Office de la Propriete Canadian CA 2598021 A1 2006/08/24

Intellectuelle Intellectual Property
du Canada Office (21) 2 598 021
v organisme An agency of 12y DEMANDE DE BREVET CANADIEN
d'Industrie Canada Industry Canada CANADIAN PATENT APPLICATION
13) A1
(86) Date de dépét PCT/PCT Filing Date: 2006/02/17 (51) Cl.Int./Int.Cl. GO6F 11/74(2006.01),
(87) Date publication PCT/PCT Publication Date: 2006/08/24 GO6F 1/730(2000.01)

. . : _ (71) Demandeur/Applicant:
(85) Entrée phase nationale/National Entry: 2007/08/14 ORACLE INTERNATIONAL CORPORATION. US

(86) N° demande PCT/PCT Application No.: US 2006/005909
(72) Inventeurs/Inventors:

(87) N° publication PCT/PCT Publication No.: 2006/089263 CHANDRASEKARAN. SASHIKANTH, US:

(30) Priorité/Priority: 2005/02/18 (US11/061,152) PRUSCINO, ANGELO, US
(74) Agent: SMART & BIGGAR

(54) Titre : PROCEDE ET DISPOSITIF DE TRAITEMENT DE TRANSACTIONS DE SIGNALISATION DANS DES
SYSTEMES DE BASES DE DONNEES
54) Title: METHOD AND MECHANISM OF HANDLING REPORTING TRANSACTIONS IN DATABASE SYSTEMS

200

L 7 NON o
-~ NON- - ¢ REPORTING 1
: REPORTING \ TRANSACTION ;" REPORYING .
. TRANSACGTION . 2108 { TRANSACTION |
. 210a - "o e \o212
PRIMARY NODE FAILOVER NODE

202 204

o : 205 {
@ ,9 | j
—

[

DATABASE
2086

_

[

(57) Abréegée/Abstract:

Disclosed are improved methods, systems, and mediums for handling reporting transactions in database systems. In some
embodiments, database snapshots are used to carry out reporting transactions on a fallover node concurrently with execution of
non-reporting transactions on a primary node.

,
L
X
e
Senchee f
L S S \
ity K
X : - h.l‘s_‘.}:{\: .&. - A L~

A7 /7]
o~

C an a dg http:vopic.ge.ca - Ottawa-Hull K1A 0C9 - atp.//cipo.ge.ca OPIC

OPIC - CIPO 191

woO 2006/089263 A3 I M HUI 0 AL A0 O A0 00 R0

CA 02598021 2007-08-14

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(10) International Publication Number

WO 2006/089263 A3

(51) International Patent Classification: (74) Agents: MEI, Peter, C. etal.; BINGHAM McCUTCHEN,
GO6F 11/14 (2006.01) GO6F 17/30 (2006.01) LLP, Three Embarcadero Center, Suite 1800, San Fran-

(21) International Application Number: cisco, California 94111-4067 (US).

PCT/US2006/005909 (81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,

(19) World Intellectual Property Organization [#
International Burcau |

(43) International Publication Date
24 August 2006 (24.08.2006)

(22) International Filing Date:

17 February 2006 (17.02.2006) AT, AU. AZ. BA, BB. BG. BR, BW. BY. BZ. CA. CH. CN.
| CO. CR. CU. CZ. DE, DK, DM. DZ. EC, EE. EG. ES, FL
(25) Filing Language: English GB. GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
(26) Publication Language: English KG. KM. KN, KP, KR, KZ LC. LK. LR. LS. LT, LU, LV,
o LY, MA. MD. MG. MK, MN, MW. MX, MZ. NA. NG. NL
(30) Priority Data: NO, NZ. OM. PG. PH. PL. PT, RO, RU, SC. SD. SE. SG.
11/061.152 18 February 2005 (18.02.2005) US SK.SL. SM. SY. TJ. TM. TN. TR. TT. TZ. UA. UG, US.

(71) Applicant (for all designated States except US): ORACLE UZ, VC, VN, YU, ZA, ZM, ZW.

INTERNATIONAL CORPORATION [US/US]J; 500 Or-

34) Designated States / th ise indicated,)
acle Parkway, Redwood Shores, California 94065 (US). (84) Designated States (unless otherwise indicated, for every

kind of regional protection available): ARIPO (BW, GH,

(72) Inventors; and GM, KE, LS, MW, MZ., NA, SD, SL, SZ, TZ, UG, ZM.,

(75) Inventors/Applicants (for US only): CHAN- /W), BEurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
DRASEKARAN, Sashikanth [IN/US]; 4325 Renaissance European (AT, BE, BG, CH, CY, CZ, DE, DK, ELE, ES, Il,
Drive, #213, San Jose, California 95134 (US). PRUS- FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT,
CINO, Angelo [IT/US]; 436 Distel Drive, Los Altos, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA,
California 94022 (US). GN, GQ, GW, ML, MR, NE, SN, TD, TG).

