
(19) United States 
US 20090259855A1 

(12) Patent Application Publication (10) Pub. No.: US 2009/0259855A1 
de Cesare et al. (43) Pub. Date: Oct. 15, 2009 

(54) CODE IMAGE PERSONALIZATION FORA 
COMPUTING DEVICE 

(75) Inventors: Joshua de Cesare, Campbell, CA 
(US); Dallas Blake De Atley, San 
Francisco, CA (US); Jonathan Jay 
Andrews, Mountain View, CA 
(US); Michael Smith, San 
Francisco, CA (US) 

Correspondence Address: 
APPLE INCABSTZ. 
BLAKELY SOKOLOFF TAYLOR & ZAFMAN 
LLP 
1279 OAKMEAD PARKWAY 
SUNNYVALE, CA 94085-4040 (US) 

(73) Assignee: Apple Inc., Cupertino, CA (US) 

(21) Appl. No.: 12/103,696 

(22) Filed: Apr. 15, 2008 

Storage 
(e.g. Flash) 

9 

Data t 17 

Configuration Registers 
... -127 

Publication Classification 

(51) Int. Cl. 
G06F2L/00 (2006.01) 

(52) U.S. Cl. ........................................................ 713/189 
(57) ABSTRACT 

A method and apparatus for personalizing a software compo 
nent to be executed in particular environment are described 
herein. According to an aspect of the invention, in response to 
an executable code image representing a Software component 
to be installed in an electronic device, the executable code 
image is encrypted using an encryption key. The encryption 
key is then wrapped with a UID that uniquely identifies the 
electronic device, where the UID is embedded within a secure 
ROM of the electronic device. The wrapped encryption key 
and the encrypted executable code image are then encapsu 
lated into a data object to be stored in a storage of the elec 
tronic device, such that when the electronic device is subse 
quently initialized for operation, the executable code image 
can only be recovered using the UID of the electronic device 
to retrieve a decryption key in order to decrypt the executable 
code image. 

100 

"''''"rrrrrrrt-....... 

Connection interface 
10 

  

  

    

  

  



US 2009/0259855A1 Oct. 15, 2009 Sheet 1 of 11 Patent Application Publication 

${}} 

  

  

  

  

  

    

  



Patent Application Publication Oct. 15, 2009 Sheet 2 of 11 US 2009/0259855A1 

Collection Interface 

--- 

Kernel Cache 

CS Cornponents 
(e.g. User Apps, 
libraries, GU, 
User Data) 235 

Fig. 2 

    

  

  



