-6-carboxamide

Prepared from Intermediate 15 using Procedure 2. \(\delta H (DMSO-d_6) \) 8.72 (s, 1H), 8.34 (s, 1H), 7.35-7.32 (m, 2H), 6.85-6.81 (m, 2H), 6.38 (s, 2H), 4.27 (s, 2H), 3.80 (s, 2H), 3.71 (s, 3H), 3.33 (m, 2H), 2.34-2.19 (m, 4H), 1.84-1.75 (m, 2H). LCMS (ES+) 426.3 (M+H)^+, RT 1.34 minutes (method 2).

EXAMPLE 235

\((36',5i?)\)-4-(5-Aminothiazolo[5',4'-pyrimidin-7-yl]-N-(4-methoxyphenyl)-3,5-dimethylpiperazine-1-carboxamide

Prepared from Intermediate 18 using Procedure 2. \(\delta H (DMSO-d_6) \) 8.69 (s, 1H), 8.41 (s, 1H), 7.39-7.33 (m, 2H), 6.87-6.82 (m, 2H), 6.35 (s, 2H), 5.48 (br s, 2H), 4.15 (d, \(J \) 13.3 Hz, 2H), 3.71 (s, 3H), 3.15 (dd, \(J \) 13.2, 4.2 Hz, 2H), 1.28 (d, \(J \) 6.8 Hz, 6H). LCMS (ES+) 414.8 (M+H)^+, RT 1.49 minutes (method 2).
EXAMPLE 236

(3i?-4-(5-Aminothiazolo[5^-^pyrimidin-7-yl)-N -(4-methoxy-2-methylphenyl)-3- methylpiperazine- 1-carboxamide

Prepared from Intermediate 19 using Procedure 2. \(\delta \)H (DMSO-\(d_6 \)) 8.70 (s, IH), 7.97 (s, IH), 7.04 (d, J 8.6 Hz, IH), 6.77 (d, J 2.8 Hz, IH), 6.70 (dd, J 2.9, 8.7 Hz, IH), 6.35 (s, 2H), 5.50 (br s, IH), 5.15 (br s, IH), 4.13 (d, J 12.8 Hz, IH), 3.98 (d, J 13.1 Hz, IH), 3.71 (s, 3H), 3.20-3.50 (m, 2H), 3.12-3.01 (m, IH), 2.14 (s, 3H), 1.22 (d, J 6.6 Hz, 3H). LCMS (ES+) 414.8 (M+H)\(^+\), RT 1.63 minutes (method 2).

EXAMPLE 237

(3i?-4-(5-Aminothiazolo[5^-^pyrimidin-7-yl)-N -(2,4-dimethylphenyl)-3-methyl- piperazine- 1-carboxamide

Prepared from Intermediate 19 using Procedure 2. \(\delta \)H (DMSO-\(d_6 \)) 8.71 (s, IH), 7.73 (s, IH), 7.04 (d, J 7.9 Hz, IH), 7.00 (s, IH), 6.94 (d, J 7.9 Hz, IH), 6.36 (s, 2H), 5.59 (br s, IH), 5.13 (br s, IH), 4.12 (d, J 12.7 Hz, IH), 3.99 (d, J 13.5 Hz, IH), 3.50-3.20 (m, 2H), 3.15-3.01 (m, IH), 2.25 (s, 3H), 2.14 (s, 3H), 1.26 (d, J 6.7 Hz, 3H). LCMS (ES+) 398.8 (M+H)\(^+\), RT 1.82 minutes (method 2).

