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The present disclosure includes systems and methods for 
detecting an anomaly in crowd behavior. The method 
includes receiving sensor data representing a crowd, and par 
titioning the sensor data into local areas forming neighbor 
hoods. The method further includes, for each local area, char 
acterizing motion in the local area to determine real-time 
estimates of motion of Sub-populations based on the sensor 
data, providing a crowd model for each local area, represent 
ing continuous functions describing expected motion near 
each local area, and determining parametric values of the 
crowd model based on the real-time estimates of the motion 
of the sub-populations. The method further includes learning 
and adapting auxiliary stochastic models characterizing nor 
mal evolution of the parametric values of the crowd model 
over time associated with each local area, and identifying a 
potential anomaly associated with the local area by compar 
ing predictions from an auxiliary stochastic model with para 
metric values of the crowd model. 
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REAL-TIME ANOMALY DETECTION OF 
CROWD BEHAVORUSING MULTI-SENSOR 

INFORMATION 

CROSS-REFERENCE TO RELATED 
APPLICATIONS 

This application is a national stage application of Interna 
tional Patent Application No. PCT/US 12/07014.9, entitled 
“Real-Time Anomaly Detection of Crowd Behavior Using 
Multi-Sensor Information, filed Dec. 17, 2012, which claims 
priority to U.S. Provisional Patent Application No. 61/576, 
198, entitled “Real-TimeAnomaly Detection of Large, Dense 
Crowd Behavior, from Video and Multi-Sensor Information.” 
filed Dec. 15, 2011, the contents of both of which are 
expressly incorporated herein by reference in their entirety. 

FIELD OF THE DISCLOSURE 

The present disclosure relates generally to computer sys 
tems for detecting anomalies in crowd behavior and specifi 
cally to computer systems for real-time detection of anoma 
lies in crowd motion using multi-sensor information. 

BACKGROUND 

Crowd behavior can be observed among crowds of many 
different types of organisms, from humans to animals to cells. 
Crowd disasters, triggered by real or perceived dangers, are 
frequent, especially among gatherings of differing numbers 
of people. For example, over the past ten years, more than 
three thousand people have died in crowd disasters. Some 
methods for monitoring crowd behavior include detecting 
anomalies in crowd behavior, such as individuals avoiding a 
certain area or people changing directions sharply or even 
stampeding in response to a real or perceived danger. 
Some approaches for detecting anomalies in crowd behav 

ior rely on tracking individuals or virtual particles seeded in 
the area under observation and driven by the optical flow. 
Other approaches rely on creating and maintaining a library 
of normal patterns. These approaches often require high com 
putational complexity and are not suitable for tracking large 
crowds in Substantially real-time. 

SUMMARY 

In accordance with the disclosed subject matter, methods, 
systems, and non-transitory computer program products are 
provided for detecting anomalies in crowd behavior. 

Certain embodiments include a method of detecting an 
anomaly in crowd behavior. The method includes receiving 
sensor data from one or more sensors, the sensor data repre 
senting a crowd in motion, and partitioning the sensor data 
into a set of local areas, each local area forming a neighbor 
hood for analyzing the crowd in motion. The method further 
includes, for each local area in the set of local areas, charac 
terizing motion in the local area to determine a set of real-time 
estimates of motion of sub-populations in the local area based 
at least in part on the sensor data. Each Sub-population can be 
characterized by a pattern of motion based at least in part on 
sensor data collected over a longer-term time duration 
describing motion in the Sub-population. The longer-term 
time duration can include at least one of minutes, hours, days, 
weeks, seasons, and years. The method further includes pro 
viding a crowd model for each local area. Each model can 
represent dynamics of continuous functions describing 
expected motion near each local area. The method further 
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2 
includes determining a set of parametric values of the crowd 
model based at least in part on the real-time estimates of the 
motion of the Sub-populations in the local area, to correlate 
the set of parametric values with a short-time evolution of the 
motion of the sub-populations in the local area. The method 
further includes learning and adapting a set of auxiliary sto 
chastic models based at least in part on evolution of the 
parametric values of the crowd model over time. The set of 
auxiliary stochastic models can characterize Substantially 
normal evolution of the parametric values of the crowd model 
overtime associated with each local area. The method further 
includes identifying an occurrence of a potential anomaly 
associated with the local area by comparing predictions from 
an auxiliary stochastic model in the set of auxiliary stochastic 
models with the set of parametric values of the crowd model 
based at least in part on the real-time estimates of the motion 
of the Sub-populations in the local area. 

Certain embodiments include a system for detecting an 
anomaly in crowd behavior. The system includes one or more 
sensors for observing a crowd in motion, storage, and at least 
one processor. The at least one processor is configured to 
receive sensor data from the one or more sensors, the sensor 
data representing the crowd in motion, and partition the sen 
Sor data into a set of local areas, each local area forming a 
neighborhood for analyzing the crowd in motion. For each 
local area in the set of local areas, the at least one processor is 
further configured to characterize motion in the local area to 
determine a set of real-time estimates of motion of sub-popu 
lations in the local area based at least in part on the sensor 
data. Each Sub-population can be characterized by a pattern of 
motion based at least in part on sensor data collected over a 
longer-term time duration describing motion in the sub-popu 
lation. The longer-term time duration can include at least one 
of minutes, hours, days, weeks, seasons, and years. The at 
least one processor is further configured to provide a crowd 
model for each local area. Each model can represent dynam 
ics of continuous functions describing expected motion near 
each local area. The at least one processor is further config 
ured to determine a set of parametric values of the crowd 
model based at least in part on the real-time estimates of the 
motion of the Sub-populations in the local area, to correlate 
the set of parametric values with a short-time evolution of the 
motion of the Sub-populations in the local area. The at least 
one processor is further configured to learn and adapt a set of 
auxiliary stochastic models based at least in part on evolution 
of the parametric values of the crowd model over time. The set 
of auxiliary stochastic models can characterize Substantially 
normal evolution of the parametric values of the crowd model 
over time associated with each local area. The at least one 
processor is further configured to identify an occurrence of a 
potential anomaly associated with the local area by compar 
ing predictions from an auxiliary stochastic model in the set 
of auxiliary stochastic models with the set of parametric 
values of the crowd model based at least in part on the real 
time estimates of the motion of the sub-populations in the 
local area. 

Certain embodiments include a non-transitory computer 
program product for detecting an anomaly in crowd behavior. 
The non-transitory computer program product is tangibly 
embodied in a computer-readable medium. The non-transi 
tory computer program product includes instructions oper 
able to cause a data processing apparatus to receive sensor 
data from one or more sensors, the sensor data representing a 
crowd in motion, and partition the sensor data into a set of 
local areas. Each local area can form a neighborhood for 
analyzing the crowd in motion. For each local area in the set 
of local areas, the non-transitory computer program product 
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further includes instructions operable to cause a data process 
ingapparatus to characterize motion in the local area to deter 
mine a set of real-time estimates of motion of sub-populations 
in the local area based at least in part on the sensor data. Each 
Sub-population can be characterized by a pattern of motion 
based at least in part on sensor data collected over a longer 
term time duration describing motion in the Sub-population. 
The longer-term time duration can include at least one of 
minutes, hours, days, weeks, seasons, and years. The non 
transitory computer program product further includes 
instructions operable to cause a data processing apparatus to 
provide a crowd model for each local area. Each model can 
represent dynamics of continuous functions describing 
expected motion near each local area. The non-transitory 
computer program product further includes instructions oper 
able to cause a data processing apparatus to determine a set of 
parametric values of the crowd model based at least in part on 
the real-time estimates of the motion of the sub-populations 
in the local area, to correlate the set of parametric values with 
a short-time evolution of the motion of the sub-populations in 
the local area. The non-transitory computer program product 
further includes instructions operable to cause a data process 
ing apparatus to learn and adapt a set of auxiliary stochastic 
models based at least in part on evolution of the parametric 
values of the crowd model over time. The set of auxiliary 
stochastic models can characterize Substantially normal evo 
lution of the parametric values of the crowd model over time 
associated with each local area. The non-transitory computer 
program product further includes instructions operable to 
cause a data processing apparatus to identify an occurrence of 
a potential anomaly associated with the local area by com 
paring predictions from an auxiliary stochastic model in the 
set of auxiliary stochastic models with the set of parametric 
values of the crowd model based at least in part on the real 
time estimates of the motion of the sub-populations in the 
local area. 
The embodiments described herein can include additional 

aspects of the invention. For example, the embodiments can 
further include allocating at least one of additional sensor 
resources and additional computational resources to further 
analyze motion in the local area associated with the identified 
potential anomaly to verify whether to flag the identified 
potential anomaly, if the predictions from the auxiliary sto 
chastic model do not match the set of parametric values of the 
crowd model based at least in part on the real-time estimates 
of the motion of the Sub-populations in the local area; and 
wherein if the further analysis of the motion in the local area 
associated with the identified potential anomaly determines 
that the identified potential anomaly should be flagged, ana 
lyzing motion of one or more individuals in the local area to 
verify whether the identified potential anomaly is an actual 
anomaly. The sensor data can include data from a video 
stream; the partitioning the sensor data can include associat 
ing a Subset of the sensor data with each local area in the set 
of local areas, each local area forming a neighborhood around 
a grid point in a spatial grid of the video stream representing 
an area under observation; the set of real-time estimates of the 
motion of the Sub-populations can include real-time estimates 
of a velocity field and a density field; the crowd model can be 
based at least in part on continuous-state, multi-population, 
compressible fluid dynamics to model expected motion near 
each local area, and wherein parameters of the crowd model 
include coefficients for quantifying an effect of crowd viscos 
ity, crowd pressure, extraneous forces, and random motion 
that characterize local motion of each sub-population in the 
local area: the learning and adapting the set of auxiliary 
stochastic models can include determining a set of thresholds 
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4 
that represent substantially normal values of at least one of (i) 
the continuous functions describing expected motion near 
each local area, (ii) the parametric values of the crowd model, 
(iii) the coefficients of any auxiliary stochastic model in the 
set of auxiliary stochastic models, and (iv) spatial and tem 
poral derivatives of at least one of (i), (ii), and (iii), for each 
local area, the set of thresholds being determined based at 
least in part on at least one of sensor data collected over the 
longer-term time duration and the real-time estimates of the 
motion of the Sub-populations; and the identifying the occur 
rence of the potential anomaly associated with the local area 
can include at least one of (i) determining whether a residual 
error identified by any of the auxiliary stochastic models in 
the set of auxiliary stochastic models exceeds a pre-deter 
mined threshold in the set of thresholds, and (ii) determining 
whether a residual error identified by the crowd model 
exceeds the pre-determined threshold. The embodiments can 
further include aggregating parametric values from the crowd 
model and predictions from the set of auxiliary stochastic 
models for a plurality of local areas, and identifying an occur 
rence of a potential anomaly associated with the crowd, by 
comparing the aggregated predictions from the set of auxil 
iary stochastic models and the parametric values from the 
crowd model based at least in part on the real-time estimates 
of the crowd in motion for the plurality of local areas. The 
parametric values of the crowd model based at least in part on 
the real-time estimates of the motion of the sub-populations 
in the local area can be determined based at least in part on at 
least one of minimum variance unbiased estimation, maxi 
mum likelihood estimation, least squares estimation, mini 
mum mean-square estimation, maximum a posteriori estima 
tion, optimal filtering, Wiener filtering, and Kalman filtering. 
The auxiliary stochastic models can be learned based at least 
in part on at least one of principal components analysis, linear 
discriminant analysis, Subspace learning, Galerkin methods, 
Hankel matrix-based methods, and machine learning algo 
rithms. At least one of the motion in the local area and the 
motion of the individuals in the local area can be analyzed 
based at least in part on agent-based crowd models with 
Socio-economic forces, Boltzmann-like gas-kinetic models 
for crowd motion, lattice gas models for crowd motion, and 
cellular automata for crowd motion. 