US 2009/0259855A1 Oct. 15, 2009 Sheet 3 of 11 Patent Application Publication 

~~~~++++-rrrrrrrrr! 

§§§ 60€. 

  



US 2009/0259855A1 Oct. 15, 2009 Sheet 4 of 11 Patent Application Publication 

(gTT “5:3) 

  



Patent Application Publication Oct. 15, 2009 Sheet 5 of 11 US 2009/0259855A1 

initialize HW and obtair, HW configuration (e.g., 
chip D, board iD, epoch, sectility domair, etc.) 

3. 3 O 

Locate a next object and evaluate the 
autheriticity of the certificate chain associated 

with the object, 
352 

Using the certificate chain to evaluate the trust 
of the object (e.g., examining the signature of 

the object) 
353 

Parse the tags of the object arid verify whether 
the object can be trusted in view of the 

hardware configurator. 
35. 

Optionally werify a decryption key arid decrypt 
the payload of the object, and execute the 

payload of the cbject. 
33 

Yes 
More objects? 

No. 

i Dot: s 

Fig. 3C 

  



Patent Application Publication Oct. 15, 2009 Sheet 6 of 11 US 2009/0259855A1 

400 
- 4 

ons in a ROM chip to locate a code image for booting a device Execute instructi 

Decrypt the code image based on a UID associated with the chip 

Verify whether the code image is trusted based on a chain of certificates 
associated with the Code image . 

- 413 
---...-. Erief a -----------N -- DFU -- is verification successful ? 

---. ------ 
--- - mode 
Yes 417 i : 

verify whether the trusted code image is compatible with hardware settings / 
based on a set of tags associated with the code image a 5. 

-its-a- 49 : Ste trusted co -- 
-" -------- 

: T-irrage cornpatible 2 wer N 

ti--------------------------- -Ys-u-ry: 42 
---------------..........-----...----..r. 

|Decrypt (e.g. based on GID associated with the chip) and execute the decrypted; 
code image (to perfor rhooting operations) - 423 

25 i co 
Entera 

- F normal 
-- - 51s the booting process complete 2- Yes operational 

--------- mode NC; 427 

- Locate another code image ? 

Fig. 4 

  



Patent Application Publication Oct. 15, 2009 Sheet 7 of 11 

Determine the validity of a leaf key via a 
chain of certificates according to a root 

certificate associated with a chip 

is the leaf key valid 2. 

Yes 

Generate a hash according to a code image 

Decrypt a signature stored within the code 
image based on a ji associated with the 

ci 

50 
- 
5 

the UD decrypted signature based Decrypt 
of the validated leaf key 

53 

Does the generated 
hash match the feaf key decrypted 

signature ? 

55 

andle successful verification 

Fig. 5 

Haride failed werification 

US 2009/0259855A1 

5 O 

503   

  

  

  

  

  

    

  

  

    

  



US 2009/0259855A1 Oct. 15, 2009 Sheet 8 of 11 Patent Application Publication 

| | 

*************************, www….….….,-,-,-,-,-, 

  



US 2009/0259855A1 Oct. 15, 2009 Sheet 9 of 11 Patent Application Publication 

~oN.86et? epoo ºu, si 

  

  

  

  

  

  

  



8 '61) 

US 2009/0259855A1 

A.4.8 

(sa) sng 

: ~ 

Oct. 15, 2009 Sheet 10 of 11 Patent Application Publication 

  

  



US 2009/0259855A1 Oct. 15, 2009 Sheet 11 of 11 Patent Application Publication 

  

  

  



US 2009/0259855A1 

CODE IMAGE PERSONALIZATION FORA 
COMPUTING DEVICE 

FIELD OF INVENTION 

0001. The present invention relates generally to electronic 
security. More particularly, this invention relates to booting a 
computing device securely. 

BACKGROUND 

0002. As more and more computing devices are being 
used in people's daily life, security has become a widespread 
concern for users and content providers. Viruses, worms, 
Trojan horses, identity theft, software and media content 
piracy, and extortion using threats of data destruction are 
rampant. Usually, these attacks involve installing and execut 
ing malicious Software codes to expose access to device 
resources that would otherwise be private to the system, the 
content provider, the user or an application. 
0003 For example, a hacker program when running in 
consumer computing devices developed to play audio/video 
content, such as Hollywood movies or music, could poten 
tially allow the cracking of the encryption used to secure the 
A/V content. Therefore, high levels of security are usually 
required for Such devices. 
0004 An operating system may provide Some security 
features to guard against Such attacks. However, the security 
features of an operating system often fail to keep up with new 
attacks occurring on a daily basis. Moreover, when booting a 
computing device, security features may not yet be initialized 
and are Vulnerable to bypass and/or tampering. Another way 
to guard against these attacks is to completely seal a comput 
ing device from installing and/or running any additional Soft 
ware after shipped out from manufacturers. Such a strict 
measure, however, severely limits the capabilities and the 
flexibilities of the underlying computing device. Not only 
does it make upgrading a computing device costly and diffi 
cult, it is notable to take advantage of increasing number of 
applications which do require downloading and running soft 
ware codes from outside the device. In addition, the rapid 
technology advancement usually renders the applications or 
functionalities originally built inside a computing device 
obsolete within a very short period of time. 
0005. Therefore, current security measures do not deliver 
a robust solution to protect applications and content inside a 
computing device, while at the same time providing the flex 
ibility to update the software and or firmware for the device. 

SUMMARY OF THE DESCRIPTION 

0006. A method and apparatus for personalizing a soft 
ware component to be executed in particular environment are 
described herein. A software component is personalized with 
the effects similar to licking the cookie. According to an 
aspect of the invention, in response to an executable code 
image representing a software component to be installed in an 
electronic device, the executable code image is encrypted 
using an encryption key, where the Software component, 
when executed, is configured to establish an operating envi 
ronment of the electronic device. The encryption key is then 
wrapped with a unique identifier (UID) that uniquely identi 
fies the electronic device, where the UID is embedded within 
a secure ROM (read-only memory) of the electronic device. 
The wrapped encryption key and the encrypted executable 
code image are then encapsulated into a data object to be 

Oct. 15, 2009 

stored in a storage of the electronic device. Such that when the 
electronic device is Subsequently initialized for operation, the 
executable code image can only be recovered using the UID 
of the electronic device to retrieve a decryption key corre 
sponding to the encryption key in order to decrypt the execut 
able code image encrypted by the encryption key. 
0007 According to another aspect of the invention, in 
response to a data object having an executable code image 
embedded therein, a decryption key is recovered from the 
data object using a unique identifier (UID) that uniquely 
identifies an electronic device, where the UID is embedded 
within a secure ROM (read-only memory) of the electronic 
device. The executable code image is then recovered from the 
data object using the recovered decryption key, where the 
executable code image is previously encrypted using an 
encryption key corresponding to the decryption key, which is 
stored within the data object and wrapped by the UID asso 
ciated with the electronic device. Thereafter, the recovered 
executable code image is executed to establish at least a 
portion of an operating environment of the electronic device. 
0008. Other features of the present invention will be 
apparent from the accompanying drawings and from the 
detailed description that follows. 

BRIEF DESCRIPTION OF THE DRAWINGS 

0009. The present invention is illustrated by way of 
example and not limitation in the figures of the accompanying 
drawings, in which like references indicate similar elements 
and in which: 
0010 FIG. 1 is a block diagram illustrating one embodi 
ment of system components for secure booting: 
0011 FIG. 2 is a block diagram illustrating one embodi 
ment of system components executing secure booting; 
0012 FIGS. 3A-3B are block diagrams illustrating 
examples of structures representing a code image for secure 
booting according to certain embodiments of the invention; 
0013 FIG. 3C is a flow diagram illustrating a process for 
Verifying a sequence of objects according to one embodiment 
of the invention. 
0014 FIG. 4 is a flow diagram illustrating one embodi 
ment of a process to Verify a code image for secure booting: 
0015 FIG. 5 is a flow diagram illustrating one embodi 
ment of a process to certify the trust of a code image; 
0016 FIG. 6 is a block diagram illustrating one embodi 
ment of network connections for a host to enable securely 
booting a device; 
0017 FIG. 7 is a flow diagram illustrating one embodi 
ment of a process to Verify an image code received from a 
host; 
0018 FIG. 8 illustrates one example of a typical computer 
system which may be used in conjunction with the embodi 
ments described herein; 
0019 FIG. 9 shows an example of a data processing sys 
tem which may be used with one embodiment of the present 
invention. 

DETAILED DESCRIPTION 

0020. A method and an apparatus for verifying a code 
image for a device based on one or more keys stored within a 
ROM and one or more hardwired settings are described 
herein. In the following description, numerous specific 
details are set forth to provide thorough explanation of 
embodiments of the present invention. It will be apparent, 



US 2009/0259855A1 

however, to one skilled in the art, that embodiments of the 
present invention may be practiced without these specific 
details. In other instances, well-known components, struc 
tures, and techniques have not been shown in detail in order 
not to obscure the understanding of this description. 
0021 Reference in the specification to “one embodiment' 
or “an embodiment’ means that aparticular feature, structure, 
or characteristic described in connection with the embodi 
ment can be included in at least one embodiment of the 
invention. The appearances of the phrase “in one embodi 
ment in various places in the specification do not necessarily 
all refer to the same embodiment. 
0022. The processes depicted in the figures that follow, are 
performed by processing logic that comprises hardware (e.g., 
circuitry, dedicated logic, etc.), software (such as is run on a 
general-purpose computer system or a dedicated machine), or 
a combination of both. Although the processes are described 
below in terms of some sequential operations, it should be 
appreciated that some of the operations described may be 
performed in different order. Moreover, some operations may 
be performed in parallel rather than sequentially. 
0023 The term “host' and the term “device' are intended 
to refer generally to data processing systems rather than spe 
cifically to a particular form factor for the host versus a form 
factor for the device. 

0024. In one embodiment, a mechanism for secure boot 
ing a device may be designed to ensure critical resources 
within the device are protected in an operating environment 
based on a single security architecture. In addition, such a 
mechanism may provide a flexibility to allow software run 
ning inside the device to be updated and installed under 