EXAMPLE 238

Methyl 2-[1-(5-aminothiazolo[5,4-^a]pyrimidin-7-yl)-4-[(2-methoxyphenyl)carbamoyl]- piperazin-2-yl] acetate

Prepared from Intermediate 76 using Procedure 2. \(\delta \)H (DMSO-\(d_6 \)) 8.71 (s, IH), 7.73 (s, IH), 7.65-7.63 (m, IH), 7.05-7.00 (m, 2H), 6.90-6.86 (m, IH), 6.38 (s, 2H), 5.85 (br s, IH), 5.22 (br s, IH), 4.13-4.06 (m, 2H), 3.82 (s, 3H), 3.48 (s, 3H), 3.31-3.28 (m, 2H), 3.14-3.07 (m, IH), 2.84 (dd, J 15.7, 8.3 Hz, IH), 2.69 (dd, J 15.7, 6.1 Hz, IH). LCMS (ES+) 458.0 (M+H)\(^+\), RT 1.60 minutes (method 2).
EXAMPLE 239

2-[(5-Aminothiazolo[5^a^pyrimidin-7-yl]-4-[(2-methoxyphenyl)carbamoyll| piperazin-2-yl] acetic acid

Prepared from Intermediate 76 using Procedure 2. δH (DMSO-de) 12.10 (s, 1H), 8.70 (s, 1H), 7.72 (s, 1H), 7.66 (d, J 7.6 Hz, 1H), 7.04-6.99 (m, 2H), 6.90-6.86 (m, 1H), 6.37 (s, 2H), 5.79 (br s, 1H), 5.32 (br s, 1H), 4.17-4.14 (m, 1H), 4.09-4.06 (m, 1H), 3.82 (s, 3H), 3.47 (m, 1H), 3.32-3.28 (m, 1H), 3.13-3.06 (m, 1H), 2.81 (dd, J 16.1, 9.3 Hz, 1H), 2.55-2.51 (m, 1H). LCMS (ES+) 444.0 (M+H)+, RT 1.36 minutes (method 2).

EXAMPLE 240

Methyl 2-[(5-Aminothiazolo [5,4-<i^a^pyrimidin-7-yl]-4-[(4-methoxyphenyl)carbamoyl] - piperazin-2-yl] acetate

Intermediate 75 (0.2 g, 0.49 mmol) was stirred with 4N HCl in 1,4-dioxane (5 mL) for 2 h. The reaction mixture was concentrated in vacuo and dissolved in DMF (5 mL), then DIPEA (0.98 mmol) and 4-methoxyphenyl isocyanate (0.074 g, 0.49 mmol) were added. The reaction mixture was stirred at room temperature for three days, then concentrated in vacuo and partitioned between EtOAc and water. The organic layers were dried over sodium sulfate and concentrated onto silica. The residue was purified by column chromatography on silica gel, with a gradient of 1% increasing to 20% MeOH in EtOAc, to yield the title compound (0.013 g, 5.8%) as a white solid. δH (DMSO-d6) 8.70 (s, 1H), 8.42 (s, 1H), 7.66 (d, J 9.1 Hz, 2H), 6.83 (d, J 9.1 Hz, 2H), 6.39 (s, 2H), 5.75 (br s, 1H), 5.22 (br s, 1H), 4.17-4.14 (m, 2H), 3.70 (s, 3H), 3.44 (s, 3H), 3.35-2.99 (m, 3H), 2.81-2.60 (m, 2H). LCMS (ES+) 458 (M+H)+, RT 1.64 minutes (method 2).

EXAMPLE 241

3-(2-Amino-2-oxoethyl)-4-(5-aminothiazolo[5,4-<i^a^pyrimidin-7-yl]-N-(2-methoxyphenyl)- piperazine-1-carboxamide