BRIEF DESCRIPTION OF THE DRAWINGS 

Various objects, features, and advantages of the present 
disclosure can be more fully appreciated with reference to the 
following detailed description when considered in connec 
tion with the following drawings, in which like reference 
numerals identify like elements. The following drawings are 
for the purpose of illustration only and are not intended to be 
limiting of the invention, the scope of which is set forth in the 
claims that follow. 

FIG. 1 illustrates a non-limiting example of a system for 
detecting anomalies in crowd behavior in accordance with 
Some embodiments of the present disclosure. 

FIG. 2 illustrates a non-limiting example of a data analysis 
controller for detecting anomalies in crowd behavior in accor 
dance with certain embodiments of the present disclosure. 

FIG. 3 illustrates a non-limiting example of a large-scale 
crowd analysis module for detecting anomalies in crowd 
behavior in accordance with certain embodiments of the 
present disclosure. 

FIG. 4 illustrates a non-limiting example of a local crowd 
model module for detecting anomalies in crowd behavior in 
accordance with certain embodiments of the present disclo 
SUC. 
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FIG. 5 illustrates a non-limiting example of a velocity field 
and a density field based on a crowd model for determining 
anomalies in crowd behavior in accordance with certain 
embodiments of the present disclosure. 

FIG. 6 illustrates a non-limiting example of a process that 
the system performs for detecting anomalies in crowd behav 
ior in accordance with certain embodiments of the present 
disclosure. 

FIG. 7 illustrates a non-limiting example of a process that 
the system performs for detecting anomalies in crowd behav 
ior at the large-scale level in accordance with certain embodi 
ments of the present disclosure. 

DETAILED DESCRIPTION 

In general, the present disclosure relates to a system and 
method for detecting anomalies in crowd behavior. For 
example, the present system receives sensor data from one or 
more sensors representing a crowd in motion. In some 
embodiments, the sensor data can be a video stream of the 
crowd. The present system partitions the sensor data into a set 
of local areas. In some embodiments, the present system 
partitions the sensor data by associating a Subset of the sensor 
data with each local area, using a pre-defined spatial grid in 
the physical domain over frames in the video stream, each 
local area forming a neighborhood around each grid point in 
the spatial grid representing an area under observation. 

For each local area in the set of local areas, the present 
system performs the following. Based on the sensor data, the 
present system characterizes the motion in each local area to 
determine a set of real-time estimates of motion of the sub 
populations found in each local area. Each sub-population 
can be characterized by a pattern of motion based at least in 
part on sensor data collected over a long time duration 
describing motion in the Sub-population. For example, each 
Sub-population can be represented by a characteristic motion 
pattern Such as route and Velocity. One Sub-population may 
represent people in a crowd who settle into lanes of “crowd 
traffic' headed left down a sidewalk, and another sub-popu 
lation may represent people headed right. In some embodi 
ments, the real-time estimates of the motion can include 
real-time estimates of a Velocity and a density of each Sub 
population near the local area, at each grid point. The present 
system provides a dynamic crowd model for each local area, 
where each model represents dynamics of a continuous func 
tion describing expected motion near the local area. In some 
embodiments, the crowd model can be based on continuous 
state, multi-population, compressible fluid dynamics to 
model expected motion near each local area. Example state 
can include the Velocity and the density of each Sub-popula 
tion near the local area. The crowd model includes a set of 
parameters. Example parameters can include coefficients of 
the crowd model quantifying the effect of crowd viscosity, 
crowd pressure, extraneous forces, and random motion that 
characterize local motion of each Sub-population. The present 
system then determines values for the parameters in the 
crowd model, based on the real-time estimates of the motion 
of the Sub-populations in the local area, to correlate the para 
metric values with a short-time evolution of the motion of the 
Sub-populations found in the local area. For example, the 
present system determines real-time estimates of the para 
metric values of the crowd model based on the real-time 
estimates of the velocity and the density from the character 
ized motion in the local area. 
The present system uses the real-time parametric values of 

the crowd model to learn and adapt a set of auxiliary stochas 
tic models. The auxiliary stochastic models characterize Sub 
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6 
stantially normal evolution over time of the parametric values 
of the crowd model associated with each local area based on 
the real-time estimates of the velocity and the density of the 
local area. The evolution over time of the parametric values of 
the crowd model identified by the auxiliary stochastic models 
represents substantially normal motion in each local area. 
The present system then identifies an occurrence of a 

potential anomaly associated with the local area, by compar 
ing predictions from the set of auxiliary stochastic models 
with the set of parametric values of the crowd model. For 
example, the present system determines when the difference 
between predictions by each local auxiliary stochastic model 
and the real-time estimates of parametric values of the crowd 
model exceed pre-determined thresholds. If the difference 
between predictions exceeds the pre-determined thresholds, 
the present system identifies a potential anomaly. In some 
embodiments, comparing predictions from the set of auxil 
iary stochastic models with the set of parametric values from 
the crowd model includes determining whether local crowd 
densities or velocities exceed pre-determined normal levels in 
a corresponding local area, or determining whether sharp 
spatial variations of real-time estimates of parametric values 
of the crowd model or of coefficients of the set of auxiliary 
stochastic models in a local area exceed pre-determined 
thresholds. If any threshold is exceeded, the present system 
identifies a potential anomaly in the respective local area. 

In further embodiments, in response to identifying a poten 
tial anomaly, the present system allocates additional sensor 
resources to further analyze motion in the local area associ 
ated with the identified anomaly, to verify whether to flag the 
identified anomaly. If the further analysis of the motion in the 
local area determines that the identified anomaly should be 
flagged, the present system allocates still further sensor 
resources to analyze motion of one or more individuals in the 
sub-population, to verify whether the identified anomaly is an 
actual anomaly. 

Turning to the figures, FIG. 1 illustrates a non-limiting 
example of a system 100 for detecting anomalies in crowd 
behavior in accordance with some embodiments of the 
present disclosure. System 100 receives sensor data repre 
senting crowd behavior from sensors 102a-n, and outputs an 
alert of an anomaly via user interface 114 and/or alert notifi 
cation 118 through data analysis controller 108. Data analysis 
controller 108 uses sensor controller 104, network 106, and 
storage 110 to process the received sensor data to detect 
anomalies in crowd behavior. 

Sensors 102a-n can include a number of spatially distrib 
uted sensing devices. The sensing devices include a known 
position and a known sensed area available to system 100. 
Non-limiting examples of sensors 102a-in can include optical 
or infrared video cameras, radar systems, photoelectric sen 
sors, pressure-sensitive sensors, wireless non-contact sys 
tems, acoustic sensors such as microphones, optical sensors, 
laser-based systems, or systems employing localization of 
mobile phones such as in observing crowds of people. 
Example wireless non-contact systems can include systems 
using radio-frequency electromagnetic fields, such as Radio 
Frequency Identification (RFID) systems or Near-Field Com 
munication (NFC) systems. Laser-based systems are pre 
sented by Fod, Howard, and Mataric (Fod, A. Howard, A. and 
Mataric, M. A. J., “A laser-based people tracker. Robotics 
and Automation, 2002, Proceedings, ICRA '02, IEEE Inter 
national Conference on, Vol. 3. IEEE, 2002, the entire con 
tents of which are incorporated by reference herein). Systems 
for localization of mobile phones are presented by Morietal. 
(Mori, T. et al., “Multiple people tracking by integrating 
distributed floor pressure sensors and RFID system.” Sys 
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tems, Man and Cybernetics, 2004 IEEE International Con 
ference on, Vol. 6, IEEE, 2004, the entire contents of which 
are incorporated by reference herein). 

In some embodiments, sensors 102a-n may allow system 
100 to control the sensing device's orientation. For example, 
system 100 may control sensors 102a-n to Zoom, pan, tilt, 
rotate, or otherwise alter the sensor device's orientation using 
sensor controller 104. 

In Some embodiments, sensors 102a-n may use raw sensor 
data Such as analog data including raw video streams or radar 
data. Sensors 102a-n may further pre-process the raw sensor 
data. For example, sensors 102a-n may perform video encod 
ing on raw video data, declutter raw radar data, extract veloc 
ity and/or density information from raw radar data or video 
data, or perform other similar pre-processing operations on 
raw sensor data. In further embodiments, video camera sen 
sors may include analog or digital cameras operating in accor 
dance with various video standards. For example, video data 
may be output according to the National Television System 
Committee (NTSC) or Phase Alternating Line (PAL) stan 
dard. The video data may include further encoding, Such as 
digital encoding according to the Motion Picture Expert 
Group (MPEG) standard, or according to digital codecs 
including H.263 or H.264. Alternatively, as described earlier, 
the video sensor data may include simply the raw video 
Stream. 

As described earlier, sensor controller 104 acts as a gate 
way between sensors 102a-n and the rest of system 100. 
Sensor controller 104 forwards data from sensors 102a-n to 
data analysis controller 108 and data storage 110. Sensor 
controller 104 also receives and processes commands to 
allow system 100 to monitor or control sensors 102a-n. 

Network 106 transfers data by connecting sensor controller 
102 and data storage 110 with data analysis controller 108. 
The signals used by system 100 can be transmitted over a 
computer network (Such as point-to-point networks, Local 
Area Networks (LAN) and/or Wide Area Networks (WAN), 
etc.), broadband telecommunications signaling systems 
(such as Digital Subscriber Line (DSL), Integrated Services 
Digital Network (ISDN), frame relay networks, cell relay 
networks, etc.), wireless links (802.11 wireless LAN, Blue 
tooth, etc.), and so on. Network 106 connects the components 
illustrated in FIG. 1 and allows mutual communication 
among components. In some embodiments, system 100 may 
use encryption methods for data transport. A non-limiting 
example encryption method includes trusted public-key cryp 
tography. Although FIG. 1 illustrates sensor controller 104 
connected to data analysis controller 108 via network 106, in 
some embodiments sensor controller subsystem 104 may be 
connected directly to data analysis controller 108. 