different policies and procedures according to certain con 
figurations of a device (e.g. hardware or software settings). 
Secure booting a device may be performed according to the 
code (e.g. security utility) and data stored inside a secure 
storage area such as a ROM (Read Only Memory), also 
referred to as a secure ROM, integrated within the device. 
0025. In one embodiment, a secure ROM is associated 
with one or more security keys which uniquely represent 
certain characteristics of a device. The content of a secure 
ROM may be stored during a manufacturing stage of the 
device. In one embodiment, a single security model associ 
ated with a secure ROM ensures that each executable code for 
each device is signed by a single central authority. In one 
embodiment, more than one executable codes may be 
executed during secure booting of a device. Each of the 
executable codes for secure booting may include common 
security instructions implementing a single security model to 
Verify a separate executable code to be executed during secur 
ing booting. 
0026. In another embodiment, an executable code which 
has been Successfully verified by one device according to a 
security model may not be verified or trusted in a different 
device according to the same security model. Thus, a code 
image certified from a central trust authority may be tied into 
a device, i.e. a personalized code image, when loaded with the 
code image. Image personalization is to perform a reversible 
transformation on an image or a code image that can only be 
reversed on the very device that performed the original trans 
formation. It is not necessary to perform an encryption on the 
whole code image to perform the image personalization. For 
example, encrypting a signed hash associated with the code 
image with a key derived from a unique identifier embedded 
inside a device may be sufficient to “foul” the signing such 

Oct. 15, 2009 

that no other device can consider the code image (or an object 
including the code image) valid. 
0027. According to one embodiment, a certified execut 
able code for a device may include a trusted certificate 
embedding software information specifying compatibility or 
operating environment requirements in view of hardware 
configurations associated with a device. Different devices 
may include common codes implementing a single security 
model based on a security policy configured at the manufac 
turing stage. Thus, embedded tags within a trusted certificate 
make it possible to enforce device separation to provide flex 
ibility, controllability and alterability for a certified execut 
able code without requiring manufacturing to change settings 
on a device. 

0028 FIG. 1 is a block diagram illustrating one embodi 
ment of system components for secure booting. System 100 
may include one or more chips inside a device. In one 
embodiment, system 100 may include a chip 105 coupled 
with a memory component 103. Chip 105 may be imple 
mented as a system-on-chip (SOC) configuration. Chip 105 
may also include a RAM (Random Access Memory) compo 
nent 111, such as an SRAM (Static Random Access Memory) 
or an EDRAM (Embedded Dynamic Random Access 
Memory). A code image may be loaded into the memory 
component 103 prior to being executed by the device. When 
executed, a code image enables a user application, a system 
application, and/or an operating environment (e.g. operating 
system) for the device that Supports the user or system appli 
cation. In one embodiment, memory component 103 includes 
DDR (Double Data Rate) memory. Chip 105 may include a 
ROM 113 storing codes 115 and associated data 117. 
(0029 When system 100 is powered up, codes 115 may 
perform hardware initialization for the device, such as, for 
example, setting up hardware signals and configurations. A 
hardware configuration for the device may be obtained from 
configuration registers 127. A configuration register may be 
associated with a value hardwired to the device via, for 
example, burning a fuse of the device. In one embodiment, 
configuration registers 127 include certain information 
uniquely identifying certain characteristics of the device, 
Such as, for example, unique identifier, whether the device 
should be operating in a production mode or a development 
mode, a minimum version (also referred to as an epoch) with 
which a software component is allowed to run within the 
device, etc. In one embodiment, codes 115 determine whether 
the device is in a recovery mode, for example, caused by a 
booting failure (e.g. failure to authenticate?verify certain 
components), in which case, Software components may be 
reloaded or downloaded from a trusted source. For example 
when the device has been hacked by replacing certain soft 
ware components of the device, the booting process may 
detect such a situation using techniques set forth further 
below. As a result, the device may be forced into a recovery 
mode in which a trusted host is contacted to download or 
upgrade further software components that are trusted in order 
to recover the normal and secure environment of the device. 

0030 Codes 115 may include instructions to change the 
clock rate of the device. PKI codes 125 in codes 115 may 
implement public key infrastructure (PKI) to certify whether 
a code image is trusted. For example, PKI codes 125 may 
include implementations of SHA (Secure Hashing Algo 
rithm) hashing functions such as cryptographic hash func 
tions SHA-1, SHA-224, SHA-256, SHA-384, and SHA-512. 
Additionally, PKI codes 125 may include implementations of 



US 2009/0259855A1 

data encrypting algorithms such as AES (Advanced Encryp 
tion Standard) encryption. In one embodiment, codes 115 
may cause hardware initialization for the device to Support a 
connection or communication interface 101 such as USB 
(Universal Serial Bus) or serial interface. Note that through 
out this application, public key infrastructure, SHA and AES, 
etc. are utilized as examples for the illustration purposes only; 
it will be appreciated that other hashing, encryption and/or 
certification techniques may also be utilized. 
0031. In one embodiment, codes 115 cause loading a code 
image into a device memory Such as memory component 103 
or RAM 111. A code image may be loaded from a storage 
component 109 coupled with the chip 105. One or more 
binary images may be included in a code image executable for 
booting a device. The storage component 109 may be a flash 
memory, such as a NAND flash, a NOR flash, or other mass 
storage (e.g., hard disk) components. In another embodiment, 
a code image may be loaded through a connection interface 
101 from a source external to the device. The connection 
interface 101 may be based on a USB connection, an Ethernet 
connection, a wireless network connection (e.g., IEEE 802. 
11), a serial (e.g. RS233) connection, or other communication 
interfaces, etc. In one embodiment, codes 115 may cause 
storing a code image from a device memory into the storage 
component 109 after verifying the code image includes only 
trusted codes. 

0032. Before the device can start executing the code image 
loaded in the device memory, PKI codes 125 perform verifi 
cation operations on the loaded code image to ensure the code 
image could be trusted. Executing a code image may include 
locating a binary image from the code image for execution. In 
one embodiment, PKI codes 125 may verify a loaded code 
image according to data included in the chip 105. Such as the 
data section 117 inside the ROM, a UID (Unique Identifier) 
119 and/or a GID (Global Identifier) 121. UIDs 119 may be 
unique for each device. In one embodiment, all devices are 
associated with a single GID 121, which may be associated 
with a vendor of the device. AGID may be used to encrypt a 
code image to prevent code inspection. Data section 117 of 
the ROM 115 may store a root certificate 123 issued by a 
trusted entity Such as a public key certificate. In one embodi 
ment, a GID may be used to generate a public key included in 
a root certificate such as root certificate 123 of FIG. 1. Dif 
ferent devices may include a common root certificate 123 
based on the same trusted entity. An identifier may be a GID 
or a UID. 

0033 FIG. 2 is a block diagram illustrating one embodi 
ment of system components executing secure booting. Sys 
tem 100 may load an LLB (low level boot) code image 229 
from storage component 109 into RAM 111 as LLB 225. 
Execution of codes 115 may locate or discover code image 
LLB 229 from storage 109 for booting system 100. LLB 225 
may be related to long term power management of the system 
100. In one embodiment, LLB 225 may include an identifi 
cation of a version of system 100. Code image LLB 225 may 
be loaded based on execution of codes 115. In one embodi 
ment, code image LLB 229 may be stored from RAM 111 
based on code image LLB 225 via execution of codes 115. 
0034 Code image iBoot 227, according to one embodi 
ment, may be loaded into memory component 111 from Stor 
age 109 based on code image iBoot 231 according to execu 
tion of LLB 225. Code image iBoot 231 may cause hardware 
initialization for an operating system that provides an oper 
ating environment for the device housing system 100. A 

Oct. 15, 2009 

device may enteran operating environment after a successful 
booting. An operating environment may support various user 
and/or system applications running in the device. In one 
embodiment, code image iBoot 231 enables mass storage 
components of the device, initializes graphic components for 
user interface, and/or activates display components for the 
device, etc. Code image iBoot 231 may be stored from RAM 
111 based on code image iBoot 227 via execution of code 
image LLB 225. In one embodiment, code image LLB 229 
and code image iBoot 231 may be combined into a single 
code image stored in an external boot device, such as USB 
device, connected to system 100 via connection interface 101. 
0035. According to one embodiment, code image Kernel 
cache 223 may be loaded from storage 109 to memory 103 
based on code image Kernelcache 233. Code image Kernel 
cache 223 may be part of a kernel of an operating system to 
Support an operating environment for the device. In one 
embodiment, code image Kernelcache 223 causes a kernel 
and operating system components 235 to be loaded into 
memory 103 from storage 109. Operating system compo 
nents may include user applications, libraries, graphic user 
interface components, and/or user data 235. User data may 
include music, images, videos or other digital content asso 
ciated with a user of the device. For example, such user data 
may be DRM (digital rights management) compliant data 
having restricted usages. Code image Kernelcache 223 may 
enable loading the kernel and the operating system compo 
nents 235 into memory 103. In one embodiment, code image 
Kernelcache 223 is verified to ensure the kernel is trusted 
before being executed in memory 103. In another embodi 
ment, a verification process may be performed by code image 
Kernelcache 223 to ensure that an operating system compo 
nent 235 is trusted before being executed in memory 103. 
Code image Kernelcache 223 may be executed to determine 
whether an operating system component 235 is trusted based 
on UID 119 or root certificate 123. In one embodiment, code 
image Kernelcache 223 is executed to decrypt an operation 
system component 235 in memory 103, e.g. according to GID 
