特許協力条約に基づいて公開された国際出願

世界知的所有権機構
国際事務局

国際公開 日
2011年1月6日(06.01.2011)

国際特許分類:
H01M 14/00 (2006.01)
H01L 31/04 (2006.01)

国際出願番号:
PCT/JP2010/000886

国際出願 日:
2010年6月15日 (15.06.2010)

国際出願の言語:
日本語

国際公開の言語:
日本語

優先権データ:
特許 2009-153809 2009年6月29日 (29.06.2009) JP

出願人 (出願国についてのみ):
千葉 恭男 (CHIBA, Yasuji), 萩野 信洋 (FUKAMI, Hisao), 福井 茂 (KANETO, Nobuhito), 赤谷 良一 (SHIMIZU, Atsushi), 伊村 順之 (IWAMAKI, Ryohsuke), 片山 博之 (KATAYAMA, Hiroyuki)

発明者および

発明の名称: 湿式太陽電池モジュール

Title: WET TYPE SOLAR BATTERY MODULE

Abstract: In a wet type solar battery module (1), two or more photoelectric conversion elements (30) are arranged with a separation and are gripped between a first insulating substrate (10) and a second insulating substrate (20). In the photoelectric conversion elements (30), a first electrode (11), a photoelectric conversion section (40) and a second electrode (21) are successively laminated on the first insulating substrate (10), in this order. Either of the first electrode (11) and the second electrode (21) contained in the photoelectric conversion elements (30) has a through-passage section (50). An inter-cell insulating section (15) is provided passing through the through-passage section (50), between the photoelectric conversion sections (40) of two adjacent photoelectric conversion elements (30). A carrier transport section (8) is provided in the space enclosed by the first insulating substrate (10), second insulating substrate (20) and inter-cell insulating section (15).

要約: 本発明の湿式太陽電池モジュール (1) は、2個以上の光電変換素子 (30) が離間して配
置され、第1絶縁性基板 (10) と第2絶縁性基板 (20) との間に挟持されるものであって、光電変
換素子 (30) は、第1絶縁性基板 (10) 上に、第1電極 (11)、光電変換部 (40)、および第
2電極 (21) がこの間に積層されたものであり、光電変換素子 (30) に含まれる、第1電極 (11)
または第2電極 (21) のうちのいずれか一方は、貫通部 (50) を有し、隣接する2つ目の光電変
換素子 (30) の光電変換部 (40) の間に、貫通部 (50) を貫通するセイル間絶縁部 (15) を有
し、第1絶縁性基板 (10)、第2絶縁性基板 (20)、およびセイル間絶縁部 (15) に囲まれる空間
には、キャリア輸送部 (8) が設けられることを特徴とする。
この訂正版の公開日：2012年1月12日

添付公開書類：2012年1月12日の更新情報（Notice）を参照

- 国際調査報告（条約第21条（3））
発明の名称：湿式太陽電池モジュール

技術分野

【0001】本発明は、湿式太陽電池モジュールに関し、特に耐久性に優れた湿式太陽電池モジュールに関する。

背景技術

【0002】太陽光エネルギーを直接電気エネルギーに変換する太陽電池は、地球環境に与える負担が少ないことから、化石化石油に代わる次世代のエネルギーソースとして近年特に注目されている。現在実用化されている太陽電池は、結晶系シリコン基板を用いた太陽電池と、薄膜シリコン太陽電池の2つの形態のものが主流である。これら2つの形態のいずれの太陽電池においても、光電変換を高効率化することにより、発電出力当たりのコストを低減する努力が続けられている。

【0003】しかしながら、結晶系シリコン基板を用いた太陽電池は、結晶系シリコン基板を作製するコストが高いため普及が困難であるという問題がある。一方、薄膜シリコン太陽電池は、その製造過程において多種の半導体製造用ガスや複雑な装置を用いる必要があるため、製造コストが高くなるという問題がある。よって、いずれの形態の太陽電池においても製造コストが高くなるという問題を解決することはできないのが現状である。

【0004】そこで、上記の2つの形態の太陽電池とは別のタイプの太陽電池として、湿式太陽電池が提案されている。特開平1-220380号公報（以下において特許文献1」と記す）には、金属絶体の光誘起電子移動を応用した湿式太陽電池の一つである色素増感太陽電池が提案されている。当該色素増感太陽電池は、表面上に多孔質電極を形成したガラス基板と対極とを用意し、多孔質電極に光増感色素を吸着させて可視光領域に吸収スペクトルをもたせた光電変換層と、電解質層とを有する構造のものである。

【0005】この色素増感太陽電池に対して透明な電極側から光電変換層に光を照射す
ると、光電変換層に含まれる光増感色素が光を吸収して電子を発生する。ここでは発生した電子が一方の電極から外部電気回路を通って対向する電極に移動する。そして、移動した電子が電解質中のイオンにより運ばれて光電変換層に戻る。このような一連の電子移動により、色素増感太陽電池から継続的に電気エネルギーを取り出すことができる。

[0008] 特許文献２において、特許文献１の光電変換色素に各種の光増感材料が組み込まれ、構成されており、色素増感太陽電池の構成が固定されている。
このセル間絶縁体１１６およびセル間封止部１１７により、電解質１０８が色素増感太陽電池モジュール内の各色素増感太陽電池に封止されている。

この構造の色素増感太陽電池モジュール１０１は、セル間での短絡が生じさせることができなく、集積率を高めることができ、光電変換効率を向上させることができる構造である。このような色素増感太陽電池モジュール１０１は、第2電極１２１から第1電極１１１へと電流の流れの方向がZ型をしていることから、Z型の色素増感太陽電池モジュールとも呼ばれている。

上記のZ型の色素増感太陽電池モジュール以外の構造のものとして、たとえば特開２００５−２３５７２５号公報（以下において特許文献４と記す）には、W型の色素増感太陽電池モジュールが提案されている。なお、電子の流れの方向がWの形をしていることからW型の色素増感太陽電池モジュールと呼ばれる。

図１４は、特許文献４に示される色素増感太陽電池モジュールの構造を示す模式的な断面図である。

特許文献４の色素増感太陽電池モジュール２０２は、図１４に示されるように、第1絶縁性基板２１０および第2絶縁性基板２２０の間に、第1光電変換素子２３０ａと、第2光電変換素子２３０ｂとがセル間絶縁部２１５を挟んで交互に設けられ、その最外には外周封止層２１９が形成された構造である。ここで、図１４に示される色素増感太陽電池モジュール２０２は、3個の第１光電変換素子２３０ａと２個の第２光電変換素子２３０ｂが設けられている。

ここで、第１光電変換素子２３０ａは、第1絶縁性基板２１０側から第1電極２１１、光電変換層２４１、電解質層２４２、触媒層２４３、第2電極２２１がこの順に積層されたものである。一方、第2光電変換素子２３０ｂは、第1絶縁性基板２１０側から第1電極２１１、触媒層２４３、電解質層２４２、光電変換層２４１、第2電極２２１がこの順に積層されたものである。すなわち、第１光電変換素子２３０ａと、第２光電変換素子２３０ｂとは、第1電極２１１と第2電極２２１との間を構成する各層が上下あべこべ
に形成された構造である。

[0015] そして、第1光電変換素子230aと第2光電変換素子230bとは、第1電極211または第2電極221のいずれか一方を共通して用いることにより、電気的に直列接続されている。

[0016] また、特許文献4の色素増感太陽電池モジュールと類似の構造のW型の色素増感太陽電池モジュールとして、特開2005-228614号公報（以下において「特許文献5」と記す）には、異なるタイプの光電変換素子を複数直列接続した色素増感太陽電池モジュールが提案されている。