Data analysis controller 108 processes sensor data from 
sensors 102a-n to detect anomalies in crowd behavior. Data 
analysis controller 108 is described in further detail in con 
nection with FIGS. 2-4 and 8-9. 

Storage 110 may include centralized or decentralized stor 
age for storing data generated by System 100. Non-limiting 
examples of stored data may include the sensed data (or parts 
thereof) provided by sensors 102a-n and sensor controller 
104 via data analysis controller 108, or intermediate and/or 
final results generated by data analysis controller 108, user 
interface 114, data output controller 116, and/or alert notifi 
cation 118. Example storage may include Network-Attached 
Storage (NAS). Storage Area Network (SAN) solutions. 
Redundant Arrays of Inexpensive Disks (RAID), hard disks, 
flash memory devices, Digital Video Recorders (DVRs), or 
other storage for storing data generated by System 100. 
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8 
Data output controller 116 receives output from data analy 

sis controller 108 to display results and/or notify human 
operators or users of detected anomalies using user interface 
114 and alert notification 118. Data output controller 116 
processes intermediate and/or final results from data analysis 
controller 108 to determine whether output should be dis 
played on user interface 114 or whether an operator should be 
alerted via alert notification 118. In some embodiments, data 
output controller 116 can allow a user to manage and config 
ure system 100 using user interface 114. Data output control 
ler 116 can also notify a human operator of detected anoma 
lies via alert notification 118 using acoustic, audio, or visual 
alarms to report a detected anomaly and/or present or detail 
the result of the anomaly detection. Non-limiting examples of 
alert notification 118 can include visual display units, loud 
speakers, or warning lights. 
User interface 114 may include an arbitrary number of 

textual and/or visual interfaces to system 100. User interface 
114 may include a client interface application to display the 
state of system 100, (for example, graphical representations 
of output from sensors 102a-n, intermediate and/or final 
results from data analysis controller 108), and may provide 
user controls for a user to interact with and/or manage system 
100, as described in further detail later. User interface 114 can 
communicate over network 106 with sensors 102a-n directly 
or via sensor controller 104, data analysis controller 108, and 
storage 110. User interface 114 may be implemented on local 
or remote, stationary or mobile devices including personal 
computers, mobile phones, Smart phones, or personal tele 
communications devices for short messages such as pagers. 

Alert notification 118 may alert a human operator or user in 
case of a detected anomaly. For example, in response to 
detecting an anomaly in crowd behavior, alert notification 
118 may release an acoustic, audio, or visual alarm and 
execute a set of pre-defined rules. Non-limiting examples of 
pre-defined rules may include notifying a closed-circuit tele 
vision (CCTV) operator or notifying security and/or law 
enforcement personnel. In some embodiments, in contrast to 
user interface 114, alert notification 118 can further provide 
an always-on capability. In this instance, new system mes 
sages Such as alert messages and status updates can be 
actively transferred as they arrive, for example from data 
analysis controller 108 to the alert notification 118. 

System 100 can be implemented as electronic hardware, 
computer software, or combinations of both. For example, 
system 100 may be implemented on any kind of single or 
multiple desktop- or server-class computer system, or any 
microprocessor-based device or devices. To illustrate this 
interchangeability of hardware and Software, various illustra 
tive blocks, modules, elements, and components have been 
described generally in terms of their functionality. Whether 
Such functionality is implemented as hardware, Software, or a 
combination depends upon the particular application and 
design constraints imposed on the overall system. Skilled 
artisans can implement the described functionality in varying 
ways for each particular application. Furthermore, various 
components and blocks can be arranged differently (for 
example, arranged in a different order, or partitioned in a 
different way) all without departing from the scope of system 
100. For example, sensor controller 104, data analysis con 
troller 108, and data output 116 may be incorporated in sys 
tem 100 through hardware modules, software modules, or 
combinations of both. 

FIG. 2 illustrates a non-limiting example of a data analysis 
controller 108 for detecting anomalies in crowd behavior in 
accordance with certain embodiments of the present disclo 
sure. As described earlier, data analysis controller 108 
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receives sensor data, processes the sensor data, and sends 
intermediate and/or final results to data output controller 116 
for display or notification via the user interface and the alert 
notification. FIG. 2 illustrates data analysis controller 108 in 
communication with sensor controller 104, storage 110, and 
data output controller 116. Also described earlier, the mod 
ules may communicate via direct connection, or via an indi 
rect connection Such as a network. 

In some embodiments, data analysis controller 108 pro 
cesses received sensor data at the crowd level, local area level. 
and individual level. Large-scale crowd anomaly analysis 
module 202 receives sensor data from sensor controller 104 
and processes the received sensor data at the crowd level. 
Large-scale crowd anomaly analysis module 202 is described 
in further detail in connection with FIGS. 3 and 4. 

After the present system identifies a potential anomaly in a 
local area at the large-scale crowd level, the present system 
focuses additional sensor resources or computational 
resources to verify the potential anomaly at the local area 
scale, and further at the individual scale. As used herein, the 
term “meso-scale” refers to analysis of anomalies concen 
trated or focused on the local area level. Meso-scale anomaly 
analysis module 204 sends commands to sensor controller 
104 to allocate sensor resources, and processes resulting 
received sensor data on local areas of interest. In some 
embodiments, the local area Scale represents a neighborhood 
partitioned by the present system. For example, a local area 
can represent a neighborhood around a pre-determined grid 
point of a spatial grid partitioning a video stream, and the 
neighborhood can contain multiple Sub-populations. 

Meso-scale anomaly analysis module 204 verifies an iden 
tified potential anomaly at the local area scale as follows. 
Meso-scale anomaly analysis module 204 sends commands 
to sensor controller 104 to concentrate additional resources 
Such as sensor resources and computing resources on a local 
area associated with an identified potential anomaly. A local 
area of interest represents a suspicious area for further analy 
sis, because the large-scale crowd model has identified a 
potential anomaly for review. 

In some embodiments, meso-scale anomaly analysis mod 
ule 204 can process the additional received sensor data using 
agent-based crowd models with Socio-economic forces, Bolt 
Zmann-like gas-kinetic models for crowd motion, lattice gas 
models for crowd motion, or cellular automata for crowd 
motion. Agent-based crowd models with Socio-economic 
forces are presented by Gipps and Marksjö, Helbing and 
Molnar, Henein and White, and Lakoba, Kaup, and Finkel 
stein (Gipps, P. G. and Marksjö, B., “A micro-simulation 
model for pedestrian flows. Mathematics and Computers in 
Simulation 27.2 (1985): pp. 95-105; Helbing, D. and Molnar, 
P. “Social force model for pedestrian dynamics.” Physical 
review E 51.5 (1995): p. 4282; Henein, C. and White, T., 
“Agent-based modelling offorces in crowds. Multi-agent and 
multi-agent-based simulation (2005): pp. 173-184; and 
Lakoba, T.I., Kaup, D.J. and Finkelstein, N.M., “Modifica 
tions of the Helbing-Molnar-Farkas-Vicsek social force 
model for pedestrian evolution.” Simulation 81.5 (2005): pp. 
339-352, the entire contents of all of which are incorporated 
by reference herein). Boltzmann-like gas-kinetic models are 
presented by Helbing, and Hoogendoorn and Bovy (Helbing, 
D., “A Fluid-Dynamic Model for the Movement of Pedestri 
ans.” Complex Systems 6 (1992): pp. 391-415: Hoogen 
doorn, S. and Bovy, P. H. L., “Gas-kinetic modeling and 
simulation of pedestrian flows. Transportation Research 
Record Journal of the Transportation Research Board 1710.- 
1, (2000): pp. 28-36, the entire contents of both of which are 
incorporated by reference herein). Lattice gas models for 
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10 
crowd motion are presented by Muramatsu, Irie, and Naga 
tani, and Tajima and Nagatani (Muramatsu, M., Irie, T. and 
Nagatani, T., "Jamming transition in pedestrian counterflow, 
Physica A: Statistical Mechanics and its Applications 267.3 

(1999): pp. 487-498; Tajima. Y. and Nagatani, T., “Scaling 
behavior of crowdflow outside a hall.” Physica A: Statistical 
Mechanics and its Applications 292.1 (2001): pp. 545-554). 
Cellular automata for crowd motion are presented by Kirch 
ner and Schadschneider (Kirchner. A. and Schadschneider, 
A., “Simulation of evacuation processes using a bionics 
inspired cellular automaton model for pedestrian dynamics.” 
Physica A: Statistical Mechanics and its Applications 312.1 
(2002): pp. 260-276). 

After verifying an identified potential anomaly at the local 
area Scale, individual anomaly analysis module 206 sends 
commands to sensor controller 104 to allocate additional 
sensor resources and further processes received additional 
sensor data at the individual level. Similar to meso-scale 
anomaly analysis module 204, individual anomaly analysis 
module 206 sends further commands to sensor controller 104 
to concentrate additional resources Such as sensor resources, 
computing resources, or human resources on individuals in 
the Sub-population or local area associated with an identified 
potential anomaly. In some embodiments, individual 
anomaly analysis module 206 can process the additional 
received sensor data using the agent-based crowd models 
with socio-economic forces described earlier, presented by 
Gipps and Marksjö, Helbing and Molnar. Henein and White, 
and Lakoba, Kaup, and Finkelstein. 

FIG. 3 illustrates a non-limiting example of a large-scale 
crowd analysis module 202 for detecting anomalies in crowd 
behavior in accordance with certain embodiments of the 
present disclosure. Large-scale crowd anomaly analysis mod 
ule 202 includes a data partitioning module 302, a crowd 
model module 304, a data unification module 308, and a 
crowd model validation module 310. 