121. In another embodiment, code image Kernelcache 223 is 
executed to store operating system components 235 from 
memory 103 into storage 109. Code image Kernelcache 223 
may be executed to encrypt operating system components 
235 before operating system components 235 are stored in the 
storage 109. 
0036. According to one embodiment, each of image codes 
LLB 229, iBoot 231 and Kernelcache 233 includes codes 
similar to PKI codes 125 inside secure ROM 113 to perform 
Verification and authentication processes oncertain Sub-com 
ponents. Each of LLB 225, iBoot 231, Kernelcache 233, and 
codes 115 inside secure ROM 113 may be built from the same 
Source implementing a common security model for verifying 
whether a separate code image is trusted. Thus, system 100 
may be booted via multi-layers of verifications. Each layer, 
such as associated with secure ROM 113, LLB 225, iBoot 
231, and/or Kernelcache 233, performs the similar flows of 
Verification and certification processes. A common security 
model within each verification and authentication process 
may assume the device is running in similar environments, 
Such as similar clock speeds, similar memory layouts, avail 
ability of common runtime services, etc., when correspond 
ing codes, such as PKI 125, are executed. In one embodiment, 
secure ROM 113, LLB 225, iBoot 231, and Kernelcache 233 
include similar codes implementing a single public key infra 
structure within the device hosting system 100. An external 



US 2009/0259855A1 

boot device, e.g. a USB device coupled to system 100 via 
connection interface 101, may include both LLB and iBoot 
code images sharing common codes, similar to PKI codes 
125, within the boot device to implement public key infra 
Structure. 

0037. In one embodiment, a software component that will 
be running within the system must be verified or authenti 
cated prior to the execution of the respective software com 
ponent, unless the Software component satisfies certain pre 
determined conditions (e.g., provided by a trust vendor or 
during certain circumstances such as manufacturing of the 
device or testing of the Software components). In one embodi 
ment, the settings of a secure storage area in the system may 
be associated with a predetermined condition. As a result, any 
data such as DRM compliant data would not be accessed or 
compromised without proper Verification or authentication. 
0038 FIG. 3A is a block diagram illustrating one exem 
plary data structure of a code image for secure booting. In one 
embodiment, code image 311 includes a data structure as a 
container loaded with one or more binary images 303, such as 
LL.B. iBoot, KernelCache, etc to be executed when booting a 
device, such as system 100 in FIG. 1. Code image 311 may 
include one or more headers 301 specifying, for example, a 
size, a type, and/or version (epoch) numbers associated with 
binary images 303. Other aspects of a code image may be 
included in the headers. In some embodiments, relative loca 
tions of different pans within a code image. Such as binary 
image 303 or signature 305, etc., may be predetermined or 
calculated on the fly according to the associated headers, such 
as headers 301. 
0039. In one embodiment, signature 305 may be generated 
by digitally signing at least a portion of headers 301 binary 
images 303. For example, signature 305 may be an encrypted 
hash according to public key cryptography such as RSA 
(Ralph Shamir Adelman) cryptography. A hash encrypted for 
signature 305 may be derived over headers 301 and binary 
images 303 using hashing functions such as, for example, 
SHA hashing. In one embodiment, a public key is applied for 
encrypting a hash for signature 305. 
0040. A code image may include a sequence of one or 
more public key certificates as a certificate chain, such as 
certificate chain 307. A certificate in a chain may be applied to 
verify the validity of the next certificate in sequence along the 
chain. Each certificate may embed a separate public key in a 
format based on, for example, X.509 standard. In one 
embodiments the public key for decrypting signature 305 
may be embedded in a leaf certificate (the last certificate 
along a certificate chain) of certificate chain 307. In one 
embodiment, certificate chain 307 may include an interme 
diate certificate and a leaf certificate. A root certificate may be 
built into a device, such as root certificate 123 of FIG. 1, to 
certify the intermediate certificate, which in turn may be used 
to certify the leaf certificate. 
0041 Additionally, according to one embodiment, code 
image 311 includes one or more tags 309 for specifying 
compatible devices. For example, a tag from tags 309 may be 
related to hardware settings of a device, such as, for example, 
values in Configuration Registers 127 of FIG. 1. In one 
embodiment, tags 309 designates a name of a compatible 
security domain, a name of a compatible chip set, a type of 
compatible devices, or other key value pairs. Binary image 
303 may include executable codes performing parsing and 
matching operations on tags carried within a separate code 
image. In some embodiments, a binary image. Such as binary 

Oct. 15, 2009 

image 303, inside a code image. Such as code image 311, may 
include common codes, similar to PKI codes 125 of FIG. 1, 
for performing operations on tags from a separate code 
image. A code image may be trusted but incompatible in a 
device which does not allow the code image to execute. 
0042. According to certain embodiments of the invention, 
each of the software components to be installed and loaded in 
the system is implemented or package as an object, also 
referred to as an Image3 object having a predetermined for 
mat Such that a single security processing engine (e.g., code 
builder and/or code loader) can be used to build and verify 
each of the object as a mechanism to determine whether each 
Software component is trusted and compatible with certain 
limitations or criteria of system before executing the execut 
able code embedded within the respective object. 
0043 FIG. 3B is a block diagram illustrating an example 
of data structure representing a layout of an Image3 object 
according to one embodiment. In this example, there are 
multiple objects, each representing a software component to 
be installed and/or executed in an attempt to establish an 
operating environment of the system, Such as, for example, 
LL.B. iBoot, and kernel cache, etc. According to some 
embodiments, a code builder may build an Image3 object for 
an executable code, such as LLB. iBoot, or Kernelcache, etc. 
to be stored in a device (e.g. NOR or NAND flash). A code 
builder may construct an Image3 object including headers 
and tags according to at least the following: 

0044) The builder encrypts a payload (e.g. DATA tag) 
with an encryption key. 

0.045. The builder constructs a key bag tag (e.g. KGAG 
tag) by storing the encryption key wrapped (licked or 
encrypted) by a UID or GID. 

0046. The builder constructs other tags such as a pro 
duction status tag (PROD tag), a security domain tag 
(SDOM tag), a security epoch tag (SEPO tag), etc. 

0047. The builder constructs a signature tag (SHSH tag) 
by performing a hash operation on at least a part of the 
header (e.g. type of the image code), and one or more 
constructed tags as specified in the header (e.g. size of 
signed portion of the Image3 object). The signature tag 
stores the signed hash. 

0.048. The builder constructs a certificate chain tag 
(CERT tag) which stores the certificate chain used to 
sign the hash stored in the signature tag. 

0049. In one embodiment, each object includes a header 
having information identifying a type of the object (e.g., LLB, 
iBoot, Kernelcache). The header may further include an off 
set pointing to a next object in the storage. For example, the 
header of object 1 may include an offset or pointerpointing to 
object 2, which has a pointer pointing to object 3, etc. As a 
result, the same security processing engine can “walk' 
through the chain of objects to authenticate and verify each 
object to ensure that each object is trusted before executing 
the executable code (e.g., payload) of the object. 
0050. In one embodiment, data of each object is imple 
mented in one or more tags which are used by the processing 
engine to verify the object in view of certaininformation (e.g., 
configuration registers) embedded within the secure ROM as 
described above. Similar to the header, each tag includes an 
offset or pointer pointing to a next tag in the object so that the 
same processing logic can again “walk’ through all tags as a 
part of authentication and Verification processes. For 
example, a loader in a device may perform at least the fol 
lowing to walk through all tags in an Image3 object: 



US 2009/0259855A1 

0051. The loader recovers a certificate chain and evalu 
ates the authenticity of the certificate chain and its 
authority to be used according to the device configura 
tions. 

0.052 The loader evaluates its authority over the Image3 
object according to device configurations. 

0053. The loader evaluates a trust for a buffer of the 
Image3 object including one or more tags based on a 
hash value recovered from a signature tag using the 
authorized certificate chain. 

0054 The loader recovers one or more tags and verifies 
the Image3 object is allowed to be trusted according to 
the device configurations. 

0055. The loader optionally recovers a payload encryp 
tion key using the UID/GID associated with the device 
(e.g. from the SecureROM). 

0056. The loader recovers the payload optionally using 
the encryption key. 

0057 The loader loads the payload into the memory. 
0058. In one embodiment, an object includes a tag having 
a hash value representing a signature of the object, where the 
signature may be signed by a certificate as a part of a certifi 
cate chain derived (e.g., an intermediate or a leaf certificate) 
from a root certificate that matches a fingerprint (e.g., includ 
ing the root certificate, a UID and/or GID) embedded within 
the secure ROM. The chain of the certificate may also be 
stored as one of the tags within the object. A common root 
certificate may be used across multiple devices or, alterna 
tively, each device may use a separate root certificate. 
0059. In this example as shown in FIG. 3B, object 1 
includes signature tag having a hash value representingahash 
of certain portions of the header and tags of object 1. The hash 
value is then signed by a certificate obtained from a chain of 
certificate stored in certificate tag, which is derived from a 
root certificate embedded within the secure ROM. Thus, 
when object 1 is examined, the loader executed from the 
secure ROM can authenticate and/or verify the chain of cer 
tificates using the root certificate since the chain of certifi 
cates is derived from the root certificate. Once the certificate 
chain has been authenticated and verified, it can be used to 
recover the hash (e.g., signature) to Verify certain portions of 
the object. 
0060 According to certain embodiments, one of the tags 
may be used to specify a version of the respective object. 
Another tag may be used to specify whether the respective 
object is valid for production mode or development mode, 
which may require different security processes. Another tag 
may be used to specify a security domain (e.g., manufactur 
ing) for which the respective object is valid. Another tag may 