[0017] 図15は、特許文献5に示される色素増感太陽電池モジュールの構造を示す模式的な断面図である。特許文献5の色素増感太陽電池モジュール302は、図15に示されるように、第2絶縁性基板320下に2セル分の大きさであって透明性の第2電極321と、1セル分の大きさであって透明性の第2電極321aとが設けられている。2セル分の大きさの第2電極321には、1セル分の大きさの色素増感半導体電極341と、1セル分の大きさの光透過性を有する対向電極343とが設けられる。

[0018] 一方、第1絶縁性基板310上には、1セル分の大きさの第1電極311aと、2セル分の大きさの第1電極311とが設けられる。当該1セル分の大きさの第1電極311aは、第2絶縁性基板320上に形成された色素増感半導体電極341に対向して配置される。そして、隣接するセルの間には電解液308を封止するために隔壁316が形成されており、色素増感太陽電池モジュール302の外周には、液封止材319が形成される。

[0019] このように図15に示される色素増感太陽電池モジュールにおいて、隣接する光電変換素子は、光電変換部の上下があべこべに形成された構造である。このような構造の色素増感太陽電池モジュールでは、第2電極321aおよび第1電極311aから出力電圧が取り出される。

先行技術文献
特許文献

[0020] 特許文献1：特開平1-220380号公報
特許文献2 : 特開2008 _ 16369号公報
特許文献3 : 特開2008 _ 16351号公報
特許文献4 : 特開2005 _ 235725号公報
特許文献5 : 特開2005 _ 228614号公報

発明の概要

発明が解決しようとする課題

[0021] 特許文献3のZ型の色素増感太陽電池モジュール101は、セル間封止部117が第2電極121に染み込んでセル間絶縁体116に到達する構造である（図13）。しかしながら、第2電極121が触媒層143またはセル間絶縁体116との界面から剥離しやすい。このため、隣接する光電変換素子の電解質108の成分が、色素増感太陽電池モジュールの隣接する光電変換素子を移動して偏り、セル特性およびモジュール特性が低下するという問題があった。

[0022] また、特許文献4および5の色素増感太陽電池モジュールはいずれも、隣接する光電変換素子（第1光電変換素子および第2光電変換素子）をセル間絶縁体により区画するW型の色素増感太陽電池モジュールである。

[0023] たとえば図14に示されるW型の色素増感太陽電池モジュールは、セル間絶縁部215と第1絶縁性基板210または第2絶縁性基板220との界面では剥離しにくい。一方、セル間絶縁部215と第1電極211または第2電極221との界面では剥離しやすい。そして、これらの界面で剥離が生じることにより、電解質の成分が偏り、色素増感太陽電池モジュールの特性が低下するという問題があった。

[0024] 上記のように、Z型およびW型のいずれの構造の色素増感太陽電池モジュールにおいても、色素増感太陽電池モジュールを構成する各層の界面での剥離が生じ、これにより電解質の成分が偏り、色素増感太陽電池モジュールの特性が低下するという問題があった。

[0025] 本発明の湿式太陽電池モジュールは、上記のような現状に鑑みてなされたものであって、湿式太陽電池モジュール内の層間剥離をなくすことにより、
耐久性を高めることを目的とする。

課題を解決するための手段

【0026】本発明者らは、色素増感太陽電池モジュールを構成する各層の界面で剥離することを防止するための手段について経済検討を重ねた。その結果、第1電極に貫通部を形成し、当該貫通部を貫通するようにセル間絶縁部を設けるという全く新規の手段により、セル間絶縁部と色素増感太陽電池モジュールを構成する各層と間での剥離の発生を抑制することを見出した。

【0027】さらに、第1電極または第2電極に貫通部を形成することにより、色素増感太陽電池モジュールを構成する各層の界面の剥離を抑制するという手法は、Z型の色素増感太陽電池モジュールのみならず、W型の色素増感太陽電池モジュールにおいても適用することができるものが明らかとなった。

【0028】ところで、湿式太陽電池は、上記の色素増感太陽電池以外の構造として、特許文献2に示されるような量子ドット増感太陽電池の構造のものもある。

【0029】本発明者らは、上記の色素増感太陽電池を構成する第1電極または第2電極に対し貫通部を形成するという手法を、量子ドット増感太陽電池に対しても応用できるかを検討した。その結果、量子ドット増感太陽電池を構成する電極に貫通部を形成しても、量子ドット増感太陽電池を構成する各層の界面の剥離が生じにくくなることが判明した。このことから電極に貫通部を設けるという手法は、色素増感太陽電池のみならず、量子ドット増感太陽電池等の電解質を必要とする湿式太陽電池に適用できることが明らかとなった。

【0030】すなわち、本発明の湿式太陽電池モジュールは、2個以上の光電変換素子が離間して配置され、第1絶縁性基板と第2絶縁性基板との間に挟持されるものであって、各光電変換素子は、第1電極と光電変換部と第2電極とで構成され、離間して挟持配置している光電変換素子の間にはセル間絶縁部が設けられ、第1電極または第2電極のうちの少なくとも一方には、貫通部が設けられ、貫通部にはセル間絶縁部の部材が充填され、第1絶縁性基板と第2絶縁性基板との間の少なくとも一部を第1電極または第2電極を介さずにセル間絶縁部により接続することを特徴とする。
貫通部は、その内部にセル間絶縁部を構成する部材が充填されることが好ましい。
光電変換部は、セル間絶縁部と接することが好ましい。

光電変換素子は、第1絶縁性基板上に、第1電極、光電変換部、および第2電極がこの順に積層されたものであり、光電変換は、光電変換層、キャリア輸送部を含む多孔性絶縁層および触媒層からなり、光電変換層は、多孔性半導体層に色素が担持された層であり、光電変換層、キャリア輸送部を含む多孔性絶縁層および触媒層は、第1電極側からこの順に積層され、第1絶縁性基板、第2絶縁性基板、およびセル間絶縁部に囲まれる空間には、キャリア輸送部が設けられることが好ましい。

隣接する2個の光電変換素子において、一方の光電変換素子の第2電極は、他方の光電変換素子の第1電極と接することが好ましい。

光電変換素子は、1個以上の第1光電変換素子と、2個以上の第2光電変換素子とが交互に離間して配置され、第1絶縁性基板と第2絶縁性基板との間に挟持される湿式太陽電池モジュールであって、第1光電変換素子および第2光電変換素子はいずれも、第1絶縁性基板上に、第1電極、光電変換部、および第2電極がこの順に積層されたものであり、第1光電変換素子の光電変換部は、光電変換層、キャリア輸送部を含む多孔性絶縁層および触媒層とが第1電極側からこの順に積層されたものであり、第2光電変換素子の光電変換部は、触媒層と、キャリア輸送部を含む多孔性絶縁層と、光電変換層、および第1電極側からこの順に積層されたものであることが好ましい。

第1光電変換素子と、該第1光電変換素子に隣接する第2光電変換素子とは、第1電極または第2電極により電気的に直列接続されることが好ましい。

第2電極は、キャリア輸送部に対して耐食性を有する材料からなることが好ましい。

第2電極は、Ti、Ni、およびAuからなる群より選択された少なくと
も1種の金属または該金属を少なくとも1種含む化合物、フッ素ドープ酸化錫、もしくはITOのうちのいずれかからなることが好ましい。