EDC (0.024 g, 0.12 mmol) was added to a solution of Example 239 (0.05 g, 0.11 mmol), ammonium chloride (0.03 g, 0.56 mmol), HOBT (0.019 g, 0.12 mmol) and DIPEA (0.20 mL, 1.13 mmol) in DMF (3 mL). The reaction mixture was stirred for 20 h
and then concentrated in vacuo. The residue was partitioned between EtOAc (10 mL) and water (10 mL), then separated. The organic phase was washed with brine (10 mL), dried over MgSO\(_4\) and evaporated. The residue was purified by column chromatography on silica gel, with a gradient of 2% increasing to 10% MeOH in EtOAc over 20 column volumes. After purification by preparative HPLC, and freeze-drying from acetonitrile/water, the title compound (0.005 g, 10%) was obtained as a white powder. \(\delta H\) (DMSO-d\(_6\)) 8.68 (s, 1H), 7.85 (s, 1H), 7.70-7.68 (m, 1H), 7.37 (s, 1H), 7.03-6.98 (m, 2H), 6.91 (s, 1H), 6.90-6.85 (m, 1H), 6.38 (s, 2H), 5.60 (br s, 2H), 4.20 (d, \(J\) 12.7 Hz, 1H), 4.12 (d, \(J\) 12.7 Hz, 1H), 3.81 (s, 3H), 3.30-3.25 (m, 1H), 3.05-2.98 (m, 1H), 2.67 (dd, \(J\) 14.4, 9.5 Hz, 1H), 2.50 (m, 1H), 2.40 (dd, \(J\) 14.4, 4.4 Hz, 1H). LCMS (ES+) 443.0 (M+H\(^+\)), RT 1.56 minutes (method 2).

EXAMPLE 242

4-(5-Aminothiazolo[5,4-d]pyrimidin-7-yl)-3-[2-(dimethylamino)-2-oxoethyl]l-N-(2-methoxyphenyl)piperase-1-carboxamide

Prepared from dimethylamine hydrochloride following the method used to prepare Example 241. \(\delta H\) (DMSO-d\(_6\)) 8.71 (s, 1H), 7.86 (s, 1H), 7.71 (d, \(J\) 7.8 Hz, 1H), 7.03-6.97 (m, 2H), 6.91-6.84 (m, 1H), 6.34 (s, 2H), 5.61 (br s, 2H), 4.16-4.10 (m, 1H), 3.82 (s, 3H), 3.34 (m, 2H), 3.30-3.25 (m, 1H), 3.07-3.03 (m, 1H), 2.99 (s, 3H), 2.90 (dd, \(J\) 15.1, 10.2 Hz, 1H), 2.77 (s, 3H), 2.57-2.52 (m, 1H). LCMS (ES+) 471.2 (M+H\(^+\)), RT 1.75 minutes (method 2).

EXAMPLE 243

(1S,5R)-3-(5-Aminothiazolo [5,4-d]pyrimidin-7-yl)-N-(4-methoxyphenyl)-3,8-diazabicyclo[3.2.1]octane-8-carboxamide

To a solution of Intermediate 4 (0.5 g, 2.68 mmol) in 1,4-dioxane (10 mL) were added tert-butyl (1S,5R)-3,8-diazabicyclo[3.2.1]octane-8-carboxylate (2.14 mmol) and DIPEA (0.86 mL). The reaction mixture was heated at 100°C for 8 h. The reaction mixture was filtered hot, and the solid was discarded. The filtrate was concentrated in vacuo, and partitioned between DCM and water. The organic layers were dried and further concentrated in vacuo. The resulting material was taken up in DCM (2 mL) and TFA (2
mL) and stirred at room temperature overnight. The reaction mixture was concentrated in vacuo and triturated with ether. The resulting solid was dissolved in DMF (5 mL), then DIPEA (0.198 g) and 4-methoxyphenyl isocyanate (0.091 g) were added. The reaction mixture was stirred at room temperature for 48 h, then partitioned between EtOAc and water. The organic layers were dried over sodium sulfate and concentrated in vacuo. The residue was purified by column chromatography on silica gel, with a gradient of 1% increasing to 20% MeOH in EtOAc, to give the title compound (0.017 g, 2%) as a white powder.

δH (DMSO-d_6) 8.68 (s, 1H), 8.53 (s, 1H), 7.38 (d, J 9.1 Hz, 2H), 6.83 (d, J 9.1 Hz, 2H), 6.37 (s, 2H), 5.15 (br s, 2H), 4.50 (br s, 2H), 3.70 (s, 3H), 3.34-3.15 (m, 2H), 1.88-1.79 (m, 2H), 1.69-1.59 (m, 2H). LCMS (ES+) 412.8 (M+H)^+, RT 1.676 minutes (method 2).