[Continued on next page]

(54) Title: METHOD AND MECHANISM OF HANDLING REPORTING TRANSACTIONS IN DATABASE SYSTEMS

200 (57) Abstract: Disclosed are improved
/ methods, systems, and mediums for
handling reporting transactions in

- . database systems. In some embodiments,
T NON- T

= NON- ! REPORTING - database snapshots are used to carry
| ; ;" REPORTING
e o TRANSACTION - | TRANSACTION | out reporting transactions on a failover

.. 210a - 212 L

node concurrently with execution of
non-reporting transactions on a primary
node.

o

PRIMARY NODE

FAILOVER NODE

202 204

SNAPSHOT
208

DATABASE |
206

~—

CA 02598021 2007-08-14

WO 2006/089263 A3 |IHIHHIHA!H HURO AL AR 0 A ARV AR A

Published: For two-letter codes and other abbreviations, refer to the "Guid-
— with international search report ance Notes on Codes and Abbreviations" appearing at the begin-
— before the expiration of the time limit for amending the ning of each regular issue of the PCT Gagzette.

claims and to be republished in the event of receipt of

amendments

(88) Date of publication of the international search report:
2 August 2007

CA 02598021 2007-08-14
WO 2006/089263 PCT/US2006/005909

METHOD AND MECHANISM OF HANDLING REPORTING
TRANSACTIONS IN DATABASE SYSTEMS

I e —— S A S Kiniemr’ Oy ey S o o —

The present invention is related to database systems. More particularly, the present -
invention is directed to a method and mechanism of handling reporting transactions in
database systems.

Many database systems employ failover clusters to ensure high availability, which is
crucial in today’s fast paced marketplace. In a failover cluster, a database is linked to a primary
node and at least one failover node (also known as the spare node). Applications, such as
database and web servers, run on the primary node until it malfunctions. When that occurs, the
applications are restarted on the failover node. Since the failover node and the primary node
belong to a single cluster, standard heartbeat mechanisms can be used to detect failure of the
primary node.

One problem with failover clusters is that the failover node cannot be used concurrently
with the primary node. As such, it may be difficult to justify the cost of purchasing additional
hardware that is used only when the primary hardware fails. Certain parallel database systems
solve this problem by employing an active/active cluster where two or more nodes can
concurrently access the database in the cluster. The active/active cluster, however, requires
complex concurrency control mechanisms to ensure that the database is consistent in the
presence of concurrent reads and modifications from all of the nodes in the cluster.

Another problem users face is the need to run mixed workloads, where reporting
transactions are executed concurrently with other transactions. Ideally, real-time reporting is
provided by each reporting transaction, i.e., results from the latest updates are used by queries
in the transaction. In addition, users prefer to run the reporting transactions separately to avoid
hardware resource competition (e.g.,, for CPU or memory) between the non-reporting and
reporting transactions. |

For database systems that do not support active/active clustering, a replicated database

can be created and used for reporting. However, because a replicated database is an entire copy

CA 02598021 2007-08-14
WO 2006/089263 PCT/US2006/005909

of the primary database, this solution doubles storage costs. Additionally, a replicated database
often lags behind the primary database as it may not be feasible to instantaneously replicate
changes in the primary database. Even if instantaneous replication were feasible, throughput
on the primary database would be significantly affected since every commit on the primary
database would need to be synchronously replicated to the reporting database.

Hence, there is a need for a method and mechanism to address these and other issues
regarding the execution of reporting transactions in database systems utilizing failover clusters.

Embodiments of the present invention provide improved methods, systems, and
mediums for handling reporting transactions in database systems. According to an
embodiment, a snapshot of a database is taken. The database is linked to a primary node and a
failover node. One or more non-reporting transactions are then executed on the primary node
and the snapshot is utilized to carry out a reporting transaction on the failover node
concurrently with the execution of the one or more non-reporting transactions on the primary
node.

Further details of aspects, objects, and advantages of the invention are described below
in the detailed description, drawings, and claims. Both the foregoing general description and

the following detailed description are exemplary and explanatory, and are not intended to

limiting as to the scope of the invention.

CA 02598021 2007-08-14
WO 2006/089263 PCT/US2006/005909

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings are included to provide a further understanding of the
invention and, together with the Detailed Description, serve to explain the principles of the
Invention.

Fig. 1 is a flow chart of a method of handling reporting transactions in database systems
according to an embodiment of the invention.

Fig. 2 illustrates execution of a reporting transaction in a failover cluster according to
one embodiment of the invention.

Fig. 3 depicts a process flow of a method for handling reporting transactions in database
systems according to another embodiment of the invention.