be used to specify a minimum version number, also referred 
to as a security epoch, in which the object is allowed to run. 
An object may not be trusted if this tag is not present or the 
value in this tag is less than the minimum epoch value speci 
fied within the secure ROM (e.g., configuration registers or 
burned fuses). Optionally, certain tags may be used to specify 
one or more chip IDs (e.g., GID or UID) or board ID (e.g., 
motherboard identifier) by which this object may trusted. If 
these tags exist, the one or more chip IDs and/or board ID 
much match the chip IDs and board IDs embedded within the 
secure ROM (e.g., configuration registers or burned fuses). 
0061. In one embodiment, a payload of an object is also 
stored in a tag (e.g., data tag). The tag having the payload may 
further be encrypted by a key which may also be stored in a 
tag (e.g., key tag). In a further embodiment, the key is further 

Oct. 15, 2009 

wrapped by a UID/GID embedded within the secure ROM or 
an external key. Wrapping a data may include one or more 
encryptions processes performed on at least a portion of the 
data. In this example as shown in FIG.3B. Data Tag (e.g., the 
data payload) of object 1 is encrypted by a key wrapped by the 
UID/GID embedded within the Secure ROM. In one embodi 
ment, a key encrypting a data payload may be wrapped by a 
GID instead of a UID. The present of this tag signifies that the 
data payload is encrypted. In order to decrypt (e.g. unwrap) 
the payload, the encryption or decryption key must be first 
recovered using the UID/GID of the secure ROM and then the 
payload is decrypted using the recovered key. As a result, even 
if the object were compromised, the compromised object 
cannot be verified since it did not match the UID/GID of the 
Secure ROM. 

0062. In a further embodiment, an entire object image is 
embedded or signed by a leaf certificate, which is derived 
from a root certificate or a Sub-CA certificate (e.g., interme 
diate certificate) for further security. As a result, the entire 
object image can be verified by authenticating the leaf cer 
tificate using the root certificate, before verifying detailed 
signatures and tags embedded within the object. If the leaf 
certificate cannot be verified, there is no need to verify the rest 
of the security components. 
0063 FIG. 3C is a flow diagram illustrating a process for 
Verifying and loading a sequence of objects according to one 
embodiment of the invention. Note that process 350 may be 
performed by processing logic which may include Software, 
hardware, or a combination of both. For example process 350 
may be performed by code 115 of FIG. 1. Referring to FIG. 
3C, at block 351, processing logic initializes hardware and 
obtain hardware configuration, Such as, for example, UID/ 
GID, board ID, security domain, etc. This information may be 
obtained from hardware configuration registers such as fuse 
Settings. 
0064. At block 352, processing logic locates a next object 
in a storage, for example, based on the header information 
associated with the object. As described above, the object 
may be signed by or embedded within a leaf certificate of a 
certificate chain which is derived from a root certificate 
embedded within the secure ROM. As a result, the processing 
logic authenticates the certificate chain using the root certifi 
cate from the secure ROM. Once the certificate has been 
authenticated, at block 353, the certificate chain is used to 
evaluate the trust of the object. For example, as described 
above, the certificate chain obtained from a certificate chain 
tag (e.g., "CERT tag) is used recover the signature (e.g., a 
hash value) stored in a signature tag (e.g., "SHSH' tag) and 
the recovered signature is then used to verify the integrity of 
certain portions of the object. 
0065. Once the signature of the object has been verified, at 
block 354, processing logic parses one or more tags imple 
mented within the object against the hardware configuration 
embedded within the secure ROM to determine whether the 
object is intended and allowed to run within an operating 
environment within the hardware of a device having those 
specific configuration obtained at block 351. For example, 
certain tags may be parsed to match the chip ID (e.g., UID/ 
GID), board ID, security domain, minimum epoch, etc.) 
0.066 Specifically, if the object is designed to run in a 
production module while the hardware configuration of the 
device indicates that the device is a development module, 
processing logic may not successfully parse the correspond 
ing tag of the object since the information between the tags of 



US 2009/0259855A1 

the object and the hardware configuration of the device do not 
match. Similarly, if the system hardware specifies a minimum 
epoch number (e.g., minimum version), any object having an 
epoch numberless than the minimum epoch number specified 
in the hardware cannot be verified and loaded. This will 
prevent a user from running older versions of Software in a 
newer version of the hardware. 

0067. Optionally at block 355, if the payload of the object 
is encrypted, the decryption key is recovered from one of the 
tag using a UID/GID or a predetermined key. The decryption 
key is then used to decrypt the payload of the object and 
thereafter, the decrypted payload can be executed. Since the 
key to wrap the encryption/decryption key is device? vendor 
specific, even if the payload is compromised, the compro 
mised payload may not match the specific key for encryption. 
As a result, the compromised payload can be verified whether 
it is trusted. The above processes repeat until all of the objects 
have been processed. Note that all of the objects are processed 
by the processing logic derived from the same code. 
0068 FIG. 4 is a flow diagram illustrating one embodi 
ment of a process to Verify a code image for secure booting. 
Exemplary process 400 may be performed by a processing 
logic that may comprise hardware (circuitry, dedicated logic, 
etc.), software (such as is run on a dedicated machine), or a 
combination of both. For example, process 400 may be per 
formed by some components of system 100 of FIG.1. Exem 
plary process 400 may be performed, for example, when 
executing PKI codes 125 of FIG. 1. At block 401, according 
to one embodiment, the processing logic of process 400 
locates a code image within the device by executing instruc 
tions in a ROM chip, such as secure ROM 113 of FIG.1. The 
instructions may be read from a code section of the ROM chip 
such as codes 115 of FIG.1. The code image may be stored in 
a memory component or a storage component of the device, 
which may be a RAM. A storage component may be a flash 
memory or a mass storage device attached to the device. In 
one embodiment, a code image is located by searching one or 
more storage units associated with a device in sequence, Such 
as a NOR flash, a NAND flash, a mass storage oran attached 
USB (Universal Serial Bus) unit. In some embodiments, loca 
tions for storing a code image for booting a device may be 
predetermined. If the code image could not be located, the 
booting process may be interrupted and the device may enter 
a DFU (Device Firmware Upgrade) or a recovery mode at 
block 415. If the code image is located successfully, the 
processing logic of process 400 loads the code image into a 
memory at block 407. In one embodiment, at block 409, the 
processing logic of process 400 decrypts the loaded code 
image based on an embedded identifier within a device. Such 
as UID 109 of FIG.1. In another embodiment, the code image 
may have already been loaded in the memory when located. 
0069. At block 411, according to one embodiment, the 
processing logic of process 400 certifies whether the loaded 
code image could be trusted based on a chain of certificates 
associated with the code image, such as certificate chain 307 
within code image 311 of FIG. 3A. The processing logic of 
process 400 may certify the first certificate along the chain 
based on a root certificate embedded in the device, such as 
root certificate 123 of FIG.1. Each certificate may be certified 
in turn via its previous or parent certificate along the chain. 
The processing logic of process 400 may certify portions of a 
code image other than the certificate chain, such as binary 
images 303 and headers 301 of FIG. 3A, based on the last 
certificate in the chain, namely, the leaf certificate. In one 

Oct. 15, 2009 

embodiment, the processing logic of process 400 performs 
each certification along the chain based on codes implement 
ing public key infrastructure, such as codes common to PKI 
codes 125 of FIG.1. To certify a binary image included in a 
code image, the processing logic of process 400 may perform 
a similar certification as in certifying a certificate along the 
chain. 

0070 FIG. 5 is a flow diagram illustrating one embodi 
ment of a process to certify the trust of a code image. Exem 
plary process 500 may be performed by a processing logic 
that may comprise hardware (circuitry, dedicated logic, etc.), 
Software (such as is run on a dedicated machine), or a com 
bination of both. For example, process 500 may be performed 
by the processing logic of process 400 at block 411 of FIG. 4. 
In one embodiment, at block 501, the processing logic of 
process 500 determines whether a leaf key is valid via a chain 
of certifications rooted at a root certificate. Such as performed 
by the processing logic of process 400 at block 411 of FIG. 4. 
A leaf key may be a public key embedded in a leaf certificate 
of a certificate chain. When a leaf certificate is certified, the 
included leaf key is considered valid. If a leaf key is deter 
mined not valid, the processing logic of process 500 performs 
operations to handle failed verifications at block 503, such as, 
for example, cause a device to enter a DFU mode. 
(0071. If a leaf key is determined valid at block 505, the 
processing logic of process 500 generates a hash over at least 
a portion of a code image, such as headers 301 and binary 
images 303 of FIG. 3A. In one embodiment, the processing 
logic of process 500 generates a hash according to an imple 
mentation of public key infrastructure, such as, for example, 
SHA hashing functions. At block 509, the processing logic of 
process 500 decrypts a signature stored within a code image, 
such as signature 305 of FIG. 3A, according to a unique 
identifier embedded within a device, such as UID 119 of FIG. 
1. In one embodiment, a signature may be extracted from a 
code image based on a predetermined location or a location 
determined on the fly according to headers included in a code 
image, such as headers 301 of FIG. 3A. 
0072 At block 511, the processing logic of process 500 
may decrypt a UID decrypted signature using the validated 
leafkey from a leaf certificate in the certificate chain based on 
codes, for example, similar to PKI codes 125 of FIG.1. In one 
embodiment, decrypting a UID decrypted signature may be 
performed based on RSA cryptography. Subsequently, the 
processing logic of process 500 matches the hash generated at 
block 507 with the decrypted signature to verify if a code 
image is trusted at block 513. If the hash matches the 
decrypted signature, the processing logic of process 500 con 
tinues performing other operations based on a trusted code 
image at block 515. Otherwise, the processing logic of pro 