Data partitioning module 302 partitions sensor data 
received from sensor controller 104 into pertinent data perti 
nent to Small, possibly overlapping local areas or Volumes. As 
used herein, the term “volume” refers to a bounded space in 
the three-dimensional world if the present system is being 
used with sensor data representing a crowd in motion in three 
dimensions. As used herein, the term "sub-area’ refers to a 
local area, neighborhood, or bounded set of locations in the 
crowd. In some embodiments, the present system partitions 
sensor data representing the crowd spatially into a grid. The 
partitions defined around each grid point can represent local 
areas, or Sub-areas in the sensor data. Agents, such as indi 
viduals or groups of humans, in each local area can move 
from one local area to another, although the partitioned local 
areas themselves remain stationary. Data partitioning module 
302 scales the size of the localized sub-area by the spatial 
resolution of the sensed data. As described laterin connection 
with FIG. 7, the size of the local area can be based on the 
spatial resolution available from the sensed data. For 
example, the size of the local area can depend on the spatial 
resolution needed to estimate a density of the corresponding 
Sub-population in the crowd. That is, a minimum value for the 
size of the local area can be given by the Smallest area needed 
to estimate reliably a density and/or a velocity of a sub 
population. The velocity field and density field estimation 
performed by the present system are described in further 
detail later, in connection with FIG. 7. In further embodi 
ments, the size of the local area can depend on the number of 
parameters used in the crowd model of the corresponding 
Sub-population. 
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Crowd model module 304 detects anomalies in crowd 
behavior based on real-time parametric values in a crowd 
model and evolution or variations in the parametric values 
based on an auxiliary stochastic model. As used herein, the 
term “local crowd model” refers to an analysis of a crowd 
model associated with a corresponding local area. For each 
local area defined by data partition module 301, crowd model 
module 304 uses a local crowd model module 306a-n to 
monitor crowd behavior and to detect anomalies from normal 
behavior. The output of local crowd modules 306a-n includes 
an assessment of anomalies in each local area. In some 
embodiments, the output can be determined as either as a 
boolean value (true or false), a binary value (0 or 1, where 0 
denotes “no anomaly found' and I denotes “potential 
anomaly found'), or an analog or discretized value field, 
(such as a range between 0 and 1). In further embodiments, 
local crowd modules 306a-n can return intermediate values 
such as both the estimated velocity and density for the corre 
sponding local area, or the parametric values determined in 
the crowd model, for use in global comparisons of multiple 
local areas. 

Data unification module 308 performs a spatial union of 
the output from crowd model module 304. That is, data uni 
fication module 308 represents an inverse operation to data 
partitioning module 304. An example of a spatial union may 
include determining a weighted average of the output from 
local crowd model modules 306a-in. In some embodiments, 
the weighted averaging may include Statistical, spatial, and/or 
temporal averages of the crowd model output. 
Crowd model validation module 310 validates or invali 

dates the real-time parametric values of the crowd model used 
by crowd model module 304 and local crowd model modules 
306a-n, based on aggregated crowd behavior data from data 
unification module 308. For example, crowd model valida 
tion module 310 may validate or invalidate the crowd model 
used by crowd model module 304 using a set of pre-defined 
heuristic rules describing anomalies, to determine how well 
the crowd model performs. Example pre-defined anomalies 
may include heavy motion in a particular direction, strong 
rotational motion, high crowd density, shock waves, etc. If 
crowd model validation module 310 invalidates the real-time, 
sensor-data-driven parametric value estimates and/or esti 
mated states of the crowd model, this identifies a potential 
anomaly for further analysis or attention. Non-limiting 
example states of the crowd model can include a Velocity and 
density for each Sub-population being analyzed. 

FIG. 4 illustrates a non-limiting example of a local crowd 
model module 306 for detecting anomalies in crowd behavior 
in accordance with certain embodiments of the present dis 
closure. Local crowd model module 306 includes a crowd 
model state and parameter estimation module 402, a crowd 
module parameter dynamics learning module 404, and a local 
crowd model validation module 406. Local crowd model 
module 306 receives partitioned local area information from 
data partitioning module 302, processes the local area infor 
mation based on the local crowd module, and sends interme 
diate and/or final results to data unification module 308. 
Crowd model state and parameter estimator module 402 

estimates the sensor-data-driven state and parametric values 
of the local crowd model in substantially real-time. Substan 
tially real-time can include anomaly detection within a short 
latency, such as on the order of seconds, or within seconds or 
minutes of receiving the corresponding sensor data from sen 
sor controller 104. Example estimated state can include a 
velocity field and a density field of the local area. Velocity 
fields and density fields are described in further detail in 
connection with FIG. 7. 
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Example estimated parameters can include coefficients of 

a crowd model quantifying the effect of the following factors: 
crowd viscosity, crowd pressure, extraneous forces, and ran 
dom motion. The present disclosure describes a family or set 
of continuous functions including a compressible, multi 
population, fluid-like dynamic model representing crowd 
behavior Such as crowd motion. In fluid dynamics, compress 
ibility refers to fluids in which fluid density varies in response 
to a change in pressure. Velocity fieldestimation, density field 
estimation, and parametric variation in the crowd model are 
described in further detail in connection with FIG. 7. Further 
background in fluid dynamics is presented by Batchelor, Fer 
Ziger and Peri?, and Srinivas and Fletcher (Batchelor. G. K. 
“An introduction to fluid dynamics.” Cambridge University 
Press, UK, 2000; Ferziger, J. H. and Peri?, M.. “Computa 
tional methods for fluid dynamics. Vol. 2., Springer Berlin, 
1999; and Srinivas, K. and Fletcher, J. C. A., “Computational 
techniques for fluid dynamics: a solutions manual.” Springer, 
1992; the entire contents of all of which are incorporated by 
reference herein). 
Crowd model parameter dynamics learning module 404 

learns the dynamic system of functions in the crowd model 
and evolution over time of the real-time parametric values 
therein. Crowd model parameter dynamics learning module 
404 learns the evolution of, or variations in, the parametric 
values which are estimated in crowd model state and param 
eter estimation module 402. A set of low-order auxiliary 
stochastic models describes the dynamics of temporal varia 
tions in values of parameters or coefficients of the crowd 
model. The present system continually updates these auxil 
iary stochastic models using long-term observations during 
operation, and learns these auxiliary stochastic models during 
an initial training period. The auxiliary stochastic models can 
predict parametric values of coefficients in the crowd model, 
as well as predicting higher-order statistics describing 
expected variations in the parametric values such as expected 
covariance, variance, or standard deviation of a parametric 
value. Non-limiting example learning methods include sys 
tem identification methods, as described in further detail later 
in connection with FIG. 7. 

Local crowd model validation module 406 validates the 
crowd model for the local area using the estimated State and 
parametric values generated by crowd model state and param 
eterestimation module 402 and the auxiliary stochastic mod 
els learned by crowd model parameter dynamics learning 
module 404. The parametric values in the crowd model can 
vary and evolve dynamically overtime and space. The present 
process uses auxiliary low-order stochastic models and toler 
ances which governs the dynamics of temporal variations in 
parametric values of the crowd model coefficients which are 
determined to be expected, typical, or normal. The present 
process learns these auxiliary stochastic models during an 
initial training period, and continually updates or adapts the 
auxiliary stochastic models during operation of the present 
system. As described later in connection with FIG. 7, non 
limiting example learning methods include methods based on 
principal components analysis (PCA), linear discriminant 
analysis (LDA), Subspace learning (such as local linear 
embedding), Galerkin methods, Hankel matrix-based meth 
ods, and machine learning algorithms (such as Support vector 
machines, Bayesian networks, or evolutionary algorithms). 
Principal components analysis is presented by Tenenbaum, 
De Silva, and Langford (Tenenbaum, J. B., De Silva, V. and 
Langford, J.C., “A global geometric framework for nonlinear 
dimensionality reduction.” Science 290.5500 (2000): pp 
2319-2323, the entire contents of which are incorporated by 
reference herein). Linear discriminant analysis is presented 
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by Roth and Steinhage (Roth. V. and Steinhage.V., “Nonlin 
ear discriminant analysis using kernel functions. Sekretariat 
für Forschungsberichte, Inst. für Informatik III, 1999, the 
entire contents of which are incorporated by reference 
herein). Subspace learning and local linear embedding is 
presented by Roweis and Saul (Roweis. S. T. and Saul, L. K. 
“Nonlinear dimensionality reduction by locally linear 
embedding.” Science 290.5500 (2000): pp. 2323-2326, the 
entire contents of which are incorporated by reference 
herein). Galerkin methods are presented by Holmes, and 
Rowley, Colonius, and Murray (Holmes, P. J., et al. “Low 
dimensional models of coherent structures in turbulence.” 
Physics Reports 287.4 (1997): pp. 337-384; Rowley, C. W., 
Colonius, T. and Murray, R. M., “Model reduction for com 
pressible flows using POD and Galerkin projection.” Physica 
D: Nonlinear Phenomena 189.1 (2004): pp. 115-129, the 
entire contents of both of which are incorporated by reference 
herein). Machine-learning is presented by Bishop and Mur 
phy (Bishop, C.M., “Pattern recognition and machine learn 
ing. Vol. 4. No. 4. Springer, New York, 2006; Murphy, K. P. 
“Machine Learning: a Probabilistic Perspective. The MIT 
Press, 2012, the entire contents of both of which are incorpo 
rated by reference herein). 
An identified anomaly in crowd behavior is determined 

based on a change in the parametric values of coefficients of 
the crowd model in a certain local area of the crowd, where the 
crowd model is based on fluid dynamics. An anomaly is 
considered to be a change that invalidates the predictions of 
the previously learned auxiliary stochastic models and toler 
ances from crowd model parameter dynamics learning mod 
ule 404. Specifically, a parametric value that exceeds pre 
determined tolerances or a pre-determined threshold for 
evolution over time of the parameters of the crowd behavior 
model can be identified as a potential anomaly. The evolution 
over time of the parametric values can be learned by the 
low-order auxiliary stochastic model. In some embodiments, 
the present system can identify a potential anomaly using 
mismatches of the sensor-data-driven state, or estimates of 
parametric values from the crowd model, or from the auxil 
iary stochastic model. As used herein, “data-driven state' 
refers to state that is determinable directly or indirectly from 
the sensor data, Such as the real-time estimates of the Velocity 
and density determined by characterizing motion in the local 
area, complexity measures, or first- or higher-order (spatial or 
temporal) derivatives of velocity or density. 

FIG. 5 illustrates a non-limiting illustrative example of a 
velocity field and a density field based on a crowd model for 
determining anomalies in crowd behavior inaccordance with 
certain embodiments of the present disclosure. The crowd 
model associated with FIG. 5 will be discussed in further 
detail in connection with FIG. 7. Velocity vectors 502a-dare 
illustrated by arrows in light gray, white, black, and dark gray 
shades. Velocity vectors 502a-d illustrate velocity vectors of 
four sub-populations characterized by motion from (1) the 
top opening to the bottom opening, (2) bottom opening to the 
top opening, (3) right opening to the left opening, and (4) left 
opening to the right opening. The length of the arrows indi 
cates the local speed of the corresponding Sub-population. 
Color 504a-C represents an aggregated local density of all 
Sub-populations, from low (medium gray, 504a) through 
medium (light gray, 504b) and high (dark gray, 504c). 

FIG. 6 illustrates a non-limiting example of a process 600 
that the system performs for detecting anomalies in crowd 
behavior in accordance with certain embodiments of the 
present disclosure. First, the present system receives sensor 
data from the spatially distributed sensor devices (step 602). 
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The present system proceeds to analyze large-scale crowd 
behavior based on the received sensor data to determine if a 
potential anomaly is identified in the sensed area (step 604). 
The analysis of large-scale crowd behavior is described in 
further detail later in connection with FIG. 7. 

