087038265 A2 | 0 00O O

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
3 April 2008 (03.04.2008)

AL 00

(10) International Publication Number

WO 2008/038265 A2

(51) International Patent Classification:
GOG6F 17/50 (2006.01)

(21) International Application Number:
PCT/L2007/001152

(22) International Filing Date:
20 September 2007 (20.09.2007)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:

60/826,749 25 September 2006 (25.09.2006) US
(71) Applicant (for all designated States except US): TYPE-
MOCK LTD. [II/IL]; 17 Mapu Street, 63435 Tel Aviv

L)

(72) Inventor; and
(75) Inventor/Applicant (for US only): LOPIAN, Eli [IL./IL];
17 Mapu Street, 63435 Tel Aviv (IL).

(74) Agent: REINHOLD COHN AND PARTNERS; Po.b.
4060, 61040 Tel-aviv (IL).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH,
CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG,
ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, 1L,
IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK,
LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW,
MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL,
PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV, SY,
TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA,
M, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL, PL,
PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM,
GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declaration under Rule 4.17:
of inventorship (Rule 4.17(iv))

Published:
without international search report and to be republished
upon receipt of that report

(54) Title: METHOD AND SYSTEM FOR ISOLATING SOFTWARE COMPONENTS

106-~Production code base

(112

Tracer

114

Configurator

™11

Method()
{
107 Weaved Code < ommmrmwnmugs
code...
3
Methody()
t 108" Test Code
107+ Weaved Code Test()
code...
1 {
% test..
i 3
1047 Weaver

102

Run Time System

& (57) Abstract: A software testing system operative to test a software application comprising a plurality of software components,
at least some of which are highly coupled hence unable to support a dependency injection, each software component operative to
perform a function, the system comprising apparatus for at least partially isolating, from within the software application, at least one
highly coupled software component which performs a given function, and apparatus for testing at least the at least partially isolated

highly coupled software component.

10

15

20

25

WO 2008/038265 PCT/IL2007/001152

METHOD AND SYSTEM FOR ISOLATING SOFTWARE COMPONENTS

REFERENCE TO CO-PENDING APPLICATIONS

Priority is claimed from US provisional application No. 60/826,759, entitled
"Method and System for Isolating Software Components" and filed 25 September 2006.

FIELD OF THE INVENTION

The present invention relates generally to validating software.

BACKGROUND OF THE INVENTION

Conventional Internet sources state that "Dependency Injection describes the
situation where one object uses a second object to provide a particular capacity. For
example, being passed a database connection as an argument to the constructor instead of
creating one internally. The term "Dependency injection” is a misnomer, since it is not a
dependency that is injected, rather it is a provider of some capability or resource that is
injected."

Validating software is a complex problem that grows exponentially as the
complexity of the software grows. Even a small mistake in the software can cause a large
financial cost. In order to cut down on these costs, software companies test each software
component as they are developed or during interim stages of development.

The disclosures of all publications and patent documents mentioned in the
specification, and of the publications and patent documents cited therein directly or

indirectly, are hereby incorporated by reference.

10

15

20

25

30

WO 2008/038265 PCT/IL2007/001152

SUMMARY OF THE INVENTION

Certain embodiments of the present invention disclose a method that enables
isolating software components, without changing the production code. Testing isolated
software components gives better testing results as the coverage of the tests is much
higher and the complexity does not grow exponentially. This is a basic requirement for
validating a software component. In order to isolate the components, there is a need to
design the program that utilizes the software components in such a way that the
components can be changed. This is part of a pattern called Inversion of Control or
Dependency Injection. For example when validating that software behaves correctly on
the 29™ of February, there is a need to change the computer system's date before running
the test. This is not always possible (due to security means) or wanted (it may disturb
other applications). The method used today to verify this is by wrapping the system call
to get the current date with a new class. This class may have the ability to return a fake
date when required. This may allow injecting the fake date into the code being tested for,
and enable validating the code under the required conditions. There are many cases where
isolating the code base and injecting fake data are required. Here are a few examples:

1. Fake a behavior that is scarce. (Dates, Out of Memory)

2. Fake slow running components. (Database, Internet)

3. Fake components that are difficult to set up (send e-mail, ftp)

Other cases may require a more complex solution. When faking a complete set of
API's (for example: faking sending an email) there is a need to build a framework that
enables isolating the complete API set. This means that the code may now have to
support creating and calling two different components. One way to do this is to use the
Abstract Factory Pattern. Using this pattern, the production code should never create the
object (that needs to be faked for tests). Instead of creating the object, the Factory is
asked to create the object, and the code calls the methods of the object that the factory
created. The factory can then choose what object to create: a real one or a fake one. This
requires using an interface that both clients (real and fake) need to implement. It also

requires creating a complex mechanism that may allow the factory to choose what object

10

15

20

25

30

WO 2008/038265

to create and how to do so. This is done mainly through configuration files although it
can be done in code too.

When testing using fake objects, it is important to validate the arguments passed to
the fake object. In this way it is possible to validate that an e-mail that is supposed to be
sent has the correct subject and address. The e-mail, of course, is not actually sent. There
is no need to validate that component again, as the e-mail tests are done in isolation for
the e-mail object.

It is possible to write the fake object and methods by hand or to use a mock
framework 110. A mock framework 110 may dynamically create a fake object that
implements the same interface of the real object (the same interface that is created using
the Abstract Factory), and has the ability to define the behavior of the object and to
validate the arguments passed to the object.

Although these methods work and enable testing the code base, they also require
that the code is designed to be testable. This cannot always be done, as sometimes the
code is a legacy code, and should remain as such. Legacy code refers to any code that
was not designed to allow insertions of fake objects. It would be too costly to rewrite
them, as this may lead to an increase in development time just to make the code testable.
The more complex the code the harder it is to maintain. Designing the code to be testable,
puts constraints into the design that are not always compatible with the production
design. For example, the code may be required to implement hooks that enable changing
the actual object to a fake one. This hook can lead to misuse and hard-to-debug code, as it
is intended for testing but it is in the production code.