cess 500 proceeds at block 503 in response to a code image 
determined not to be trusted. 
(0073. Referring back to FIG. 4 at block 413, the process 
ing logic of process 400 determines if a verification of a trust 
for a code image is successful or not. If a trust is not success 
fully verified, the processing logic of process 400 may cause 
the device to enter a DFU mode at block 415. Otherwise, for 
a trusted code image, the processing logic of process 400 may 
verify whether a trusted code image is compatible with device 
settings at block 417. In one embodiment, device settings are 
associated with configuration registers, such as configure reg 
isters 127 of FIG. 1, according to hardwired device setup. In 
Some embodiments, a device setup may be updated by burn 
ing certain fuses on the device when the device is released 



US 2009/0259855A1 

from manufacturing or in a later phase. The processing logic 
of process 400 may compare tags embedded in a trusted code 
image, such as tags 309 of FIG. 3A, with values read from 
configuration registers to determine whether the trusted code 
image is indeed compatible with the underlying device. A tag 
may include a key value pair. For example, a tag may be a 
security domain tag, a usage tags a device type tag, or other 
tags etc. A security domaintag may include a value to indicate 
one or more compatible security domains (e.g., manufactur 
ing or certain customized releases) for a code image. Simi 
larly, a usage tag may include values that refer to whether a 
code image is used for production or development. Addition 
ally a device type tag may specify which chip set a code image 
is intended for. For each tag in a code image, the processing 
logic of process 400 may select one or more configuration 
registers to match with a tag value (e.g. identical in values or 
based on a predetermined relationship). In one embodiment, 
a trusted code image is determined compatible with a device 
at block 419 if each tag included in the trusted code image 
matches hardware settings of the device. Otherwise, the pro 
cessing logic of process 400 may cause the device to enter a 
DFU mode at block 415. 

0074 At block 421, in one embodiment, the processing 
logic of process 400 executes a trusted code image compat 
ible with a device for performing booting operations for an 
operating environment of the device. In one embodiment, a 
trusted code image may be decrypted based on key derived 
from an identifier embedded in a chip, such as GID 121 of 
FIG. 1, before being executed. Execution of a code image 
may include locating an executable binary image, such as 
binary image 303 of FIG. 3A from the code image to execute. 
At block 425, the processing logic of process 400 may deter 
mine whether booting operations have completed for a 
device. If yes, the processing logic of process 400 may allow 
or enable the device to entera normal operating mode at block 
423. Otherwise, the processing logic of process 400 may 
locate another code image to continue the booting operations 
at block 427. 

0075 FIG. 6 is a block diagram illustrating one embodi 
ment of network connections for a host to securely boot a 
device, such as, for example, based on the system of FIG. 1. 
In one embodiment, a device may enter a DFU mode for 
booting from an external source communicatively coupled to 
the device, Such as, for example, a remote host connected to 
the device. In another embodiment, an external Source may be 
a USB device plugged into a device via a connection inter 
face, such as connection interface 101 of FIG. 1. A device 
may be forced to enter a DFU mode based on an initiation 
from a user. In one embodiment, a device may enter a DFU 
mode in response to a user performing a predetermined action 
Such as pressing a button of the device. A user may request a 
device to enter a DFU mode for performing system manage 
ment tasks for the device, including, for example, cleaning up 
user data, upgrading hardware drivers, upgrading user appli 
cations, and/or installing new applications, etc. A device may 
automatically enter a DFU mode when the device fails to boot 
in at least one stage of the booting sequence, such as shown at 
block 415 of FIG. 4. Alternatively, a device may enter a DFU 
mode when the operating system encounters an abnormality 
during normal operation Such as when a corrupted data or 
damaged software components are detected. 
0076 According to one embodiment, network configura 
tion 600 includes a device 601 coupled with a host 603. 
Device 601 may be a media player Such as, for example, an 

Oct. 15, 2009 

iPod from Apple Inc. running a restoring daemon application 
to restore operating system components from the coupled 
host 603. Device 601 may be coupled with host 603 through 
a connection interface Supporting a variety of protocols such 
as TCP/IP protocols. The connection interface may be based 
on USB, a wireless network or an Ethernet, etc. In one 
embodiment, host 603 may be a Mac or Windows based 
computer running application Software such as, for example, 
an iTune application from Apple Inc. Host 603 may be con 
nected to a central server 607 through the network 605 such as 
wide area network (e.g., Internet) or local area network (e.g., 
Intranet or peer-to-peer network). In one embodiment, central 
server 607 may be based on a publicly accessible web server. 
Alternatively, server 607 may be an Intranet or local server. 
0077 FIG. 7 is a flow diagram illustrating one embodi 
ment of a process to Verify an image code received from a 
host. Exemplary process 700 may be performed by a process 
ing logic that may comprise hardware (circuitry, dedicated 
logic, etc.), software (such as is run on a dedicated machine), 
or a combination of both. For example, process 700 may be 
performed by some components of system 100 of FIG.1. In 
one embodiment, the processing logic of process 700 receives 
a code image from a host computer for a device at block 701. 
A code image, when received, may be encrypted using a key 
derived from an identifier stored in a chip inside the device, 
such as GID 121 or a public key included in root certificate 
123 of FIG. 1. A GID encrypted code image may guard 
against direct code inspection on the device and/or while in 
transit for additional security. A code image may be executed 
to boot a device, to run an application for the device, or to 
provide other functions and/or data to the device. In some 
embodiments, a code image includes data required for run 
ning an application in the device. The device and the host 
computer may be remotely coupled as shown in FIG. 6. The 
processing logic of process 700 may receive a code image 
into a memory of a device Such as, for example, a code image 
embedding binary image LLB 225 in FIG.1. In one embodi 
ment, the code image is retrieved from a central server com 
puter connected over a network such as network 605 as shown 
in FIG. 6. A received code image may include a signature, 
such as, for example, signature 305 of FIG. 3A, digitally 
signed by a central authority associated with the central server 
computer. 
(0078. At block 705, according to one embodiment, the 
processing logic of process 700 may determine whether a 
received code image can be successfully verified. A Success 
fully verified code image may be both trusted and compatible 
with an underlying hardware as determined according to 
similar operations as performed by processing logic of pro 
cess 400 at block 405 of FIG.4, including process 500 of FIG. 
5. In one embodiment, the processing logic of process 700 
does not need to perform a UID decrypting operation, Such as 
in block 509 of FIG. 5, to extract a signature embedded within 
a code image received. As a UID for a device cannot be known 
outside of the device, an external code image may not include 
a signature encrypted by the UID embedded inside the device. 
(0079. At block 707, ifa received code image, such as code 
image 311 of FIG.3A, is successfully verified, the processing 
logic of process 700 encrypts the signature associated with 
the code image, such as signature 305 of FIG. 3A, based on a 
UID embedded inside the device. Otherwise, at block 705, the 
processing logic of process 700 may discard the received 
code image, which is either not trusted and/or not compatible 
with the underlying hardware. In one embodiment, the pro 



US 2009/0259855A1 

cessing logic of process 700 may store a UID encrypted 
signature in place of the signature embedded within the 
received code image to update the received code image at 
block 709. Thus, the updated code image and the received 
code image may share the same structure, such as code image 
311 of FIG.3A or the one as shown in FIG.3B and differ only 
in values of the signatures embedded. Other devices may not 
certify the updated image code as the UID associated with the 
encrypted signature is not available outside the device which 
updates the image code. 
0080. In one embodiment, at block 713, the processing 
logic of process 700 may then store the encrypted code image 
in a storage device of the device, such as storage 109 of FIG. 
1. An encrypted code image may include a received code 
image from outside a device updated by a UID encrypted 
signature and encrypted by a GID of the device. 
0081 FIG. 8 shows one example of a data processing 
system which may be used with one embodiment the present 
invention. For example, the system 800 may be implemented 
including a host as shown in FIG. 5. Note that while FIG. 8 
illustrates various components of a computer system, it is not 
intended to represent any particular architecture or manner of 
interconnecting the components as Such details are not ger 
mane to the present invention. It will also be appreciated that 
network computers and other data processing systems which 
have fewer components or perhaps more components may 
also be used with the present invention. 
0082. As shown in FIG. 8, the computer system 800, 
which is a form of a data processing system, includes a bus 
803 which is coupled to a microprocessor(s) 805 and a ROM 
(Read Only Memory) 807 and volatile RAM 809 and a non 
volatile memory 811. The microprocessor 805 may retrieve 
the instructions from the memories 807, 809,811 and execute 
the instructions to perform operations described above. The 
bus 803 interconnects these various components together and 
also interconnects these components 805,807, 809, and 811 
to a display controller and display device 813 and to periph 
eral devices such as input/output (I/O) devices which may be 
mice, keyboards, modems, network interfaces, printers and 
other devices which are well known in the art. Typically, the 
input/output devices 815 are coupled to the system through 
input/output controllers 817. The volatile RAM (Random 
Access Memory) 809 is typically implemented as dynamic 
RAM (DRAM) which requires power continually in order to 
refresh or maintain the data in the memory. 
0083. The mass storage 811 is typically a magnetic hard 
drive or a magnetic optical drive or an optical drive or a DVD 
RAM or a flash memory or other types of memory systems 
which maintain data (e.g. large amounts of data) even after 
power is removed from the system. Typically, the mass Stor 
age 811 will also be a random access memory although this is 
not required. While FIG. 8 shows that the mass storage 811 is 
a local device coupled directly to the rest of the components 
in the data processing system, it will be appreciated that the 
