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The present disclosure includes systems and methods for
detecting an anomaly in crowd behavior. The method
includes receiving sensor data representing a crowd, and par-
titioning the sensor data into local areas forming neighbor-
hoods. The method further includes, for each local area, char-
acterizing motion in the local area to determine real-time
estimates of motion of sub-populations based on the sensor
data, providing a crowd model for each local area, represent-
ing continuous functions describing expected motion near
each local area, and determining parametric values of the
crowd model based on the real-time estimates of the motion
of'the sub-populations. The method further includes learning
and adapting auxiliary stochastic models characterizing nor-
mal evolution of the parametric values of the crowd model
over time associated with each local area, and identifying a
potential anomaly associated with the local area by compar-
ing predictions from an auxiliary stochastic model with para-
metric values of the crowd model.
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1
REAL-TIME ANOMALY DETECTION OF
CROWD BEHAVIOR USING MULTI-SENSOR
INFORMATION

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a national stage application of Interna-
tional Patent Application No. PCT/US12/070149, entitled
“Real-Time Anomaly Detection of Crowd Behavior Using
Multi-Sensor Information,” filed Dec. 17, 2012, which claims
priority to U.S. Provisional Patent Application No. 61/576,
198, entitled “Real-Time Anomaly Detection of Large, Dense
Crowd Behavior, from Video and Multi-Sensor Information,”
filed Dec. 15, 2011, the contents of both of which are
expressly incorporated herein by reference in their entirety.

FIELD OF THE DISCLOSURE

The present disclosure relates generally to computer sys-
tems for detecting anomalies in crowd behavior and specifi-
cally to computer systems for real-time detection of anoma-
lies in crowd motion using multi-sensor information.

BACKGROUND

Crowd behavior can be observed among crowds of many
different types of organisms, from humans to animals to cells.
Crowd disasters, triggered by real or perceived dangers, are
frequent, especially among gatherings of differing numbers
of people. For example, over the past ten years, more than
three thousand people have died in crowd disasters. Some
methods for monitoring crowd behavior include detecting
anomalies in crowd behavior, such as individuals avoiding a
certain area or people changing directions sharply or even
stampeding in response to a real or perceived danger.

Some approaches for detecting anomalies in crowd behav-
ior rely on tracking individuals or virtual particles seeded in
the area under observation and driven by the optical flow.
Other approaches rely on creating and maintaining a library
of'normal patterns. These approaches often require high com-
putational complexity and are not suitable for tracking large
crowds in substantially real-time.

SUMMARY

In accordance with the disclosed subject matter, methods,
systems, and non-transitory computer program products are
provided for detecting anomalies in crowd behavior.

Certain embodiments include a method of detecting an
anomaly in crowd behavior. The method includes receiving
sensor data from one or more sensors, the sensor data repre-
senting a crowd in motion, and partitioning the sensor data
into a set of local areas, each local area forming a neighbor-
hood for analyzing the crowd in motion. The method further
includes, for each local area in the set of local areas, charac-
terizing motion in the local area to determine a set of real-time
estimates of motion of sub-populations in the local area based
at least in part on the sensor data. Each sub-population can be
characterized by a pattern of motion based at least in part on
sensor data collected over a longer-term time duration
describing motion in the sub-population. The longer-term
time duration can include at least one of minutes, hours, days,
weeks, seasons, and years. The method further includes pro-
viding a crowd model for each local area. Each model can
represent dynamics of continuous functions describing
expected motion near each local area. The method further
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2

includes determining a set of parametric values of the crowd
model based at least in part on the real-time estimates of the
motion of the sub-populations in the local area, to correlate
the set of parametric values with a short-time evolution of the
motion of the sub-populations in the local area. The method
further includes learning and adapting a set of auxiliary sto-
chastic models based at least in part on evolution of the
parametric values of the crowd model over time. The set of
auxiliary stochastic models can characterize substantially
normal evolution of the parametric values of the crowd model
over time associated with each local area. The method further
includes identifying an occurrence of a potential anomaly
associated with the local area by comparing predictions from
an auxiliary stochastic model in the set of auxiliary stochastic
models with the set of parametric values of the crowd model
based at least in part on the real-time estimates of the motion
of the sub-populations in the local area.

Certain embodiments include a system for detecting an
anomaly in crowd behavior. The system includes one or more
sensors for observing a crowd in motion, storage, and at least
one processor. The at least one processor is configured to
receive sensor data from the one or more sensors, the sensor
data representing the crowd in motion, and partition the sen-
sor data into a set of local areas, each local area forming a
neighborhood for analyzing the crowd in motion. For each
local area in the set of local areas, the at least one processor is
further configured to characterize motion in the local area to
determine a set of real-time estimates of motion of sub-popu-
lations in the local area based at least in part on the sensor
data. Each sub-population can be characterized by a pattern of
motion based at least in part on sensor data collected over a
longer-term time duration describing motion in the sub-popu-
lation. The longer-term time duration can include at least one
of minutes, hours, days, weeks, seasons, and years. The at
least one processor is further configured to provide a crowd
model for each local area. Each model can represent dynam-
ics of continuous functions describing expected motion near
each local area. The at least one processor is further config-
ured to determine a set of parametric values of the crowd
model based at least in part on the real-time estimates of the
motion of the sub-populations in the local area, to correlate
the set of parametric values with a short-time evolution of the
motion of the sub-populations in the local area. The at least
one processor is further configured to learn and adapt a set of
auxiliary stochastic models based at least in part on evolution
of'the parametric values of the crowd model over time. The set
of auxiliary stochastic models can characterize substantially
normal evolution of the parametric values of the crowd model
over time associated with each local area. The at least one
processor is further configured to identify an occurrence of a
potential anomaly associated with the local area by compar-
ing predictions from an auxiliary stochastic model in the set
of auxiliary stochastic models with the set of parametric
values of the crowd model based at least in part on the real-
time estimates of the motion of the sub-populations in the
local area.

Certain embodiments include a non-transitory computer
program product for detecting an anomaly in crowd behavior.
The non-transitory computer program product is tangibly
embodied in a computer-readable medium. The non-transi-
tory computer program product includes instructions oper-
able to cause a data processing apparatus to receive sensor
data from one or more sensors, the sensor data representing a
crowd in motion, and partition the sensor data into a set of
local areas. Each local area can form a neighborhood for
analyzing the crowd in motion. For each local area in the set
of'local areas, the non-transitory computer program product
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further includes instructions operable to cause a data process-
ing apparatus to characterize motion in the local area to deter-
mine a set of real-time estimates of motion of sub-populations
in the local area based at least in part on the sensor data. Each
sub-population can be characterized by a pattern of motion
based at least in part on sensor data collected over a longer-
term time duration describing motion in the sub-population.
The longer-term time duration can include at least one of
minutes, hours, days, weeks, seasons, and years. The non-
transitory computer program product further includes
instructions operable to cause a data processing apparatus to
provide a crowd model for each local area. Each model can
represent dynamics of continuous functions describing
expected motion near each local area. The non-transitory
computer program product further includes instructions oper-
able to cause a data processing apparatus to determine a set of
parametric values of the crowd model based at least in part on
the real-time estimates of the motion of the sub-populations
in the local area, to correlate the set of parametric values with
a short-time evolution of the motion of the sub-populations in
the local area. The non-transitory computer program product
further includes instructions operable to cause a data process-
ing apparatus to learn and adapt a set of auxiliary stochastic
models based at least in part on evolution of the parametric
values of the crowd model over time. The set of auxiliary
stochastic models can characterize substantially normal evo-
Iution of the parametric values of the crowd model over time
associated with each local area. The non-transitory computer
program product further includes instructions operable to
cause a data processing apparatus to identify an occurrence of
a potential anomaly associated with the local area by com-
paring predictions from an auxiliary stochastic model in the
set of auxiliary stochastic models with the set of parametric
values of the crowd model based at least in part on the real-
time estimates of the motion of the sub-populations in the
local area.

The embodiments described herein can include additional
aspects of the invention. For example, the embodiments can
further include allocating at least one of additional sensor
resources and additional computational resources to further
analyze motion in the local area associated with the identified
potential anomaly to verify whether to flag the identified
potential anomaly, if the predictions from the auxiliary sto-
chastic model do not match the set of parametric values of the
crowd model based at least in part on the real-time estimates
of the motion of the sub-populations in the local area; and
wherein if the further analysis of the motion in the local area
associated with the identified potential anomaly determines
that the identified potential anomaly should be flagged, ana-
lyzing motion of one or more individuals in the local area to
verify whether the identified potential anomaly is an actual
anomaly. The sensor data can include data from a video
stream; the partitioning the sensor data can include associat-
ing a subset of the sensor data with each local area in the set
oflocal areas, each local area forming a neighborhood around
a grid point in a spatial grid of the video stream representing
an area under observation; the set of real-time estimates of the
motion of the sub-populations can include real-time estimates
of'a velocity field and a density field; the crowd model can be
based at least in part on continuous-state, multi-population,
compressible fluid dynamics to model expected motion near
each local area, and wherein parameters of the crowd model
include coefficients for quantifying an eftect of crowd viscos-
ity, crowd pressure, extraneous forces, and random motion
that characterize local motion of each sub-population in the
local area: the learning and adapting the set of auxiliary
stochastic models can include determining a set of thresholds
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that represent substantially normal values of at least one of (i)
the continuous functions describing expected motion near
each local area, (ii) the parametric values of the crowd model,
(iii) the coefficients of any auxiliary stochastic model in the
set of auxiliary stochastic models, and (iv) spatial and tem-
poral derivatives of at least one of (i), (ii), and (iii), for each
local area, the set of thresholds being determined based at
least in part on at least one of sensor data collected over the
longer-term time duration and the real-time estimates of the
motion of the sub-populations; and the identifying the occur-
rence of the potential anomaly associated with the local area
can include at least one of (i) determining whether a residual
error identified by any of the auxiliary stochastic models in
the set of auxiliary stochastic models exceeds a pre-deter-
mined threshold in the set of thresholds, and (i) determining
whether a residual error identified by the crowd model
exceeds the pre-determined threshold. The embodiments can
further include aggregating parametric values from the crowd
model and predictions from the set of auxiliary stochastic
models for a plurality of local areas, and identifying an occur-
rence of a potential anomaly associated with the crowd, by
comparing the aggregated predictions from the set of auxil-
iary stochastic models and the parametric values from the
crowd model based at least in part on the real-time estimates
of the crowd in motion for the plurality of local areas. The
parametric values of the crowd model based at least in part on
the real-time estimates of the motion of the sub-populations
in the local area can be determined based at least in part on at
least one of minimum variance unbiased estimation, maxi-
mum likelihood estimation, least squares estimation, mini-
mum mean-square estimation, maximum a posteriori estima-
tion, optimal filtering, Wiener filtering, and Kalman filtering.
The auxiliary stochastic models can be learned based at least
in part on at least one of principal components analysis, linear
discriminant analysis, subspace learning, Galerkin methods,
Hankel matrix-based methods, and machine learning algo-
rithms. At least one of the motion in the local area and the
motion of the individuals in the local area can be analyzed
based at least in part on agent-based crowd models with
socio-economic forces, Boltzmann-like gas-kinetic models
for crowd motion, lattice gas models for crowd motion, and
cellular automata for crowd motion.