Fig. 4 is an example of how a reporting transaction is handled in a cluster according to
another embodiment of the invention.

Fig. 5 shows one embodiment of a method of handling reporting transactions in
database systems.

Fig. 6 depicts a cluster with multiple failover nodes.

Fig. 7 illustrates another embodiment of a method for handling reporting transactions in
database systems.

Fig. 8 shows sample database system.

Fig. 9 is a process flow of a method for handling reporting transactions in database
systems according to a further embodiment of the invention.

Fig. 10 depicts execution of multiple reporting and non-reporting transactions in a
failover cluster according to a further embodiment of the invention.

Fig. 11 is a diagram of a system architecture with which embodiments of the present

invention can be implemented.

CA 02598021 2007-08-14
WO 2006/089263 PCT/US2006/005909

DETAILED DESCRIPTION

Handling of reporting transactions in database systems is disclosed. Rather than
employ an active/active cluster, which requires complex coherency and routing mechanisms, or
have a separate replicated database, which entails purchasing additional hardware, with
potentially outdated data, reporting transactions are executed on a failover node using database
snapshots concurrently with non-reporting transactions running on a primary node. This
utilizes the failover node, which would otherwise remain idle, and provides near real-time
reporting when the latest snapshots are used.

Illustrated in Fig. 1 is a method of handling reporting transactions in database systems.
At 102, a snapshot of a database is taken. The database is linked to a primary node and a
failover node. In some embodiments, only the primary node is allowed to modify the database.
Client connections could be configured to direct all reporting transactions to the failover node
and all other transactions to the primary node. It may also be possible for the failover node to
automatically route transactions that could potentially modify the database to the primary
node. This routing can be done by marking a transaction as READ-WRITE or READ-ONLY,
which identifies whether the session will be modifying the database.

One or more non-reporting transactions are then executed on the primary node (104)
and the snapshot is utilized to carry out a reporting transaction on the failover node
concurrently with the execution of the one or more non-reporting transactions on the primary
node (106). Each of the reporting and non-reporting transaction comprises one or more queries.
And although non-reporting transaction may be read-write or read-only transactions, reporting
transactions are usually read-only transactions.

A snapshot is a point-in-time copy of the database and shares the same disk space as the
database, except for database blocks that are modified after the snapshot is taken. This can be
aclcomplished through a standard copy-on-write mechanism where changed blocks are written
to a new location so that the snapshot remains unmodified. Since snapshots are read-only and
cannot be modified by the primary node, queries running on the failover node will return
results that are consistent with the snapshot used without requiring coordination with the

primary node. And because a snapshot is consistent and for the entire database (i.e., indexes in

CA 02598021 2007-08-14
WO 2006/089263 PCT/US2006/005909

the snapshot and tables referenced in queries are all consistent), existing query execution
engines need not be modified. Various snapshot methodologies are available and can be
implemented on a file, application, system, or database level. For example, a description on

creating file-level snapshot can be found at http://www.netapp.com/tech library/3002.html.

Snapshots are relatively cheap to create both in terms of disk space and CPU usage since
they use the same disk storage as the database for all unchanged data. As such, database
systems can be configured to take a snapshot fairly frequently, e.g., every 10 seconds. However,
it is also. possible tor a database system to generate a snapshot in response to a user command,
e.g., based on the quality of service desired by the reporting session or other such metrics.
Using the most current snapshot to carry out the reporting transaction on the failover node will
provic}e near real-time reporting as the latest updates will be used by queries in the reporting
transaction. The user, however, may also be allowed to specify the use of a snapshot that is
older than the most recent one taken.

Fig. 2 depicts a cluster 200 with a primary node 202, a failover node 204, and a database
206. A snapshot 208 of database 206 has been taken. While a plurality of non-reporting
transactions 210a and 210b are running on primary node 202, snapshot 208 is used to execute a
reporting transaction 212 on failover node 204. In some embodiments, non-reporting
transactions 210a and 210b and reporting transaction 212 are part of a workload.

Shown in Fig. 3 is a process flow of a method for handling reporting transactions in
database systems. According to the embodiment, a snapshot is taken of a database linked to a
primary node and a failover node (302). At 304, one or more non-reporting transactions are
executed on the primary node. The snapshot is utilized to carry out a reporting transaction on
the failover node concurrently with the execution of the one or more non-reporting transactions
on the primary node (306). One or more temporary tables are then created and used when the
reporting transaction is carried out on the failover node (308).