[0037] 2個以上の光電変換素子の外周部であって、第1絶縁性基板と第2絶縁性基板との間に、外周封止層が形成されることが好ましい。

[0038] セル間絶縁部は、少なくともセル間封止部を含むことが好ましい。
セル間絶縁部は、セル間絶縁体およびセル間封止部からなることが好ましい。

発明の効果

[0039] 本発明によれば、湿式太陽電池モジュールを構成する各層間の剥離の発生を抑制することができ、耐久性に優れた湿式太陽電池モジュールを提供することができる。

図面の簡単な説明

[0040] [図1]実施の形態1の湿式太陽電池モジュールの模式的な断面図である。
[図2]第1絶縁性基板上に設けられる第1電極と絶縁部とを示す概略図である。
[図3]第2絶縁性基板上に設けられる第2電極と貫通部とを示す概略図である。
[図4]第2電極に貫通部を設ける前の実施の形態1の湿式太陽電池モジュールを、第2電極側から見たときの概略平面図である。
[図5]貫通部が設けられた後の第2電極を、第2電極の上面側から見たときの一例を示す概略平面図である。
[図6]貫通部が設けられた後の第2電極を、第2電極の上面側から見たときの一例を示す概略平面図である。
[図7]貫通部が設けられた後の第2電極を、第2電極の上面側から見たときの一例を示す概略平面図である。
[図8]実施の形態2の湿式太陽電池モジュールの模式的な断面図である。
[図9]実施の形態3の湿式太陽電池モジュールの模式的な断面図である。
[図10]実施の形態4の湿式太陽電池モジュールの模式的な断面図である。
図11]実施の形態5の湿式太陽電池モジュールの模式的な断面図である。

図12]（A）実施例の湿式太陽電池モジュールの第1絶縁性基板を第1電極側から見たときの概略図、および（B）第2絶縁性基板を第2電極側から見たときの概略図である。

図13]従来の色素増感太陽電池モジュールの模式的な断面図である。

図14]従来の色素増感太陽電池モジュールの模式的な断面図である。

図15]従来の色素増感太陽電池モジュールの模式的な断面図である。

発明を実施するための形態

[0041]本発明の湿式太陽電池モジュールは、第1電極または第2電極のうちの少なくとも一方に貫通部を設け、当該貫通部内にセル間絶縁部を構成する部材が充填されることを特徴とする。このようにセル間絶縁部を介して、第1絶縁性基板と第2絶縁性基板とを接続することにより、湿式太陽電池モジュールの耐久性を高めることができる。

[0042]上述のように第1電極または第2電極に貫通部を設けるという特徴は、Z型の湿式太陽電池モジュールおよびW型の湿式太陽電池モジュールのいずれにも適用することができる。以下の実施の形態1および2にZ型の湿式太陽電池モジュールを説明し、実施の形態3〜5にW型の湿式太陽電池モジュールを説明する。

[0043]本発明の湿式太陽電池モジュールの形態は、図1に示されるもののみに限られるものではなく、種々の変更をしても本発明の範囲に含まれる。なお、以下の図面において、同一の参照符号は、同一部分または相当部分を表わすものとする。

[0044]<湿式太陽電池モジュール>

（実施の形態1）

図1は、実施の形態1の湿式太陽電池モジュールを示す概略断面図である。本実施の形態の湿式太陽電池モジュールは、図1に示されるように、Z型の湿式太陽電池モジュール1であり、第1絶縁性基板10と第2絶縁性基板20との間に2個以上の光電変換素子30が離間して挟持されており、その後
外周には外周封止層 19 が形成された構造のものである。当該光電変換素子 30 は、第 1 絶縁性基板 10 上に、第 1 電極 11、光電変換部 40、および第 2 電極 21 がこの順に積層して構成される。

ここで、隣接する 2 個の光電変換素子 30 の光電変換部 40 同士の間には、セル間絶縁部 15 が設けられており、当該セル間絶縁部 15 は、第 2 電極 21 および光電変換部 40 の順に積層している。ここで、セル間絶縁部 15 は、セル間封止部 17 およびセル間絶縁体 16 からなるものである。また、第 1 絶縁性基板 10 および第 2 絶縁性基板 20 に挟まれた空間であって、セル間絶縁部 15 により区切られた空間にキャリア輸送部 8 が設けられる。

上記の光電変換部 40 は、光電変換部 41、キャリア輸送部を含有する多孔性絶縁部 42、および触媒層 43 からなるものであり、光電変換部 41、多孔性絶縁部 42、および触媒層 43 は、第 1 電極 11 側からこの順に積層されることを特徴とする。ここで、光電変換部 41 は、多孔性半導体層に色素が担持されたものであり、湿式太陽電池が量子ドット増感太陽電池の場合には、多孔性半導体層に無機材料を用いた量子ドットが担持されたものである。ここでは、色素増感太陽電池で説明をしているので、色素を担持したものを説明する。

以下に、実施の形態 1 の湿式太陽電池モジュールを構成する各構成部材を説明する。

＜第 1 絶縁性基板、第 2 絶縁性基板＞

本実施の形態において、第 1 絶縁性基板 10 および第 2 絶縁性基板 20 は、2 個以上の光電変換素子 30 を支持するために設けられるものであり、湿式太陽電池モジュールの受光面および非受光面に形成されるものである。

ここで、外光を光電変換素子 30 内に取り込むために、第 1 絶縁性基板 10 および第 2 絶縁性基板 20 のうち、湿式太陽電池モジュール 1 の受光面となる側には透光性のものを用いる。すなわち、第 1 絶縁性基板 10 および第 2 絶縁性基板 20 のうちの少なくとも一方は透光性のものを用いることを特
微とする。

ここで、光電変換部 40 を構成する光電変換層 41 は、第 1 絶縁性基板 10 側に設けられるため、第 1 絶縁性基板 10 を透光性のものにして、第 1 絶縁性基板 10 の面を湿式太陽電池モジュールの受光面とすることが好ましい。このように第 1 絶縁性基板 10 側の面を湿式太陽電池モジュールの受光面とすることにより、湿式太陽電池モジュールに取り込まれる光のロスを抑制することができる。

第 1 絶縁性基板 10 および第 2 絶縁性基板 20 に用いられる材料は、多孔性半導体層を形成するときのプロセス温度に対する耐熱性を有し、かつ絶縁性を有するものであれば特に限定することなく、いかなる材料のものをも用いることができ、たとえばガラス基板、可撓性フィルム等の耐熱性樹脂板、セラミック基板等を用いることができる。

第 1 絶縁性基板 10 および第 2 絶縁性基板 20 に用いられる材料は、多孔性半導体層にエチルセルロースを含有したペーストを用いる場合、500℃程度の耐熱性を有するものを用いることが好ましく、多孔性半導体層にエチルセルロースを含有しないペーストを用いる場合、120℃程度の耐熱性を有するものを用いることが好ましい。

また、第 1 絶縁性基板 10 および第 2 絶縁性基板 20 は、キャリア輸送部中の溶媒が揮発するのを防止するという観点から、透湿性の低い材料を用いることが好ましい。また、第 1 絶縁性基板 10 または第 2 絶縁性基板 20 の表裏の面のうちの一方の面を S i O 2 等の透湿性の低い材料でコーティングすることがより好ましく、第 1 絶縁性基板 10 または第 2 絶縁性基板 20 の両面に対し、S i O 2 等の透湿性の低い材料でコーティングすることがさらに好ましい。