Tt would be easier to test such code if there were no need to change the design for
testability, but it should be able to isolate and fake the code required to validate such
code.

For example, it would be easier if the system could be programmed to fake the real e-mail
object. There would then be no need to create an Abstract Factory or interfaces or hooks
if the system could be configured not to make the real calls on the e-mail object, but to
fake them. In order to solve this problem, certain embodiments of the invention add
code that is inserted or weaved 107 into the production code base 106 (Fig. 1) that is
being tested. The added code may enable hooking fake or mock objects into the

PCT/IL2007/001152

10

15

20

25

30

WO 2008/038265 PCT/IL2007/001152

production code by calling the Mock framework 110. This framework can decide to
return a fake object. The framework may also be able to validate and change the
arguments passed into the method.

Any suitable processor, display and input means may be used to process, display,
store and accept information, including computer programs, in accordance with some or
all of the teachings of the present invention, such as but not limited to a conventional
personal computer processor, workstation or other programmable device or computer or
electronic computing device, either general-purpose or specifically constructed, for
processing; a display screen and/or printer and/or speaker for displaying; machine-
readable memory such as optical disks, CDROMs, magnetic-optical discs or other discs;
RAMs, ROMs, EPROMs, EEPROMs, magnetic or optical or other cards, for storing, and
keyboard or mouse for accepting. The term "process” as used above is intended to include
any type of computation or manipulation or transformation of data represented as
physical, e.g. electronic, phenomena which may occur or reside e.g. within registers and
/or memories of a computer.

The above devices may communicate via any conventional wired or wireless
digital communication means, e.g. via a wired or cellular telephone network or a
computer network such as the Internet.

The apparatus of the present invention may include, according to certain
embodiments of the invention, machine readable memory containing or otherwise storing
a program of instructions which, when executed by the machine, implements some or all
of the apparatus, methods, features and functionalities of the invention shown and
described herein. Alternatively or in addition, the apparatus of the present invention may
include, according to certain embodiments of the invention, a program as above which
may be written in any conventional programming language, and optionally a machine for
executing the program such as but not limited to a general purpose computer which may
optionally be configured or activated in accordance with the teachings of the present
invention.

Any trademark occurring in the text or drawings is the property of its owner and
occurs herein merely to explain or illustrate one example of how an embodiment of the

invention may be implemented.

10

15

20

25

30

WO 2008/038265 PCT/IL2007/001152

BRIEF DESCRIPTION OF THE DRAWINGS

Certain embodiments of the present invention are illustrated in the following
drawings:

Fig. 1 is a simplified functional block diagram of a software isolation system
constructed and operative in accordance with certain embodiments of the present
invention;

Fig. 2 is an example of a decision table for NET code, constructed and operative
in accordance with certain embodiments of the present invention;

Fig. 3 is a simplified flowchart illustration for the weaver of Fig. 1, constructed
and operative in accordance with certain embodiments of the present invention;

Fig. 4 is a simplified functional block diagram of a profile linker and associated
components, constructed and operative in accordance with certain embodiments of the
present invention;

Fig. 5 is a simplified functional block diagram of the mock framework of Fig. 5
and associated components, all constructed and operative in accordance with certain
embodiments of the present invention;

Fig. 6 is a simplified flow diagram of expectations used by the expectation
manager of Fig. 5, in accordance with certain embodiments of the present invention;

Fig. 7 is a simplified flow diagram of a natural mock setting embodiment of the
present invention;

Fig. 8 is a simplified flow diagram of a mocked method flow which may be
performed by the apparatus of Fig. 1, in accordance with certain embodiments of the
present invention; and

Fig. 9 is a simplified diagram of a method by which the mock framework of Fig. 1
sends messages to the tracer of Fig. 1, all in accordance with certain embodiments of the

present invention.

10

15

20

25

30

WO 2008/038265 PCT/IL2007/001152

DETAILED DESCRIPTION OF CERTAIN EMB ODIMENTS

Reference is now made to Fig. 1 which is a simplified functional block diagram of
a software isolation system constructed and operative in accordance with certain
embodiments of the present invention. The run time system 102 is the system that
actually runs the code and the tests; this could be an operating system, a scripting system
or a virtual machine (as in Java or NET). The weaver 104 is responsible for inserting the
added hooking code into the production code base 106, In each method of the production
code the weaver 104 may insert a small piece of code 107 that calls the Mock framework
110 which then decides whether to call the original code or to fake the call. The inserted
code 107 can also modify the arguments passed to the production method if required.
This is handy for arguments passed by reference.

The production code base 106 is the code that is to be isolated. There is no need
to change the design of this code just to isolate the code, The test code 108 calls the Mock
framework 110 in order to change the behavior of the production code. Here the test can
set up what to fake, how to validate the arguments that are passed, what to return instead
of the original code and when to fail the test. The mock framework 110 is responsible for
creating mock objects dynamically and for managing the expectations and behavior of all
fake calls. The tracer 112 is typically used to debug and graphically display the methods
that are mocked. It is typically used to analyze the faked and original calls of the
production code. The configurator 114 is used to set the options of the tool.

There are several ways in which it is possible to insert code 107 into production
code 106 such as but not limited to the following:

(a) Change the executable on disk before running the tests,

(b) Use System 10 Hooks to change the executable just before reading it from the disk,
(¢) Use function hooking techniques,

(d) Use RunTime ClassLoader hooks to change the code before it is run, and

(e) Use Profiler and Debug API's to change the code 302 before it is loaded as indicated
by arrow 306 in Figs. 3 - 4.

10

15

20

25

30

WO 2008/038265 PCT/IL2007/001152

Each method has its pros and cons. The main decision factors are Ease of implementation
and Manual vs Automatic as selected by the user.