A cluster 400 is illustrated in Fig. 4. Cluster 400 includes a primary node 402, a failover
node 404, and a database 406. In the example, a snapshot 408a is taken and used to execute a
reporting transaction 412 on failover node 404 while a non-reporting transaction 410 is running

on primary node 402. During execution of reporting transaction 412, temporary tables 414a and

CA 02598021 2007-08-14
WO 2006/089263 PCT/US2006/005909

414b are created through a query script in transaction 412 to store temporary results. These
temporary tables 414a and 414b are transparently forwarded to primary node 402, which then
allocates space in database 406 for temporary tables 414a and 414b. Changes that are
subsequently saved in temporary tables 414a and 414b at failover node 404 need not be
forwarded to primary node 402.

In Fig. 4, a new snapshot 408b of database 406 is taken to allow subsequent queries in
reporting transaction 412 to access temporary tables 414a and 414b. However, in other
embodiments, less than all of the temporary tables created will be kept for access by subsequent
queries. Thus, after completion of a query, the failover node may delete a temporary table and
forward the deletion to the primary node in order to release the database space allocated for the
table.

To ensure consistent results, a single query will usually use the same snapshot.
However, as seen in the example of Fig. 4, a subsequent query within the same session or
transaction may use the same snapshot as or a more recent snapshot than the one used by a
previous query.

Depicted in Fig. 5 is another method of handling reporting transactions in database
systems. A snapshot of a database is taken at 502. In the embodiment, the database is linked to
a primary node and a failover node. One or more non-reporting transactions are then executed
on the primary node (504) and the snapshot is utilized to carry out a reporting transaction on
the failover node concurrently with the execution of the one or more non-reporting transactions
on the primary node (506). At 508, one or more schemas in the database are modified and used
when the reporting transaction is carried out on the failover node. The one or more schemas
may have been created on the primary node and “marked” or “reserved” for use by the
reporting transaction on the failover node. In addition, changes to the one or more schemas
may be made without coordinating with the primary node.

A database schema is a collection of objects. Schema objects include, but are not limited
to, e.g., tables, views, sequences, and stored procedures. Tables are generally the basic unit of
organization in a database and comprise data stored in respective rows and columns. Views are

custom-tailored presentations of data in one or more tables. Views derive their data from the

CA 02598021 2007-08-14
WO 2006/089263 PCT/US2006/005909

tables on which they are based, i.e.,, base tables. Base tables, in turn, can be tables, or can
themselves be views. An example of a view is a table minus two of the columns of data of the
table.

Sequences are serial lists of unique numbers identifying numeric columns of one or
more database tables. They generally simplify application programming by automatically
generating unique numerical values for the rows of a single table, or multiple tables. With the
use of sequences, more than one user may enter data to a table at generally the same time. A
stored procedure is generally a set of computer statements grouped together as an executable
unit to perform a specific task.

Fig. 6 shows a cluster 600 with a primary node 602, two failover nodes 604a and 604b,
and a database 606. A snapshot 608 has been taken of database 606. In the embodiment,
schemas 614a and 614b within database 606 are available to failover nodes 604a and 604b in
read-write mode, unlike the rest of database 606, which is only open to failover nodes 604a and
604b through snapshot 608. Under this situation, schemas 614a and 614b can be modified by
reporting transactions 612a and 612b running on failover nodes 604a and 604b, respectively.
Since data contained in schemas 614a and 614b is not shared between failover nodes 604a-604b
and primary node 602, non-reporting transaction 610 executing on primary node 602 cannot
access schemas 614a and 614b in database 606.

A flowchart of a method for handling reporting transactions in database systems is
illustrated in Fig. 7. At 702, a snapshot of a database linked to a primary node and a failover
node is taken. One or more non-reporting transactions are executed on the primary node at 704.
The snapshot is then utilized to carry out a reporting transaction on the failover node
concurrently with the execution of the one or more non-reporting transactions on the primary

node (706).

In the embodiment, one or more user-defined procedures on the primary node are
accessed and used when the reporting transaction is carried out on the failover node (708).
User-defined procedures are commonly used to make it easier to prepare complex reports and
are usually created and compiled on the primary node. These procedures can be accessed from

the failover node just like any other database object.

CA 02598021 2007-08-14
WO 2006/089263 PCT/US2006/005909

A database system 800 is depicted in Fig. 8. Although the figure only shows a user 802,
a client 804, a primary node 806, a failover node 808, and a database 810, system 800 may
include other clusters, nodes, users, databases, and clients. In the example, user 802, through
client 804, has defined procedures 818a and 818b on primary node 806. After a snapshot 812 is
taken of database 810, a reporting transaction 816 is executed on failover node 808, concurrently
with the running of a non-reporting transaction 814 on primary node 806, using snapshot 812
and user-defined procedures 818a and 818b. As illustrated in Fig. 8, the use of snapshot 812,
unlike user-defined procedures 818a and 818b, is direct, i.e., sﬁapshot 812 is used without going
through primary node 806.