BRIEF DESCRIPTION OF THE DRAWINGS

Various objects, features, and advantages of the present
disclosure can be more fully appreciated with reference to the
following detailed description when considered in connec-
tion with the following drawings, in which like reference
numerals identify like elements. The following drawings are
for the purpose of illustration only and are not intended to be
limiting of the invention, the scope of which is set forth in the
claims that follow.

FIG. 1 illustrates a non-limiting example of a system for
detecting anomalies in crowd behavior in accordance with
some embodiments of the present disclosure.

FIG. 2 illustrates a non-limiting example of a data analysis
controller for detecting anomalies in crowd behavior in accor-
dance with certain embodiments of the present disclosure.

FIG. 3 illustrates a non-limiting example of a large-scale
crowd analysis module for detecting anomalies in crowd
behavior in accordance with certain embodiments of the
present disclosure.

FIG. 4 illustrates a non-limiting example of a local crowd
model module for detecting anomalies in crowd behavior in
accordance with certain embodiments of the present disclo-
sure.
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FIG. 5 illustrates a non-limiting example of a velocity field
and a density field based on a crowd model for determining
anomalies in crowd behavior in accordance with certain
embodiments of the present disclosure.

FIG. 6 illustrates a non-limiting example of a process that
the system performs for detecting anomalies in crowd behav-
ior in accordance with certain embodiments of the present
disclosure.

FIG. 7 illustrates a non-limiting example of a process that
the system performs for detecting anomalies in crowd behav-
ior at the large-scale level in accordance with certain embodi-
ments of the present disclosure.

DETAILED DESCRIPTION

In general, the present disclosure relates to a system and
method for detecting anomalies in crowd behavior. For
example, the present system receives sensor data from one or
more sensors representing a crowd in motion. In some
embodiments, the sensor data can be a video stream of the
crowd. The present system partitions the sensor data into a set
of local areas. In some embodiments, the present system
partitions the sensor data by associating a subset of the sensor
data with each local area, using a pre-defined spatial grid in
the physical domain over frames in the video stream, each
local area forming a neighborhood around each grid point in
the spatial grid representing an area under observation.

For each local area in the set of local areas, the present
system performs the following. Based on the sensor data, the
present system characterizes the motion in each local area to
determine a set of real-time estimates of motion of the sub-
populations found in each local area. Each sub-population
can be characterized by a pattern of motion based at least in
part on sensor data collected over a long time duration
describing motion in the sub-population. For example, each
sub-population can be represented by a characteristic motion
pattern such as route and velocity. One sub-population may
represent people in a crowd who settle into lanes of “crowd
traffic” headed left down a sidewalk, and another sub-popu-
lation may represent people headed right. In some embodi-
ments, the real-time estimates of the motion can include
real-time estimates of a velocity and a density of each sub-
population near the local area, at each grid point. The present
system provides a dynamic crowd model for each local area,
where each model represents dynamics of a continuous func-
tion describing expected motion near the local area. In some
embodiments, the crowd model can be based on continuous-
state, multi-population, compressible fluid dynamics to
model expected motion near each local area. Example state
can include the velocity and the density of each sub-popula-
tion near the local area. The crowd model includes a set of
parameters. Example parameters can include coefficients of
the crowd model quantifying the effect of crowd viscosity,
crowd pressure, extraneous forces, and random motion that
characterize local motion of each sub-population. The present
system then determines values for the parameters in the
crowd model, based on the real-time estimates of the motion
of'the sub-populations in the local area, to correlate the para-
metric values with a short-time evolution of the motion of the
sub-populations found in the local area. For example, the
present system determines real-time estimates of the para-
metric values of the crowd model based on the real-time
estimates of the velocity and the density from the character-
ized motion in the local area.

The present system uses the real-time parametric values of
the crowd model to learn and adapt a set of auxiliary stochas-
tic models. The auxiliary stochastic models characterize sub-
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6

stantially normal evolution over time of the parametric values
of the crowd model associated with each local area based on
the real-time estimates of the velocity and the density of the
local area. The evolution over time of the parametric values of
the crowd model identified by the auxiliary stochastic models
represents substantially normal motion in each local area.

The present system then identifies an occurrence of a
potential anomaly associated with the local area, by compar-
ing predictions from the set of auxiliary stochastic models
with the set of parametric values of the crowd model. For
example, the present system determines when the difference
between predictions by each local auxiliary stochastic model
and the real-time estimates of parametric values of the crowd
model exceed pre-determined thresholds. If the difference
between predictions exceeds the pre-determined thresholds,
the present system identifies a potential anomaly. In some
embodiments, comparing predictions from the set of auxil-
iary stochastic models with the set of parametric values from
the crowd model includes determining whether local crowd
densities or velocities exceed pre-determined normal levels in
a corresponding local area, or determining whether sharp
spatial variations of real-time estimates of parametric values
of the crowd model or of coefficients of the set of auxiliary
stochastic models in a local area exceed pre-determined
thresholds. If any threshold is exceeded, the present system
identifies a potential anomaly in the respective local area.

In further embodiments, in response to identifying a poten-
tial anomaly, the present system allocates additional sensor
resources to further analyze motion in the local area associ-
ated with the identified anomaly, to verify whether to flag the
identified anomaly. If the further analysis of the motion in the
local area determines that the identified anomaly should be
flagged, the present system allocates still further sensor
resources to analyze motion of one or more individuals in the
sub-population, to verify whether the identified anomaly is an
actual anomaly.

Turning to the figures, FIG. 1 illustrates a non-limiting
example of a system 100 for detecting anomalies in crowd
behavior in accordance with some embodiments of the
present disclosure. System 100 receives sensor data repre-
senting crowd behavior from sensors 102a-#, and outputs an
alert of an anomaly via user interface 114 and/or alert notifi-
cation 118 through data analysis controller 108. Data analysis
controller 108 uses sensor controller 104, network 106, and
storage 110 to process the received sensor data to detect
anomalies in crowd behavior.

Sensors 102a-r can include a number of spatially distrib-
uted sensing devices. The sensing devices include a known
position and a known sensed area available to system 100.
Non-limiting examples of sensors 1024-# can include optical
or infrared video cameras, radar systems, photoelectric sen-
sors, pressure-sensitive sensors, wireless non-contact sys-
tems, acoustic sensors such as microphones, optical sensors,
laser-based systems, or systems employing localization of
mobile phones such as in observing crowds of people.
Example wireless non-contact systems can include systems
using radio-frequency electromagnetic fields, such as Radio
Frequency Identification (RFID) systems or Near-Field Com-
munication (NFC) systems. Laser-based systems are pre-
sented by Fod, Howard, and Mataric (Fod, A., Howard, A. and
Mataric, M. A. J., “A laser-based people tracker,” Robotics
and Automation, 2002, Proceedings, ICRA 02, IEEE Inter-
national Conference on, vol. 3. IEEE, 2002, the entire con-
tents of which are incorporated by reference herein). Systems
for localization of mobile phones are presented by Mori et al.
(Mori, T. et al., “Multiple people tracking by integrating
distributed floor pressure sensors and RFID system,” Sys-
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tems, Man and Cybernetics, 2004 IEEE International Con-
ference on, Vol. 6, IEEE, 2004, the entire contents of which
are incorporated by reference herein).

In some embodiments, sensors 102a-z may allow system
100 to control the sensing device’s orientation. For example,
system 100 may control sensors 102a-z to zoom, pan, tilt,
rotate, or otherwise alter the sensor device’s orientation using
sensor controller 104.

In some embodiments, sensors 102a-»# may use raw sensor
data such as analog data including raw video streams or radar
data. Sensors 102a-r may further pre-process the raw sensor
data. For example, sensors 102a-z may perform video encod-
ing on raw video data, declutter raw radar data, extract veloc-
ity and/or density information from raw radar data or video
data, or perform other similar pre-processing operations on
raw sensor data. In further embodiments, video camera sen-
sors may include analog or digital cameras operating in accor-
dance with various video standards. For example, video data
may be output according to the National Television System
Committee (NTSC) or Phase Alternating Line (PAL) stan-
dard. The video data may include further encoding, such as
digital encoding according to the Motion Picture Expert
Group (MPEG) standard, or according to digital codecs
including H.263 or H.264. Alternatively, as described earlier,
the video sensor data may include simply the raw video
stream.

As described earlier, sensor controller 104 acts as a gate-
way between sensors 102a¢-» and the rest of system 100.
Sensor controller 104 forwards data from sensors 102a-» to
data analysis controller 108 and data storage 110. Sensor
controller 104 also receives and processes commands to
allow system 100 to monitor or control sensors 102a-7.

Network 106 transfers data by connecting sensor controller
102 and data storage 110 with data analysis controller 108.
The signals used by system 100 can be transmitted over a
computer network (such as point-to-point networks, Local
Area Networks (LAN) and/or Wide Area Networks (WAN),
etc.), broadband telecommunications signaling systems
(such as Digital Subscriber Line (DSL), Integrated Services
Digital Network (ISDN), frame relay networks, cell relay
networks, etc.), wireless links (802.11 wireless LAN, Blue-
tooth, etc.), and so on. Network 106 connects the components
illustrated in FIG. 1 and allows mutual communication
among components. In some embodiments, system 100 may
use encryption methods for data transport. A non-limiting
example encryption method includes trusted public-key cryp-
tography. Although FIG. 1 illustrates sensor controller 104
connected to data analysis controller 108 via network 106, in
some embodiments sensor controller subsystem 104 may be
connected directly to data analysis controller 108.

Data analysis controller 108 processes sensor data from
sensors 102a-» to detect anomalies in crowd behavior. Data
analysis controller 108 is described in further detail in con-
nection with FIGS. 2-4 and 8-9.