EXAMPLE 244

(3S)-4-(5-Aminothiazolo [5,4-b]pyrimidin-7-yl)-3-(hydroxymethyl)-N-(4-methoxyphenyl)piperazine-1-carboxamide

Prepared from Intermediate 79 using Procedure 2. δH (DMSO-d_6) 8.70 (s, 1H), 8.36 (s, 1H), 7.37-7.33 (m, 2H), 6.86-6.82 (m, 2H), 6.34 (s, 2H), 5.51 (br m, 2H), 4.87 (t, J 5.1 Hz, 1H), 4.16 (d, J 13.1 Hz, 1H), 4.06 (d, J 12.2 Hz, 1H), 3.72 (s, 3H), 3.69-3.54 (m, 2H), 3.36 (br m, 1H), 3.23 (dd, J 13.6, 4.0 Hz, 1H), 3.12-3.05 (m, 1H). LCMS (ES+) 416.6 (M+H)^+, RT 1.19 minutes (method 2).

EXAMPLE 245

(3S)-4-(5-Aminothiazolo [5,4-b]pyrimidin-7-yl)-3-(hydroxymethyl)-N-(4-methoxy-2-methylphenyl)piperazine-1-carboxamide

Prepared from Intermediate 79 using Procedure 6. δH (DMSO-d_6) 8.69 (s, 1H), 7.94 (s, 1H), 7.05 (d, J 8.6 Hz, 2H), 6.78-6.66 (m, 1H), 6.35 (s, 2H), 5.45 (br s, 1H), 4.85 (t, J 5.1 Hz, 1H), 4.12-4.01 (m, 3H), 3.71 (s, 3H), 3.69-3.52 (m, 2H), 3.31-2.92 (m, 3H), 2.11 (s, 3H). LCMS (ES+) 430.8 (M+H)^+, RT 1.424 minutes (method 2).
EXAMPLE 246

(3i?)-4-(5-Aminothiazolo[5,4-d]pyrimidin-7-yl)-3-(hydroxymethyl)-N-(4-methoxyphenyldipiperazine-1-carboxamide

Prepared from Intermediate 80 using Procedure 7. δH (DMSO-de) 8.69 (s, 1H), 8.35 (s, 1H), 7.34 (d, J 9.1 Hz, 2H), 6.82 (d, J 9.1 Hz, 2H), 6.34 (s, 2H), 5.51 (br m, 2H), 4.87 (br s, 1H), 4.16 (d, J 13.1 Hz, 1H), 4.06 (d, J 12.2 Hz, 1H), 3.72 (s, 3H), 3.69-3.54 (m, 2H), 3.32-2.99 (m, 3H). LCMS (ES+) 416.6 (M+H)$^+$, RT 1.86 minutes (method 2).

EXAMPLE 247

8-(5-Aminothiazolo[5^-pyrimidin-7-yl)-N-(4-methoxyphenyl)-3,8-diazabicyclo[3.2.1]octane-3-carboxamide

A mixture of Intermediate 82 (0.61 g, 2.04 mmol) and Intermediate 4 (0.39 g, 2.10 mmol) was suspended in 1,4-dioxane (20 mL) and treated with DIPEA (0.9 mL, 5 mmol). The reaction mixture was heated at 100°C and stirred for 4 days, then cooled to room temperature and concentrated in vacuo. The reaction mixture was diluted with DCM (20 mL) and water (20 mL) and filtered to remove some brown insoluble material. The layers were separated and the organic layer was washed with brine (2 x 20 mL), then passed through a phase separator cartridge and evaporated. The resulting crude material was purified by flash chromatography on silica, with a gradient of 1% increasing to 5% MeOH in DCM over 20 column volumes, and then further purified by preparative HPLC. The title compound (0.054 g, 6%) was obtained as a white powder after freeze-drying from acetonitrile/water. δH (DMSO-d$_6$) 8.71 (s, 1H), 8.23 (s, 1H), 7.35-7.30 (m, 2H), 6.84-6.79 (m, 2H), 6.40 (s, 2H), 5.80 (br s, 1H), 5.06 (br s, 1H), 3.93-3.89 (m, 2H), 3.69 (s, 3H), 3.11-3.07 (m, 2H), 1.95 (m, 2H), 1.83 (m, 2H). LCMS (ES+) 413.7 (M+H)$^+$, RT 1.63 minutes (method 2).
EXAMPLE 248