Fig. 2 is an example of a decision table for .NET code. The method that was
chosen was the Profiler API (Fig 3). In order to solve the issues with the code coverage

tool, a Profiler Linker was created. (Fig 4)

Referring now to Fig. 3, the Weaver 104 registers to the .NET Runtime (CLR)
102 and typically just before the JIT Compiler is run to create machine code 304 from the
Byte code 302, instructions pertaining to the added hooking code are inserted as indicated
at reference numeral 308. The Weaver 104 typically analyses the signature of the method
in order to understand the parameters passed and the return value. This enables writing
code that may call the Mock framework 110 to check if the method needs to be faked,
and to pass the arguments to the Framework 110 for validating. The code also changes
the values of the parameters if required. This is useful for parameters that are passed by
reference and for swapping the values for the test (e.g. it is possible to change a filename
that is passed as a parameter to point to a dummy file required for the test).
The weaver 104 is actually a framework that can be used to insert any new code into a
code base. The weaver 104 has to change the metadata and add information that points to
the correct Mock framework 110. This is typically done by putting the framework 110 in
a known directory (GAC) and by parsing the assembly (dll file) to extract relevant
information (version and signing signature). Some information is passed from the Mock
framework 110 to the Weaver 104, this is typically done using environment variables,
although there are other methods available to do this. According to certain embodiments
of the present invention, one, some or all of the following may hold:
1. The weaver 104 must run well in debug mode too and thus it is required to fix the
debug to code mapping to ignore the code that is added.
2. Try catch handlers must also be updated to point to the correct positions in the
code after the code has been added.
3. The weaver 104 must take into consideration small and large method headers and
event handlers.

4. Creating new code must take place when the assembly is first loaded.

10

15

20

25

30

WO 2008/038265 PCT/IL2007/001152

5. Signed assemblies can only call other signed assemblies so the Mock framework
110 is signed.

6. In order to support multiple NET versions the same Weaver 104 is used and has
instructions that enable it to use features of the later version only when that
version is available.

7. The Mock framework 110 assembly should not be weaved as this may lead to a
recursive infinite loop.

Weaving via the MetaData is now described with reference to Fig. 3.

Another method to isolate code and to insert fake objects is by changing the metadata
tables. Each call to a method is defined as 'call <entry in method table>'. Each entry in the
method table has the name of the method its type (which is actually an <entry in the type
table>) and other information. Each entry in the type table has the name of the type and
the assembly that it is defined in (which is an <entry in the assembly table>).
By switching these entries, for example the assembly of the <type> and its <name> all
calls to a method can be redirected to a mocked object. Although this method requires
building the mock object and handling delegating calls back to the original object, it has
the advantage of being less intrusive as it does not change the production code, but only
the metadata tables. This is useful in cases where the Run time system 102 has
restrictions on the code being inserted.

An embodiment of the Profiler Linker 401 is now described with reference to Fig. 4.
In order to support profiling and code coverage tools that may be required to run together
with the tests, a profile linker may be employed. The profile linker 401 loads one or
more profile assemblies (COM objects that are suitable to be a profiler) and then calls
each profiler sequentially and weaves code from both the assemblies. The profiler linker
401 takes care of profilers from different versions and manages to make sure that the
profilers work correctly. According to certain embodiments of the present invention, in
order to have the ability to debug the code, there is a need to map the actual code with the
source file. When code is added, the map needs to be fixed, and/or the linker 401 changes

the code of both assemblies.

10

15

20

25

30

WO 2008/038265 PCT/IL2007/001152

An embodiment of the Mock Framework 110 is now described with reference to Figs. 5
and 6. The mock framework 110 is in charge of managing the expectations. This
framework is linked by the test code 108, and expectations are recorded using the
frameworks API. The mock framework 110, as shown in Fig. 5, typically comprises an
Expectation Manager 550, a Natural Mock Recorder 520, a Dynamic Mock Builder 530,
an Argument Validation 540, a Run Time Engine 510 and a Verifier 560.

The Expectation Manager 550 is a module used to manage the expectations for
the fake code. The expectations may be kept in the following way, which is not the only
way do to this, but it has its advantages. The Framework 110 holds a map of type
expectations 620 that are indexed via the type name. Each Type Expectation is connected
to a list of Instance Expectations 630 indexed by the instance and another reference to an
Instance Expectation that represents the expectations for all instances.

All Instance Expectations of the same type reference an Instance Expectation that
manages the expectations for all static methods. This is because static methods have no
instance. Each Instance Expectation contains a map of Method Expectations 660 that is
indexed via the method name. Each method may have the following four lists as shown in
Fig. 6:

a default Return Value representing a value to return by default
a queue of return values that should be faked

a queue of conditional values that are used only when the arguments match

el

a queue of conditional default values are used only when the arguments match

The Method Expectation 660 may first check for a conditional value then a default
conditional value, then a regular value and finally the default value. The Null Return
Value 680 and Null Instance Expectation 640 are classes that are part of the Null Object
pattern. This leads to faster code while running, as there is no need to check if references
to Return Value or Instance Expectation are null. Expectations of Generic types are
managed each in its own Type Expectation class with the generic parameters as a key,
although the non generic Type Expectation points to the generic one. Expectations of
Generic methods are managed each in its own Method Expectation class with the generic
parameters as a key, although the non generic Method Expectation points to the generic

one.

10

15

20

25

30

WO 2008/038265 PCT/IL2007/001152

Two ways to set expectations, namely by the use of Reflective mocks or Natural
Mocks, are now described.
a. Reflective mocks use strings names of the methods that are to be mocked. The
Framework analyzes the tested assembly, searches for the method and checks that it
exists and has the correct return value. The method is then added to the expectations of
that method. The test code 108 can then change the behavior of the code and registers
what that method should do and how many times. The method may be instructed to return
a fake result, throw an exception, or call the original code. The framework may also be
instructed to always fake a method (this is the default return), or to fake the next call or
number of calls (managed by the Return Value Stack).