If a potential anomaly is not identified (step 606: No), the 
present system continues to process the next incoming sensor 
data. If a potential anomaly is identified (step 606: Yes), the 
present system may concentrate sensor and/or computational 
resources on the Suspicious local area or on the abnormally 
behaving Sub-population associated with the Suspicious local 
area (step 618), to prioritize verification of an identified 
potential anomaly. The present system analyzes Sub-popula 
tion behavior or motion in the Suspicious local area to verify 
the identified potential anomaly (step 608). A non-limiting 
example of analysis of Sub-population behavior includes 
methods based on tracking individuals or particle motion. 

If the present system does not verify the identified potential 
anomaly in the suspicious local area (step 610: No), the 
present system returns to process the next incoming sensor 
data. If the present system verifies the identified potential 
anomaly in the local area (step 610: Yes), the present system 
proceeds to concentrate further sensor resources on the Sub 
population or on the Suspicious local area to prioritize verifi 
cation of an identified potential anomaly (step 620). For 
example, the present system may concentrate resources, 
including sensor, computational, or human resources, to pri 
oritize detection of an anomaly in crowd behavior. The 
present system may verify an identified potential anomaly 
using agent-based crowd models with Socio-economic 
forces, Boltzmann-like gas-kinetic models for crowd motion, 
lattice gas models for crowd motion, or cellular automata for 
crowd motion, as described earlier in connection with FIG. 2. 
The present system proceeds to analyze the local area asso 
ciated with the identified potential anomaly at an individual 
level (step 612). Similar to methods described in connection 
with step 608, the present system may follow individuals 
involved in an identified potential anomaly. 

If the identified potential anomaly is verified (step 614: 
Yes), the present process proceeds to trigger an alarm (step 
616). In some embodiments, the alarm can be triggered fol 
lowing various steps illustrated in FIG. 6. For example, the 
alarm can be triggered following the anomaly analysis on the 
large-scale crowd level (step 606: Yes), meso-scale level (step 
610: Yes), and/or individual level (step 614: Yes). 

In further embodiments, the triggering of the alarm may 
include executing a set of user-defined rules. Example user 
defined rules may include notifying a closed-circuit televi 
sion (CCTV) operator, security and/or law-enforcement per 
Sonnel, or sending data related to the triggering of the alarm to 
the storage, etc. If the identified potential anomaly is not 
verified (step 614: No), the present process processes further 
sensor data. 

In some embodiments, the present process further includes 
sending intermediate results of various steps to the user Sub 
system, such as to the data output controller, the user inter 
face, or the alert notification. For example, intermediate 
results may include the identified Suspicious local areas or a 
graphical representation of sensor data corresponding to the 
identified Suspicious local areas. 

FIG. 7 illustrates a non-limiting example of a process 604 
that the system performs for detecting anomalies in crowd 
behavior at the large-scale level in accordance with certain 
embodiments of the present disclosure. The received sensor 
data is collected and partitioned in small local areas before 
engaging the large-scale crowd anomaly analysis (step 702). 
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The local areas represent partitions of the sensor data. For 
example, the present system can spatially partition a video 
stream into a grid representing local areas of the crowd. A 
local area can contain many Sub-populations of the crowd. All 
members of a Sub-population feature a distinct motion pat 
tern, which distinguishes them from all members of other 
Sub-populations. The present system scales the size of the 
local area by the spatial resolution of the sensed data. For 
example, a minimum value for the size of the local area can be 
given by the Smallest area needed to estimate reliably a den 
sity and/or a velocity of the crowd or be based on the number 
of parameters used in the crowd model. In some embodi 
ments, if the present system uses a number of parameters or 
coefficients to estimate the density of the crowd, the mini 
mum value for the size of the local area is defined to be larger 
than the number of estimated parameters used to estimate the 
density. Other restrictions, such as restrictions imposed by the 
geometry of the inspected area, may also affect the size of the 
partitioned local area. 

In some embodiments, the partitioning divides the sensor 
data into overlapping local areas. Partitioning local areas to 
overlap improves Subsequent processing. Overlapping local 
areas increase prediction accuracy and also avoid artifacts in 
the sensor data that may block or occlude individuals. When 
using overlapped block partitioning, local area sizes are typi 
cally partitioned to be twice as big in each dimension as they 
otherwise would be, and local areas overlap quadrant-wise 
with neighboring local areas. 

For each local area identified through the partitioning (step 
706), the present process performs the steps delineated by 
dotted rectangle 704. Specifically, the present process char 
acterizes motion in the local area based on the sensed data 
(step 708), provides a crowd model for the local area (step 
710), determines parametric values of the crowd model (step 
712), learns and adapts a set of auxiliary stochastic models 
approximating evolution overtime of the parametric values of 
the crowd model (step 714), and identifies potential anoma 
lies based on the auxiliary stochastic models and the crowd 
model (step 716). Each step is described in further detail as 
follows. 

First, the present process characterizes the motion in the 
local area based on the sensed data (step 708). In some 
embodiments, the present system characterizes the motion by 
determining real-time estimates of a Velocity field and aden 
sity field representing the local area based on the sensed data. 
A velocity field describes a field of velocity vector func 

tions of position and time representing motion in the local 
area. In some embodiments, if the sensor data includes video 
data, the present system determines the Velocity using video 
processing algorithms such as feature matching, template 
matching, temporal alignment, or statistical comparison 
algorithms. These algorithms can use video data including 
color (Red-Green-Blue, Hue-Saturation-Value, etc.), gray 
level (image intensity), or derivative information from the 
Video stream, or a combination thereof. A non-limiting 
example video processing algorithm for determining the 
velocity field is robust dense optical flow, presented by Baker 
and Matthews (Baker, S and Matthews, I., “Lucas-Kanade 20 
years On: A unifying framework.” International Journal of 
Computer Vision 56.3 (2004): pp. 221-255, the entire con 
tents of which are hereby incorporated by reference). Other 
example algorithms can exploit motion estimation or com 
pensation techniques used digital video encoding or compres 
Sion. Example video codecs allowing exploitation of motion 
estimation or compensation techniques include H.263, 
MPEG-4 Part 2, H.2641 MPEG-4 Advanced Video Coding 
(AVC), VC-1, or other video codes based on discrete cosine 
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transforms (DCT). Still other example algorithms can use 
dynamic texture-based methods including motion models. 
Example dynamic texture-based methods are presented in 
Cremers, Rousson, and Deriche, and Nelson and Polana (Cre 
mers, D. Rousson, M. and Deriche, R., “A review of statisti 
cal approaches to level set segmentation: integrating color, 
texture, motion and shape.” International journal of computer 
vision 72.2 (2007): pp. 195-215; Nelson, R.C., and Polana R., 
“Oualitative recognition of motion using temporal texture.” 
CVGIP: Image understanding 56.1 (1992): pp. 78-89, the 
entire contents of both of which are hereby incorporated by 
reference). 
As described earlier, the sensor data can include data other 

than optical or video data. Accordingly, the present system 
can determine a real-time estimate of a velocity field for a 
local area directly or indirectly. Example indirect determina 
tion of a velocity field may include inferring the velocity field 
based on positional information from the sensor data. In some 
embodiments, the present system can determine a Velocity 
field from radar sensors based on the Doppler effect. In other 
embodiments, the present system can determine Velocity 
using positional information from Sources such as Radio Fre 
quency Identification (RFID) data, or contact or contactless 
sensors. Examples of determining Velocity based on posi 
tional information are presented by Mori, et al. (Mori, T. et al., 
“Multiple people tracking by integrating distributed floor 
pressure sensors and RFID system.” Systems, Man and 
Cybernetics, 2004 IEEE International Conference on, Vol. 6, 
IEEE, 2004, the entire contents of which are hereby incorpo 
rated by reference). 
A density field describes a field of density vector functions 

of position and time, representing density of the local area. In 
Some embodiments, if the sensor data includes video data, the 
present system determines real-time estimates of the spatial 
crowd density by interpreting density to be an image or video 
texture property. For example, the more complex a video 
frame or video stream is determined to be, the higher the 
density value that can be assigned. Accordingly, density can 
be estimated from small-area statistical properties of the coef 
ficients of wavelets or Fourier-related transforms, resolving a 
range of length scales. If the sensor data does not include 
optical or video data, the present system can leverage other 
characteristics of the sensor data to determine a density esti 
mate of the local area. 

The present process provides a crowd model which models 
the behavior of the crowd based on fluid dynamics (step 710). 
The crowd model represents the local areas as a set of sub 
populations, each Sub-population having a characteristic 
behavior, such as a desired route or a stochastic behavioral 
pattern. An example desired route includes a group of people 
going from a specified train or Subway platform to a specified 
exit gate in the station. An example of stochastic behavior can 
be seen when grocery shoppers focus on buying groceries in 
a different behavioral pattern versus the behavioral pattern of 
window shoppers browsing in a mall. 
The crowd behavior model includes a collection or set of 

continuous functions of space and time, representing the 
time-varying Velocities and contributions to the density of 
each Sub-population of the crowd at each point in the 
inspected local area. The crowd behavior model denotes time 
by t and a location in space on a flat surface by (x,y) and in 
three dimensions by (x,y,z), in which the notation r denotes 
the transpose, namely 
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Subsequently, without loss of generality, the crowd behavior 
model denotes a spatial location by a vector field X=(x,y)". 
A local area can contain multiple Sub-populations. The 

crowd behavior model describes the combined motion of N 
sub-populations, indexed by ie i = {1, ... , N}. As described 
earlier, the present system characterizes the motion of the 
Sub-populations using real-time estimates of a Velocity field 
and a density field. The velocity field of sub-populationi, ie. , 
is denoted by u. The velocity field is a vector-field with values 
of the same dimension as the spatial location vector, X. That is, 
if X denotes space in two dimensions (x,y)", u, denotes veloc 
ity in the direction of the X- and y-axes by u and V, respec 
tively. If X denotes space in three dimensions (x,y,z)', u, 
denotes Velocity in the direction of the X-, y-, and Z-axes by u, 
V, and w, respectively. The density field p, denotes the density 
of agents, such as humans, in a crowd per unit area. Both u, 
and p, are functions of the spatial position X and time t, thus 
u, u,(x,t) and p, p,(x,t). The total density is defined as the 
Sum of all the Sub-population densities in the local area at a 
given point in space and time, i.e. 