Storage 110 may include centralized or decentralized stor-
age for storing data generated by system 100. Non-limiting
examples of stored data may include the sensed data (or parts
thereof) provided by sensors 102a-z and sensor controller
104 via data analysis controller 108, or intermediate and/or
final results generated by data analysis controller 108, user
interface 114, data output controller 116, and/or alert notifi-
cation 118. Example storage may include Network-Attached
Storage (NAS). Storage Area Network (SAN) solutions.
Redundant Arrays of Inexpensive Disks (RAID), hard disks,
flash memory devices, Digital Video Recorders (DVRs), or
other storage for storing data generated by system 100.
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Data output controller 116 receives output from data analy-
sis controller 108 to display results and/or notify human
operators or users of detected anomalies using user interface
114 and alert notification 118. Data output controller 116
processes intermediate and/or final results from data analysis
controller 108 to determine whether output should be dis-
played on user interface 114 or whether an operator should be
alerted via alert notification 118. In some embodiments, data
output controller 116 can allow a user to manage and config-
ure system 100 using user interface 114. Data output control-
ler 116 can also notify a human operator of detected anoma-
lies via alert notification 118 using acoustic, audio, or visual
alarms to report a detected anomaly and/or present or detail
the result of the anomaly detection. Non-limiting examples of
alert notification 118 can include visual display units, loud-
speakers, or warning lights.

User interface 114 may include an arbitrary number of
textual and/or visual interfaces to system 100. User interface
114 may include a client interface application to display the
state of system 100, (for example, graphical representations
of output from sensors 102a-n, intermediate and/or final
results from data analysis controller 108), and may provide
user controls for a user to interact with and/or manage system
100, as described in further detail later. User interface 114 can
communicate over network 106 with sensors 102a-» directly
or via sensor controller 104, data analysis controller 108, and
storage 110. User interface 114 may be implemented on local
or remote, stationary or mobile devices including personal
computers, mobile phones, smart phones, or personal tele-
communications devices for short messages such as pagers.

Alert notification 118 may alert a human operator or user in
case of a detected anomaly. For example, in response to
detecting an anomaly in crowd behavior, alert notification
118 may release an acoustic, audio, or visual alarm and
execute a set of pre-defined rules. Non-limiting examples of
pre-defined rules may include notitying a closed-circuit tele-
vision (CCTV) operator or notifying security and/or law-
enforcement personnel. In some embodiments, in contrast to
user interface 114, alert notification 118 can further provide
an always-on capability. In this instance, new system mes-
sages such as alert messages and status updates can be
actively transferred as they arrive, for example from data
analysis controller 108 to the alert notification 118.

System 100 can be implemented as electronic hardware,
computer software, or combinations of both. For example,
system 100 may be implemented on any kind of single or
multiple desktop- or server-class computer system, or any
microprocessor-based device or devices. To illustrate this
interchangeability of hardware and software, various illustra-
tive blocks, modules, elements, and components have been
described generally in terms of their functionality. Whether
such functionality is implemented as hardware, software, or a
combination depends upon the particular application and
design constraints imposed on the overall system. Skilled
artisans can implement the described functionality in varying
ways for each particular application. Furthermore, various
components and blocks can be arranged differently (for
example, arranged in a different order, or partitioned in a
different way) all without departing from the scope of system
100. For example, sensor controller 104, data analysis con-
troller 108, and data output 116 may be incorporated in sys-
tem 100 through hardware modules, software modules, or
combinations of both.

FIG. 2 illustrates a non-limiting example of a data analysis
controller 108 for detecting anomalies in crowd behavior in
accordance with certain embodiments of the present disclo-
sure. As described earlier, data analysis controller 108
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receives sensor data, processes the sensor data, and sends
intermediate and/or final results to data output controller 116
for display or notification via the user interface and the alert
notification. FIG. 2 illustrates data analysis controller 108 in
communication with sensor controller 104, storage 110, and
data output controller 116. Also described earlier, the mod-
ules may communicate via direct connection, or via an indi-
rect connection such as a network.

In some embodiments, data analysis controller 108 pro-
cesses received sensor data at the crowd level, local area level,
and individual level. Large-scale crowd anomaly analysis
module 202 receives sensor data from sensor controller 104
and processes the received sensor data at the crowd level.
Large-scale crowd anomaly analysis module 202 is described
in further detail in connection with FIGS. 3 and 4.

After the present system identifies a potential anomaly in a
local area at the large-scale crowd level, the present system
focuses additional sensor resources or computational
resources to verify the potential anomaly at the local area
scale, and further at the individual scale. As used herein, the
term “meso-scale” refers to analysis of anomalies concen-
trated or focused on the local area level. Meso-scale anomaly
analysis module 204 sends commands to sensor controller
104 to allocate sensor resources, and processes resulting
received sensor data on local areas of interest. In some
embodiments, the local area scale represents a neighborhood
partitioned by the present system. For example, a local area
can represent a neighborhood around a pre-determined grid
point of a spatial grid partitioning a video stream, and the
neighborhood can contain multiple sub-populations.

Meso-scale anomaly analysis module 204 verifies an iden-
tified potential anomaly at the local area scale as follows.
Meso-scale anomaly analysis module 204 sends commands
to sensor controller 104 to concentrate additional resources
such as sensor resources and computing resources on a local
area associated with an identified potential anomaly. A local
area of interest represents a suspicious area for further analy-
sis, because the large-scale crowd model has identified a
potential anomaly for review.

In some embodiments, meso-scale anomaly analysis mod-
ule 204 can process the additional received sensor data using
agent-based crowd models with socio-economic forces, Bolt-
zmann-like gas-kinetic models for crowd motion, lattice gas
models for crowd motion, or cellular automata for crowd
motion. Agent-based crowd models with socio-economic
forces are presented by Gipps and Marksjo, Helbing and
Molnar, Henein and White, and Lakoba, Kaup, and Finkel-
stein (Gipps, P. G. and Marksjo, B., “4 micro-simulation
model for pedestrian flows,” Mathematics and Computers in
Simulation 27.2 (1985): pp. 95-105; Helbing, D. and Molnar,
P. “Social force model for pedestrian dynamics,” Physical
review E 51.5 (1995): p. 4282; Henein, C. and White, T.,
“Agent-based modelling offorces in crowds,” Multi-agent and
multi-agent-based simulation (2005): pp. 173-184; and
Lakoba, T. I., Kaup, D. J. and Finkelstein, N. M., “Modifica-
tions of the Helbing-Molnar-Farkas-Vicsek social force
model for pedestrian evolution,” Simulation 81.5 (2005): pp.
339-352, the entire contents of all of which are incorporated
by reference herein). Boltzmann-like gas-kinetic models are
presented by Helbing, and Hoogendoorn and Bovy (Helbing,
D., “A Fluid-Dynamic Model for the Movement of Pedestri-
ans,” Complex Systems 6 (1992): pp. 391-415: Hoogen-
doorn, S. and Bovy, P. H. L., “Gas-kinetic modeling and
simulation of pedestrian flows,” Transportation Research
Record Journal of the Transportation Research Board 1710.-
1, (2000): pp. 28-36, the entire contents of both of which are
incorporated by reference herein). Lattice gas models for
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crowd motion are presented by Muramatsu, Irie, and Naga-
tani, and Tajima and Nagatani (Muramatsu, M., Irie, T. and
Nagatani, T., “Jamming transition in pedestrian counter flow,
” Physica A: Statistical Mechanics and its Applications 267.3
(1999): pp. 487-498; Tajima. Y. and Nagatani, T., “Scaling
behavior of crowd flow outside a hall,” Physica A: Statistical
Mechanics and its Applications 292.1 (2001): pp. 545-554).
Cellular automata for crowd motion are presented by Kirch-
ner and Schadschneider (Kirchner. A. and Schadschneider,
A., “Simulation of evacuation processes using a bionics-
inspired cellular automaton model for pedestrian dynamics,”
Physica A: Statistical Mechanics and its Applications 312.1
(2002): pp. 260-276).

After verifying an identified potential anomaly at the local
area scale, individual anomaly analysis module 206 sends
commands to sensor controller 104 to allocate additional
sensor resources and further processes received additional
sensor data at the individual level. Similar to meso-scale
anomaly analysis module 204, individual anomaly analysis
module 206 sends further commands to sensor controller 104
to concentrate additional resources such as sensor resources,
computing resources, or human resources on individuals in
the sub-population or local area associated with an identified
potential anomaly. In some embodiments, individual
anomaly analysis module 206 can process the additional
received sensor data using the agent-based crowd models
with socio-economic forces described earlier, presented by
Gipps and Marksj6, Helbing and Molnar. Henein and White,
and Lakoba, Kaup, and Finkelstein.

FIG. 3 illustrates a non-limiting example of a large-scale
crowd analysis module 202 for detecting anomalies in crowd
behavior in accordance with certain embodiments of the
present disclosure. Large-scale crowd anomaly analysis mod-
ule 202 includes a data partitioning module 302, a crowd
model module 304, a data unification module 308, and a
crowd model validation module 310.

Data partitioning module 302 partitions sensor data
received from sensor controller 104 into pertinent data perti-
nent to small, possibly overlapping local areas or volumes. As
used herein, the term “volume” refers to a bounded space in
the three-dimensional world if the present system is being
used with sensor data representing a crowd in motion in three
dimensions. As used herein, the term “sub-area” refers to a
local area, neighborhood, or bounded set of locations in the
crowd. In some embodiments, the present system partitions
sensor data representing the crowd spatially into a grid. The
partitions defined around each grid point can represent local
areas, or sub-areas in the sensor data. Agents, such as indi-
viduals or groups of humans, in each local area can move
from one local area to another, although the partitioned local
areas themselves remain stationary. Data partitioning module
302 scales the size of the localized sub-area by the spatial
resolution of the sensed data. As described later in connection
with FIG. 7, the size of the local area can be based on the
spatial resolution available from the sensed data. For
example, the size of the local area can depend on the spatial
resolution needed to estimate a density of the corresponding
sub-population in the crowd. That is, a minimum value for the
size of the local area can be given by the smallest areca needed
to estimate reliably a density and/or a velocity of a sub-
population. The velocity field and density field estimation
performed by the present system are described in further
detail later, in connection with FIG. 7. In further embodi-
ments, the size of the local area can depend on the number of
parameters used in the crowd model of the corresponding
sub-population.
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Crowd model module 304 detects anomalies in crowd
behavior based on real-time parametric values in a crowd
model and evolution or variations in the parametric values
based on an auxiliary stochastic model. As used herein, the
term “local crowd model” refers to an analysis of a crowd
model associated with a corresponding local area. For each
local area defined by data partition module 301, crowd model
module 304 uses a local crowd model module 306a-n to
monitor crowd behavior and to detect anomalies from normal
behavior. The output of local crowd modules 3064-# includes
an assessment of anomalies in each local area. In some
embodiments, the output can be determined as either as a
boolean value (true or false), a binary value (0 or 1, where 0
denotes “no anomaly found” and I denotes “potential
anomaly found”), or an analog or discretized value field,
(such as a range between 0 and 1). In further embodiments,
local crowd modules 306a-» can return intermediate values
such as both the estimated velocity and density for the corre-
sponding local area, or the parametric values determined in
the crowd model, for use in global comparisons of multiple
local areas.