(3i?)-4-(5-Aminothiazolo[5^-^pyrimidin-7-yl)-3-cyano -N-[4-(difluoromethoxy)phenyl]-piperazine-1-carboxamide

Intermediate 94 (0.052 g, 0.175 mmol) was taken up in DMF (1 mL). DIPEA (0.025 g, 0.192 mmol) and 4-(difluoromethoxy)phenyl isocyanate (0.036 g, 0.192 mmol) were added. The mixture was stirred at room temperature overnight. The reaction mixture was filtered, then purified directly by reverse-phase preparative HPLC, to give the title compound (0.006 g, 8%) as an off-white solid. LCMS (ES+) 447.6 (M+H)\(^+\), RT 1.84 minutes (method 2).
Claims:

1. A compound of formula (I) or an N-oxide thereof, or a pharmaceutically acceptable salt or solvate thereof:

![Chemical structure](image)

(I)

wherein

Q represents a group of formula (Qa), (Qb), (Qc), (Qd) or (Qe):

![Chemical structures](image)

(Qa) (Qb) (Qc) (Qd) (Qe)

in which the asterisk (*) represents the point of attachment to the remainder of the molecule;

V represents -CH₂-, -C(CH₃)₂-, -CH₂CH₂- or -CH₂CH₂CH₂-;

W represents the residue of a C₃₋₇ cycloalkyl group;
Y represents a covalent bond, or a linker group selected from -C(O)-, -S(O)-,
-S(0)\textsubscript{2}, -C(0)O-, -C(0)N(R\textsubscript{2})- and -S(0)\textsubscript{2}N(R\textsubscript{2})-, or a linker group of formula (Ya):

\[
\begin{array}{c}
\text{O} \\
\text{\quad*} \\
\text{\quad\quad N--*} \\
\text{\quad\quad R''} \\
\end{array}
\]

(Ya)

in which the asterisk (*) represents the point of attachment to the remainder of the molecule;

Z represents hydrogen; or Ci\textsubscript{6} alkyl, C\textsubscript{2,6} alkenyl, C\textsubscript{3-7} cycloalkyl, C\textsubscript{3-7} cycloalkyl(Ci\textsubscript{6})alkyl, C\textsubscript{3-7} heterocycloalkyl, C\textsubscript{3-7} heterocycloalkyl(Ci\textsubscript{6})alkyl, aryl, aryl(Ci\textsubscript{6})alkyl, heteroaryl or heteroaryl(Ci\textsubscript{6})alkyl, any of which groups may be optionally substituted by one or more substituents;

A\textsubscript{1} represents hydrogen, cyano or trifluoromethyl; or A\textsubscript{1} represents Ci\textsubscript{6} alkyl, optionally substituted by one or more substituents independently selected from -OR\textsubscript{a}, -NR\textsubscript{b}R\textsubscript{c}, -C0\textsubscript{2}R\textsubscript{d} and -CONR\textsubscript{b}R\textsubscript{c}; or A\textsubscript{1} represents C\textsubscript{3-7} cycloalkyl;

A\textsubscript{2} represents hydrogen or Ci\textsubscript{6} alkyl;