There are also hooks to call user supplied code when the method is called. As
some methods are instance methods, there are ways to tell the Framework what instance
to mock. For example, the Framework can be directed to mock all instances, a future
instance or to create the mocked instance so that it can be passed to the production code
106 (this may be managed by the Type Expectation). Methods can also have conditional
expectations. Conditional expectations may fake calls only if the arguments passed are
the same as those expected. The framework allows expectations to be canceled and
changed before the actual code is called.

b. Natural Mocks use the actual calls to the methods that are to be mocked.
The Framework may be called by these calls (because all the methods are already
weaved) and the framework may record that the call is expected, and add it to the list of
expectations. The framework allows setting the behavior in the same way as Reflective
Mocks. Chained calls are also supported using Natural Mocks. This allows a chain of
calls to be mocked in one statement. The Framework may build the return object of one
statement in the chain as an input for the next statement in the chain. Of course the
framework has to differentiate between creating Dynamic Mocks for incomplete types
and real objects with dummy constructor arguments for complete or static objects.

Using Natural Mocks is easier than Reflective Mocks and they are supported by
IDE editors that allow code completion and automatic re-factoring, but these cannot
account for all cases. Re-Factoring is the process of restructuring code without changing

its behavior. There are development tools that help to automate this task. When a method

10

10

15

20

25

30

WO 2008/038265 PCT/IL2007/001152

cannot be called from the code (for example if its scope is private), Reflective Mocks
must be used. Although Reflective Mocks have the advantage of covering all scopes of
the methods, they are more prone to mistakes as the methods are passed as a string.

Fig. 7 is a data flow diagram showing a Natural Mock Setting Expectations Flow
according to an embodiment of the present invention.

The Dynamic Mock Builder 530 is used to create new objects in a dynamic
assembly. This creates real objects out of incomplete classes (with abstract methods or
interfaces). These objects can then be used and passed to the production code, so that
when methods are called the Run Time Engine 510 may return fake results to the created
methods. These objects are built using the standard Reflection library.

The Argument Validation 540 is responsible for verifying that the arguments
passed are those that were expected. This is done using a hook that actually does the
validation. The Arguments passed and those expected are sent to a validation method that
checks different attributes of the object. The attributes, which may be of virtually
unlimited scope, may, for example, indicate that the objects are the same or that the
-Equals() method is true. The framework 110 has a predefined group of argument
validators including string comparisons, Group and Sets comparisons, which verify that
the object is being faked by the framework. The test code 108 can register a customized
validator if this is required.

When Natural Mocks are used, the arguments passed to the recording method are
used to validate the arguments, unless explicitly overridden. The framework 110 also
allows setting arguments of the mocked methods. This actually changes the values of the
arguments before the actual code is called. This is useful for arguments that are passed by
reference, so that their values can be changed before they are returned and fake [out]
arguments.

The run time engine 510 is called from the code weaved into the production code.
The Run Time engine 510 checks to see if the specific type, instance and method should
be faked. If they are, the code may validate the arguments and return the fake return
value. The Run Time Engine 510 checks the arguments to see if a conditional expectation
should be used. The engine also calls the argument validation, and when the arguments

are not valid the engine may throw an expectation. There are cases where throwing the

11

10

15

20

25

30

WO 2008/038265 PCT/IL2007/001152

expectation is not enough and, when configured correctly, these validation errors may
appear at the verifying stage too.

Performance is an issue for the Run Time engine 510 as it is run for every method
called. One way to solve this is to check if the method is faked; this returns quickly if no
mocks have been created or if the type is not mocked. Only after knowing that the
method is mocked, are the arguments passed and validated, since passing the argument
can take time as they are all required to be encapsulated within an object. When Natural
Mocks are used the Run Time Engine 510 passes each call to the Natural Mock Recorder.
A flow diagram of the Mocked Method Flow described herein is shown in Fig. 8.

In order for the runtime engine 510 to map the called code to the correct mock
expectation the Engine 510 may employ the type, method, instance and type generic and
method generic parameters. The last two are for generic specific code only and with them
it is possible to map the correct expectations. The engine receives this information from
the weaver 104 that analyzed the metadata of the code. When a new instance is created
and its constructor is called, the Run Time Engine 510 checks if expectations contain
mocks for the new instance. This way the Engine can manage mocking objects that are
created after the expectations are set (Future Objects).

A static constructor is called once for each type. When a static constructor is
called, the Run Time Engine 510 remembers that this was mocked. Then when a method
of that type is called and the type is not mocked any more, the static constructor may be
called. This ensures that mocking the static constructor in one test will not affect another
test.

The verifier is called at the end of the test and throws errors when not all the
expected calls are made or when an argument validator fails. The verifier can wait till all
expected mocks are completed. This is a feature that helps test multi-threaded code,
where the tested code runs asynchronically in another thread.

In certain embodiments of the invention, the framework must run in all NET
versions and uses reflection methods to call the newer version API from the old version.
Re the Production code base 106, nothing has to change here. The test code 108 calls the
Mock Framework API in order to change the behavior of the production code. The tracer

112 is used to debug and graphically display the methods that are mocked. It is used to

12

10

15

20

25

30

WO 2008/038265 PCT/IL2007/001152

analyze the faked and original calls of the production code. Mocking of future objects can
be a bit confusing, and the tracer 112 helps track these issues.

Fig. 9 show the Mock framework 110 sending messages to the tracer 112 process.

The configurator 114 is used to configure the behavior of the Framework 110.
Using the Configurator 114 it is possible to link a code coverage tool with the mock
framework 110. This may be done by changing the registry key of the coverage tool to
point to the Profile Linker 401. The Linker 401 then loads both the coverage tool and the
mock framework 110.