An upper bound on the total feasible or tolerable density is 
denoted p, p, may be based, for example, on long-term 
observations of crowd motion patterns in a particular loca 
tion, time of day, day of week, season, etc., on safe bounds or 
areas set by the designer of a public area under inspection, by 
a user operating the present system, or derived from moving 
averages over long-time windows. The crowd behavior model 
defines pressure as 

The pressure term models “social pressure' or “crowd 
pressure” which individuals in a crowd may feel when they 
are more tightly or less tightly in the presence of one another, 
and the tendency of individuals to avoid densely-packed 
areas. Conversely, individuals exhibit a tendency to move 
towards less densely-packed areas. The relative Sub-popula 
tion and total densities, denoted 

pinorm (x, t) = p;(x, t) 
inorin v-vi pna (V, t) 

and 

p(x, t) 
norm (X, f) Pom(x,t) = n 

respectively, may be introduced to simplify the expression for 
the pressures, as 
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pnorm (x, t) 

Based on the sensor data, the present system measures and 
obtains an observed velocity, u, at a point, X. The observed 
Velocity represents an average of Velocity all Sub-populations 
in the local area. That is, the observed velocity is determined 
using short-time observations of evolution of motion over a 
Small area and a small time. The Small area can be the local 
area of the sensor data under analysis. The Small time can be 
Successive frames in the video stream, which can be any 
where from /16 of a second to /30 of a second to /60 of a 
second. The observed velocity is therefore related to the den 
sities and Velocities of the Sub-populations at a given in space 
and time, i.e. 

The conservation of mass of a small moving Subset of each 
Sub-population is given by the continuity equation 

for ie., where 6, and V denote the partial derivative with 
respect to time and the Nabla operator with respect to space, 
respectively. Note that, by definition of the densities p, the 
mass at a time t of the sub-populationi in an area or a volume 
C2C S2, within the observed area S2, is the spatial integral 
Jop,(S, t)ds. The mass thus represents the locally smoothed 
number of individuals of the sub-population i, that is con 
tained within the given Volume or area, 2. In these terms, the 
continuity equation states that if at a certaintime to a portion 
of the Sub-populationi is contained in a certain area or Volume 
2(to), and if one tracks the time evolution of points in 2(to), 
as the points move in space and time according to the Velocity 
field u(x,t), to form an area or volume 2(t), at a later time, 
t>to then the number of persons of the Sub-population i that 
occupy 2(t) at the time t, remains equal to the number of 
those that occupied (2(to) at the initial time to 
The crowd model also includes a momentum equation for 

the large-scale crowd, which is given by 

for ie., where the and & operators represent the inner 
product and outer product vector operations, respectively. 
The meaning of the terms of Equation 2 is explained in the 
description following. All the parameters of Equation 2, t, f, 
L., ii, d, and, may be estimated in real time by the present 
system. The parametric values vary slowly with time and 
Smoothly in space. Thus. T., T., (x,t), 3, B,(X,t), u, u(x,t), 
fi, ti,(x,t), d, d(x,t), and , , (x,t).x,t). As discussed below, 
the present system identifies auxiliary stochastic models that 
describe the substantially normal temporal evolution of these 
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parameters from the estimated real-time parameter values for 
each local area, and possibly, using pre-determined a priori 
information. 

Non-limiting examples of a priori information include 
long-term sensor data, such as sensor data from observing an 
area under Surveillance for a long time. Example time inter 
vals for observing an area include minutes, days, weeks, 
months, seasons, or years. For example, a long-term obser 
Vation based on seasons may include every year in the fall, 
observing a crowd of birds gathering in flocks and migrating 
South. In this instance, every year in the fall, ti and d are 
likely to be similar. Accordingly, the present system can per 
form faster by avoiding extraneous or duplicated estimation 
of these parametric values from the sensor data. In another 
example, a long-term observation based on hours may 
include observations of crowds of commuters in train, bus, or 
Subway stations, when a train, bus, or Subway arrives accord 
ing to the same schedule for every weekday. The behavior of 
crowds before work (before 9 am) or around lunch time 
(around 12 pm) or after work (after 5 pm) may remain similar 
for weeks, months, seasons, or years. In this instance, the 
relevant long-term observation can include time spans from 
on the order of minutes, to years, if the present system deter 
mines that the commuter crowd features a similar behavioral 
pattern at all times on a weekday. 
The convection term, 

represents the spatial component of the acceleration of a mass 
occupying an infinitesimal Volume around the point X at time 
t and propagates according to u. In other words, the convec 
tion models the spatial shifting of momentum in a local area 
for a sub-population i due to the bulk velocity of the crowd. 
Specifically, if the spatial Volume is centered around position 
vector Z(t), then the center of that volume satisfies 

and the total time derivative of the momentum of that mass 

is the sum of the left hand side of Equation 2 and the convec 
tion term evaluated at x=Z(t). 

The extraneous forces term, 

(iii (x, t)d (x, t) - it; (x, t)), 

represents a tendency of crowd members of Sub-population i 
to adhere to a known motion pattern. The known motion 
pattern can be defined by the velocity field fid. The extrane 
ous forces term is determined by the Scalar parameter T, the 
Scalar target Velocity amplitude ii, and vector-valued target 
Velocity orientation d. 
As will be discussed later, an auxiliary stochastic model 

encapsulates time variations in some parameters of Equation 
2. Such as T, The auxiliary stochastic model slowly adapts 
using time-filtered, real-time estimates of these parameters. 
Like all other parameters of Equation 2, the extraneous forces 
parameters may vary in time and in space. Accordingly, the 
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20 
present system can estimate parametric values of the param 
eters of the extraneous forces term, such as T, L, and d, based 
on real-time estimates of velocity and density of the local 
area. Parameters representing target behavior, Such as fi, and 
d, may be primarily based on long-time observations. The 
long-term observations can be gathered based on long-term 
sensor data, Such as sensor data from observing an area under 
Surveillance for a long time. As described earlier, example 
time intervals for observing an area can include minutes, 
hours, days, weeks, months, seasons, or years. Accordingly, 
the parameters representing target behavior may depend on 
the location relative to the global spatial geometry, or on time 
of day, day of week, season, etc. These target behavior param 
eters may also include a functional dependence on the state of 
the flow, representing long-time averaged shifts in Sub-popu 
lation path and Velocity, in response to varying levels of traffic 
density of the crowd. 
The term 

includes a pressure term and a viscosity term describing 
crowd behavior. The pressure term, 

models the tendency of the moving crowd to prefer motion 
orientation from high to low density, hence along the negative 
pressure gradient. In other words, the pressure term repre 
sents a congestion repelling force, as individuals in a crowd 
avoid highly packed areas and instead prefer less crowded 
areas. In the extreme, this term represents a collision avoid 
ance force. The parameter B, scales this force. As with all 
other equation parameters, B, is expected to vary with space 
and time. The normal time variation off, is described by the 
auxiliary stochastic model, as described later. Accordingly, 
the value of parameter f3, can be estimated based on real-time 
estimates of Velocity and density of the local area, and com 
pared with output from the auxiliary stochastic model by the 
present system. The Viscosity term, 

pt; (iii (x, t) - u(x,t)), 

models the force exerted by the motion of those immediately 
Surrounding an individual, on that individual. Namely, it rep 
resents the difficulty of an individual to move at a velocity and 
orientation that are different than those of the average motion, 
around that individual. The parameter 10 scales this force 
and is Subject to spatio-temporal variations. The normal time 
variation of u is described by the auxiliary stochastic model, 
as described later. Accordingly, the value of parameteru, can 
be estimated based on real-time estimates of velocity and 
density of the local area, and compared with output from the 
auxiliary stochastic model by the present system. 
The stochastic acceleration term, 

adds Small randomness to the motion of individuals in the 
crowd behavior model. The stochastic acceleration represents 
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an intensifying randomness, to avoid congestion and colli 
Sion, as an individual approaches a high-density area in a 
crowd, and reduced randomness during the individuals 
motion through low-traffic areas in the crowd. For example, 
the dependence of the vector-valued stochastic field on the 
total density p may reflect a tendency of individuals in the 
crowd to increase random sideways motion, to avoid 
approaching congestion or collision. Similarly, the converse 
may act to reduce Such motion in areas which are less con 
gested or more sparsely populated. 
As described earlier, the present system characterizes 

motion in each local area by determining a set of real-time 
estimates of motion of Sub-populations found in the local 
area. The real-time estimates of motion can include real-time 
estimates of a velocity field and a density field. The present 
system determines the real-time estimates of the velocity field 
and density field as follows. The distributed state of the large 
scale crowd model includes the density fields, p,(x,t) and the 
velocity field, u(x,t) for ie?. To determine the density field, 
real-time density estimates may be directly computed from 
local data only for the total density p. The determination of 
further density estimates is described in further detail below. 
To determine the velocity field, a locally averaged velocity of 
the combined sub-population can be determined first, i.e., for 
u. For example, the present system can use optical field esti 
mates. After determining the total density p and locally aver 
aged Velocity, the present system can then determine esti 
mates for Velocities and densities for each Sub-population 
based on the distributed estimates of pandu, over small areas 
Such as the local areas partitioned by a pre-determined spatial 
grid. For example, providing low-order polynomial represen 
tations of local variations in p,(x,t) and u(x,t), the present 
system can estimate coefficients of the polynomials from 
direct estimates of p, and u, at multiple grid points in space, 
and, possibly, several Successive samples in time. Such as 
Successive frames of a video stream. These Successive 
samples in either time or space form a small neighborhood of 
the tuple (X,t). 

The present process then determines parametric values of 
the crowd model based on the real-time estimates of the 
motion of the sub-populations in the local area (step 712). The 
present system uses the parametric values to correlate with a 
short-time evolution of the motion of all sub-populations 
found in the local area. The present system estimates coeffi 
cients of the crowd model using best-fit to real-time estimates 
of the model state from the received sensor data. As described 
earlier, the model state can include distributed velocity fields 
and density fields. The present system identifies behavioral 
patterns in the local area in terms of coefficient values of the 
crowd model. The present system then uses estimation meth 
ods to estimate parametric values of the crowd model. 
Example estimated parameters may include t, f, L. L., d. 
and, for all sub-populations ie. In some embodiments, the 
estimation methods may be based on estimation methods to 
Solve an over-determined system, i.e., a set of equations in 
which there are more equations than unknowns. The 
unknown variables are the parameters of the crowd model. 
Non-limiting examples of estimation methods may be based 
on classical estimation methods or Bayesian estimation. 
Example classical estimation methods can include minimum 
variance unbiased estimation, maximum likelihood estima 
tion, and least squares estimation, Such as methods presented 
by Bjorck (Bjorck, A., “Numerical methods for least squares 
problems.” No. 51, Society for Industrial Mathematics, 1996, 
the entire contents of which are hereby incorporated by ref 
erence). Example Bayesian estimation methods can include 
minimum mean-square estimation, maximum a posteriori 
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estimation, optimal filtering, Wiener filtering, and Kalman 
filtering, such as methods presented by Kay (Kay, S. M. 
“Fundamentals of Statistical Signal Processing, Volume I: 
Estimation Theory (v. 1). (1993), the entire contents of which 
are hereby incorporated by reference). The present system 
may prefer robust methods, as the crowd model includes a 
stochastic term. 
The present process then learns and adapts an auxiliary 

stochastic model from a set of auxiliary stochastic models 
based on evolution over time of the parametric values of the 
crowd model (step 714). The parametric values in the crowd 
model can vary and evolve dynamically over time and space. 
The present process uses auxiliary low-order stochastic mod 
els and tolerances which governs the dynamics of temporal 
variations in parametric values of the crowd model coeffi 
cients which are determined to be expected, typical, or nor 
mal. The present process learns these auxiliary stochastic 
models during an initial training period, and continually 
updates the auxiliary stochastic models during operation of 
the present system. Non-limiting example learning methods 
include methods based on principal components analysis 
(PCA), linear discriminant analysis (LDA), Subspace learn 
ing (such as local linear embedding), Galerkin methods, Han 
kel matrix-based methods, and machine learning algorithms 
(such as Support vector machines, Bayesian networks, or 
evolutionary algorithms). 
The present process then identifies a potential anomaly 

based the auxiliary stochastic model and on the crowd model 
(step 716). The present system identifies a potential anomaly 
by detecting an abrupt change in the parameters of the crowd 
model in the local area. In some embodiments, the present 
system identifies a potential anomaly if the abrupt change 
invalidates the predictions of the auxiliary stochastic model 
learned in step 714, if tolerances on parametric values of the 
crowd model and auxiliary stochastic model learned in steps 
708 and 714 are exceeded, and/or based on long-term obser 
vations of the area under surveillance. In further embodi 
ments, the present method may include a set of pre-defined 
anomalies. Such as heavy motion in a particular direction, 
strong rotational motion, high crowd density, shock waves, 
etc. If the present system detects changes in parametric values 
indicative of a pre-defined anomaly, the present system iden 
tifies those parameter variations as a potential anomaly. 