R\textsubscript{1} represents hydrogen, halogen, cyano, nitro, hydroxy, trifluoromethyl, trifluoromethoxy, -OR\textsubscript{a}, -SR\textsubscript{a}, -SOR\textsubscript{a}, -SO\textsubscript{2}R\textsubscript{a}, -NR\textsubscript{b}R\textsubscript{c}, -CH\textsubscript{2}NR\textsubscript{b}R\textsubscript{c}, -NR\textsubscript{b}COR\textsubscript{d}, -CH\textsubscript{2}NR\textsubscript{b}COR\textsubscript{d}, -NR\textsubscript{b}C0\textsubscript{2}R\textsubscript{d}, -NHCONR\textsubscript{b}R\textsubscript{c}, -NR\textsubscript{b}SO\textsubscript{2}R\textsubscript{e}, -N(SO\textsubscript{2}R\textsubscript{e})\textsubscript{2}, -NHSO\textsubscript{2}NR\textsubscript{b}R\textsubscript{c}, -COR\textsubscript{d}, -C0\textsubscript{2}R\textsubscript{d}, -CONR\textsubscript{b}R\textsubscript{c}, -CON(OR\textsubscript{a})R\textsubscript{b} or -SO\textsubscript{2}NR\textsubscript{b}R\textsubscript{c}; or Ci\textsubscript{6} alkyl, aryl, aryl(Ci\textsubscript{6})alkyl, heteroaryl or heteroaryl(Ci\textsubscript{6})alkyl, any of which groups may be optionally substituted by one or more substituents;

R\textsubscript{2} represents hydrogen; or Ci\textsubscript{6} alkyl, optionally substituted by one or more substituents independently selected from -OR\textsubscript{a} and -NR\textsubscript{b}R\textsubscript{c};

R\textsubscript{a} represents hydrogen; or R\textsubscript{a} represents Ci\textsubscript{6} alkyl, aryl, aryl(Ci\textsubscript{6})alkyl, heteroaryl or heteroaryl(Ci\textsubscript{6})alkyl, any of which groups may be optionally substituted by one or more substituents;

R\textsubscript{b} and R\textsubscript{c} independently represent hydrogen or trifluoromethyl; or Ci\textsubscript{6} alkyl, C\textsubscript{3-7} cycloalkyl, C\textsubscript{3-7} cycloalkyl(Ci\textsubscript{6})alkyl, aryl, aryl(Ci\textsubscript{6})alkyl, C\textsubscript{3-7} heterocycloalkyl, C\textsubscript{3-7} heterocycloalkyl(Ci\textsubscript{6})alkyl, aryl, aryl(Ci\textsubscript{6})alkyl, heteroaryl or heteroaryl(Ci\textsubscript{6})alkyl, any of which groups may be optionally substituted by one or more substituents;
heterocycloalkyl(C6)alkyl, heteroaryl or heteroaryl(C6)alkyl, any of which groups may be optionally substituted by one or more substituents; or

R^b and R^c, when taken together with the nitrogen atom to which they are both attached, represent azetidin-1-yl, pyrrolidin-1-yl, oxazolidin-3-yl, isoxazolidin-2-yl, thiazolidin-3-yl, isothiazolidin-2-yl, piperidin-1-yl, morpholin-4-yl, thiomorpholin-4-yl, piperazin-1-yl, homopiperidin-1-yl, homomorpholin-4-yl or homopiperazin-1-yl, any of which groups may be optionally substituted by one or more substituents;

R^d represents hydrogen; or C1–6 alkyl, C3–7 cycloalkyl, aryl, C3–7 heterocycloalkyl or heteroaryl, any of which groups may be optionally substituted by one or more substituents; and

R^e represents C1–6 alkyl, aryl or heteroaryl, any of which groups may be optionally substituted by one or more substituents.

2. A compound as claimed in claim 1 wherein R^1 represents -NR^bR^c, in which R^b and R^c are as defined in claim 1.

3. A compound as claimed in claim 1 or claim 2 represented by formula (IA), or a pharmaceutically acceptable salt or solvate thereof:

```
    Q
   /\  
  /   \ 
H_2N  |
  \   / 
   \ / 
    N
```

(IA)

wherein Q is as defined in claim 1.