Advantages of certain embodiments of the present invention include that it is
much easier to verify the code base of an application. There is no need to perform pre-
compile steps, or to create special designed code to be able to isolate the code in order for
the code to be testable. For example, suppose a developer had the following production
code: Dogs.GetDog("rusty”). Tail. Wag().Speed(5);

This actually fetches the dog from somewhere in the Internet. Instead of changing
the code to be able to insert a fake dog and setting all the expectations on the different
methods, using certain embodiments of the invention may enable the code to be isolated

by writing:

MockTheFollowing();
Dogs.GetDog("rusty"). Tail. Wag().Speed(5);
Check Arguments();

EndMocking();

In contrast, in the absence of the present invention, the following may have been
required:
1. Write a framework allowing Dogs to fetch from a fake Internet.
. Create a fake Internet
. Set Dogs to use the fake Internet

2
3
4. Return a fake Dog when "rusty" is called
5. Return a fake Tail of "rusty”

6

. Make sure that the tail is wagging

13

10

15

20

25

30

WO 2008/038265 PCT/IL2007/001152

7. Make sure that the wag was set to correct speed.

The test code 108 would look like this (the production code changes are not shown):

FakeDoglnternet fakeInternet = new FakeDoglnternet();
Dogs.SetInternet(fakelnternet);

FakeDog fakeDog= new FakeDog();
fakelnternet.ExpectCall("GetDog");
CheckArguments("rusty");

Return(fakeDog);

FakeTail fakeTail = new FakeTail();
fakeDog.ExpectGetProperty("Tail");
Return(fakeTail);

FakeWagger fake Wagger = new FakeWagger();
fakeTail. ExpectCall("Wag").Return(fakeWagger);
fakeWagger.ExpectCall("Speed");
CheckArguments(5);

The following interfaces would need to be created:
IDoglnternet

IDog

ITail

s

IWagger
The following implementation would need to be created (this can be done with a dynamic
mock framework 110):
1. FakeDoglnternet
2. FakeDog
3. FakeTail
4. FakeWagger
The following public method may be in the production code: Dogs.SetInternet().
An implementation of an embodiment of the invention for .NET code is now described.

Provided is the following static method that returns the current time.

14

10

15

20

25

30

WO 2008/038265 PCT/IL2007/001152

Original Code

public static DateTime get Now()
{

// This is just an example..

return System.DateTicks.ToLocalTime();

}

This is actually compiled to the following ByteCode:

call System::get_DateTicks ()

stloc.0

ldloca.s timel

call instance DateTime::ToLocalTime()

ret

Before the ByteCode is run the weaver 104 may add code to the ByteCode that
mimics the following code may be added to the original code, it being emphasized that
the weaver 104 adds code to directly to the ByteCode, the original code being unaffected.

The equivalent high level language is shown for clarity:

public static DateTime get Now()
{
/I Are we mocked?
if (MockFramework.isMocked("DateTime.get Now")
{
/I Yes, get the fake return value
object fakeReturn = MockFramework.getReturn("DateTime.get_Now");
// should we Continue with original code?
if (!MockFramework.shouldCallOriginal(mockReturn))
{

return (DateTime)fakeReturn;

}

}

return System.DateTicks.ToLocal Time();

15

10

15

20

25

30

WO 2008/038265 PCT/IL2007/001152

Actually add the following byte code may be added:

ldstr "DateTime.getNow"

call MockFramework.isMocked
brfalse.s labell

ldstr "DateTime.getNow"

call MockFramework.getReturn

dup

brtrue.s 0x07

unbox DateTime

Ildind.il

ret

pop

labell: call System::get DateTicks ()
stloc.0

ldloca.s timel

call instance DateTime::ToLocalTime()

ret

The stack may be used to keep the mockReturn object instead of a local variable.
This saves the weaver 104 from defining the variable in the metadata. This helps to test
the code. Now that this is in place it is possible to test that the code that counts the
number of days in the current month works for also leap years. Following is an example

of one test, showing the code to be tested:

// List of days in each month

int[] days_in_month = {31,28,31,30,31,30,31,31,30,31,30,31};

public int CalculateDayInCurrentMonth()

{
DateTime now = DateTime.Now;

int month = now.get Month();

16

10

15

20

25

WO 2008/038265 PCT/IL2007/001152

return days_in_month[month];

Following this, the user wishes to test that it works for leap years. DateTime.Now
is isolated and made to return a fake date, the leap year date. As the system can be

isolated, the MockFramework can be instructed to return a fake date

DateTime leapDate = new DateTime("29-Feb-2004");

// Fake next DataTime Now, will return 29-Feb-2004
MockFramework.Mock(DateTime.Now).ToReturn(leapDate);

// run the method under test
int actualDays = CalculateDayInCurrentMonth();
// make sure that the correct amount was recived

Assert.AreEqual(29, actualDays);

Verifying Calls: The mechanism can be used to test that a certain call was actually
made. In the previous test DateTime.Now might never even be called. As the Mock
framework 110 counts the calls made, it can now be verified that the expected calls were

actually made.

// fail if we haven't called all expectations

MockFramework. Verify ThatAllExpectedCallsWhereMade();

Verifying Arguments: Some scenarios require that the arguments that are passed are
validated. To support this, the arguments to the MockFramework must be sent for

verifying. Given Original Code:

public static void Log(int severity,string message){

Console.WriteLine(severity. ToString()+" "+message);

17

10

15

20

25

WO 2008/038265 PCT/IL2007/001152

the Weaved code 107 may be:

public static void Log(int severity,string message)

{
if (MockFramework.isMocked("DateTime.IsSame")

{
/I Yes, get the fake return value and validate the arguments
object fakeReturn = MockFramework.getReturn("DateTime.IsSame",
severity, message);
// should we Continue with original code?
if (\MockFramework.shouldCallOriginal(mockReturn))
{
return;
¥
3

Console. WriteLine(severity. ToString()+" "+message);

}

This helps to test the code. Now that this is in place it is possible to test that our

code Logs the correct message. Following is an example of one test.