＜第 1 電極＞

本実施の形態において、第 1 電極 11 は、光電変換層 41 で発生した電子を外部回路に輸送するために設けられるものである。第 1 電極 11 に用いられる材料としては、透明導電性金属酸化物、金属、カーボン等を用いること
が好ましく、これらの材料の中でも透明性を有するという観点から、透明導電性金属化合物を用いることがより好ましい。なお、上記の金属およびカーボンのように透明性を有しない材料を用いる場合、これらの材料が光透過性を有するように薄膜化して用いることが好ましい。

ここで、第1電極11に用いられる透明導電性金属化合物としては、ITO（インジウム＝ズ＝ス複合酸化物）；フッ素ドープされた酸化ズ；ボロン、ガリウムまたはアルミニウムがドープされた酸化亜鉛；ニオブまたはタンタルがドープされた酸化チタン等を挙げることができる。

また、第1電極11に用いられる金属としては、金、銀、アルミニウム、インジウム等を挙げることができる。なお、金属の中でも電解液に腐食されやすい金属を用いる場合、キャリア輸送部と接触する第1電極11に耐腐食性材料をコーティングすることが好ましい。また、第1電極11に用いられるカーボンとしては、カーボンブラック、カーボンホイスカー、カーボンナノチューブ、フラーレン等を挙げることができる。

第1電極11の膜厚は、0.02μm以上5μm以下であることが好ましい。第1電極11の膜厚が0.02μm未満であると、湿式太陽電池モジュールの導通を十分に確保することができない虞があり、第1電極11の膜厚が5μmを超えると、第1電極11の膜抵抗が大きくなる虞がある。

第1電極11の膜抵抗は、湿式太陽電池モジュールの出力を高めるという観点から低いほど好ましく、たとえば40Ω/sq以下であることが好ましい。

このような第1電極11は、図1に示されるように、第1絶縁性基板10上に複数の第1電極11が互いに分離して設けることができる方法であれば、従来公知の方法により形成することができ、たとえばスパッタ法、スプレーフ法等により形成することができる。

このような複数の第1電極11は、パターン状に形成してもよいし、分割されていない導電層を1層形成した上で、導電層の一部を除去することにより複数の第1電極11に分割してもよい。
第1電極11をパターン状に形成する方法としては、従来公知のいかなる方法をも用いることができ、たとえばメタルマスク、テープマスクを用いて形成する方法、フォトリソグラフィ法等を挙げることができる。

一方、導電層の一部を除去することにより複数の第1電極11を形成する方法としては、従来公知の物理的手法および化学的手法のいずれをも用いることができる。物理的手法としては、たとえばレーザースクライプ、サンプラスター等を挙げることができ、化学的手法としてはたとえば溶液エッチング等を挙げることができる。

<第2電極>

本実施の形態において、第2電極21は、隣接する2個の光電変換素子30のうちの一方の光電変換素子30の触媒層43と、他方の光電変換素子30の第1電極11とを電気的に接続するために設けられるものである。

このような第2電極21には、導電性を有するものであれば特に限定することなくいかなるものを用いてもよいが、導電性が高め金属または透明導電材料を用いることが好ましい。ただし、キャリア輸送部に腐食性の高いハロゲン系の酸化還元種を用いる場合、第2電極21には耐食性を有する材料を用いることが好ましい。このように第2電極21に耐食性を有する材料を用いることにより、第2電極21の長期の安定性を確保することができる。このような耐食性を有する材料としては、たとえばTi、Ta等の高融点金属を挙げることができる。

第2電極21に用いられる材料は、上記のような耐食性を有する材料に限られないわけではなく、たとえばTi、Ni、Auまたはこれらの金属の化合物（合金を含む）からなる群より選択された1種以上のもの、または、透明導電膜材料を用いることができる。第2電極21に用いる透明導電膜材料は、酸化インジウム（ITO）、フッ素ドープ酸化スズ（F:SnO2）等を挙げることができる。

ただし、第2電極21は、隣接する光電変換素子30のキャリア輸送部と接触するため、カーボン類や白金族といった酸化還元を促進する材料を用
いることは好ましくない。この理由は、第2電極21がキャリア輸送部8と接触することにより、酸化還元反応が起こり、内部短絡を生じる虞があるためである。

[0066] 第2電極21は、多孔性半導体層に色素を吸着させるタイミングにより、好ましい形状が異なり、とえば第2電極21を形成してから多孔性半導体層に色素を吸着させる場合、多孔性半導体層が色素を吸着し易いように、第2電極21は多数の孔を有する網状に形成することが好ましい。一方、多孔性半導体層に色素を吸着させてから多孔性絶縁層上に第2電極21を形成する場合、第2電極21は特に限定されることなくいかなる形状であってもよい。第2電極21を形成する方法としては、とえば電子ビーム蒸着、スバツタ、CVD、スクリーン印刷等を挙げることができる。

[0067] <セル間絶縁部>

本実施の形態において、セル間絶縁部15は、(a) 隣接する光電変換素子3Oの間をキャリア輸送部中の酸化還元種が移動することを阻止するため、(b) 同一の光電変換素子3O内の第1電極11と第2電極21とが接触することにより、内部短絡が生ずることを防止するため、および(c) 隣接する光電変換素子3Oの各第1電極11が相互に接触することにより内部短絡が発生することを防止するために設けられるものである。

[0068] このようなセル間絶縁部15は、絶縁材料により形成されるものであって、隣接する第1電極11の相互間の第1絶縁性基板10の表面（すなわち絶縁部5）から第2電極21の貫通部50を貫通し、第2絶縁性基板20に接触するように設けられる。すなわち、セル間絶縁部15は、第1電極11、第2電極21、第1絶縁性基板10、および第2絶縁性基板20と接触するように形成される。

[0069] 隣接する光電変換素子3Oの間をキャリア輸送部中の酸化還元種が移動することを阻止することについてさらに説明すると、本実施の形態の湿式太陽電池モジュールは、図1に示されるように、第1電極11が複数存在し、これが異なる電位を持つ。このため、隣接する光電変換素子3Oの間でのキ
チャリア輸送部8の酸化還元種が移動するという問題がある。そこで、セル間絶縁部15を用いて各光電変換素子30を区画することにより、隣接する光電変換素子30の間のチャリア輸送部中の酸化還元種の移動を抑止し、酸化還元種が偏ることを防止することができる。

このようなセル間絶縁部15は、図1に示されるように、少なくともセル間封止部17を有するものであり、セル間絶縁体16およびセル間封止部17からなることが好ましい。

セル間絶縁部15を形成する方法としては、第1絶縁性基板10上に半導体粒子を含有するベーストを塗布した後に、当該ベーストを焼成することによりセル間絶縁体16を形成し、当該セル間絶縁体16上にセル間封止部17を形成する方法を挙げることができる。半導体粒子を含有するベーストを塗布する方法としては、スクリーン印刷法、インクジェット法等を挙げることができる。

このようなセル間絶縁部15は、酸化還元種がセル間絶縁部15を通過できない程度に緻密な膜であればその形態は特に限定されることなく、いかなる形状であってもよい。ここでの緻密な膜とは、たとえば独立気泡の多孔体等を挙げることができる。以下に、セル間絶縁部15を構成するセル間絶縁体16およびセル間封止部17を説明する。

（セル間絶縁体）
セル間絶縁体16は、高抵抗材料を用いることが好ましく、無機酸化物を用いることがより好ましい。このような無機酸化物としては、たとえば酸化ケイ素、酸化ホウ素、酸化亜鉛、酸化鉛、酸化ビスマス、酸化チタン、酸化アルミニウム、酸化マグネシウム等を挙げることができる。