Data unification module 308 performs a spatial union of
the output from crowd model module 304. That is, data uni-
fication module 308 represents an inverse operation to data
partitioning module 304. An example of a spatial union may
include determining a weighted average of the output from
local crowd model modules 306a-7. In some embodiments,
the weighted averaging may include statistical, spatial, and/or
temporal averages of the crowd model output.

Crowd model validation module 310 validates or invali-
dates the real-time parametric values of the crowd model used
by crowd model module 304 and local crowd model modules
306a-n, based on aggregated crowd behavior data from data
unification module 308. For example, crowd model valida-
tion module 310 may validate or invalidate the crowd model
used by crowd model module 304 using a set of pre-defined
heuristic rules describing anomalies, to determine how well
the crowd model performs. Example pre-defined anomalies
may include heavy motion in a particular direction, strong
rotational motion, high crowd density, shock waves, etc. If
crowd model validation module 310 invalidates the real-time,
sensor-data-driven parametric value estimates and/or esti-
mated states of the crowd model, this identifies a potential
anomaly for further analysis or attention. Non-limiting
example states of the crowd model can include a velocity and
density for each sub-population being analyzed.

FIG. 4 illustrates a non-limiting example of a local crowd
model module 306 for detecting anomalies in crowd behavior
in accordance with certain embodiments of the present dis-
closure. Local crowd model module 306 includes a crowd
model state and parameter estimation module 402, a crowd
module parameter dynamics learning module 404, and a local
crowd model validation module 406. Local crowd model
module 306 receives partitioned local area information from
data partitioning module 302, processes the local area infor-
mation based on the local crowd module, and sends interme-
diate and/or final results to data unification module 308.

Crowd model state and parameter estimator module 402
estimates the sensor-data-driven state and parametric values
of'the local crowd model in substantially real-time. Substan-
tially real-time can include anomaly detection within a short
latency, such as on the order of seconds, or within seconds or
minutes of receiving the corresponding sensor data from sen-
sor controller 104. Example estimated state can include a
velocity field and a density field of the local area. Velocity
fields and density fields are described in further detail in
connection with FIG. 7.
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Example estimated parameters can include coefficients of
a crowd model quantifying the effect of the following factors:
crowd viscosity, crowd pressure, extraneous forces, and ran-
dom motion. The present disclosure describes a family or set
of continuous functions including a compressible, multi-
population, fluid-like dynamic model representing crowd
behavior such as crowd motion. In fluid dynamics, compress-
ibility refers to fluids in which fluid density varies in response
to a change in pressure. Velocity field estimation, density field
estimation, and parametric variation in the crowd model are
described in further detail in connection with FIG. 7. Further
background in fluid dynamics is presented by Batchelor, Fer-
ziger and Peri¢, and Srinivas and Fletcher (Batchelor. G. K.,
“An introduction to fluid dynamics”” Cambridge University
Press, UK, 2000; Ferziger, J. H. and Peri¢, M., “Computa-
tional methods for fluid dynamics,” vol. 2., Springer Berlin,
1999; and Srinivas, K. and Fletcher, J. C. A., “Computational
techniques for fluid dynamics: a solutions manual,” Springer,
1992; the entire contents of all of which are incorporated by
reference herein).

Crowd model parameter dynamics learning module 404
learns the dynamic system of functions in the crowd model
and evolution over time of the real-time parametric values
therein. Crowd model parameter dynamics learning module
404 learns the evolution of, or variations in, the parametric
values which are estimated in crowd model state and param-
eter estimation module 402. A set of low-order auxiliary
stochastic models describes the dynamics of temporal varia-
tions in values of parameters or coefficients of the crowd
model. The present system continually updates these auxil-
iary stochastic models using long-term observations during
operation, and learns these auxiliary stochastic models during
an initial training period. The auxiliary stochastic models can
predict parametric values of coefficients in the crowd model,
as well as predicting higher-order statistics describing
expected variations in the parametric values such as expected
covariance, variance, or standard deviation of a parametric
value. Non-limiting example learning methods include sys-
tem identification methods, as described in further detail later
in connection with FIG. 7.

Local crowd model validation module 406 validates the
crowd model for the local area using the estimated state and
parametric values generated by crowd model state and param-
eter estimation module 402 and the auxiliary stochastic mod-
els learned by crowd model parameter dynamics learning
module 404. The parametric values in the crowd model can
vary and evolve dynamically over time and space. The present
process uses auxiliary low-order stochastic models and toler-
ances which governs the dynamics of temporal variations in
parametric values of the crowd model coefficients which are
determined to be expected, typical, or normal. The present
process learns these auxiliary stochastic models during an
initial training period, and continually updates or adapts the
auxiliary stochastic models during operation of the present
system. As described later in connection with FIG. 7, non-
limiting example learning methods include methods based on
principal components analysis (PCA), linear discriminant
analysis (LDA), subspace learning (such as local linear
embedding), Galerkin methods, Hankel matrix-based meth-
ods, and machine learning algorithms (such as support vector
machines, Bayesian networks, or evolutionary algorithms).
Principal components analysis is presented by Tenenbaum,
De Silva, and Langford (Tenenbaum, J. B., De Silva, V. and
Langford, J. C., “A global geometric framework for nonlinear
dimensionality rveduction,” Science 290.5500 (2000): pp
2319-2323, the entire contents of which are incorporated by
reference herein). Linear discriminant analysis is presented
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by Roth and Steinhage (Roth. V. and Steinhage. V., “Nonlin-
ear discriminant analysis using kernel functions,” Sekretariat
fiir Forschungsberichte, Inst. fiir Informatik III, 1999, the
entire contents of which are incorporated by reference
herein). Subspace learning and local linear embedding is
presented by Roweis and Saul (Roweis. S. T. and Saul, L. K.,
“Nonlinear dimensionality reduction by locally linear
embedding,” Science 290.5500 (2000): pp. 2323-2326, the
entire contents of which are incorporated by reference
herein). Galerkin methods are presented by Holmes, and
Rowley, Colonius, and Murray (Holmes, P. J., et al. “Low-
dimensional models of coherent structures in turbulence.”
Physics Reports 287.4 (1997): pp. 337-384; Rowley, C. W.,
Colonius, T. and Murray, R. M., “Model reduction for com-
pressible flows using POD and Galerkin projection,” Physica
D: Nonlinear Phenomena 189.1 (2004): pp. 115-129, the
entire contents of both of which are incorporated by reference
herein). Machine-learning is presented by Bishop and Mur-
phy (Bishop, C. M., “Pattern recognition and machine learn-
ing,” Vol. 4. No. 4., Springer, New York, 2006; Murphy, K. P,
“Machine Learning: a Probabilistic Perspective,” The MIT
Press, 2012, the entire contents of both of which are incorpo-
rated by reference herein).

An identified anomaly in crowd behavior is determined
based on a change in the parametric values of coefficients of
the crowd model in a certain local area of the crowd, where the
crowd model is based on fluid dynamics. An anomaly is
considered to be a change that invalidates the predictions of
the previously learned auxiliary stochastic models and toler-
ances from crowd model parameter dynamics learning mod-
ule 404. Specifically, a parametric value that exceeds pre-
determined tolerances or a pre-determined threshold for
evolution over time of the parameters of the crowd behavior
model can be identified as a potential anomaly. The evolution
over time of the parametric values can be learned by the
low-order auxiliary stochastic model. In some embodiments,
the present system can identify a potential anomaly using
mismatches of the sensor-data-driven state, or estimates of
parametric values from the crowd model, or from the auxil-
iary stochastic model. As used herein, “data-driven state”
refers to state that is determinable directly or indirectly from
the sensor data, such as the real-time estimates of the velocity
and density determined by characterizing motion in the local
area, complexity measures, or first- or higher-order (spatial or
temporal) derivatives of velocity or density.

FIG. 5 illustrates a non-limiting illustrative example of a
velocity field and a density field based on a crowd model for
determining anomalies in crowd behavior in accordance with
certain embodiments of the present disclosure. The crowd
model associated with FIG. 5 will be discussed in further
detail in connection with FIG. 7. Velocity vectors 502a-d are
illustrated by arrows in light gray, white, black, and dark gray
shades. Velocity vectors 502a-d illustrate velocity vectors of
four sub-populations characterized by motion from (1) the
top opening to the bottom opening, (2) bottom opening to the
top opening, (3) right opening to the left opening, and (4) left
opening to the right opening. The length of the arrows indi-
cates the local speed of the corresponding sub-population.
Color 504a-c represents an aggregated local density of all
sub-populations, from low (medium gray, 504a) through
medium (light gray, 5045) and high (dark gray, 504c¢).

FIG. 6 illustrates a non-limiting example of a process 600
that the system performs for detecting anomalies in crowd
behavior in accordance with certain embodiments of the
present disclosure. First, the present system receives sensor
data from the spatially distributed sensor devices (step 602).
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The present system proceeds to analyze large-scale crowd
behavior based on the received sensor data to determine if a
potential anomaly is identified in the sensed area (step 604).
The analysis of large-scale crowd behavior is described in
further detail later in connection with FIG. 7.

If a potential anomaly is not identified (step 606: No), the
present system continues to process the next incoming sensor
data. If a potential anomaly is identified (step 606: Yes), the
present system may concentrate sensor and/or computational
resources on the suspicious local area or on the abnormally-
behaving sub-population associated with the suspicious local
area (step 618), to prioritize verification of an identified
potential anomaly. The present system analyzes sub-popula-
tion behavior or motion in the suspicious local area to verify
the identified potential anomaly (step 608). A non-limiting
example of analysis of sub-population behavior includes
methods based on tracking individuals or particle motion.