// Fake next Log,
MockFramework.Mock(Logger.Log(1,"An Error message")).
ToReturn(leapDate).CheckArguments();

// run the method under test
RunAMethodThatCallsLog ();

// we will fail if Log is called with other arguments

18

10

15

20

25

WO 2008/038265

PCT/IL2007/001152

Ref and Out Arguments: Some arguments are changed by the method and are

passed back to the caller. The following shows how the code is weaved.

Given Original Code:

public static bool OpenFile(string fileName, out File file){
file = new File (fileName);
return file.Open();

the Weaved code 107 may be:

public bool OpenFile(string fileName, out File file)

{
if (MockFramework.isMocked("10.OpenFile")

{
/I Yes, get the fake return value and validate the arguments
object fakeReturn = MockFramework.getReturn("10.OpenFile",
fileName, file);
// fake first arg
if (MockFramework.shouldChangeArgument(1))

{
fileName = (string)MockFramework.getArgument(1);

¥
// fake 2nd arg
if (MockFramework. shouldChangeArgument(2))

{
file = (File)MockFramework.getArgument(2);

}

// should we Continue with original code?

if ({MockFramework.shouldCallOriginal(mockReturn))
{

return (bool) fakeReturn;

19

10

15

20

25

WO 2008/038265 PCT/IL2007/001152

}
}

Console. WriteLine(severity. ToString()+" "+message);

}

This helps to test the code. It is now possible to isolate the OpenFile. Following is an

example of one test:

// Fake next OpenFile and open a test File,

File testFile = new File("testExample");

MockFramework.Mock(IO.OpenFile("realfile", out testFile)).
ToReturn (true).Check Arguments();

}

// run the method under test
RunAMethodReadsTheFile ();

/] we will read the fake file and not the real file, but fail if the real file was not passed

Modern languages support the notation of Generics. Using Generics allows the
same logic to run with different types. A Stack is a classic example. In order to support
mocking, only certain types of generic code, information about the generic parameters
must be passed to the Mock framework 110. There may be two kinds of generic
parameters: Type Generic — these are types that stay the same for all methods; and
Method Generics - these are types that stay the same for one method. These types are

passed to the MockFramework.getReturn method.

The Original Code may be:

public static void DoSomething<MethodType>(MethodType action,ClassType
message){

action.Perform(message);

20

10

15

20

25

30

WO 2008/038265 PCT/IL2007/001152

The Weaved code 107 may include:

public static void DoSomething<MethodType>(MethodType action,ClassType message)

{
if (MockFramework.isMocked("Namespace.DoSomething™")

{
Type typeGenerics = new Type[] { ClassType };
Type methodGenerics = new Type[] { MethodType };
/Il Yes, get the fake return value and validate the arguments
object fakeReturn = MockFramework.getReturn("DateTime.IsSame",
typeGenerics, methodGenerics,severity, message);
// should we Continue with original code?
if ('MockFramework.shouldCallOriginal(mockReturn))
{
return;
}
}

action.Perform(message);

}

Suppose the user hasboth class Base with method Count() and also a class, Derived, that
is derived from base. When calling the Derived.Count() method, the user is actually
calling the Base.Count method. In order to be able to mock Count() only for the derived
class, the user needs to know what the class of the method is. This is why the user passes
a context with the actual instance to the Mock framework 110. The Weaved code 107

may now look like this:

public static int Count()

{
if (MockFramework.isMocked("Base.Count")

{

// pass this so we can tell if this is being called

// from Base or Derived

21

10

15

20

25

30

WO 2008/038265 PCT/IL2007/001152

object fakeReturn = MockFramework.getReturn("Base.Count",
this);

// should we Continue with original code?

if (IMockFramework.shouldCallOriginal(mockReturn))

{
return;

3

¥

action.Perform(message);

¥

It is appreciated that software components of the present invention including
programs and data may, if desired, be implemented in ROM (read only memory) form
including CD-ROMs, EPROMs and EEPROMs, or may be stored in any other suitable
computer-readable medium such as but not limited to disks of various kinds, cards of
various kinds and RAMs. Components described herein as software may, alternatively,
be implemented wholly or partly in hardware, if desired, using conventional techniques.

Features of the present invention which are described in the context of separate
embodiments may also be provided in combination in a single embodiment. Conversely,
features of the invention which are described for brevity in the context of a single

embodiment may be provided separately or in any suitable subcombination.

22

10

15

20

25

WO 2008/038265 PCT/IL2007/001152

CLAIMS

1. A software testing system operative to test a software application
comprising a plurality of software components, at least some of which are highly
coupled hence unable to support a dependency injection, each software component

operative to perform a function, the system comprising:

apparatus for at least partially isolating, from within the software
application, at least one highly coupled software component which performs a given

function; and

apparatus for testing at least said at least partially isolated highly coupled

software component.

2. A system according to claim 1 wherein said highly coupled software
component is operative to call at least one additional software component and wherein
said apparatus for testing is operative to test whether said at least partially isolated
highly coupled software component calls said at least one additional software

component correctly.

3. A system according to claim 1 wherein the plurality of software
components comprises a set of at least one pairs of utilizing-utilized software
components each including a utilized software component and a utilizing software
component which utilizes said utilized software component, said apparatus for at least
partially isolating comprises apparatus for adding access controlling code between
each pair of utilizing-utilized software components, said access controlling code being
operative to control access of the utilizing software component to the utilized software

component.

4. A system according to claim 3 wherein said set comprises at least one
utilizing software component which calls its corresponding utilized software

component.

5. A system according to claim 3 wherein said set comprises at least one
utilizing software component which accesses at least one data element belonging to its

corresponding utilized software component.