present invention may utilize a non-volatile memory which is 
remote from the system, Such as a network Storage device 
which is coupled to the data processing system through a 
network interface Such as a modem, an Ethernet interface or 
a wireless network. The bus 803 may include one or more 
buses connected to each other through various bridges, con 
trollers and/or adapters as is well known in the art. 
0084 FIG.9 shows an example of another data processing 
system which may be used with one embodiment of the 
present invention. For example, system 900 may be imple 

Oct. 15, 2009 

mented as part of system as shown in FIG. 1. The data pro 
cessing system 900 shown in FIG. 9 includes a processing 
system 911, which may be one or more microprocessors, or 
which may be a system on a chip integrated circuit and the 
system also includes memory 901 for storing data and pro 
grams for execution by the processing system. The system 
900 also includes an audio input/output subsystem 905 which 
may include a microphone and a speaker for, for example, 
playing back music or providing telephone functionality 
through the speaker and microphone. 
I0085. A display controller and display device 907 provide 
a visual user interface for the user, this digital interface may 
include a graphical user interface which is similar to that 
shown on a Macintosh computer when running OS X oper 
ating system software. The system 900 also includes one or 
more wireless transceivers 903 to communicate with another 
data processing system, such as the system 1100 of FIG. 11. 
A wireless transceiver may be a WiFi transceivers an infrared 
transceiver, a Bluetooth transceiver, and/or a wireless cellular 
telephony transceiver. It will be appreciated that additional 
components, not shown, may also be part of the system 900 in 
certain embodiments, and in certain embodiments fewer 
components than shown in FIG.9 may also be used in a data 
processing System. 
I0086. The data processing system 900 also includes one or 
more input devices 913 which are provided to allow a user to 
provide input to the system. These input devices may be a 
keypad or a keyboard or a touch panel or a multi touch panel. 
The data processing system 900 also includes an optional 
input/output device 915 which may be a connector for a dock. 
It will be appreciated that one or more buses, not shown, may 
be used to interconnect the various components as is well 
known in the art. The data processing system shown in FIG.9 
may be a handheld computer or a personal digital assistant 
(PDA), or a cellular telephone with PDA like functionality, or 
a handheld computer which includes a portable gaming 
device, or a cellular telephone, or a media player, Such as an 
iPod, or devices which combine aspects or functions of these 
devices, such as a media player combined with a PDA and a 
cellular telephone in one device. In other embodiments, the 
data processing system 900 may be a network computer oran 
embedded processing device within another device, or other 
types of data processing systems which have fewer compo 
nents or perhaps more components than that shown in FIG.9. 
I0087. At least certain embodiments of the inventions may 
be part of a digital media player, Such as a portable music 
and/or video media player, which may include a media pro 
cessing system to present the media, a storage device to store 
the media and may further include a radio frequency (RF) 
transceiver (e.g., an RF transceiver for a cellular telephone) 
coupled with an antenna system and the media processing 
system. In certain embodiments, media stored on a remote 
storage device may be transmitted to the media player 
through the RF transceiver. The media may be, for example, 
one or more of music or other audio, still pictures, or motion 
pictures. 
I0088. The portable media player may include a media 
selection device. Such as a click wheel input device on an 
iPod(R) or iPod NanoR) media player from Apple Computer, 
Inc. of Cupertino, Calif., a touch screen input device, push 
button device, movable pointing input device or other input 
device. The media selection device may be used to select the 
media stored on the storage device and/or the remote storage 
device. The portable media player may, in at least certain 



US 2009/0259855A1 

embodiments, include a display device which is coupled to 
the media processing system to display titles or other indica 
tors of media being selected through the input device and 
being presented, either through a speaker or earphone(s), or 
on the display device, or on both display device and a speaker 
or earphone(s). Examples of a portable media player are 
described in published U.S. patent application numbers 2003/ 
0095096 and 2004/0224638, both of which are incorporated 
herein by reference. 
0089 Portions of what was described above may be imple 
mented with logic circuitry Such as a dedicated logic circuit or 
with a microcontroller or other form of processing core that 
executes program code instructions. Thus processes taught by 
the discussion above may be performed with program code 
Such as machine-executable instructions that cause a machine 
that executes these instructions to perform certain functions. 
In this context, a “machine' may be a machine that converts 
intermediate form (or “abstract’) instructions into processor 
specific instructions (e.g., an abstract execution environment 
Such as a “virtual machine' (e.g., a Java Virtual Machine), an 
interpreter, a Common Language Runtime, a high-level lan 
guage virtual machine, etc.), and/or, electronic circuitry dis 
posed on a semiconductor chip (e.g., "logic circuitry’ imple 
mented with transistors) designed to execute instructions 
Such as a general-purpose processor and/or a special-purpose 
processor. Processes taught by the discussion above may also 
be performed by (in the alternative to a machine or in com 
bination with a machine) electronic circuitry designed to 
perform the processes (or a portion thereof) without the 
execution of program code. 
0090 The present invention also relates to an apparatus for 
performing the operations described herein. This apparatus 
may be specially constructed for the required purpose, or it 
may comprise a general-purpose computer selectively acti 
vated or reconfigured by a computer program Stored in the 
computer. Such a computer program may be stored in a com 
puter readable storage medium, Such as, but is not limited to, 
any type of disk including floppy disks, optical disks, CD 
ROMs, and magnetic-optical disks, read-only memories 
(ROMs), RAMs, EPROMs, EEPROMs, magnetic or optical 
cards, or any type of media Suitable for storing electronic 
instructions, and each coupled to a computer system bus. 
0091. A machine readable medium includes any mecha 
nism for storing or transmitting information in a form read 
able by a machine (e.g., a computer). For example, a machine 
readable medium includes read only memory (“ROM); ran 
dom access memory (RAM); magnetic disk storage media; 
optical storage media; flash memory devices; electrical, opti 
cal, acoustical or other form of propagated signals (e.g., car 
rier waves, infrared signals, digital signals, etc.); etc. 
0092 An article of manufacture may be used to store 
program code. An article of manufacture that stores program 
code may be embodied as, but is not limited to, one or more 
memories (e.g., one or more flash memories, random access 
memories (static, dynamic or other)), optical disks, 
CD-ROMs, DVD ROMs, EPROMs, EEPROMs, magnetic or 
optical cards or other type of machine-readable media Suit 
able for storing electronic instructions. Program code may 
also be downloaded from a remote computer (e.g., a server) to 
a requesting computer (e.g., a client) by way of data signals 
embodied in a propagation medium (e.g., via a communica 
tion link (e.g., a network connection)). The preceding detailed 
descriptions are presented in terms of algorithms and sym 
bolic representations of operations on data bits within a com 

Oct. 15, 2009 

puter memory. These algorithmic descriptions and represen 
tations are the tools used by those skilled in the data 
processing arts to most effectively convey the Substance of 
their work to others skilled in the art. An algorithm is here, 
and generally, conceived to be a self-consistent sequence of 
operations leading to a desired result. The operations are 
those requiring physical manipulations of physical quantities. 
Usually, though not necessarily, these quantities take the form 
of electrical or magnetic signals capable of being stored, 
transferred, combined, compared, and otherwise manipu 
lated. It has proven convenient at times, principally for rea 
Sons of common usage, to refer to these signals as bits, values, 
elements, symbols, characters, terms, numbers, or the like. 
0093. It should be kept in mind, however, that all of these 
and similar terms are to be associated with the appropriate 
physical quantities and are merely convenient labels applied 
to these quantities. Unless specifically stated otherwise as 
apparent from the above discussion, it is appreciated that 
throughout the description, discussions utilizing terms such 
as “processing or “computing or "calculating or “deter 
mining or “displaying or the like, refer to the action and 
processes of a computer system, or similar electronic com 
puting device, that manipulates and transforms data repre 
sented as physical (electronic) quantities within the computer 
system's registers and memories into other data similarly 
represented as physical quantities within the computer sys 
tem memories or registers or other Such information storage, 
transmission or display devices. 
0094. The processes and displays presented herein are not 
inherently related to any particular computer or other appa 
ratus. Various general purpose systems may be used with 
programs in accordance with the teachings herein, or it may 
prove convenient to construct a more specialized apparatus to 
perform the operations described. The required structure for a 
variety of these systems will be evident from the description 
below. In addition, the present invention is not described with 
reference to any particular programming language. It will be 
appreciated that a variety of programming languages may be 
used to implement the teachings of the invention as described 
herein. 
0.095 The foregoing discussion merely describes some 
exemplary embodiments of the present invention. One skilled 
in the art will readily recognize from Such discussion, the 
accompanying drawings and the claims that various modifi 
cations can be made without departing from the spirit and 
Scope of the invention. 
What is claimed is: 
1. A computer implemented method, comprising: 
in response to a data object including an executable code 

image representing a Software component to be installed 
in an electronic device, wrapping at least a part of the 
data object with a unique identifier (UID) that uniquely 
identifies the electronic device, wherein the UID is 
embedded within a secure ROM (read-only memory) of 
the electronic device, wherein the software component, 
when executed, is configured to establish an operating 
environment of the electronic device; and 

storing the wrapped data object in a storage of the elec 
tronic device, such that when the electronic device is 
Subsequently initialized for operation, the executable 