Another method of handling reporting transactions in database systems is shown in Fig.
9. According to the method, a snapshot of a database is taken at 902. The database is linked to a
primary node and a secondary node. One or more non-reporting transactions are then executed
on the primary node at 904 and the snapshot is utilized to carry out a reporting transaction on
the failover node concurrently with the execution of the one or more non-reporting transactions
on the primary node at 906. A temporary space in the database is reserved and used when the
reporting transaction is carried out on the failover node (908). ‘

To reserve temporary space in a database, a failover node can send a message to a
primary node since the reservation usually requires catalog changes that are performed by the
primary node to avoid coherency issues. Once the scratch disk space has been reserved for the
failover node, writing to the temporary space itself can be performed without intervention from
the primary node. The scratch space permits temporary files to be created. These temporary
files are sometimes needed to store results of temporary operations that do not fit in main
memory, e.g., Intermediate results in sorts, hash tables used in JOIN methods, etc.

Fig. 10 illustrates a cluster 1000 with a primary node 1002 and three failover nodes
1004a, 1004b, and 1004c, all of which are linked to a database 1006. In the figure, a user-defined
procedure 1012 can be found on primary node 1002 along with a read-write transaction 1010a
and a read-only transaction 1010b. Reporting transactions 1014a and 1014b are running on
failover node 1004a. Additionally, a reporting transaction 1014c is running on failover node

1004b, while reporting transactions 1014d, 1014e, and 1014f are running on failover node 1004c.

CA 02598021 2007-08-14
WO 2006/089263 PCT/US2006/005909

Three snapshots 1008a, 1008b, and 1008c of database 1006 have been taken at different times.
Each of the reporting transactions can be executed using one of the snapshots. Reporting
transactions on the same failover node, however, need not utilize the same snapshot. For
instance, reporting transactions 1014d, 1014e, and 1014f on failover node 1004c can each use a
different snapshot 1008.

As depicted in Fig. 10, three temporary spaces 1016a, 1016b, and 1016¢ have been
reserved in database 1006 for failover nodes 1004a, 1004b, and 1004c, respectively. Each of the
failover nodes 1004a, 1004b, and 1004c sent a request to primary node 1002 to reserve their
respective scratch space. In other embodiments, failover nodes 1004a, 1004b, and 1004c may

share one or more temporary spaces.

SYSTEM ARCHITECTURE OVERVIEW

Fig. 11 is a block diagram of a computer system 1100 suitable for implementing an
embodiment of the present invention. Computer system 1100 includes a bus 1102 or other
communication mechanism for communicating information, which interconnects subsystems
and devices, such as processor 1104, system memory 1106 (e.g., RAM), static storage device
1108 (e.g., ROM), disk drive 1110 (e.g., magnetic or optical), communication interface 1112 (e.g.,
modem or ethernet card), display 1114 (e.g., CRT or LCD), input device 1116 (e.g., keyboard),
and cursor control 1118 (e.g., mouse or trackball).

According to one embodiment of the invention, computer system 1100 performs specific
operations by processor 1104 executing one or more sequences of one or more instructions
contained in system memory 1106. Such instructions may be read into system memory 1106
from another computer readable medium, such as static storage device 1108 or disk drive 1110.
In alternative embodiments, hard-wired circuitry may be used in place of or in combination
with software instructions to implement the invention.

The term “computer readable medium” as used herein refers to any medium that
participates in providing instructions to processor 1104 for execution. Such a medium may take
many forms, including but not limited to, non-volatile media, volatile media, and transmission

media. Non-volatile media includes, for example, optical or magnetic disks, such as disk drive

CA 02598021 2007-08-14

WO 2006/089263 PCT/US2006/005909
10

1110. Volatile media includes dynamic memory, such as system memory 1106. Transmission
media includes coaxial cables, copper wire, and fiber optics, including wires that comprise bus
1102. Transmission media can also take the form of acoustic or light waves, such as those
generated during radio wave and infrared data communications.

Common forms of computer readable media includes, for example, floppy disk, flexible
disk, hard disk, magnetic tape, any other magnetic medium, CD-ROM, any other optical
medium, punch cards, paper tape, any other physical medium with patterns of holes, RAM,
PROM, EPROM, FLASH-EPROM, any other memory chip or cartridge, carrier wave, or any

other medium from which a computer can read.

In an embodiment of the invention, execution of the sequences of instructions to practice
the invention is performed by a single computer system 1100. According to other embodiments
of the invention, two or more computer systems 1100 coupled by communication link 1120 (e.g,,
LAN, PTSN, or wireless network) may perform the sequence of instructions required to practice
the invention in coordination with one another.

Computer system 1100 may transmit and receive messages, data, and instructions,
including program, i.e., application code, through communication link 1120 and communication
interface 1112. Received program code may be executed by processor 1104 as it is received,
and/or stored in disk drive 1110, or other non-volatile storage for later execution.