4. A compound as claimed in any one of the preceding claims wherein Q represents a group of formula (Qa-1), (Qa-2) or (Qa-3):
in which the asterisk (*) represents the point of attachment to the remainder of the molecule; and

5. A compound as claimed in any one of the preceding claims represented by formula (IIA), or a pharmaceutically acceptable salt or solvate thereof:

\[
\text{(IIA)}
\]

wherein

\[A^{11}\text{ represents hydrogen, cyano, } C_{1-6}\text{ alkyl, } -\text{CH}_2\text{OR}^a, -\text{CH}_2\text{CH}_2\text{OR}^a, -\text{CH}_2\text{CO}_2\text{R}^d, -\text{CH}_2\text{CONR}^b\text{R}^c \text{ or } C_3\text{-cycloalkyl; and}
\]

\[Z, R^a, R^b, R^c \text{ and } R^d \text{ are as defined in claim 1.}
\]

6. A compound as claimed in any one of claims 1 to 4 represented by formula (IIB), or a pharmaceutically acceptable salt or solvate thereof:
wherein \(Z \) is as defined in claim 1; and
\(A^{11} \) is as defined in claim 5.

7. A compound as claimed in any one of claims 1 to 4 represented by formula (IIC), or a pharmaceutically acceptable salt or solvate thereof:

\[
\text{II}C
\]

wherein \(Z \) is as defined in claim 1; and
\(A^{11} \) is as defined in claim 5.

8. A compound as claimed in any one of claims 5 to 7 wherein \(A^{11} \) represents hydrogen, methyl or hydroxymethyl.

9. A compound as claimed in any one of the preceding claims wherein \(Z \) represents \(C_{1-6} \) alkyl, \(C_{2-6} \) alkenyl, \(C_{3-7} \) cycloalkyl, \(C_{3-7} \) cycloalkyl(\(C_{1-6} \)alkyl, \(C_{3-7} \)...
heterocycloalkyl, C₃₋₇ heterocycloalkyl(C₆)alkyl, aryl, aryl(C₆)alkyl, heteroaryl or heteroaryl(C₆)alkyl, any of which groups may be optionally substituted by one or two substituents independently selected from halogen, cyano, nitro, Ci₆ alkyl, trifluoromethyl, cyano(Ci₆)alkyl, (C₃₋₇)heterocycloalkyl, halo(C₃₋₇)heterocycloalkyl, (Ci₆)alkyl-(C₃₋₇)heterocycloalkyl, (C₂₋₆)alkoxycarbonyl(C₃₋₇)heterocycloalkyl, dihalo(C₃₋₇)-heterocycloalkyl, (C₃₋₇)heterocycloalkyl(Ci₆)alkyl, (Ci₆)alkyl(C₃₋₇)heterocycloalkyl-(Ci₆)alkyl, heteroaryl, hydroxy, oxo, Ci₆ alkoxy, difluoromethoxy, trifluoromethoxy, (Ci₆)alkoxycarbonyl(C₃₋₇)heterocycloalkoxy, (C₂₋₆)alkoxycarbonyl(C₃₋₇)heterocycloalkoxy, (C₃₋₇)-heterocycloalkyl(Ci₆)alkoxy, aryloxycarbonyl, haloaryloxy, (Ci₆)alkoxyaryloxy, Ci₃ alkylenedioxy, dihalo(Ci₃)alkylenedioxy, arylcarbonyloxy, di(Ci₆)alkylamino, di(Ci₆)-alkylamino(Ci₆)alkyl, C₂₋₆ alkylcarbonylamino, C₂₋₆ alkoxycarbonyl, aryloxycarbonyl, and aminocarbonyl.