code image can only be recovered using the UID of the 
electronic device to retrieve. 

2. The method of claim 1, wherein wrapping the executable 
code image comprises: 



US 2009/0259855A1 

generating a signature key for the executable code image: 
and 

encrypting the signature key with the UID into the data 
object, wherein the encryption can only be recovered 
using the UID to verify the executable code image in the 
wrapped data object. 

3. The method of claim 2, further comprising embedding 
the encrypted signature key. within the wrapped data object 
such that the executable code image can only be verified 
Subsequently if a decryption key obtained from the wrapped 
data object based on the UID embedded within the secure 
ROM of the electronic device matches a key generated from 
the executable code image. 

4. The method of claim 1, further comprising embedding 
one or more attributes within the data object based on one or 
more hardware configuration settings of the electronic 
device, wherein the executable code image can only be 
executed subsequently when the one or more attributes of the 
data object match the one or more hardware configuration 
settings of the electronic device. 

5. The method of claim 4, further comprising specifying in 
one of the attributes in the data object a security epoch num 
ber that matches a minimum security epoch number specified 
in the hardware configuration settings of the electronic 
device, wherein the data object can only be executed subse 
quently when the security epoch number obtained from the 
attribute is not less than the minimum security epoch number 
specified by the hardware configuration settings. 

6. The method of claim 4, further comprising specifying in 
one of the attributes in the data object whether the executable 
code image is designed for a production or a development 
version of the electronic device which is indicated via the 
hardware configuration settings, wherein the executable code 
image can only be executed Subsequently when the specified 
attribute matches the corresponding one specified in the hard 
ware configuration settings. 

7. The method of claim 1, further comprising: 
performing a hash function on at least a portion of the data 

object to generate a signature for the data object; 
signing the signature of the data object using a certificate of 

the certificate chain that is derived from a root certificate 
matching a fingerprint of the electronic device; and 

embedding the signed signature and the certificate chain in 
the data object, such that the signature can be recovered 
Subsequently using the certificate chain in order to verify 
integrity of the data object to be executed. 

8. The method of claim 7, further comprising encapsulat 
ing the data object within a leaf certificate of the certificate 
chain, such that the entire data object can be Subsequently 
authenticated using one of a root certificate and an interme 
diate certificate of the certificate chain. 

9. A machine-readable medium having instructions stored 
therein, which when executed by a machine, cause the 
machine to perform a method, the method comprising: 

in response to a data object including an executable code 
image representing a software component to be installed 
in an electronic device, wrapping at least a part of the 
data object with a unique identifier (UID) that uniquely 
identifies the electronic device, wherein the UID is 
embedded within a secure ROM (read-only memory) of 
the electronic device, wherein the software component, 
when executed, is configured to establish an operating 
environment of the electronic device; and 

Oct. 15, 2009 

storing the wrapped data object in a storage of the elec 
tronic device, such that when the electronic device is 
Subsequently initialized for operation, the executable 
code image can only be recovered using the UID of the 
electronic device. 

10. The method of claim 9, wherein wrapping the execut 
able code image comprises; 

generating a signature key for the executable code image: 
and 

encrypting the signature key with the UID into the data 
object, wherein the encryption can only be recovered 
using the UID to verify the executable code image in the 
wrapped data object. 

11. The machine-readable medium of claim 9, wherein the 
method further comprises embedding the encrypted signature 
key within the wrapped data object such that the executable 
code image can only be verified Subsequently if a decryption 
key obtained from the wrapped data object based on the UID 
embedded within the secure ROM of the electronic device 
matches a key generated from the executable code image. 

12. The machine-readable medium of claim 9, wherein the 
method further comprises embedding one or more attributes 
within the data object based on one or more hardware con 
figuration settings of the electronic device, wherein the 
executable code image can only be executed Subsequently 
when the one or more attributes of the data object match the 
one or more hardware configuration settings of the electronic 
device. 

13. Tile machine-readable medium of claim 12, wherein 
the method further comprises specifying in one of the 
attributes in the data object a security epoch number that 
matches a minimum security epoch number specified in the 
hardware configuration settings of the electronic device, 
wherein the data object can only be executed Subsequently 
when the security epoch number obtained from the attribute is 
not less than the minimum security epoch number specified 
by the hardware configuration settings. 

14. The machine-readable medium of claim 12, wherein 
the method further comprises specifying in one of the 
attributes in the data object whether the executable code 
image is designed for a production or a development version 
of the electronic device which is indicated via the hardware 
configuration settings, wherein the executable code image 
can only be executed Subsequently when the specified 
attribute matches the corresponding one specified in the hard 
ware configuration settings. 

15. The machine-readable medium of claim 9, wherein the 
method further comprises: 

performing a hash function on at least a portion of data 
object to generate a signature for the data object; 

signing the signature of the data object using a certificate of 
the certificate chain that is derived from a root certificate 
marching a fingerprint of the electronic device; and 

embedding the signed signature and the certificate chain in 
the data object, such that the signature can be recovered 
Subsequently using the certificate chain in order to verify 
integrity of the data object to be executed. 

16. The machine-readable medium of claim 15, wherein 
the method further comprises encapsulating the data object 
within a leaf certificate of the certificate chain, such that the 
entire data object can be Subsequently authenticated using 
one of a root certificate and an intermediate certificate of the 
certificate chain. 



US 2009/0259855A1 

17. A computer implemented method, comprising: 
in response to a data object having an executable code 

image embedded therein recovering a decryption key 
from the data object using a unique identifier (UID) that 
uniquely identifies an electronic device, wherein the 
UID is embedded within a secure ROM (read-only 
memory) of the electronic device: 

Verifying the executable code image from the data object 
using the recovered decryption key, wherein the execut 
able code image is previously verified using an encryp 
tion key corresponding to the decryption key, which is 
stored within the data object and wrapped by the UID 
associated with the electronic device; and 

executing the recovered executable code image to establish 
at least a portion of an operating environment of the 
electronic device. 

18. The method of claim 17, further comprising authenti 
cating the data object using a certificate chain derived from a 
root certificate that matches a fingerprint embedded within 
the secure ROM of the electronic device, wherein the leaf 
certificate of the certificate chain is embedded within the data 
object. 

19. The method of claim 18, further comprising: 
authenticating a certificate chain embedded within the data 

object using the root certificate; 
recovering a signature from the data object using the 

authenticated certificate chain; and 
examining integrity of the data object based on the recov 

ered signature, wherein the data object is authenticated 
only if the signature verifies at least a portion of integrity 
of the data object. 

20. The method of claim 19, further comprising: 
retrieving one or more attributes from the data object to 

obtain compatibility information; and 
matching the compatibility information against one or 
more hardware configuration settings of the electronic 
device to determine whether the data object is intended 
to he used in the electronic device, wherein the execut 
able code image is executed only if the compatibility 
information matches the one or more hardware configu 
ration settings of the electronic device. 

21. A machine-readable medium having instructions 
stored therein, which when executed by a machine, cause the 
machine to perform a method, the method comprising: 

in response to a data object having an executable code 
image embedded therein, recovering a decryption key 

11 
Oct. 15, 2009 

from. the data object using a unique identifier (UID) that 
uniquely identifies an electronic device, wherein the 
UID is embedded within a secure ROM (read-only 
memory) of the electronic device: 

verifying the executable code image from the data object 
using the recovered decryption key, wherein the execut 
able code image is previously verified using an encryp 
tion key corresponding to the decryption key, which is 
stored within the data object and wrapped by the UID 
associated with the electronic device; and 

executing the recovered executable code image to establish 
at least a portion of an operating environment of the 
electronic device. 

22. The machine-readable medium of claim 21, wherein 
the method further comprises authenticating the data object 
using a certificate chain derived from a root certificate that 
matches a fingerprint embedded within the secure ROM of 
the electronic device, wherein the leaf certificate of the cer 
tificate chain is embedded within the data object. 

23. The machine-readable medium of claim 22, wherein 
the method further comprises: 

authenticating a certificate chain embedded within the data 
object using the root certificate; 

recovering a signature from the data object using the 
authenticated certificate chain; and 

examining integrity of the data object based on the recov 
ered signature, wherein the data object is authenticated 
only if the signature verifies at least a portion of integrity 
of the data object. 

24. The machine-readable medium of claim 23, wherein 
the method further comprises: 

retrieving one or more attributes from the data object to 
obtain compatibility information; and 

matching the compatibility information against one or 
more hardware configuration settings of the electronic 
device to determine whether the data object is intended 
to be used in the electronic device, wherein the execut 
able code image is executed only if the compatibility 
information matches the one or more hardware configu 
ration settings of the electronic device 

c c c c c 