In the foregoing specification, the invention has been described with reference to specific
embodiments thereof. It will, however, be evident that various modifications and changes may
be made thereto without departing from the broader spirit and scope of the invention. For
example, the above-described process flows are described with reference to a particular
ordering of process actions. However, the ordering of many of the described process actions
may be changed without affecting the scope or operation of the invention. The specification

and drawings are, accordingly, to be regarded in an illustrative rather than restrictive sense.

CA 02598021 2007-08-14

WO 2006/089263 PCT/US2006/005909
11

CLAIMS

e oS, S—

What is claimed is:

1. A method of handling reporting transactions in database systems, the method
comprising:
taking a snapshot of a database, wherein the database is linked to a primary node and a

failover node;
executing one or more non-reporting transactions on the primary node; and
utilizing the snapshot to carry out a reporting transaction on the failover node

concurrently with the execution of the one or more non-reporting transactions on the primary

node.

2. The method of claim 1, further comprising;

creating one or more temporary tables on the failover node, wherein the one or more

temporary tables are used when the reporting transaction is carried out on the failover node.

3. The method of claim 2, wherein the one or more temporary tables are created through a

query script in the reporting transaction.

4., The method of claim 2, wherein at least one of the one or more temporary tables is

accessible to more than one query in the reporting transaction.

5. The method of claim 1, further comprising:

modifying one or more schemas in the database, wherein the one or more schemas are

used when the reporting transaction is carried out on the failover node.

6. The method of claim 5, wherein the one or more schemas are not accessible to the one or

more non-reporting transactions executing on the primary node.

7. The method of claim 5, wherein at least one of the one or more schemas includes one or

more tables.

CA 02598021 2007-08-14

WO 2006/089263 PCT/US2006/005909
12

8. The method of claim 1, further comprising:
accessing one or more user-defined procedures on the primary node, wherein the one or

more user-defined procedures are used when the reporting transaction is carried out on the

failover node.

9. The method of claim 1, further comprising:
reserving a temporary space in the database, wherein the temporary space is used when -

the reporting transaction is carried out on the failover node.

10. The method of claim 1, wherein the primary node and the failover node are part of a

cluster.

11. The method of claim 10, wherein the cluster includes one or more additional failover

nodes.

12. The method of claim 1, wherein at least one of the one or more non-reporting

transactions is a read-write transaction.

13. The method of claim 1, wherein the reporting transaction and the one or more

non-reporting transactions are part of a workload.

14. The method of claim 1, wherein the reporting transaction provides near real-time

reporting,

15. The method of claim 1, wherein only the primary node can modify the database.

16. The method of claim 1, wherein the snapshot is taken in response to a user command.
17. The method of claim 1, wherein the snapshot is read-only.

18. The method of claim 1, wherein the snapshot cannot be modified by the primary node.

19. 'The method of claim 1, wherein the snapshot and the database share a disk space.

CA 02598021 2007-08-14

WO 2006/089263 PCT/US2006/005909
13
20. The method of claim 1, wherein the snapshot is the most current.
21. The method of claim 1, wherein the snapshot is directly used to carry out the reporting

transaction on the failover node.

22. A computer program product that includes a computer readable medium, the computer
readable medium comprising instructions which, when executed by a processor, causes the

processor to execute a process for performing any of claims 1 - 21.

23. A system for performing any of the methods of claims 1 - 21.

WO 2006/089263

CA 02598021 2007-08-14

1/11

START

TAKE A SNAPSHOT OF A DATABASE,
WHEREIN THE DATABASE IS LINKED TO A
PRIMARY NODE AND A FAILOVER NODE

EXECUTE ONE OR MORE NON-REPORTING
TRANSACTIONS ON THE PRIMARY NODE

UTILIZE THE SNAPSHOT TO CARRY OUT A
REPORTING TRANSACTION ON THE
FAILOVER NODE CONCURRENTLY WITH
THE EXECUTION OF THE ONE OR MORE
NON-REPORTING TRANSACTIONS ON THE
PRIMARY NODE

FIG. 1

102

104

106

PCT/US2006/005909

CA 02598021 2007-08-14

WO 2006/089263 PCT/US2006/005909
2/11

200

e 7 NON- ™, R
7 NON- -, ¢/ REPORTING : L S,

. REPORTING - i TRANSACTION : REPORTING .

. TRANSACTION / . 2106 - , TRANSACTION
.. 210a Do e ., 212

.o’
e !