（セル間封止部）
セル間封止部17は、隣接する光電変換素子30の間のチャリア輸送部に含まれる酸化還元種の移動を阻止するために設けられるものであり、セル間絶縁体16上に第2絶縁性基板20と接するように設けられるものである。よって、セル間封止部17は、チャリア輸送部中の酸化還元種がセル間封止
部17内を通過できない程度に緻密な膜であることが好ましい。

このようなセル間封止部17は、セル間絶縁体16、第2電極21、および第2絶縁性基板20をそれぞれ接着により貼り合わせて固定される。このようにセル間封止部17を設けることにより、第2電極21と第2絶縁性基板20との間、およびセル間絶縁体16と第2絶縁性基板20との間を封止することができる。

セル間封止部17を構成する材料は、第2電極21、第2絶縁性基板20およびセル間絶縁体16の接点を十分に確保するという観点、およびこれらの接点での密着性が良好な絶縁材料であるという観点から、感光性樹脂、熱硬化性樹脂等を用いることが好ましい。このような材料を用いることにより、貫通部50の形状にとらわれることなく、貫通部50にセル間絶縁部15を充填して形成することができる。

セル間封止部17を形成する方法としては、従来公知のいかかる方法をも用いることができ、たとえばスクリーン印刷法、インクジェット法等を挙げることができる。このような方法を用いてセル間封止部17を形成する場合、感光性樹脂を塗布してから光を照射して感光性樹脂を固めることによりセル間封止部17を形成してよくし、熱硬化性樹脂を塗布してから加熱して熱硬化性樹脂を固めることにより、セル間封止部17を形成してもよい。

このような感光性樹脂または熱硬化性樹脂を塗布して、貫通部50に流れ込ませた後に、これらを硬化してセル間封止部17を形成することにより、貫通部50内にセル間封止部17を充填することができる。

<外周封止層>

本実施の形態において、外周封止層19は、(a)湿式太陽電池モジュールに作用する落下物や応力（衝撃）を吸収するため、(b)長期にわたる使用時において湿式太陽電池モジュールに作用するたわみ等の変形を吸収するため、(c)キャリア輸送部の電解液の揮発を抑制するため、および(d)湿式太陽電池モジュール内に水等の浸入を防止するために設けられることが好ましい。
このような外周封止層19を構成する材料としては、ホットメルト樹脂（たとえばアイオノマー樹脂）、シリコーン樹脂、エポキシ樹脂、ポリイソブチレン系樹脂、ガラスフィリット等の材料のうちの1種または2種類以上を組み合わせて用いてもよい。また、外周封止層19の層構成は、1層のみに限られるものではなく、2層以上を積層して構成してもよい。ただし、キャリア輸送部を構成する溶媒にニトリル系溶剤、またはカーボネート系溶剤を使用する場合、シリコーン樹脂、ホットメルト樹脂、ポリイソブチレン系樹脂、ガラスフィリット等を用いることが特に好ましい。

外周封止層19を構成する材料にシリコーン樹脂、エポキシ樹脂、およびガラスフィリットを使用する場合、ディスペンサーにより外周封止層19のパターンを形成することができる。一方、外周封止層19を構成する材料にホットメルト樹脂を使用する場合、シート状のホットメルト樹脂にパターンニングした穴を開けることにより、外周封止層19のパターンを形成することができる。

また、外周封止層19の層方向の厚さは、光電変換素子を構成する各層の膜厚に応じて適宜設定すればよい。

<光電変換層>
本実施の形態において、光電変換層41は、一般には光電変換層41に含まれる色素が光を吸収して電子を発生させる層であり、たとえば多孔性半導体層に色素が担持されることにより形成される。以下に、光電変換層を構成する多孔性半導体層、および色素を説明する。

（多孔性半導体層）
本実施の形態において、多孔性半導体層す、従来公知の半導体を1種または2種類以上を組み合わせて構成されるものであり、従来公知のいかななる形態で形成していてもよく、たとえば粒子状、または膜状に形成することができる。ただし、光を効率よく光電変換層に取り込むという観点から、多孔性半導体層は膜状に形成することが好ましい。

このような多孔性半導体層を構成する半導体としては、たとえば酸化チタ
ン、酸化亜鉛等の半導体を1種類または2種類以上組み合わせて用いることができる。中でも、変換効率、安定性、および安全性の観点から、酸化チタンを用いることが好ましい。

ここで、多孔性半導体層を第1電極11上に膜状に形成する方法としては、従来公知の方法を用いることができ、たとえば半導体粒子を含有するペーストをスクリーン印刷法、インクジェット法等を用いて塗布した上で、塗布したペーストを焼成する方法を挙げることができる。これらの多孔性半導体層の形成方法の中でも、厚膜化のしやすさ、および製造コスト低減の観点から、スクリーン印刷法を用いることが好ましい。

また、多孔性半導体層の膜厚は、特に限定することなくいかなる膜厚であってもよいが、光電変換層41の変換効率を高めるという観点から、5〜50μm程度の膜厚であることが好ましい。

また、多孔性半導体層により多くの色素を吸着させるという観点から、多孔性半導体層の比表面積は大きなものが好ましく、その比表面積は10m²/g〜200m²/gであることがより好ましい。このように多孔性半導体層の比表面積を高めて、多孔性半導体層に多くの色素を吸着させることにより、光電変換層41の変換効率を高めることができる。なお、本明細書において、比表面積とは BET 吸着法により測定した値である。

また、多孔性半導体層を構成する半導体粒子としては、市販されているもののうち適当な平均粒径のものを用いることが好ましく、たとえば1nm〜500nm程度の平均粒径を有する単一又は化合物の半導体粒子を用いることがより好ましい。

このような多孔性半導体層の乾燥および焼成は、使用する第1絶縁性基板の材料、および半導体粒子の種類により、温度、時間、雰囲気等の条件を適宜調整して行なわれる。このような乾燥および焼成の温度は、50〜80℃程度であることが好ましく、このような乾燥及び焼成は、単一の温度で1回のみ行なってもよいし、温度を変化させて2種以上の温度で2回以上行なってもよい。また、乾燥および焼成の時間は、10秒〜4時間程度であるこ
とが好ましく、乾燥および焼成の雰囲気は、大気中または不活性ガス雰囲気であることが好ましい。

（色素）
本実施の形態において、多孔性半導体層に吸着される色素は、光増感剤として機能するものであり、種々の可視光領域および／または赤外光領域に吸収を持つものを用いることができる。また、多孔性半導体層に色素を強固に吸着させるという観点から、色素の分子にはインターロック基を有するものを用いることが好ましい。

このようにインターロック基を有する色素を用いることにより、多孔性半導体層と色素との接触面にインターロック基が介在し、励起状態の色素と多孔性半導体層を構成する半導体の伝導帯との間に電気的結合を形成することができ、これにより多孔性半導体層と色素との間の電子移動を容易にすることができる。

このようなインターロック基としては、カルボキシル基、アルコキシ基、ヒドロキシル基、スルホン基、エステル基、メルカプト基、ホスホニル基等を挙げることができる。これらの中でもカルボキシル基、ヒドロキシル基、スルホン基、およびホスホニル基をインターロック基として有する色素を用いることが好ましく、さらに好ましくはカルボキシル基を有する色素を用いることである。

このようなインターロック基を有する色素としては、たとえばルテニウムビリリン系色素、アゾ系色素、キノン系色素、キノンイミン系色素、スクアリリウム系色素、シアニン系色素、メロシアニン系色素、トリフィリン系色素、フタロシアニン系色素、インジゴ系色素、ナフタロシアニン系色素等を挙げることができる。