23

10

15

20

25

WO 2008/038265 PCT/IL2007/001152

6. A system according to claim 3 wherein said utilizing software component
comprises test code and wherein said access controlling code is operative to generate a
plurality of testing scenarios for said test code by suitably controlling access of the test

code to the utilized software component.

7. A system according to claim 3 wherein the software application
comprises at least one source file and wherein said apparatus for adding code is
operative, before compilation of the software application, to add the access
controlling code to the at least one source file thereby to provide, upon compilation of

the source file, an at least partially isolatable weaved application.

8. A system according to claim 3 wherein the software application is stored
in at least one executable file and wherein said apparatus for adding code comprises
apparatus for parsing said at least one executable file, adding said access controlling
code to the parsed executable file, and saving, thereby to provide an at least partially

isolatable weaved executable file.

9. A system according to claim 3 wherein said apparatus for adding code is
operative, after the software application has been loaded into directly accessible
memory by an operating system from an executable file on disk and before the
software application has been run, to parse the software application and add said
access controlling code to the parsed sofiware application, thereby to provide an at

least partially isolatable weaved application.

10. A system according to claim 1 wherein the plurality of software
components comprises a set of at least one pairs of utilizing-utilized software
components each including a utilized software component and a utilizing software
component which utilizes said utilized software component, and wherein said
apparatus for at least partially isolating comprises access controlling code external of
the software application for anticipating forthcoming utilization of utilized software
components by utilizing software components and for selectively preventing said
utilization by controlling access of the utilizing software component to the utilized

software component.

24

10

15

20

25

WO 2008/038265 PCT/IL2007/001152

11. A system according to claim 1 wherein said apparatus for at least partially
jsolating is operative, upon occurrence of a call by a first component from among the
plurality of software components to a second component from among the plurality of

software components, to intervene to ensure that the second component does not run.

12. A system according to claim 11 wherein said call, absent operation of said
apparatus for at least partially isolating, results in data being returned by the second
component to the first component, and wherein said apparatus for at least partially

isolating is operative, instead, to inject fake data into the first component.

13. A system according to claim 11 wherein said apparatus for at least

partially isolating is operative to fake a failure of the second component.

14. A system according to claim 3 or claim 10 wherein said access controlling

code is controlled by an application-specific test protocol.

15. A system according to claim 1 wherein said apparatus for at least partially
isolating is operative, upon occurrence of a call by a first component from among the
plurality of software components to a second component from among the plurality of
software components, the second component operating upon at least one argument, to

intervene by providing the second component with at least one fake argument.

16. A system according to claim 3 or claim 10 wherein at least one utilized
software component comprises initialization code and wherein said apparatus for
testing is operative to record instances of at least partial isolation of said initialization
code and, if said utilized software component is called subsequent to termination of
said at least partial isolation of the initialization code, to artificially execute said

initialization code.

17. A system according to claim 14 wherein said access controlling code is

controlled by the protocol via the apparatus for testing.

18. A system according to claim 1 wherein said apparatus for testing is operative to
select at least one software component for said apparatus for at least partially isolating

to at least partially isolate from within the software application.

25

10

15

20

25

WO 2008/038265 PCT/IL2007/001152

19. A system according to claim 1 wherein said apparatus for testing is
operative to generate a plurality of expectations each of which comprises an identity of
an individual component from among the plurality of software components and an
associated behavior inducing message inducing said apparatus for at least partially
isolating, when said individual component is called, to selectively at least partially

isolate, and to impose a fake behavior upon, the individual component.

20. A system according to claim 19 wherein the fake behavior imposed upon
the individual component, when called, in accordance with contents of the associated

behavior inducing message, comprises one of the following:

preventing the called component from running and, if results are to be returned,

returing fake results;
faking a failure of the called component;
providing a fake argument to the called component; and
none of the above.

21. A system according to claim 19 and also comprising access controlling
code, weaved into at least one location in said software application, which is operative
to query said apparatus for testing as to which operation, if any, said apparatus for at
least partially isolating is to perform, to receive an expectation, responsively, from the
apparatus for testing, and to activate said apparatus for at least partially isolating

accordingly.

22. A system according to claim 19 wherein at least one of said expectations
also comprises an indication of circumstances under which said individual component

is to act upon said behavior inducing message.

23. A system according to claim 19 wherein at least an individual one of said
expectations also comprises an indication of at least one expected arguments which are

expected to be passed to said individual component.

24. A system according to claim 19 wherein said identity of an individual
component comprises a string identifying the component and stored within the

expectation.

26

10

15

20

25

WO 2008/038265 PCT/IL2007/001152

25. A system according to claim 19 wherein at least one expectation is

generating by recording an actual call to at least said individual component.

26. A system according to claim 23 wherein said individual expectation is
generating by recording an actual call to said individual component, in the course of
which call at least one actual argument is actually passed to said individual
component, and wherein the indication of at least one argument in said expectation

comprises said at least one actual argument.

217. A system according to claim 1 wherein the plurality of software
components comprises a set of at least one pairs of utilizing-utilized software
components each including a utilized software component and a utilizing software
component which utilizes said utilized software component and which includes meta-
data pointing to the utilized software component, and said apparatus for at least
partially isolating comprises apparatus for modifying said meta-data to point to access
control code, said access controlling code being operative to control access of the

utilizing software component to the utilized software component.

28. A system according to claim 11 wherein the second component has

yet to be created.

29. A system according to claim 25 wherein said call comprises a chain of n

calls and wherein n expectations are generated by recording said chain of n calls.

30. A system according to claim 23 wherein said apparatus for testing is operative,
when said individual component is called with at least one actual arguments, to test

said actual arguments in comparison to said expected arguments.

31. A system according to claim 19 wherein said apparatus for testing
validates all expectations by checking, for each of the plurality of expectations, that
the component whose identity is stored therewithin was actually called by the software

application.