PRIMARY NODE FAILOVER NODE

202 204

E SNAPSHOT
§ 208
%

D D AP e D g e A WY A A g P P Y el s e Yl g S -

DATABASE
206

FIG. 2

WO 2006/089263

CA 02598021 2007-08-14

3/11

START

TAKE A SNAPSHOT OF A DATABASE,
WHEREIN THE DATABASE IS LINKED TO A
PRIMARY NODE AND A FAILOVER NODE

EXECUTE ONE OR MORE NON-REPORTING
TRANSACTIONS ON THE PRIMARY NODE

UTILIZE THE SNAPSHOT TO CARRY OUT A
REPORTING TRANSACTION ON THE
FAILOVER NODE CONCURRENTLY WITH
THE EXECUTION OF THE ONE OR MORE
NON-REPORTING TRANSACTIONS ON THE
PRIMARY NODE

CREATE ONE OR MORE TEMPORARY
TABLES ON THE FAILOVER NODE,
WHEREIN THE ONE OR MORE TEMPORARY
TABLES ARE USED WHEN THE REPORTING
TRANSACTION IS CARRIED OUT ON THE
FAILOVER NODE

FIG. 3

302

304

306

308

PCT/US2006/005909

CA 02598021 2007-08-14

WO 2006/089263 PCT/US2006/005909
4/11
400
" NON- ' REPORTING ™,
. REPORTING . TRANSACTION
TRANSACTION v

EAILOVER NODE
404

PRIMARY NODE
402

)
3
g
3

-

SNAPSHOT
408D

Y B R 4 N J§ ¢ & & 2 2 T X E N N B N N ¥ _A_E R R % N ¥ 4

"'- L A 3 3 3 ¥ 4 2 X F YT ¥ F F _F T r--ﬂ-,‘--‘--

- Y R SR P g T ol N SN S SN . e ap Sl v) e

SNAPSHOT |

I
414a

DATABASE
406

FIG. 4

WO 2006/089263

CA 02598021 2007-08-14

5/11

START

502

TAKE A SNAPSHOT OF A DATABASE,
WHEREIN THE DATABASE IS LINKED TO A

PRIMARY NODE AND A FAILOVER NODE

504

EXECUTE ONE OR MORE NON-REPORTING
TRANSACTIONS ON THE PRIMARY NODE

UTILIZE THE SNAPSHOT TO CARRY QUT A
REPORTING TRANSACTION ON THE 506
FAILOVER NODE CONCURRENTLY WITH '
THE EXECUTION OF THE ONE OR MORE
NON-REPORTING TRANSACTIONS ON THE
PRIMARY NODE

MODIFY ONE OR MORE SCHEMAS INTHE | ,qq
DATABASE, WHEREIN THE ONE ORMORE |
SCHEMAS ARE USED WHEN THE
REPORTING TRANSACTION IS CARRIED
OUT ON THE FAILOVER NODE

END

FIG. 5

PCT/US2006/005909

CA 02598021 2007-08-14

WO 2006/089263 PCT/US2006/005909
6/11

600

e

UNONS . REPORTING .
- REPORTING - . TRANSACTION
. TRANSACTION . 6laa -
. 610 . - e

PRIMARY NODE FAILOVER NODE FAILOVER NODE

602 604a 604b

. REPORTING .
. TRANSACTION
. 612 .

""""

--‘"--~W'--’---‘--”_-"

SNAPSHOT |
608 §

------------------------------------ '

‘““-m#“-—.—"-‘ - e W AR o A -

SCHEMA
814b

DATABASE
606

FIG. 6

WO 2006/089263

CA 02598021 2007-08-14

7/11

START

TAKE A SNAPSHOT OF A DATABASE, e

WHEREIN THE DATABASE IS LINKED TO A
PRIMARY NODE AND A FAILOVER NODE

704

EXECUTE ONE OR MORE NON-REPORTING
TRANSACTIONS ON THE PRIMARY NODE

UTILIZE THE SNAPSHOT TO CARRY OUT A
REPORTING TRANSACTION ON THE 706
FAILOVER NODE CONCURRENTLY WITH
THE EXECUTION OF THE ONE OR MORE
NON-REPORTING TRANSACTIONS ON THE
PRIMARY NODE

ACCESS ONE OR MORE USER-DEFINED
PROCEDURES ON THE PRIMARY NODE, | 708
WHEREIN THE ONE OR MORE
USER-DEFINED PROCEDURES ARE USED
WHEN THE REPORTING TRANSACTION 1S
CARRIED OUT ON THE FAILOVER NODE