多孔性半導体層に色素を吸着させる方法としては、第1電極11上に多孔性半導体層を形成したものを、色素を溶解した溶液（以下においては「色素吸着用溶液」とも称する）に浸漬する方法が挙げられる。

ここで、色素吸着用溶液に用いられる溶媒は、色素を溶解することができ
ものであればどのようなものであってもよく、アルコール類、ケトン類、エーテル類、窒素化合物類、ハロゲン化脂肪族炭化水素、芳香族炭化水素、エステル類、水等を挙げることができる。また、これらの溶媒を2種以上混合して用いてもよい。

ここで、アルコール類としてはエタノールを用いることができる。ケトン類としてはアセトンを用いることができ、エーテル類としてはジェチルエーテル、トリフラン等を用いることができる。窒素化合物類としてはアセトニトリル、ハロゲン化脂肪族炭化水素としてはクロロホルム、脂肪族炭化水素としてはヘキサン、芳香族炭化水素としてはベンゼン、エステル類としては酢酸エチル、酢酸ブチル等をそれぞれ挙げることができる。

この色素吸着用溶液中の色素濃度は、使用する色素及び溶媒の種類により適宜調整することができるが、吸着機能を向上させるためにはできるだけ高濃度である方が好ましく、たとえば1×10^-5m。L以上以上の濃度であることが好ましい。

<多孔性絶縁層>
本実施の形態において、多孔性絶縁層42は、光電変換層41と触媒層43との電気的接続を阻止するために設けることができる。このような多孔性絶縁層42は、光電変換層41と触媒層43との接触しないように光電変換層41上に隙間なく多孔性絶縁層42を形成することが好ましい。

また、光電変換層41と触媒層43との電気的接続を阻止するという観点から、多孔性絶縁層42には高抵抗材料を用いることが好ましく、高抵抗材料の中でも酸化物半導体を用いることがより好ましい。酸化物半導体の中でも酸化ジルコンイウム、酸化マグネシウム、酸化アルミニウム、および酸化チタンからなる群より選択される1種または2種以上を組み合わせたものを用いることがさらに好ましい。

多孔性絶縁層42は、キャリア輸送部中の酸化還元種（電解質）を内部に取り込み、かつ酸化還元種（電解質）を移動させるという観点から、内部に連続気泡を有する多孔体であることが好ましい。
また、光電変換層4と触媒層4との電気的な接続を阻止する手法としては、光電変換層4と触媒層4との接触面積を低下させることも挙げられる。この光電変換層4と触媒層4との接触面積を低下させる場合、多孔性絶縁層4の表面積を減少させることが好ましい。多孔性絶縁層4の表面積を減少させる方法としては、多孔性絶縁層の材料となる微粒子の表面の凹凸を減少させる方法、多孔性絶縁層の材料となる微粒子のサイズを大きくする方法などを挙げることができる。

多孔性絶縁層4は、光電変換素子の発光効率を高めるという観点から屈折率が高い材料を用いることが好ましい。このように多孔性絶縁層4に屈折率が高い材料を用いることにより、光電変換層4を透過した外光を反射して再度光電変換層4に入射させることができる。

多孔性絶縁層4は、半導体粒子を含有するペーストを塗布した上で、焼成することにより形成することができる。半導体粒子を含有するペーストを塗布する方法としては、スクリーン印刷法、インクジェット法等を挙げることができる。なお、多孔性絶縁層4の膜厚が薄すぎる場合、2回以上の膜形成工程を行なうことにより多孔性絶縁層4を厚膜化し、これにより光電変換層4と触媒層4との接触を回避することができる。

＜触媒層＞

本実施の形態において、触媒層4は、多孔性絶縁層4中に含有されるキャリア輸送部（酸化還元種）の反応を促進するために設けることができる。このような触媒層4の形成方法は特に限定されないが、たとえば電子ビーム蒸着、スパッタ等を用いることが好ましい。

また、触媒層4は、多孔性半導体層に色素を吸着させるタイミングによって好ましい形状が異なる。すなわち、多孔性半導体層に色素を吸着させた後に、触媒層4を形成する場合、触媒層4の形状は特に制限されることなくいかなる形状であってもよい。一方、多孔性半導体層に色素を吸着させ前に触媒層4を形成する場合、多孔性半導体層が色素を吸着しやすいように、触媒層4は網状のように多数の孔を有する形状であることが好ましい。
また、酸化還元種との接触面積を大きくするという観点から、触媒層 4.3 の形状は多孔体であることが好ましい。

触媒層 4.3 を構成する材料は、Fe、Co および白金族であるRu、Rh、Pd、Os、Ir、Pt といった 8 族元素、カーボンプラック、ケッチェンプラック、カーボンナノチューブ、フラーレン等のカーボン類、PEDOT/PS (H) を用いることができる。ただし、キャリア輸送部に腐食性の高いハロゲン系の酸化還元種を用いる場合、長期安定性の観点から、触媒層 4.3 にはカーボン化合物または白金のような耐食性の高い材料を用いることが好ましい。

＜貫通部＞

本実施の形態において、貫通部 5.0 は、第 1 絶縁性基板 1.0 と第 2 絶縁性基板 2.0 とがセル間絶縁部 1.5 を介して接触するように第 2 電極 2.1 に設けることができる。本実施の形態において、貫通部 5.0 は、第 2 電極 2.1 を部分的に除去することにより形成される。なお、本実施の形態の湿式太陽電池モジュールでは、第 2 電極 2.1 に貫通部 5.0 が設けられている力 本発明の湿式太陽電池モジュールは、光電変換素子 3.0 に含まれる、第 1 電極 1.1 または第 2 電極 2.1 のうちのいずれか一方もしくは両方に貫通部 5.0 を設けることを特徴とする。

従来の色素増感太陽電池モジュールは、図 1.3 に示されるように、第 2 電極 1.2.1 に貫通部が設けられていなかった。このため、多孔性である第 2 電極 1.2.1 にセル間封止部 1.1.7 を構成する材料を施すことにより、第 2 電極 1.2.1 を介してセル間絶縁体 1.1.6 とセル間封止部 1.1.7 とを接続した。すなわち、セル間絶縁体 1.1.6 およびセル間封止部 1.1.7 により、第 1 絶縁性基板 1.1.0 と第 2 絶縁性基板 1.2.0 を接続していた。

しかしながら、図 1.3 の色素増感太陽電池モジュールでは、第 2 電極 1.2.1 を介してセル間絶縁体とセル間封止部とを、化学的な結合ではなく、物理的な接触しているので接続されていた。このため、第 1 絶縁性基板 1.1.0 と第 2 絶縁性基板との密着力および接着力が十分ではなかった。したがって
セル間絶縁体116およびセル間封止部117付第2電極121と接している部位での界面で剥離しづかかった。この界面で剥離することにより、セル間の電解液がセル間を行き来し、色素増感太陽電池モジュールの性能が劣化しづかかった。

ところで、本実施の形態の湿式太陽電池モジュールにおいて、第2電極21は、貫通部が存在しているために、光電変換部40やセル間絶縁体16等と接する構造となる。第2電極21と光電変換部40との接続は、多孔性絶縁層42や触媒層43のような多孔性の材質の上に、第2電極21を形成している。このため、光電変換部40と第2電極21とを物理的に接触させてることになる。これにより光電変換部40、すなわち多孔性絶縁層42や触媒層43と第2電極21とが接着している。さらに、第2電極21は、予め形成されている貫通部を介してセル間絶縁体16と接着している。このようにすることにより、セル間封止部17は、貫通部を介することにより直接セル間絶縁体16と一体化することができる。