32. A system for testing a software component of a software application, the

system comprising:

27

WO 2008/038265 PCT/IL2007/001152

a dynamic isolator module adapted to dynamically and at least partially isolate the

software component from the software application.

33. A software testing method operative to test a software application comprising a
5 plurality of software components, at least some of which are highly coupled hence
unable to support a dependency injection, each software component operative to

perform a function, the method comprising:

at least partially isolating, from within the software application, at least

one highly coupled software component which performs a given function; and

10 testing at least said at least partially isolated highly coupled software

component.

34. A method for testing a software component of a software application, the

method comprising:

15 dynamically and at least partially isolating the software component from the

software application.

28

PCT/IL2007/001152

WO 2008/038265

117

| "Old

walsAg awiL] uny

201

i~

JojeingLjuo)

159]

9l l—_| { suoryeldadx31as

}
()asal

3po) 1531

V0L

801

Jaoel}

yJomaleld YI0W

N:L

O_‘_L

~+3p0D
2p07) paAedp 1401
}
(Jpoylsw

{

**3p02

9p07) paAeIM | /L0}

}
(JpoyIaw

aseq apod uo1dNPOId~_-90l

SUBSTITUTE SHEET (RULE 26)

WO 2008/038265

PCT/IL2007/001152
217
Method Ease of Manual Pros Cons
impl_ementation steps
Change Easy to implement, | Have to Ease of Many Manual steps.
Executable on | via post choose each | implementation | Will lead to tests not
disk compilation file working because of
separately. configuration.
Havetoruna
post
compilation-
step
System 10 Extremely hard Register the | One manual Fragile as changes to
Hooks hook step internal structures
will effect the code.
Requires elevated
user to register the
hook
Function NA
hooking
Class Loader | NA
Debug API Quite Hard Compile in One manual Needs to be compiled
Debug, runa | step in debug, slow
process to
attach to the
. test process
Profiler API | Quite Hard Register the | One manual Only one profiler can
Profiler Step be used, this will

disable some code
coverage tools that
use the AP

SUBSTITUTE SHEET (RULE 26)

FIG. 2

WO 2008/038265

37

PCT/IL2007/001152

Weaver
1047 Method() Mock Framework
{)
308-PWeaved Code |
code... (‘1 14
} Configurator
/ Method()
Method() 5 { o] 306
. { Weaved Code
Production 304— code.. code...
Code 3 1 102

Assembly —_—

302

1
r10

Run Time System

304

FIG. 3
Code Coverage |/ 402
401/\
Method()
{ Change
Y [Weaved Code [~ code
Profile Linker p— 5de
}
104
Weaver /—
Method()
[Change
Method() ' code
{ | Weaved Code [~I—zgain
Method() [Weaved Code| code...
{ code... }
code... [Weaved Code|
} } 306
Common Language Runtime \ 406
FIG. 4

SUBSTITUTE SHEET (RULE 26)

PCT/IL2007/001152

WO 2008/038265

GBS~

G Old

{
OMUSA|
**159)]
"*159)
**159]
**159)
1593 _
suolye129dx33196 w
(Jpoyrsw
agL— 2POD 1L

09S
ISLILISA

—0EG

Jspiing
Yo0oW dtweuiq

<zk:.”.,f"'.\r§.

0SS

Joseuew
uonnedadxy

ﬂ.omm

1apJoday
Yoow 1ednieN

s%

<E&53 ouisu]

aw] uny T

uoLjeptieA
usWNSay

\LoLg

owmk

Mlomauleld YO0W

ovv\

aseq apod UodNpoid~_-901

{ —0.G
**3p0d
L= 9p07) PaARIM . |/949
3
(Jpoyraw

SUBSTITUTE SHEET (RULE 26)

WO 2008/038265 PCT/IL2007/001152

5/7
InternalMockManager
610~ Sealed Class
fTypeExpectations
]
TypeExpectations =
/\{C}I/p P } 640
620 ass 7
NullinstanceExp
ST fAIIMock @meocks Class
, , — InstanceExpectations

InstanceExpectations]
630

Class j

fStatic ?
(] Expectations

6!1 fMethod
Expectations

650/\ \ 1 [6€:}O
‘@ Values MethodExpectations

ReturnValueStack
Class @ _ Class
conditionalValues| -

— ArrayList %;
- conditional |

e

L

DefaultValues

6!' defaultReturn
a | |
‘ fReturnValues [ReturnValue v

- 670

[Class

I
NuliReturnValue
680 Class

— ReturnValue

FIG. 6

SUBSTITUTE SHEET (RULE 26)

WO 2008/038265

PCT/IL2007/001152

6/7
' 110
Test Code —108 Producuon\/ 106 o
Test() code base Mock Framework
705 B Method()
{ C { 575 510/\
ProductionMethod | (
} [Weaved Code | E==82> Run
code... Time 16
(/720 } Engine 7
I
(/570 ;L S
Natural =
e (]
Returfy mock | Mock =2 8
object Recorder 0
520->
FIG. 7
801 . »
Not mocked Code Production - C
Code() code base Mock Framework
{ =5 Method() 1 710+
575 510
ProductionMethod L C \ 7
1 Weaved Code RUN S
code... Time 5
Le20 ; Engine ﬁg
L 570 8
Return mock &
object and Argument
change Validation
arguments S
810
FIG. 8

SUBSTITUTE SHEET (RULE 26)

PCT/IL2007/001152

WO 2008/038265

77

6 Old

026~

0L6~

_/

apeul Sem 11ed y

/]

e e 1adx3

Jaoel |

uoLyeplieA 018
wawnsyy N

f

Ao_‘m

suonjeadxy (S

auLsug
awiL| uny

Ylomauwleld YO0W

NZL

o_;&

SUBSTITUTE SHEET (RULE 26)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - claims
	Page 25 - claims
	Page 26 - claims
	Page 27 - claims
	Page 28 - claims
	Page 29 - claims
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - drawings