Ifthe present system does not verify the identified potential
anomaly in the suspicious local area (step 610: No), the
present system returns to process the next incoming sensor
data. If the present system verifies the identified potential
anomaly in the local area (step 610: Yes), the present system
proceeds to concentrate further sensor resources on the sub-
population or on the suspicious local area to prioritize verifi-
cation of an identified potential anomaly (step 620). For
example, the present system may concentrate resources,
including sensor, computational, or human resources, to pri-
oritize detection of an anomaly in crowd behavior. The
present system may verify an identified potential anomaly
using agent-based crowd models with socio-economic
forces, Boltzmann-like gas-kinetic models for crowd motion,
lattice gas models for crowd motion, or cellular automata for
crowd motion, as described earlier in connection with FIG. 2.
The present system proceeds to analyze the local area asso-
ciated with the identified potential anomaly at an individual
level (step 612). Similar to methods described in connection
with step 608, the present system may follow individuals
involved in an identified potential anomaly.

If the identified potential anomaly is verified (step 614:
Yes), the present process proceeds to trigger an alarm (step
616). In some embodiments, the alarm can be triggered fol-
lowing various steps illustrated in FIG. 6. For example, the
alarm can be triggered following the anomaly analysis on the
large-scale crowd level (step 606: Yes), meso-scale level (step
610: Yes), and/or individual level (step 614: Yes).

In further embodiments, the triggering of the alarm may
include executing a set of user-defined rules. Example user-
defined rules may include notifying a closed-circuit televi-
sion (CCTV) operator, security and/or law-enforcement per-
sonnel, or sending data related to the triggering of the alarm to
the storage, etc. If the identified potential anomaly is not
verified (step 614: No), the present process processes further
sensor data.

In some embodiments, the present process further includes
sending intermediate results of various steps to the user sub-
system, such as to the data output controller, the user inter-
face, or the alert notification. For example, intermediate
results may include the identified suspicious local areas or a
graphical representation of sensor data corresponding to the
identified suspicious local areas.

FIG. 7 illustrates a non-limiting example of a process 604
that the system performs for detecting anomalies in crowd
behavior at the large-scale level in accordance with certain
embodiments of the present disclosure. The received sensor
data is collected and partitioned in small local areas before
engaging the large-scale crowd anomaly analysis (step 702).
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The local areas represent partitions of the sensor data. For
example, the present system can spatially partition a video
stream into a grid representing local areas of the crowd. A
local area can contain many sub-populations of the crowd. All
members of a sub-population feature a distinct motion pat-
tern, which distinguishes them from all members of other
sub-populations. The present system scales the size of the
local area by the spatial resolution of the sensed data. For
example, a minimum value for the size of the local area can be
given by the smallest area needed to estimate reliably a den-
sity and/or a velocity of the crowd or be based on the number
of parameters used in the crowd model. In some embodi-
ments, if the present system uses a number of parameters or
coefficients to estimate the density of the crowd, the mini-
mum value for the size of the local area is defined to be larger
than the number of estimated parameters used to estimate the
density. Other restrictions, such as restrictions imposed by the
geometry of the inspected area, may also affect the size of the
partitioned local area.

In some embodiments, the partitioning divides the sensor
data into overlapping local areas. Partitioning local areas to
overlap improves subsequent processing. Overlapping local
areas increase prediction accuracy and also avoid artifacts in
the sensor data that may block or occlude individuals. When
using overlapped block partitioning, local area sizes are typi-
cally partitioned to be twice as big in each dimension as they
otherwise would be, and local areas overlap quadrant-wise
with neighboring local areas.

For each local area identified through the partitioning (step
706), the present process performs the steps delineated by
dotted rectangle 704. Specifically, the present process char-
acterizes motion in the local area based on the sensed data
(step 708), provides a crowd model for the local area (step
710), determines parametric values of the crowd model (step
712), learns and adapts a set of auxiliary stochastic models
approximating evolution over time of the parametric values of
the crowd model (step 714), and identifies potential anoma-
lies based on the auxiliary stochastic models and the crowd
model (step 716). Each step is described in further detail as
follows.

First, the present process characterizes the motion in the
local area based on the sensed data (step 708). In some
embodiments, the present system characterizes the motion by
determining real-time estimates of a velocity field and a den-
sity field representing the local area based on the sensed data.

A velocity field describes a field of velocity vector func-
tions of position and time representing motion in the local
area. In some embodiments, if the sensor data includes video
data, the present system determines the velocity using video
processing algorithms such as feature matching, template
matching, temporal alignment, or statistical comparison
algorithms. These algorithms can use video data including
color (Red-Green-Blue, Hue-Saturation-Value, etc.), gray-
level (image intensity), or derivative information from the
video stream, or a combination thereof. A non-limiting
example video processing algorithm for determining the
velocity field is robust dense optical flow, presented by Baker
and Matthews (Baker, S and Matthews, 1., “Lucas-Kanade 20
years on: A unifying framework,” International Journal of
Computer Vision 56.3 (2004): pp. 221-255, the entire con-
tents of which are hereby incorporated by reference). Other
example algorithms can exploit motion estimation or com-
pensation techniques used digital video encoding or compres-
sion. Example video codecs allowing exploitation of motion
estimation or compensation techniques include H.263,
MPEG-4 Part 2, H.2641 MPEG-4 Advanced Video Coding
(AVC), VC-1, or other video codes based on discrete cosine
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transforms (DCT). Still other example algorithms can use
dynamic texture-based methods including motion models.
Example dynamic texture-based methods are presented in
Cremers, Rousson, and Deriche, and Nelson and Polana (Cre-
mers, D., Rousson, M. and Deriche, R., “4 review of statisti-
cal approaches to level set segmentation: integrating color,
texture, motion and shape,” International journal of computer
vision 72.2 (2007): pp. 195-215; Nelson, R. C.,and PolanaR.,
“Qualitative recognition of motion using temporal texture,”
CVGIP: Image understanding 56.1 (1992): pp. 78-89, the
entire contents of both of which are hereby incorporated by
reference).

As described earlier, the sensor data can include data other
than optical or video data. Accordingly, the present system
can determine a real-time estimate of a velocity field for a
local area directly or indirectly. Example indirect determina-
tion of a velocity field may include inferring the velocity field
based on positional information from the sensor data. In some
embodiments, the present system can determine a velocity
field from radar sensors based on the Doppler effect. In other
embodiments, the present system can determine velocity
using positional information from sources such as Radio Fre-
quency Identification (RFID) data, or contact or contactless
sensors. Examples of determining velocity based on posi-
tional information are presented by Mori, et al. (Mori, T. etal.,
“Multiple people tracking by integrating distributed floor
pressure sensors and RFID system,” Systems, Man and
Cybernetics, 2004 IEEE International Conference on, vol. 6,
IEEE, 2004, the entire contents of which are hereby incorpo-
rated by reference).

A density field describes a field of density vector functions
of'position and time, representing density of the local area. In
some embodiments, if the sensor data includes video data, the
present system determines real-time estimates of the spatial
crowd density by interpreting density to be an image or video
texture property. For example, the more complex a video
frame or video stream is determined to be, the higher the
density value that can be assigned. Accordingly, density can
be estimated from small-area statistical properties of the coef-
ficients of wavelets or Fourier-related transforms, resolving a
range of length scales. If the sensor data does not include
optical or video data, the present system can leverage other
characteristics of the sensor data to determine a density esti-
mate of the local area.

The present process provides a crowd model which models
the behavior of the crowd based on fluid dynamics (step 710).
The crowd model represents the local areas as a set of sub-
populations, each sub-population having a characteristic
behavior, such as a desired route or a stochastic behavioral
pattern. An example desired route includes a group of people
going from a specified train or subway platform to a specified
exit gate in the station. An example of stochastic behavior can
be seen when grocery shoppers focus on buying groceries in
a different behavioral pattern versus the behavioral pattern of
window shoppers browsing in a mall.

The crowd behavior model includes a collection or set of
continuous functions of space and time, representing the
time-varying velocities and contributions to the density of
each sub-population of the crowd at each point in the
inspected local area. The crowd behavior model denotes time
by t and a location in space on a flat surface by (x,y)” and in
three dimensions by (x,y,z)%, in which the notation r denotes
the transpose, namely
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Subsequently, without loss of generality, the crowd behavior
model denotes a spatial location by a vector field x=(x,y)".

A local area can contain multiple sub-populations. The
crowd behavior model describes the combined motion of N
sub-populations, indexed by ie¥ ={1, . .., N}. As described
earlier, the present system characterizes the motion of the
sub-populations using real-time estimates of a velocity field
and a density field. The velocity field of sub-populationi,ie? ,
is denoted by u,. The velocity field is a vector-field with values
of'the same dimension as the spatial location vector, x. That is,
if x denotes space in two dimensions (x,y)7, v, denotes veloc-
ity in the direction of the x- and y-axes by u and v, respec-
tively. If x denotes space in three dimensions (x,y,z)%, 1,
denotes velocity in the direction of the x-, y-, and z-axes by u,
v, and w, respectively. The density field p, denotes the density
of agents, such as humans, in a crowd per unit area. Both u,
and p, are functions of the spatial position x and time t, thus
u,=u,(x,t) and p,=p,(x.t). The total density is defined as the
sum of all the sub-population densities in the local area at a
given point in space and time, i.e.

N
Pl D =" pilx, 0.

i=1

An upper bound on the total feasible or tolerable density is
denoted p,,4- Pmae May be based, for example, on long-term
observations of crowd motion patterns in a particular loca-
tion, time of day, day of week, season, etc., on safe bounds or
areas set by the designer of a public area under inspection, by
a user operating the present system, or derived from moving
averages over long-time windows. The crowd behavior model
defines pressure as

px, 1)
P, 1) Prmax
X, 1) = = .
e |_P®0
Prmax

The pressure term models “social pressure” or “crowd
pressure” which individuals in a crowd may feel when they
are more tightly or less tightly in the presence of one another,
and the tendency of individuals to avoid densely-packed
areas. Conversely, individuals exhibit a tendency to move
towards less densely-packed areas. The relative sub-popula-
tion and total densities, denoted

iy 1) = pilx, 1)
b Ponax(X, 1)
and

plx, 1)
orm (X, 1) = ,
Proml 0= D

respectively, may be introduced to simplify the expression for
the pressures, as
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Prorm(X, 1)

P T )

Based on the sensor data, the present system measures and
obtains an observed velocity, u, at a point, x. The observed
velocity represents an average of velocity all sub-populations
in the local area. That is, the observed velocity is determined
using short-time observations of evolution of motion over a
small area and a small time. The small area can be the local
area of the sensor data under analysis. The small time can be
successive frames in the video stream, which can be any-
where from Y16 of a second to Y30 of a second to Yo of a
second. The observed velocity is therefore related to the den-
sities and velocities of the sub-populations at a given in space
and time, i.e.