FIG.7

PCT/US2006/005909

CA 02598021 2007-08-14

WO 2006/089263 PCT/US2006/005909
8/11

USER 500
802 /
CLIENT
804
,'USER-DEFINED ", PR
\ PROCEDURE | ~ REPORTING .
e e " TRANSACTION

-

,"USER-DEFINED .
. PROCEDURE i _
'~ 818a |

-

816 .-

¢

- % .
*

- -t

FAILOVER NODE
808

PRIMARY NODE
806

7 NON- 7
. REPORTING
. TRANSACTION

.. 814

1
I §
q
[
¥
$
[}
[§
1
 §
|
]
[§
[1
¥
I
|
| |
]
:L
14.7
:
&
1
I
b |
[|
[4
[§
 §
|
1
t
?
I
|

SNAPSHOT
812

e 0 &% G0 Su &Y W Ny o ww ani gy B ww am g an o S G v gn g gy ol sy W= G mm W SP P PN D
T s . A - gy o S S S S e Y vy A Sl e P A v e o

DATABASE
810

FIG. 8

CA 02598021 2007-08-14

WO 2006/089263 PCT/US2006/005909
9/11

START

802
TAKE A SNAPSHOT OF A DATABASE,

WHEREIN THE DATABASE IS LINKED TO A
PRIMARY NODE AND A FAILOVER NODE

904

EXECUTE ONE OR MORE NON-REPORTING
TRANSACTIONS ON THE PRIMARY NODE

UTILIZE THE SNAPSHOT TO CARRY OUT A
REPORTING TRANSACTION ON THE 906
FAILOVER NODE CONCURRENTLY WITH
THE EXECUTION OF THE ONE OR MORE
NON-REPORTING TRANSACTIONS ON THE

PRIMARY NODE

RESERVE A TEMPORARY SPACE INTHE | gqg

DATABASE, WHEREIN THE TEMPORARY

SPACE IS USED WHEN THE REPORTING

TRANSACTION IS CARRIED OUT ON THE
FAILOVER NODE

END

FIG. 9

CA 02598021 2007-08-14

WO 2006/089263 PCT/US2006/005909
10/11

1000

4

READ-WRITE T e . _REPORTING ",

' TRANSACTION © . o . REPORTING e, TRANSACTION
.,10103 " READ-ONLY " . TRANSACTION ; -- : W

| TRANSAGTION © ™.
% : . 014 S -- :
. TRANSACTION ‘s 1 1...a o 1014c

)] Y ﬂ“ .
a 4 o
* * L]
¢ L ¢
‘re .."' .“‘
¢q ~no" o
a o s w0 b‘

PRIMARY NODE FAILOVER NODE FAILOVER NODE FAILOVER NODE

1002 1004a 1004b 1004c

. » OFK

‘. " TRANSACTION | / ..<. REPORTING

e .. 1014b . . TRANSACTION |,

"USER-DEFINED *, s e 7+ REPORTING °~ . q014f .
/1 TRANSACTION | "= ..~

f

. PROCEDURE /o
ooo1012 / .. 1014e

b |
-

- .-

|
1
)
|
¥
L 2 & K £ I ¥ 'rY“42 1 3

Yy S wnl e aar Gof S S - e i ---'-u--p-‘-q.*
-

SNAPSHOT i

e § SNAPSHOT

.

‘ TEMPORARY |

SPACE TEMPORARY
0162 || spAcE

|
oo — l 1016b

DATABASE
1006

L‘ﬂ* Y e e o Y ol oy g W ey w al ol
A iy —— v W A e oy D Wy s iy S - S -

TEMPORARY | | e
SPACE || -7 Fremmmemmeeemeeeeesseseseeeeeioeo
1016¢ ,

SNAPSHOT |

FIG. 10

CA 02598021 2007-08-14

PCT/US2006/005909

WO 2006/089263

11/11

bl "Old

0ZL1 ~ oob4 T T T o
|
| o
zo_Ew__w_,__ms. 00 | zomo,q%wm&ﬂoo d0SS300ud
|
|
|
|
|
|
|
_ . .
] e | [
@ JAINA MSIA mwm.wwww ?meww
- o —
\

- B -« N - Np—— - —— - S — » P — - Ay » i —. & e — - ———— - "
N Segy— + S — -

1433
AV 1dSId

200

'.--w“

R " NON- U
<7 NON- 7 - g REPORTING B N
: REPORTING - * TRANSACTION ;' REPORTING .
. TRANSACTION / . 2100 { TRANSACTION ;
.o 2108 - T et ., 22

.
T L

re
s

FAILOVER NODE
204

PRIMARY NODE
202

b e B P PR o 4 05 0 0 b B A A b e e ol o —— -

SNAPSHOT
208

T ———— - P o g T bl 4 by o P = vy oy

//F

DATABASE
2086

_

[

9 /;.-._.-. -------------------------

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - abstract
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - claims
	Page 15 - claims
	Page 16 - claims
	Page 17 - drawings
	Page 18 - drawings
	Page 19 - drawings
	Page 20 - drawings
	Page 21 - drawings
	Page 22 - drawings
	Page 23 - drawings
	Page 24 - drawings
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - abstract drawing

