(51) ΜΠΚ **C07C** 51/12 (2006.01)

ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ, ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ

(12) ЗАЯВКА НА ИЗОБРЕТЕНИЕ

(21)(22) Заявка: **2009148889/04, 23.05.2008**

Приоритет(ы):

(30) Конвенционный приоритет: **01.06.2007 EP 07252240.2**

(43) Дата публикации заявки: 20.07.2011 Бюл. № 20

(85) Дата начала рассмотрения заявки РСТ на национальной фазе: 11.01.2010

(86) Заявка РСТ: **GB 2008/001776 (23.05.2008)**

(87) Публикация заявки РСТ: WO 2008/145976 (04.12.2008)

Адрес для переписки:

101000, Москва, М.Златоустинский пер., 10, кв.15, "ЕВРОМАРКПАТ", пат.пов. И.А.Веселицкой, рег. № 11

(71) Заявитель(и):

БП КЕМИКЭЛЗ ЛИМИТЕД (GB)

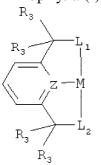
(72) Автор(ы):

КАРРИНГТОН-СМИТ Эмма Луис (GB), ЛО Дейвид Джон (GB), ПРИНГЛ Пол Джерард (GB), САНЛИ Джон Гленн (GB)

4

 ∞

 ∞


 ∞

(54) СПОСОБ КАРБОНИЛИРОВАНИЯ, ПРЕДНАЗНАЧЕННЫЙ ДЛЯ ПРОИЗВОДСТВА УКСУСНОЙ КИСЛОТЫ С ПРИМЕНЕНИЕМ МЕТАЛЛИЧЕСКИХ КАТАЛИЗОТОРОВ С КЛЕШНЕОБРАЗНЫМИ ЛИГАНДАМИ

(57) Формула изобретения

1. Способ получения уксусной кислоты путем карбонилирования метанола и/или его реакционноспособного производного, выбранного из метилацетата, метилиодида, диметилового простого эфира и их смеси, монооксидом углерода в присутствии катализатора в жидкой реакционной смеси, включающей метилиодид и воду в концентрации от 0,1 до 30 мас.%, в котором катализатор включает комплекс металла с клешнеобразным лигандом, соответствующий общей формуле (I)

Формула (I)

4

9148889

0

0

2

в которой Z представляет собой углерод, каждый из L_1 и L_2 представляет собой координирующую группу, содержащую донорный атом P, либо донорный атом N; каждый R_3 независимо выбирают из водорода или C_1 - C_6 алкильной группы, и M выбирают из Rh и Ir;

или общей формуле (II)

Формула (II)

$$L_3$$
 M L_4

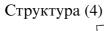
в которой Z представляет собой углерод, и каждый из L_3 и L_4 представляет собой координирующую группу, содержащую донорный атом P, либо донорный атом N, а M выбирают из Rh и Ir.

- 2. Способ по п.1, в котором каждая из L_1 , L_2 , L_3 и L_4 соответствует формуле R^1R^2P или R^1R^2N , в которой каждый R^1 и R^2 независимо выбирают из C_1 - C_6 алкила, C_5 - C_6 циклоалкила и необязательно замещенной арильной группы.
- 3. Способ по п.2, в котором необязательно замещенная арильная группа представляет собой незамещенную фенильную группу.
- 4. Способ по п.2, в котором каждую из L_1 , L_2 , L_3 и L_4 независимо выбирают из PPh₂, PMe₂, PEt₂, P^i Pr₂ и P^t Bu₂.
- 5. Способ по п.2, в котором R^1 , R^2 и P вместе образуют кольцевую структуру, содержащую от 5 до 10 атомов углерода.
- 6. Способ по п.1, в котором каждую R_3 независимо выбирают из водорода, метила, этила или изопропила.
- 7. Способ по п.1, в котором кольцевая структура основной цепи в формуле (I) или формуле (II) содержит один или более заместителей.
- 8. Способ по п.1, в котором металлический комплекс с клешнеобразным лигандом выбран из

Структура (1)

4

တ တ


 ∞

1 4

2009

2

Структура (2)

4

48889

2009

причем в каждой из структур с (1) по (4) М выбирают из родия или иридия.

- 9. Способ по п.1, в котором концентрация комплекса металла с клешнеобразными лигандами в жидкой реакционной смеси составляет от 500 до 2000 част./млн.
- 10. Способ по п.1, в котором концентрация метилиодида в жидкой реакционной смеси составляет от 1 до 30 мас.%
 - 11. Способ по п.1, в котором в процессе присутствует водород.
- 12. Способ по п.1, в котором процесс осуществляют при общем давлении реакции, составляющем от 10 до 100 бар (избыт.).
- 13. Способ по п.1, в котором процесс осуществляют при температуре, составляющей от 50 до 250 °C.
- 14. Способ по п.1, в котором реакционноспособное производное выбирают из метилацетата и диметилового простого эфира.