本発明のように貫通部50内にセル間封止部17を設けることにより、セル間封止部17はセル間絶縁体16と一体化されるので、第2電極21と接している部位、すなわち光電変換部40およびセル間封止部17等との界面で剥離することを抑制することができる。特に、第2電極21とセル間封止部17との界面で剥離が生じないことにより、セル間同士の電解液の流動を抑えることができ、もってセル性能が劣化しにくく、耐久性に優れた湿式太陽電池モジュールを提供することができる。

本実施の形態において、第1電極11は、第1絶縁性基板10上に絶縁部5を挿んで離間して複数形成されるのに対し、第2電極21は、第2絶縁性基板20上に貫通部50を挿んで離間して複数形成されるわけではない。つまり、貫通部50は、第2電極21の一部のみが除去されて第2電極21の電気的な導通が保たれるように形成されるものである。図1における貫通部50は、部分的に第2電極21を構成する材料が除去されていることを示しているに過ぎず、第2電極21が離間していることを示すものではない。
第1電極11の間の絶縁部5は、隣接する光電変換素子30の絶縁を確保するために形成されるものであるため、本発明における「貫通部」とは異なるものである。そこで、本発明における「貫通部」と「貫通部」との相違は、残留部が形成されるか否かの点であり、この相違を以下の図2および図3を用いて説明する。

図2は、第1絶縁性基板上に設けられる第1電極と絶縁部とを示す概略図であり、図3は、第2絶縁性基板上に設けられる第2電極と貫通部とを示す概略図である。

本実施の形態における絶縁部5は、第1絶縁性基板10上に形成される複数の第1電極11の各第1電極11を絶縁するために設けられるものである。よって、絶縁部5は、図2に示されるように、第1電極11を完全に分離するように設けられる。

一方、本実施の形態における貫通部50は、セル間絶縁部15が第2絶縁性基板20に接するために、第2電極21に設けられるものである。ただし、図3に示されるように、第2電極21が貫通部50により分断されることを防止するために残留部51が設けられる。

このように残留部51を設けることにより、第2電極21が分断されることがないため、光電変換素子の電気的な接続が断線されることがない。

図4は、第2電極に貫通部を設ける前の湿式太陽電池モジュールを、第2電極側から見たときの概略平面図である。

実施の形態1の湿式太陽電池モジュールを第2絶縁性基板を除いた上で上から見ると、図4に示されるように、第1電極11上に第2電極21が設けられており、第2電極21の周囲には外周封止層19が設けられている。

そして、第2電極21のうちの点線で示した領域の下部には、セル間絶縁体16が形成され、当該セル間絶縁体16上の第2電極21の一部を除去することにより、貫通部50が形成される。

貫通部50を形成する方法は、第2電極21の一部を除去することができ、従来公知の方法を用いることができ、たとえば、レーザによ
第2電極21を除去する方法、機械的な針により第2電極21を除去する方法、フォトリソグラフィを用いて第2電極21を除去する方法、ドライエッチングまたはエットエッチングすることにより第2電極21を除去する方法等が挙げられる。フォトリソグラフィおよびエッチングでは、所望のマスクパターンを施してから、第2電極21を除去したい箇所のみを露出した後に、エッチング処理を行うことにより、第2電極21を除去することができる。

[0122] 第2電極21に形成される貫通部の大きさは、第1絶縁性基板10と第2絶縁性基板20とがセル間絶縁部15を介して接触できる程度の断面を有するものであればよい。

[0123] 図5～図7は、図4で示される第2電極21に対し貫通部50を設けた後であって、第2絶縁性基板20を貼り合せる前の湿式太陽電池モジュールを、第2電極21側から見たときの一例を示す概略平面図である。実施の形態1の湿式太陽電池モジュールを第2絶縁性基板を絶えた上で上面から見ると、図5～図7に示されるような貫通部50を形成することが好ましい。なお、当該貫通部50の形状および大きさはあくまで一例に過ぎない。

[0124] 図5に示されるように、第2電極21の一部には、セル間絶縁体16が露出するように貫通部50が形成される。なお、第2電極21は、隣接する光電変換素子の間の電気的な接続が必要なため、残留部51を有することが好ましい。

[0125] また、後述する実施の形態2の湿式太陽電池モジュールにおいて説明するが、図8に示されるように、外周封止層19の直下の第1電極11の部分に貫通部50を設けてもよい。このような位置に貫通部50を設けることにより、第1絶縁性基板10と第2絶縁性基板20とのセル間絶縁部15を介した接続をより確実にすることができる。

[0126] <キャリア輸送部>

本実施の形態において、キャリア輸送部8は、イオンを輸送することができる導電性材料により構成され、第1絶縁性基板10および第2絶縁性基板
20の間に充填することにより設けられる他、多孔性絕縁層42にも含まれるものである。このような導電性材料としては、たとえば電解液、高分子電解質等のイオン導電体を挙げることができるが、酸化還元性電解質を含むイオン導電体を用いることが好ましい。このような酸化還元性電解質としては、たとえば鉄系、コバルト系など金属類、塩素、臭素、ヨウ素などのハロゲン化合物を挙げることができ、中でもヨウ素が一般的によく用いられる。なお、電解液の揮発が問題となる場合は、溶媒の代わりに溶融塩を用いてもよい。

酸化還元種としてヨウ素を用いる場合、電池等に使用することができるものであれば特に限定されることなくいかなるものをも用いることができるが、金属ヨウ化物とヨウ素との組み合わせたものを用いることが好ましい。ここで、この金属ヨウ素としては、ヨウ化リチウム、ヨウ化ナトリウム、ヨウ化カリウム、ヨウ化カルシウム等を挙げることができる。また、上記の酸化還元種にジメチルプロピルイミダゾールアイオダイドといったイミダゾール塩を混入してもよい。

また、キャリア輸送部に用いられる溶媒としては、プロピレンカーボネート等のカーボネート化合物、アセトニトリル等のニトリル化合物、エタノール等のアルコール類、その他、水や非プロトン極性物質等を用いることができる。その中でも、カーボネート化合物およびニトリル化合物を用いることが好ましく、これらの溶媒の2種類以上を混合して用いてもよい。キャリア輸送部が液体のものである場合、単に電解液と呼ぶこともあり、電解液に含まれる成分のことを電解質と呼ぶこともある。電解質の濃度は、用いる電解質の種類により異なるが、0.01〜1.5m ol/Lであることが好ましい。

< Z型の湿式太陽電池モジュールの製造方法 >

図1のZ型の湿式太陽電池モジュールの製造方法は、第1絶縁性基板10上に、複数の第1電極11を離間して形成する工程と、離間して設けられた複数の第1電極11の相互の間にセル間絶縁体16を形成する工程と、上記
の各第1電極11上に、色素を担持した多孔性半導体層からなる光電変換層41と、キャリア輸送部を含有する多孔性絶縁層42と、触媒層43とからなる光電変換部40を形成する工程と、光電変換部40からセル間絶縁体16を越えて、隣接する第1電極11上に第2電極21を形成する工程と、第2電極21に貫通部50を形成する工程と、セル間絶縁体16上に形成される貫通部50を介して未硬化樹脂材料を備え、第2絶縁性基板20を未硬化樹脂材料の上に載置した後、未硬化樹脂材料を硬化させてセル間封止部17を形成すると同時に第2絶縁性基板20を固定する工程と、第1絶縁性基板10および第2絶縁性基板20の間の外周に外周封止層19を形成する工程とを備える。