In further embodiments, the present system can identify a 
potential anomaly using mismatches of the sensor-data 
driven state, such as the real-time estimates of the velocity 
and/or density determined by characterizing motion in the 
local area, complexity measures, or first- or higher-order 
(spatial or temporal) derivatives of velocity or density (step 
710), or estimates of parametric values from the crowd model 
(step 712) or from the auxiliary stochastic model (step 714). 
For example, in some embodiments, the present system can 
compare the sensor-data-driven state estimates to short-term 
predictions generated by the crowd model. In some embodi 
ments, the present system can compare the sensor-data 
driven State estimates to short-term predictions generated by 
the crowd model by using a suitable Navier-Stokes equation 
Solver to short-time integrate the large-scale crowd model. In 
other embodiments, the present system may use a residual 
error of the crowd model and/or of the auxiliary stochastic 
model when applied to the sensor-data-driven estimates. 

In some embodiments, after performing the anomaly 
analysis for each local area, the output is aggregated based on 
the partitions determined in step 702 (step 718). For example, 
the aggregating may include a spatial aggregation using 
weighted average filtering of the received input. The aggre 
gating may include determining a weighted average statisti 
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cally, spatially, and/or temporally. In further embodiments, 
the aggregating may include an interpolation of the received 
input. 
The aggregated data from the anomaly analysis for each 

local area may then be inspected on a global scope to identify 
a potential anomaly or to Verify an identified potential 
anomaly (step 720). Step 720 performs anomaly detection on 
an area larger than a local area, or on the whole inspected area 
including the entire crowd. In some embodiments, the present 
system can use long-term observation of the Surveillance area 
or stochastic adaptive estimation to determine tolerances on 
the magnitude of spatial and/or temporal gradients of the 
aggregated crowd model States and/or aggregated vector of 
parametric values of the crowd model. Accordingly, violation 
of these tolerances can then be used as indicators of potential 
anomalies in local area crowd motion. 
As described earlier in connection with FIG. 6, a potential 

anomaly identified according to process 604 is then further 
processed at the meso-scale and individual levels. 

Those of skill in the art would appreciate that the various 
illustrations in the specification and drawings described 
herein can be implemented as electronic hardware, computer 
software, or combinations of both. To illustrate this inter 
changeability of hardware and software, various illustrative 
blocks, modules, elements, components, methods, and algo 
rithms have been described above generally in terms of their 
functionality. Whether such functionality is implemented as 
hardware, Software, or a combination depends upon the par 
ticular application and design constraints imposed on the 
overall system. Skilled artisans can implement the described 
functionality in varying ways for each particular application. 
Various components and blocks can be arranged differently 
(for example, arranged in a different order, performed in a 
different order, or partitioned in a different way) all without 
departing from the scope of the Subject technology. 

Moreover, in the drawings and specification, there have 
been disclosed embodiments of the inventions, and although 
specific terms are employed, the term are used in a descriptive 
sense only and not for purposes of limitation. For example, 
various controllers, nodes, and modules have been described 
herein as running on single machines, but embodiments 
where the controllers, nodes, and modules comprise a plural 
ity of machines connected together is within the scope of the 
disclosure (e.g., in a parallel computing implementation or 
over the cloud). Moreover, the disclosure has been described 
in considerable detail with specific reference to these illus 
trated embodiments. It will be apparent, however, that various 
modifications and changes can be made within the spirit and 
Scope of the disclosure as described in the foregoing specifi 
cation, and Such modifications and changes are to be consid 
ered equivalents and part of this disclosure. 

We claim: 
1. A computer-implemented method of detecting an 

anomaly in crowd behavior, the method comprising: 
receiving sensor data from one or more sensors, the sensor 

data representing a crowd in motion; 
partitioning the sensor data into a set of local areas, each 

local area forming a neighborhood for analyzing the 
crowd in motion; 

for each local area in the set of local areas, 
characterizing motion in the local area to determine a set 

of real-time estimates of motion of sub-populations in 
the local area based at least in part on the sensor data, 
each Sub-population characterized by a pattern of 
motion based at least in part on sensor data collected 
over a longer-term time duration describing motion in 
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the Sub-population, the longer-term time duration 
including at least one of minutes, hours, days, weeks, 
Seasons, and years; 

providing a crowd model for each local area, each model 
representing dynamics of continuous functions 
describing expected motion near each local area; 

determining a set of parametric values of the crowd 
model based at least in part on the real-time estimates 
of the motion of the Sub-populations in the local area, 
to correlate the set of parametric values with a short 
time evolution of the motion of the sub-populations in 
the local area; 

learning and adapting a set of auxiliary stochastic mod 
els based at least in part on evolution of the parametric 
values of the crowd model over time, the set of aux 
iliary stochastic models characterizing Substantially 
normal evolution of the parametric values of the 
crowd model over time associated with each local 
area; and 

identifying an occurrence of a potential anomaly asso 
ciated with the local area by comparing predictions 
from an auxiliary stochastic model in the set of aux 
iliary stochastic models with the set of parametric 
values of the crowd model based at least in part on the 
real-time estimates of the motion of the Sub-popula 
tions in the local area. 

2. The method of claim 1, further comprising: 
allocating at least one of additional sensor resources and 

additional computational resources to further analyze 
motion in the local area associated with the identified 
potential anomaly to verify whether to flag the identified 
potential anomaly, if the predictions from the auxiliary 
stochastic model do not match the set of parametric 
values of the crowd model based at least in part on the 
real-time estimates of the motion of the Sub-populations 
in the local area; and 

wherein if the further analysis of the motion in the local 
area associated with the identified potential anomaly 
determines that the identified potential anomaly should 
be flagged, analyzing motion of one or more individuals 
in the local area to verify whether the identified potential 
anomaly is an actual anomaly. 

3. The method of claim 1, 
wherein the sensor data includes data from a video stream; 
wherein the partitioning the sensor data includes associat 

ing a Subset of the sensor data with each local area in the 
set of local areas, each local area forming a neighbor 
hood around a grid point in a spatial grid of the video 
stream representing an area under observation; 

wherein the set of real-time estimates of the motion of the 
Sub-populations includes real-time estimates of a Veloc 
ity field and a density field; 

wherein the crowd model is based at least in part on con 
tinuous-state, multi-population, compressible fluid 
dynamics to model expected motion near each local 
area, and wherein parameters of the crowd model 
include coefficients for quantifying an effect of crowd 
viscosity, crowd pressure, extraneous forces, and ran 
dom motion that characterize local motion of each Sub 
population in the local area; 

wherein the learning and adapting the set of auxiliary sto 
chastic models includes determining a set of thresholds 
that represent Substantially normal values of at least one 
of (i) the continuous functions describing expected 
motion near each local area, (ii) the parametric values of 
the crowd model, (iii) the coefficients of any auxiliary 
stochastic model in the set of auxiliary stochastic mod 
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els, and (iv) spatial and temporal derivatives of at least 
one of (i), (ii), and (iii), for each local area, the set of 
thresholds being determined based at least in part on at 
least one of sensor data collected over the longer-term 
time duration and the real-time estimates of the motion 5 
of the Sub-populations; and 

wherein the identifying the occurrence of the potential 
anomaly associated with the local area includes at least 
one of (i) determining whether a residual error identified 
by any of the auxiliary stochastic models in the set of 
auxiliary stochastic models exceeds a pre-determined 
threshold in the set of thresholds, and (ii) determining 
whether a residual error identified by the crowd model 
exceeds the pre-determined threshold. 

4. The method of claim 1, further comprising: 
aggregating parametric values from the crowd model and 

predictions from the set of auxiliary stochastic models 
for a plurality of local areas; and 

identifying an occurrence of a potential anomaly associ 
ated with the crowd, by comparing the aggregated pre 
dictions from the set of auxiliary stochastic models and 
the parametric values from the crowd model based at 
least in part on the real-time estimates of the crowd in 
motion for the plurality of local areas. 

5. The method of claim 1, wherein the parametric values of 
the crowd model based at least in part on the real-time esti 
mates of the motion of the Sub-populations in the local area 
are determined based at least in part on at least one of mini 
mum variance unbiased estimation, maximum likelihood 
estimation, least squares estimation, minimum mean-square 
estimation, maximum a posteriori estimation, optimal filter 
ing, Wiener filtering, and Kalman filtering. 

6. The method of claim 1, wherein the auxiliary stochastic 
models are learned based at least in part on at least one of 
principal components analysis, linear discriminant analysis, 
Subspace learning, Galerkin methods, Hankel matrix-based 
methods, and machine learning algorithms. 

7. The method of claim 2, wherein at least one of the motion 
in the local area and the motion of the individuals in the local 
area are analyzed based at least in part on agent-based crowd 
models with Socio-economic forces, Boltzmann-like gas-ki 
netic models for crowd motion, lattice gas models for crowd 
motion, and cellular automata for crowd motion. 