& pilr )
— plx D)

ux, 1) = u;(x, 1).

The conservation of mass of a small moving subset of each
sub-population is given by the continuity equation

3,px,0)+V - (px,t)ux,1))=0, (Equation 1)

for i€, where 3, and V_ denote the partial derivative with
respect to time and the Nabla operator with respect to space,
respectively. Note that, by definition of the densities p,, the
mass at a time t of the sub-population i in an area or a volume
QcQ, within the observed area Q, is the spatial integral
Jap (€, )E. The mass thus represents the locally smoothed
number of individuals of the sub-population i, that is con-
tained within the given volume or area, Q. In these terms, the
continuity equation states that if, at a certain time t,, a portion
of'the sub-population i is contained in a certain area or volume
Q(to), and if one tracks the time evolution of points in Q(to),
as the points move in space and time according to the velocity
field u,(x,t), to form an area or volume Q(tl), at a later time,
t,>1,, then the number of persons of the sub-population 1 that
occupy Q(t,) at the time t, remains equal to the number of
those that occupied Q(t,) at the initial time t.

The crowd model also includes a momentum equation for
the large-scale crowd, which is given by

8, (i (x. Dui(x, D) = =V, (i (&, Dag (x, D) @ ug(x, D) + (Equation 2)

%Pi(x, D(id; —ui(x, 1)) =

pilx, 1)
px, 0

(BiVsx px, 1) + pi (4 (x, 1) — (X, 1)) +

pi(x%, D&ipx, 1), X, 1),

for ieJ, where the - and ® operators represent the inner
product and outer product vector operations, respectively.
The meaning of the terms of Equation 2 is explained in the
description following. All the parameters of Equation 2, T,, 3,,
W, U, d;, and T,, may be estimated in real time by the present
system. The parametric values vary slowly with time and
smoothly in space. Thus. T=t,(x,1), B,=p,(X,1), WL,=(X,1),
1,=0,(x,1), d/=d,(x,t), and T, =C,(x,t),x,t). As discussed below,
the present system identifies auxiliary stochastic models that
describe the substantially normal temporal evolution of these
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parameters from the estimated real-time parameter values for
each local area, and possibly, using pre-determined a priori
information.

Non-limiting examples of a priori information include
long-term sensor data, such as sensor data from observing an
area under surveillance for a long time. Example time inter-
vals for observing an area include minutes, days, weeks,
months, seasons, or years. For example, a long-term obser-
vation based on seasons may include every year in the fall,
observing a crowd of birds gathering in flocks and migrating
South. In this instance, every year in the fall, #i; and d, are
likely to be similar. Accordingly, the present system can per-
form faster by avoiding extraneous or duplicated estimation
of these parametric values from the sensor data. In another
example, a long-term observation based on hours may
include observations of crowds of commuters in train, bus, or
subway stations, when a train, bus, or subway arrives accord-
ing to the same schedule for every weekday. The behavior of
crowds before work (before 9 am) or around lunch time
(around 12 pm) or after work (after 5 pm) may remain similar
for weeks, months, seasons, or years. In this instance, the
relevant long-term observation can include time spans from
on the order of minutes, to years, if the present system deter-
mines that the commuter crowd features a similar behavioral
pattern at all times on a weekday.

The convection term,

Ve (003, )® o, ),

represents the spatial component of the acceleration of amass
occupying an infinitesimal volume around the point x at time
t and propagates according to u,. In other words, the convec-
tion models the spatial shifting of momentum in a local area
for a sub-population i due to the bulk velocity of the crowd.
Specifically, if the spatial volume is centered around position
vector z(t), then the center of that volume satisfies

d —
<40 = u(z(n). 0

and the total time derivative of the momentum of that mass

d
=; PieD), Dutz(D). D),

is the sum of the left hand side of Equation 2 and the convec-
tion term evaluated at x=7(t).
The extraneous forces term,

pilx, D)
Ti(x, 1)

(@i(x, Ddi(x, N = wi(x, 1),

represents a tendency of crowd members of sub-population i
to adhere to a known motion pattern. The known motion
pattern can be defined by the velocity field 1,d,. The extrane-
ous forces term is determined by the scalar parameter t,, the
scalar target velocity amplitude {i,, and vector-valued target
velocity orientation d,.

As will be discussed later, an auxiliary stochastic model
encapsulates time variations in some parameters of Equation
2, such as T,. The auxiliary stochastic model slowly adapts
using time-filtered, real-time estimates of these parameters.
Like all other parameters of Equation 2, the extraneous forces
parameters may vary in time and in space. Accordingly, the

20

25

30

40

45

50

55

60

65

20

present system can estimate parametric values of the param-
eters of the extraneous forces term, suchas t,, 1,, and d,, based
on real-time estimates of velocity and density of the local
area. Parameters representing target behavior, such as 11, and
d,, may be primarily based on long-time observations. The
long-term observations can be gathered based on long-term
sensor data, such as sensor data from observing an area under
surveillance for a long time. As described earlier, example
time intervals for observing an area can include minutes,
hours, days, weeks, months, seasons, or years. Accordingly,
the parameters representing target behavior may depend on
the location relative to the global spatial geometry, or on time
of'day, day of week, season, etc. These target behavior param-
eters may also include a functional dependence on the state of
the flow, representing long-time averaged shifts in sub-popu-
lation path and velocity, in response to varying levels of traffic
density of the crowd.
The term

_pilx )
plx, 0

(BiVx px, 1) + (a4 (x, 1) — (X, 1))

includes a pressure term and a viscosity term describing
crowd behavior. The pressure term,

_px D
plx, 0

BiVaplx, 1),

models the tendency of the moving crowd to prefer motion
orientation from high to low density, hence along the negative
pressure gradient. In other words, the pressure term repre-
sents a congestion repelling force, as individuals in a crowd
avoid highly packed areas and instead prefer less crowded
areas. In the extreme, this term represents a collision avoid-
ance force. The parameter f3, scales this force. As with all
other equation parameters, f3, is expected to vary with space
and time. The normal time variation of f3, is described by the
auxiliary stochastic model, as described later. Accordingly,
the value of parameter (3, can be estimated based on real-time
estimates of velocity and density of the local area, and com-
pared with output from the auxiliary stochastic model by the
present system. The viscosity term,

_px D
plx, 0

wilui(x, 1) —ulx, 1)),

models the force exerted by the motion of those immediately
surrounding an individual, on that individual. Namely, it rep-
resents the difficulty of an individual to move at a velocity and
orientation that are different than those of the average motion,
around that individual. The parameter >0 scales this force
and is subject to spatio-temporal variations. The normal time
variation of 1, is described by the auxiliary stochastic model,
as described later. Accordingly, the value of parameter i, can
be estimated based on real-time estimates of velocity and
density of the local area, and compared with output from the
auxiliary stochastic model by the present system.
The stochastic acceleration term,

P (P, 0,50,

adds small randomness to the motion of individuals in the
crowd behavior model. The stochastic acceleration represents
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an intensifying randomness, to avoid congestion and colli-
sion, as an individual approaches a high-density area in a
crowd, and reduced randomness during the individual’s
motion through low-traffic areas in the crowd. For example,
the dependence of the vector-valued stochastic field T, on the
total density p may reflect a tendency of individuals in the
crowd to increase random sideways motion, to avoid
approaching congestion or collision. Similarly, the converse
may act to reduce such motion in areas which are less con-
gested or more sparsely populated.

As described earlier, the present system characterizes
motion in each local area by determining a set of real-time
estimates of motion of sub-populations found in the local
area. The real-time estimates of motion can include real-time
estimates of a velocity field and a density field. The present
system determines the real-time estimates of the velocity field
and density field as follows. The distributed state of the large-
scale crowd model includes the density fields, p,(x,t) and the
velocity field, u,(x,t) for ie7 . To determine the density field,
real-time density estimates may be directly computed from
local data only for the total density p. The determination of
further density estimates is described in further detail below.
To determine the velocity field, a locally averaged velocity of
the combined sub-population can be determined first, i.e., for
u. For example, the present system can use optical field esti-
mates. After determining the total density p and locally aver-
aged velocity, the present system can then determine esti-
mates for velocities and densities for each sub-population
based on the distributed estimates of p and u, over small areas
such as the local areas partitioned by a pre-determined spatial
grid. For example, providing low-order polynomial represen-
tations of local variations in p,(x,t) and u,(x,t), the present
system can estimate coefficients of the polynomials from
direct estimates of p, and u, at multiple grid points in space,
and, possibly, several successive samples in time, such as
successive frames of a video stream. These successive
samples in either time or space form a small neighborhood of
the tuple (x,t).

The present process then determines parametric values of
the crowd model based on the real-time estimates of the
motion of the sub-populations in the local area (step 712). The
present system uses the parametric values to correlate with a
short-time evolution of the motion of all sub-populations
found in the local area. The present system estimates coeffi-
cients of the crowd model using best-fit to real-time estimates
ofthe model state from the received sensor data. As described
earlier, the model state can include distributed velocity fields
and density fields. The present system identifies behavioral
patterns in the local area in terms of coefficient values of the
crowd model. The present system then uses estimation meth-
ods to estimate parametric values of the crowd model.
Example estimated parameters may include <,, B, W, L d;s
and g, for all sub-populations ie 7 . In some embodiments, the
estimation methods may be based on estimation methods to
solve an over-determined system, i.e., a set of equations in
which there are more equations than unknowns. The
unknown variables are the parameters of the crowd model.
Non-limiting examples of estimation methods may be based
on classical estimation methods or Bayesian estimation.
Example classical estimation methods can include minimum
variance unbiased estimation, maximum likelihood estima-
tion, and least squares estimation, such as methods presented
by Bjorck (Bjorck, A., “Numerical methods for least squares
problems,” No. 51, Society for Industrial Mathematics, 1996,
the entire contents of which are hereby incorporated by ref-
erence). Example Bayesian estimation methods can include
minimum mean-square estimation, maximum a posteriori
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estimation, optimal filtering, Wiener filtering, and Kalman
filtering, such as methods presented by Kay (Kay, S. M.
“Fundamentals of Statistical Signal Processing, Volume I:
Estimation Theory (v. 1),” (1993), the entire contents of which
are hereby incorporated by reference). The present system
may prefer robust methods, as the crowd model includes a
stochastic term.