10. A compound as claimed in claim 9 wherein Z represents methoxyphenyl, (methoxy)(methyl)phenyl or (difluoroacetimidyl)(methyl)pyridinyl.

11. A compound of formula (I) as defined in claim 1 as herein specifically disclosed in any one of the Examples.

12. A compound of formula (I) as defined in claim 1 or an N-oxide thereof, or a pharmaceutically acceptable salt or solvate thereof, for use in therapy.

13. A compound of formula (I) as defined in claim 1 or an N-oxide thereof, or a pharmaceutically acceptable salt or solvate thereof, for use in the treatment and/or prevention of an inflammatory, autoimmune or oncological disorder; a viral disease; or organ or cell transplant rejection.

14. A pharmaceutical composition comprising a compound of formula (I) as defined in claim 1 or an N-oxide thereof, or a pharmaceutically acceptable salt or solvate thereof, in association with a pharmaceutically acceptable carrier.

15. The use of a compound of formula (I) as defined in claim 1 or an N-oxide thereof, or a pharmaceutically acceptable salt or solvate thereof, for the manufacture of a
medicament for the treatment and/or prevention of an inflammatory, autoimmune or oncological disorder; a viral disease; or organ or cell transplant rejection.

16. A method for the treatment and/or prevention of an inflammatory, autoimmune or oncological disorder, a viral disease, or organ or cell transplant rejection, which comprises administering to a patient in need of such treatment an effective amount of a compound of formula (I) as defined in claim 1 or an N-oxide thereof, or a pharmaceutically acceptable salt or solvate thereof.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

INV. C07D513/04 A61K31/519 A61P29/00 A61P31/00 A61P35/00

ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

C07D A61K A61P

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic database consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, CHEM ABS Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where applicable, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>EP 1 806 347 A1 (ASTELLAS PHARMA INC [JP]) 11 July 2007 (2007-07-11) claims; examples 361, 362</td>
<td>1,4,9,12,14</td>
</tr>
<tr>
<td>X</td>
<td>WO 01/46200 A1 (ASTRAZENECA AB [SE]; MEGHANI PREMJI [GB]; BENNING COLIN [GB]) 28 June 2001 (2001-06-28) claims; examples 17,22,23,25</td>
<td>1,12,14</td>
</tr>
<tr>
<td>X</td>
<td>DE 21 55 963 A1 (THOMAE GMBH DR K) 17 May 1973 (1973-05-17) claims; examples</td>
<td>1,2,4,9,12,14</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

Date of the actual completion of the international search

7 February 2013

Date of mailing of the international search report

14/02/2013

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040, Fax: (+31-70) 340-3016

Authorized officer

Bosma, Peter
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>wo 2008/152390 A1 (HOFFMANN LA ROCHE [CH] ; HANC0X TIMOTHY COLIN [GB] ; PEGG NEIL ANTHONY [] 18 December 2008 (2008-12-18) claims ; examples</td>
<td>1-16</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>--</td>
<td>-----------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2007249587 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2006040966 Al</td>
</tr>
<tr>
<td></td>
<td>28-06-2001</td>
<td>AT 247123 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 776592 B2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2564801 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR 0016543 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2394095 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1434827 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 60004564 Di</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 60004564 T2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1242427 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IL 150201 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2003518126 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MX PA02006261 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO 20023037 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NZ 519498 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2003013721 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2005272745 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 0146200 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ZA 200204307 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RO 62512 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RO 65650 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RO 65651 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ZA 7207983 A</td>
</tr>
<tr>
<td></td>
<td>16-09-2010</td>
<td>CA 2754890 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2405973 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2012520269 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2012046278 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2010103130 A2</td>
</tr>
<tr>
<td></td>
<td>18-12-2008</td>
<td>AT 510841 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2692050 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 101679456 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2158207 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2010529182 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2010190769 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2011098270 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2008152390 Al</td>
</tr>
<tr>
<td></td>
<td>22-05-2008</td>
<td>WO 2008059368 A2</td>
</tr>
</tbody>
</table>