8. A system for detecting an anomaly in crowd behavior, 
the system comprising 

one or more sensors for observing a crowd in motion; 
storage; and 
at least one processor configured to: 

receive sensor data from the one or more sensors, the 
sensor data representing the crowd in motion; 

partition the sensor data into a set of local areas, each 
local area forming a neighborhood for analyzing the 
crowd in motion; 

for each local area in the set of local areas, 
characterize motion in the local area to determine a set 

of real-time estimates of motion of sub-populations 
in the local area based at least in part on the sensor 
data, each Sub-population characterized by a pat 
tern of motion based at least in part on sensor data 
collected over a longer-term time duration describ 
ing motion in the Sub-population, the longer-term 
time duration including at least one of minutes, 
hours, days, weeks, seasons, and years; 

provide a crowd model for each local area, each model 
representing dynamics of continuous functions 
describing expected motion near each local area; 
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26 
determine a set of parametric values of the crowd 

model based at least in part on the real-time esti 
mates of the motion of the Sub-populations in the 
local area, to correlate the set of parametric values 
with a short-time evolution of the motion of the 
Sub-populations in the local area; 

learn and adapt a set of auxiliary stochastic models 
based at least in part on evolution of the parametric 
values of the crowd model over time, the set of 
auxiliary stochastic models characterizing Substan 
tially normal evolution of the parametric values of 
the crowd model over time associated with each 
local area; and 

identify an occurrence of a potential anomaly associ 
ated with the local area by comparing predictions 
from an auxiliary stochastic model in the set of 
auxiliary stochastic models with the set of paramet 
ric values of the crowd model based at least in part 
on the real-time estimates of the motion of the 
Sub-populations in the local area. 

9. The system of claim 8, wherein the at least one processor 
is further configured to: 

allocate at least one of additional sensor resources and 
additional computational resources to further analyze 
motion in the local area associated with the identified 
potential anomaly to verify whether to flag the identified 
potential anomaly, if the predictions from the auxiliary 
stochastic model do not match the set of parametric 
values of the crowd model based at least in part on the 
real-time estimates of the motion of the Sub-populations 
in the local area; and 

wherein if the further analysis of the motion in the local 
area associated with the identified potential anomaly 
determines that the identified potential anomaly should 
be flagged, analyze motion of one or more individuals in 
the local area to verify whether the identified potential 
anomaly is an actual anomaly. 

10. The system of claim 8. 
wherein the sensor data includes data from a video stream; 
wherein the at least one processor configured to partition 

the sensor data includes the at least one processor con 
figured to associate a Subset of the sensor data with each 
local area in the set of local areas, each local area form 
ing a neighborhood around a grid point in a spatial grid 
of the video stream representing an area under observa 
tion; 

wherein the set of real-time estimates of the motion of the 
Sub-populations includes real-time estimates of a Veloc 
ity field and a density field; 

wherein the crowd model is based at least in part on con 
tinuous-state, multi-population, compressible fluid 
dynamics to model expected motion near each local 
area, and wherein parameters of the crowd model 
include coefficients for quantifying an effect of crowd 
viscosity, crowd pressure, extraneous forces, and ran 
dom motion that characterize local motion of each Sub 
population in the local area; 

wherein the at least one processor configured to learn and 
adapt the set of auxiliary stochastic models includes the 
at least one processor configured to determine a set of 
thresholds that represent substantially normal values of 
at least one of (i) the continuous functions describing 
expected motion near each local area, (ii) the parametric 
values of the crowd model, (iii) the coefficients of any 
auxiliary stochastic model in the set of auxiliary stochas 
tic models, and (iv) spatial and temporal derivatives of at 
least one of (i), (ii), and (iii), for each local area, the set 
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of thresholds being determined based at least in part on 
at least one of sensor data collected over the longer-term 
time duration and the real-time estimates of the motion 
of the Sub-populations; and 

wherein the at least one processor configured to identify 
the occurrence of the potential anomaly associated with 
the local area includes the at least one processor config 
ured to at least one of (i) determine whether a residual 
error identified by any of the auxiliary stochastic models 
in the set of auxiliary stochastic models exceeds a pre 
determined threshold in the set of thresholds, and (ii) 
determine whether a residual error identified by the 
crowd model exceeds the pre-determined threshold. 

11. The system of claim 8, wherein the at least one proces 
sor is further configured to: 

aggregate parametric values from the crowd model and 
predictions from the set of auxiliary stochastic models 
for a plurality of local areas; and 

identify an occurrence of a potential anomaly associated 
with the crowd, by comparing the aggregated predic 
tions from the set of auxiliary stochastic models and the 
parametric values from the crowd model based at least in 
part on the real-time estimates of the crowd in motion for 
the plurality of local areas. 

12. The system of claim 8, wherein the parametric values of 
the crowd model based at least in part on the real-time esti 
mates of the motion of the Sub-populations in the local area 
are determined based at least in part on at least one of mini 
mum variance unbiased estimation, maximum likelihood 
estimation, least squares estimation, minimum mean-square 
estimation, maximum a posteriori estimation, optimal filter 
ing, Wiener filtering, and Kalman filtering. 

13. The system of claim 8, wherein the auxiliary stochastic 
models are learned based at least in part on at least one of 
principal components analysis, linear discriminant analysis, 
Subspace learning, Galerkin methods, Hankel matrix-based 
methods, and machine learning algorithms. 

14. The system of claim 9, wherein at least one of the 
motion in the local area and the motion of the individuals in 
the local area are analyzed based at least in part on agent 
based crowd models with socio-economic forces, Boltz 
mann-like gas-kinetic models for crowd motion, lattice gas 
models for crowd motion, and cellular automata for crowd 
motion. 

15. A non-transitory computer program product for detect 
ing an anomaly in crowd behavior, the non-transitory com 
puter program product tangibly embodied in a computer 
readable medium, the non-transitory computer program 
product including instructions operable to cause a data pro 
cessing apparatus to: 

receive sensor data from one or more sensors, the sensor 
data representing a crowd in motion; 

partition the sensor data into a set of local areas, each local 
area forming a neighborhood for analyzing the crowd in 
motion; 

for each local area in the set of local areas, 
characterize motion in the local area to determine a set of 

real-time estimates of motion of Sub-populations in 
the local area based at least in part on the sensor data, 
each Sub-population characterized by a pattern of 
motion based at least in part on sensor data collected 
over a longer-term time duration describing motion in 
the Sub-population, the longer-term time duration 
including at least one of minutes, hours, days, weeks, 
Seasons, and years; 
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provide a crowd model for each local area, each model 

representing dynamics of continuous functions 
describing expected motion near each local area; 

determine a set of parametric values of the crowd model 
based at least in part on the real-time estimates of the 
motion of the Sub-populations in the local area, to 
correlate the set of parametric values with a short-time 
evolution of the motion of the sub-populations in the 
local area; 

learn and adapt a set of auxiliary stochastic models 
based at least in part on evolution of the parametric 
values of the crowd model over time, the set of aux 
iliary stochastic models characterizing Substantially 
normal evolution of the parametric values of the 
crowd model over time associated with each local 
area; and 

identify an occurrence of a potential anomaly associated 
with the local area by comparing predictions from an 
auxiliary stochastic model in the set of auxiliary sto 
chastic models with the set of parametric values of the 
crowd model based at least in part on the real-time 
estimates of the motion of the sub-populations in the 
local area. 

16. The non-transitory computer program product of claim 
15, wherein the non-transitory computer program product 
further includes instructions operable to cause the data pro 
cessing apparatus to: 

allocate at least one of additional sensor resources and 
additional computational resources to further analyze 
motion in the local area associated with the identified 
potential anomaly to verify whether to flag the identified 
potential anomaly, if the predictions from the auxiliary 
stochastic model do not match the set of parametric 
values of the crowd model based at least in part on the 
real-time estimates of the motion of the Sub-populations 
in the local area; and 

wherein if the further analysis of the motion in the local 
area associated with the identified potential anomaly 
determines that the identified potential anomaly should 
be flagged, analyze motion of one or more individuals in 
the local area to verify whether the identified potential 
anomaly is an actual anomaly. 

17. The non-transitory computer program product of claim 
15, 

wherein the sensor data includes data from a video stream; 
wherein the instructions operable to cause the data process 

ingapparatus to partition the sensor data include instruc 
tions operable to cause the data processing apparatus to 
associate a Subset of the sensor data with each local area 
in the set of local areas, each local area forming a neigh 
borhood around a grid point in a spatial grid of the video 
stream representing an area under observation; 

wherein the set of real-time estimates of the motion of the 
Sub-populations includes real-time estimates of a Veloc 
ity field and a density field; 

wherein the crowd model is based at least in part on con 
tinuous-state, multi-population, compressible fluid 
dynamics to model expected motion near each local 
area, and wherein parameters of the crowd model 
include coefficients for quantifying an effect of crowd 
viscosity, crowd pressure, extraneous forces, and ran 
dom motion that characterize local motion of each Sub 
population in the local area; 

wherein the instructions operable to cause the data process 
ing apparatus to learn and adapt the set of auxiliary 
stochastic models include instructions operable to cause 
the data processing apparatus to determine a set of 
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thresholds that represent substantially normal values of 
at least one of (i) the continuous functions describing 
expected motion near each local area, (ii) the parametric 
values of the crowd model, (iii) the coefficients of any 
auxiliary stochastic model in the set of auxiliary stochas 
tic models, and (iv) spatial and temporal derivatives of at 
least one of (i), (ii), and (iii), for each local area, the set 
of thresholds being determined based at least in part on 
at least one of sensor data collected over the longer-term 
time duration and the real-time estimates of the motion 
of the sub-populations; and 

wherein the instructions operable to cause the data process 
ing apparatus to identify the occurrence of the potential 
anomaly associated with the local area include instruc 
tions operable to cause the data processing apparatus to 
at least one of (i) determine whether a residual error 
identified by any of the auxiliary stochastic models in the 
set of auxiliary stochastic models exceeds a pre-deter 
mined threshold in the set of thresholds, and (ii) deter 
mine whether a residual error identified by the crowd 
model exceeds the pre-determined threshold. 

18. The non-transitory computer program product of claim 
15, wherein the non-transitory computer program product 
further includes instructions operable to cause the data pro 
cessing apparatus to: 
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aggregate parametric values from the crowd model and 

predictions from the set of auxiliary stochastic models 
for a plurality of local areas; and 

identify an occurrence of a potential anomaly associated 
with the crowd, by comparing the aggregated predic 
tions from the set of auxiliary stochastic models and the 
parametric values from the crowd model based at least in 
part on the real-time estimates of the crowd in motion for 
the plurality of local areas. 

19. The non-transitory computer program product of claim 
15, wherein the parametric values of the crowd model based 
at least in part on the real-time estimates of the motion of the 
Sub-populations in the local area are determined based at least 
in part on at least one of minimum variance unbiased estima 
tion, maximum likelihood estimation, least squares estima 
tion, minimum mean-square estimation, maximum a poste 
riori estimation, optimal filtering, Wiener filtering, and 
Kalman filtering. 

20. The non-transitory computer program product of claim 
16, wherein the auxiliary stochastic models are learned based 
at least in part on at least one of principal components analy 
sis, linear discriminant analysis, subspace learning, Galerkin 
methods, Hankel matrix-based methods, and machine learn 
ing algorithms. 