The present process then learns and adapts an auxiliary
stochastic model from a set of auxiliary stochastic models
based on evolution over time of the parametric values of the
crowd model (step 714). The parametric values in the crowd
model can vary and evolve dynamically over time and space.
The present process uses auxiliary low-order stochastic mod-
els and tolerances which governs the dynamics of temporal
variations in parametric values of the crowd model coeffi-
cients which are determined to be expected, typical, or nor-
mal. The present process learns these auxiliary stochastic
models during an initial training period, and continually
updates the auxiliary stochastic models during operation of
the present system. Non-limiting example learning methods
include methods based on principal components analysis
(PCA), linear discriminant analysis (LDA), subspace learn-
ing (such as local linear embedding), Galerkin methods, Han-
kel matrix-based methods, and machine learning algorithms
(such as support vector machines, Bayesian networks, or
evolutionary algorithms).

The present process then identifies a potential anomaly
based the auxiliary stochastic model and on the crowd model
(step 716). The present system identifies a potential anomaly
by detecting an abrupt change in the parameters of the crowd
model in the local area. In some embodiments, the present
system identifies a potential anomaly if the abrupt change
invalidates the predictions of the auxiliary stochastic model
learned in step 714, if tolerances on parametric values of the
crowd model and auxiliary stochastic model learned in steps
708 and 714 are exceeded, and/or based on long-term obser-
vations of the area under surveillance. In further embodi-
ments, the present method may include a set of pre-defined
anomalies, such as heavy motion in a particular direction,
strong rotational motion, high crowd density, shock waves,
etc. If the present system detects changes in parametric values
indicative of a pre-defined anomaly, the present system iden-
tifies those parameter variations as a potential anomaly.

In further embodiments, the present system can identify a
potential anomaly using mismatches of the sensor-data-
driven state, such as the real-time estimates of the velocity
and/or density determined by characterizing motion in the
local area, complexity measures, or first- or higher-order
(spatial or temporal) derivatives of velocity or density (step
710), or estimates of parametric values from the crowd model
(step 712) or from the auxiliary stochastic model (step 714).
For example, in some embodiments, the present system can
compare the sensor-data-driven state estimates to short-term
predictions generated by the crowd model. In some embodi-
ments, the present system can compare the sensor-data-
driven state estimates to short-term predictions generated by
the crowd model by using a suitable Navier-Stokes equation
solver to short-time integrate the large-scale crowd model. In
other embodiments, the present system may use a residual
error of the crowd model and/or of the auxiliary stochastic
model when applied to the sensor-data-driven estimates.

In some embodiments, after performing the anomaly
analysis for each local area, the output is aggregated based on
the partitions determined in step 702 (step 718). For example,
the aggregating may include a spatial aggregation using
weighted average filtering of the received input. The aggre-
gating may include determining a weighted average statisti-
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cally, spatially, and/or temporally. In further embodiments,
the aggregating may include an interpolation of the received
input.

The aggregated data from the anomaly analysis for each
local area may then be inspected on a global scope to identify
a potential anomaly or to verify an identified potential
anomaly (step 720). Step 720 performs anomaly detection on
an area larger than a local area, or on the whole inspected area
including the entire crowd. In some embodiments, the present
system can use long-term observation of the surveillance area
or stochastic adaptive estimation to determine tolerances on
the magnitude of spatial and/or temporal gradients of the
aggregated crowd model states and/or aggregated vector of
parametric values of the crowd model. Accordingly, violation
of'these tolerances can then be used as indicators of potential
anomalies in local area crowd motion.

As described earlier in connection with FIG. 6, a potential
anomaly identified according to process 604 is then further
processed at the meso-scale and individual levels.

Those of skill in the art would appreciate that the various
illustrations in the specification and drawings described
herein can be implemented as electronic hardware, computer
software, or combinations of both. To illustrate this inter-
changeability of hardware and software, various illustrative
blocks, modules, elements, components, methods, and algo-
rithms have been described above generally in terms of their
functionality. Whether such functionality is implemented as
hardware, software, or a combination depends upon the par-
ticular application and design constraints imposed on the
overall system. Skilled artisans can implement the described
functionality in varying ways for each particular application.
Various components and blocks can be arranged differently
(for example, arranged in a different order, performed in a
different order, or partitioned in a different way) all without
departing from the scope of the subject technology.

Moreover, in the drawings and specification, there have
been disclosed embodiments of the inventions, and although
specific terms are employed, the term are used in a descriptive
sense only and not for purposes of limitation. For example,
various controllers, nodes, and modules have been described
herein as running on single machines, but embodiments
where the controllers, nodes, and modules comprise a plural-
ity of machines connected together is within the scope of the
disclosure (e.g., in a parallel computing implementation or
over the cloud). Moreover, the disclosure has been described
in considerable detail with specific reference to these illus-
trated embodiments. [t will be apparent, however, that various
modifications and changes can be made within the spirit and
scope of the disclosure as described in the foregoing specifi-
cation, and such modifications and changes are to be consid-
ered equivalents and part of this disclosure.

We claim:
1. A computer-implemented method of detecting an
anomaly in crowd behavior, the method comprising:
receiving sensor data from one or more sensors, the sensor
data representing a crowd in motion;
partitioning the sensor data into a set of local areas, each
local area forming a neighborhood for analyzing the
crowd in motion;
for each local area in the set of local areas,
characterizing motion in the local area to determine a set
of real-time estimates of motion of sub-populations in
the local area based at least in part on the sensor data,
each sub-population characterized by a pattern of
motion based at least in part on sensor data collected
over a longer-term time duration describing motion in
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the sub-population, the longer-term time duration
including at least one of minutes, hours, days, weeks,
seasons, and years;
providing a crowd model for each local area, each model
representing dynamics of continuous functions
describing expected motion near each local area;
determining a set of parametric values of the crowd
model based at least in part on the real-time estimates
of'the motion of the sub-populations in the local area,
to correlate the set of parametric values with a short-
time evolution of the motion of the sub-populations in
the local area;
learning and adapting a set of auxiliary stochastic mod-
els based at least in part on evolution of the parametric
values of the crowd model over time, the set of aux-
iliary stochastic models characterizing substantially
normal evolution of the parametric values of the
crowd model over time associated with each local
area; and
identifying an occurrence of a potential anomaly asso-
ciated with the local area by comparing predictions
from an auxiliary stochastic model in the set of aux-
iliary stochastic models with the set of parametric
values of the crowd model based at least in part on the
real-time estimates of the motion of the sub-popula-
tions in the local area.
2. The method of claim 1, further comprising:
allocating at least one of additional sensor resources and
additional computational resources to further analyze
motion in the local area associated with the identified
potential anomaly to verify whether to flag the identified
potential anomaly, if the predictions from the auxiliary
stochastic model do not match the set of parametric
values of the crowd model based at least in part on the
real-time estimates of the motion of the sub-populations
in the local area; and
wherein if the further analysis of the motion in the local
area associated with the identified potential anomaly
determines that the identified potential anomaly should
be flagged, analyzing motion of one or more individuals
in the local area to verify whether the identified potential
anomaly is an actual anomaly.
3. The method of claim 1,
wherein the sensor data includes data from a video stream;
wherein the partitioning the sensor data includes associat-
ing a subset of the sensor data with each local area in the
set of local areas, each local area forming a neighbor-
hood around a grid point in a spatial grid of the video
stream representing an area under observation;
wherein the set of real-time estimates of the motion of the
sub-populations includes real-time estimates of a veloc-
ity field and a density field;
wherein the crowd model is based at least in part on con-
tinuous-state, multi-population, compressible fluid
dynamics to model expected motion near each local
area, and wherein parameters of the crowd model
include coefficients for quantifying an effect of crowd
viscosity, crowd pressure, extraneous forces, and ran-
dom motion that characterize local motion of each sub-
population in the local area;
wherein the learning and adapting the set of auxiliary sto-
chastic models includes determining a set of thresholds
that represent substantially normal values of at least one
of (i) the continuous functions describing expected
motion near each local area, (ii) the parametric values of
the crowd model, (iii) the coefficients of any auxiliary
stochastic model in the set of auxiliary stochastic mod-



US 9,183,512 B2

25

els, and (iv) spatial and temporal derivatives of at least
one of (1), (ii), and (iii), for each local area, the set of
thresholds being determined based at least in part on at
least one of sensor data collected over the longer-term
time duration and the real-time estimates of the motion
of the sub-populations; and

wherein the identifying the occurrence of the potential

anomaly associated with the local area includes at least
one of (i) determining whether a residual error identified
by any of the auxiliary stochastic models in the set of
auxiliary stochastic models exceeds a pre-determined
threshold in the set of thresholds, and (ii) determining
whether a residual error identified by the crowd model
exceeds the pre-determined threshold.

4. The method of claim 1, further comprising:

aggregating parametric values from the crowd model and

predictions from the set of auxiliary stochastic models
for a plurality of local areas; and

identifying an occurrence of a potential anomaly associ-

ated with the crowd, by comparing the aggregated pre-
dictions from the set of auxiliary stochastic models and
the parametric values from the crowd model based at
least in part on the real-time estimates of the crowd in
motion for the plurality of local areas.

5. The method of claim 1, wherein the parametric values of
the crowd model based at least in part on the real-time esti-
mates of the motion of the sub-populations in the local area
are determined based at least in part on at least one of mini-
mum variance unbiased estimation, maximum likelihood
estimation, least squares estimation, minimum mean-square
estimation, maximum a posteriori estimation, optimal filter-
ing, Wiener filtering, and Kalman filtering.

6. The method of claim 1, wherein the auxiliary stochastic
models are learned based at least in part on at least one of
principal components analysis, linear discriminant analysis,
subspace learning, Galerkin methods, Hankel matrix-based
methods, and machine learning algorithms.

7. The method of claim 2, wherein at least one of the motion
in the local area and the motion of the individuals in the local
area are analyzed based at least in part on agent-based crowd
models with socio-economic forces, Boltzmann-like gas-ki-
netic models for crowd motion, lattice gas models for crowd
motion, and cellular automata for crowd motion.

8. A system for detecting an anomaly in crowd behavior,
the system comprising

one or more sensors for observing a crowd in motion;

storage; and

at least one processor configured to:

receive sensor data from the one or more sensors, the
sensor data representing the crowd in motion;
partition the sensor data into a set of local areas, each
local area forming a neighborhood for analyzing the
crowd in motion;
for each local area in the set of local areas,
characterize motion in the local area to determine a set
of real-time estimates of motion of sub-populations
in the local area based at least in part on the sensor
data, each sub-population characterized by a pat-
tern of motion based at least in part on sensor data
collected over a longer-term time duration describ-
ing motion in the sub-population, the longer-term
time duration including at least one of minutes,
hours, days, weeks, seasons, and years;
provide acrowd model for each local area, each model
representing dynamics of continuous functions
describing expected motion near each local area;
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determine a set of parametric values of the crowd
model based at least in part on the real-time esti-
mates of the motion of the sub-populations in the
local area, to correlate the set of parametric values
with a short-time evolution of the motion of the
sub-populations in the local area;
learn and adapt a set of auxiliary stochastic models
based at least in part on evolution of the parametric
values of the crowd model over time, the set of
auxiliary stochastic models characterizing substan-
tially normal evolution of the parametric values of
the crowd model over time associated with each
local area; and
identify an occurrence of a potential anomaly associ-
ated with the local area by comparing predictions
from an auxiliary stochastic model in the set of
auxiliary stochastic models with the set of paramet-
ric values of the crowd model based at least in part
on the real-time estimates of the motion of the
sub-populations in the local area.
9. The system of claim 8, wherein the atleast one processor
is further configured to:
allocate at least one of additional sensor resources and
additional computational resources to further analyze
motion in the local area associated with the identified
potential anomaly to verify whether to flag the identified
potential anomaly, if the predictions from the auxiliary
stochastic model do not match the set of parametric
values of the crowd model based at least in part on the
real-time estimates of the motion of the sub-populations
in the local area; and
wherein if the further analysis of the motion in the local
area associated with the identified potential anomaly
determines that the identified potential anomaly should
be flagged, analyze motion of one or more individuals in
the local area to verify whether the identified potential
anomaly is an actual anomaly.
10. The system of claim 8,
wherein the sensor data includes data from a video stream;
wherein the at least one processor configured to partition
the sensor data includes the at least one processor con-
figured to associate a subset of the sensor data with each
local area in the set of local areas, each local area form-
ing a neighborhood around a grid point in a spatial grid
of the video stream representing an area under observa-
tion;
wherein the set of real-time estimates of the motion of the
sub-populations includes real-time estimates of a veloc-
ity field and a density field;
wherein the crowd model is based at least in part on con-
tinuous-state, multi-population, compressible fluid
dynamics to model expected motion near each local
area, and wherein parameters of the crowd model
include coefficients for quantifying an effect of crowd
viscosity, crowd pressure, extraneous forces, and ran-
dom motion that characterize local motion of each sub-
population in the local area;
wherein the at least one processor configured to learn and
adapt the set of auxiliary stochastic models includes the
at least one processor configured to determine a set of
thresholds that represent substantially normal values of
at least one of (i) the continuous functions describing
expected motion near each local area, (ii) the parametric
values of the crowd model, (iii) the coefficients of any
auxiliary stochastic model in the set of auxiliary stochas-
tic models, and (iv) spatial and temporal derivatives of at
least one of (i), (ii), and (iii), for each local area, the set
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of thresholds being determined based at least in part on
at least one of sensor data collected over the longer-term
time duration and the real-time estimates of the motion
of the sub-populations; and

wherein the at least one processor configured to identify

the occurrence of the potential anomaly associated with
the local area includes the at least one processor config-
ured to at least one of (i) determine whether a residual
error identified by any of the auxiliary stochastic models
in the set of auxiliary stochastic models exceeds a pre-
determined threshold in the set of thresholds, and (ii)
determine whether a residual error identified by the
crowd model exceeds the pre-determined threshold.

11. The system of claim 8, wherein the at least one proces-
sor is further configured to:

aggregate parametric values from the crowd model and

predictions from the set of auxiliary stochastic models
for a plurality of local areas; and

identify an occurrence of a potential anomaly associated

with the crowd, by comparing the aggregated predic-
tions from the set of auxiliary stochastic models and the
parametric values from the crowd model based at least in
partonthe real-time estimates of the crowd in motion for
the plurality of local areas.

12. The system of claim 8, wherein the parametric values of
the crowd model based at least in part on the real-time esti-
mates of the motion of the sub-populations in the local area
are determined based at least in part on at least one of mini-
mum variance unbiased estimation, maximum likelihood
estimation, least squares estimation, minimum mean-square
estimation, maximum a posteriori estimation, optimal filter-
ing, Wiener filtering, and Kalman filtering.

13. The system of claim 8, wherein the auxiliary stochastic
models are learned based at least in part on at least one of
principal components analysis, linear discriminant analysis,
subspace learning, Galerkin methods, Hankel matrix-based
methods, and machine learning algorithms.

14. The system of claim 9, wherein at least one of the
motion in the local area and the motion of the individuals in
the local area are analyzed based at least in part on agent-
based crowd models with socio-economic forces, Boltz-
mann-like gas-kinetic models for crowd motion, lattice gas
models for crowd motion, and cellular automata for crowd
motion.

15. A non-transitory computer program product for detect-
ing an anomaly in crowd behavior, the non-transitory com-
puter program product tangibly embodied in a computer-
readable medium, the non-transitory computer program
product including instructions operable to cause a data pro-
cessing apparatus to:

receive sensor data from one or more sensors, the sensor

data representing a crowd in motion;

partition the sensor data into a set of local areas, each local

area forming a neighborhood for analyzing the crowd in
motion;

for each local area in the set of local areas,

characterize motion in the local area to determine a set of
real-time estimates of motion of sub-populations in
the local area based at least in part on the sensor data,
each sub-population characterized by a pattern of
motion based at least in part on sensor data collected
over a longer-term time duration describing motion in
the sub-population, the longer-term time duration
including at least one of minutes, hours, days, weeks,
seasons, and years;
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provide a crowd model for each local area, each model
representing dynamics of continuous functions
describing expected motion near each local area;
determine a set of parametric values of the crowd model
based at least in part on the real-time estimates of the
motion of the sub-populations in the local area, to
correlate the set of parametric values with a short-time
evolution of the motion of the sub-populations in the
local area;
learn and adapt a set of auxiliary stochastic models
based at least in part on evolution of the parametric
values of the crowd model over time, the set of aux-
iliary stochastic models characterizing substantially
normal evolution of the parametric values of the
crowd model over time associated with each local
area; and
identify an occurrence of a potential anomaly associated
with the local area by comparing predictions from an
auxiliary stochastic model in the set of auxiliary sto-
chastic models with the set of parametric values of the
crowd model based at least in part on the real-time
estimates of the motion of the sub-populations in the
local area.
16. The non-transitory computer program product of claim
15, wherein the non-transitory computer program product
further includes instructions operable to cause the data pro-
cessing apparatus to:
allocate at least one of additional sensor resources and
additional computational resources to further analyze
motion in the local area associated with the identified
potential anomaly to verify whether to flag the identified
potential anomaly, if the predictions from the auxiliary
stochastic model do not match the set of parametric
values of the crowd model based at least in part on the
real-time estimates of the motion of the sub-populations
in the local area; and
wherein if the further analysis of the motion in the local
area associated with the identified potential anomaly
determines that the identified potential anomaly should
be flagged, analyze motion of one or more individuals in
the local area to verify whether the identified potential
anomaly is an actual anomaly.
17. The non-transitory computer program product of claim
15,
wherein the sensor data includes data from a video stream;
wherein the instructions operable to cause the data process-
ing apparatus to partition the sensor data include instruc-
tions operable to cause the data processing apparatus to
associate a subset of the sensor data with each local area
in the set of local areas, each local area forming a neigh-
borhood around a grid point in a spatial grid of the video
stream representing an area under observation;

wherein the set of real-time estimates of the motion of the
sub-populations includes real-time estimates of a veloc-
ity field and a density field;

wherein the crowd model is based at least in part on con-

tinuous-state, multi-population, compressible fluid
dynamics to model expected motion near each local
area, and wherein parameters of the crowd model
include coefficients for quantifying an effect of crowd
viscosity, crowd pressure, extraneous forces, and ran-
dom motion that characterize local motion of each sub-
population in the local area;

wherein the instructions operable to cause the data process-

ing apparatus to learn and adapt the set of auxiliary
stochastic models include instructions operable to cause
the data processing apparatus to determine a set of
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thresholds that represent substantially normal values of
at least one of (i) the continuous functions describing
expected motion near each local area, (ii) the parametric
values of the crowd model, (iii) the coefficients of any
auxiliary stochastic model in the set of auxiliary stochas-
tic models, and (iv) spatial and temporal derivatives of at
least one of (i), (ii), and (iii), for each local area, the set
of thresholds being determined based at least in part on
at least one of sensor data collected over the longer-term
time duration and the real-time estimates of the motion
of the sub-populations; and

wherein the instructions operable to cause the data process-

ing apparatus to identify the occurrence of the potential
anomaly associated with the local area include instruc-
tions operable to cause the data processing apparatus to
at least one of (i) determine whether a residual error
identified by any of the auxiliary stochastic models in the
set of auxiliary stochastic models exceeds a pre-deter-
mined threshold in the set of thresholds, and (ii) deter-
mine whether a residual error identified by the crowd
model exceeds the pre-determined threshold.

18. The non-transitory computer program product of claim
15, wherein the non-transitory computer program product
further includes instructions operable to cause the data pro-
cessing apparatus to:
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aggregate parametric values from the crowd model and
predictions from the set of auxiliary stochastic models
for a plurality of local areas; and

identify an occurrence of a potential anomaly associated

with the crowd, by comparing the aggregated predic-
tions from the set of auxiliary stochastic models and the
parametric values from the crowd model based atleast in
partonthe real-time estimates of the crowd in motion for
the plurality of local areas.

19. The non-transitory computer program product of claim
15, wherein the parametric values of the crowd model based
at least in part on the real-time estimates of the motion of the
sub-populations in the local area are determined based at least
in part on at least one of minimum variance unbiased estima-
tion, maximum likelihood estimation, least squares estima-
tion, minimum mean-square estimation, maximum a poste-
riori estimation, optimal filtering, Wiener filtering, and
Kalman filtering.

20. The non-transitory computer program product of claim
16, wherein the auxiliary stochastic models are learned based
at least in part on at least one of principal components analy-
sis, linear discriminant analysis, subspace learning, Galerkin
methods, Hankel matrix-based methods, and machine learn-
ing algorithms.