[0130] （實施の形態2）

図8は、実施の形態2の湿式太陽電池モジュールを示す概略断面図である。本実施の形態の湿式太陽電池モジュールは、図8に示されるように、Z型の湿式太陽電池モジュールであり、外周封止層19の直下の第1電極11に貫通部50を形成すること以外は、実施の形態1の湿式太陽電池モジュールと同様のものである。

[0131] このように外周封止層19の直下に貫通部50を設けることにより、第1絶縁性基板10と第2絶縁性基板20とのセル間絶縁部を介した接続をより確実にすることができる。

[0132] （實施の形態3）

図9は、実施の形態3の湿式太陽電池モジュールを示す概略断面図である。本実施の形態の湿式太陽電池モジュール2は、図9に示されるように、W型の湿式太陽電池モジュールであり、第1光電変換素子30aと第2光電変換素子30bとが交互に離間して配置され、3個の第1光電変換素子30aおよび2個の第2光電変換素子30bを備える。本実施の形態の湿式太陽電池モジュールは、第1絶縁性基板10および第2絶縁性基板20ともに透光性を有している場合、受光面は、第1絶縁性基板10または第2絶縁性基板のいずれであってもよく、両面とも受光面となることができる。また、第1
絶縁性基板10のみが透光性を有している場合には、第1絶縁性基板10側が受光面となり、第2絶縁性基板20側が非受光面となる。

[0133] ここで、第1光電変換素子30aおよび第2光電変換素子30bはいずれも、第1絶縁性基板10上に、第1電極11、光電変換層41、キャリア輸送部8、触媒層43、および第2電極21が第1電極11側からこの順に積層されたものであり、第2光電変換素子30bは、第1絶縁性基板10上に、第1電極11、触媒層43、キャリア輸送部8、光電変換層41、および第2電極21が第1電極11側からこの順に積層されたものである。

[0134] 本実施の形態の湿式太陽電池モジュール2では、図9に示されるように、隅接する第1光電変換素子30aと第2光電変換素子30bとが第1電極11または第2電極21のいずれか一方を共有して用いることにより電気的に直列接続されており、隅接する第1光電変換素子30aと第2光電変換素子30bとの間には、セル間絶縁部15が形成され、セルの外周部には外周封止層19が形成された構造であり、これにより各セル間を充填および封止することができる。

[0135] 図9からも明らかのように、第1光電変換素子30aの第2電極21は、隅接する第2光電変換素子30bの第2電極21と共用し、第2光電変換素子30bの第1電極11は、隅接する第1光電変換素子30aの第1電極11と共用することにより、各光電変換素子が直列接続されている。そして、第1光電変換素子30aと第2光電変換素子30bとの間のセル間絶縁部15に接するように、第1電極11および第2電極21に貫通部50が形成される。

[0136] 以下、本実施の形態のW型の湿式太陽電池モジュールを構成する各構成部材のうち、実施の形態1のZ型の湿式太陽電池モジュールを構成する各構成部材と異なる部材のみを説明する。

[0137] <貫通部>

本実施の形態のようなW型の湿式太陽電池モジュールでは、光電変換素子30の第1電極11または第2電極21のいずれか一方もしくは両方に貫通
部 50 を設けることを特徴とする。

[01 38] 貫通部 50 は、隣接する光電変換素子を電気的に接続させるために、第1電極 11 および第2電極 21 の一部が残留部として残されている必要があり、たとえば上述の図 5～図 7 で示される貫通部 50 と同様の形状に形成することができる。このような貫通部 50 は、第1絶縁性基板 10 と第2絶縁性基板 20 とをセル間絶縁部 15 を介して接触するのに、十分な面積が確保されていればよい。

[01 39] 貫通部 50 の断面積は、第1絶縁性基板 10 と第2絶縁性基板 20 とがあその間絶縁部 15 を介して接続できる面積が確保されていればよい。第1電極 11 に貫通部 50 を形成する方法は、第2電極 21 に貫通部 50 を形成する方法と同様の方法を用いることができる。

[01 40] <第2電極>

第2電極 21 は、隣接する光電変換素子を電気的に接続するために第2絶縁性基板 20 上に設けられるものである。本実施の形態の W 型の湿式太陽電池モジュールは、Z 型の湿式太陽電池モジュールのよう第1電極 11 と第2電極 21 とを接触させることにより、電気的に接続するわけではなく、隣接する光電変換素子 30 の第2電極 21 を共有することにより電気的に接続するものである。

[01 41] <セル間絶縁部>

本実施の形態において、セル間絶縁部 15 は、第1光電変換素子 30a と第2光電変換素子 30b との絶縁性が確保され、かつ酸化還元種の通過を妨げることができる膜であれば必ずしも無機酸化物のみに限られるものではない、感光性樹脂または熱硬化性樹脂であってもよい。

[01 42] 本実施の形態の湿式太陽電池モジュールは、図 9 に示されるように、セル間絶縁部 15 としてセル間封止部のみにより形成されているが、セル間絶縁部およびセル間封止部により形成してもよい。

[01 43] <多孔性絶縁層>

W 型の湿式太陽電池モジュールにおいては、Z 型の湿式太陽電池モジュール
ルで用いられていた多孔性絶縁層は必ずしも設けてなくてもよく、キャリア輸送部8が設けられればよい。光電変換層41上に多孔性絶縁層を設けた場合でも、多孔性絶縁層にはキャリア輸送部が含有されており、かつ光電変換層41と触媒層43との接触を抑制することができるのでより好ましい。

なお、W型の湿式太陽電池モジュールにおいて、光電変換層41とキャリア輸送部8との順序を入れ替えてもよいし、さらには、多孔性絶縁層を設けた場合でも、光電変換層41と多孔性絶縁層との順序を入れ替えてもよい。

＜W型の湿式太陽電池モジュールの製造方法＞

本実施の形態の湿式太陽電池モジュールの製造方法は、透光性である第1絶縁性基板10に、離間して複数形成された第1電極11、光電変換層41、キャリア輸送部8、触媒層43、第2電極21が順次積層されてなる第1光電変換素子30aと、透光性である第1絶縁性基板10に第1電極11、触媒層43、キャリア輸送部8、光電変換層41、第2電極21がこの順に積層されてなる第2光電変換素子30bと、第1光電変換素子30aの第2電極21および第2光電変換素子30bの第2電極21上に第2絶縁性基板20を備え、透光性である第1絶縁性基板10と、第2絶縁性基板20との間に、1つ以上の第1光電変換素子30aと1つ以上の第2光電変換素子30bとが交互に並列にし、隣接する第1光電変換素子30aと第2光電変換素子30bとを電気的に直列接続する工程を備えることを特徴とする。

さらに、第2電極21に貫通部50を形成した後に、当該貫通部50に対し未硬化樹脂材料を充填する。そして、第2絶縁性基板20を未硬化樹脂材料の上に載置した後、未硬化樹脂材料を硬化させることによりセル間絶縁部15を形成する。そして、第1絶縁性基板10と第2絶縁性基板20とを固定し、貼り合わせた第1絶縁性基板10および第2絶縁性基板20の間の外周に外周封止層19を形成することが好ましい。

（実施の形態4）

図10は、実施の形態4の湿式太陽電池モジュールを示す概略断面図である。
本実施の形態の湿式太陽電池モジュールは、図10に示されるように、実施の形態3の湿式太陽電池モジュールの（図10中の左側の）外周封止層19の直下の第1電極11および（図10中の右側の）外周封止層19の直上の第2電極21に貫通部50を形成する以外は、実施の形態3の湿式太陽電池モジュールと同様のものである。

このような位置に貫通部50を設けることにより、第1絶縁性基板10と第2絶縁性基板20とのセル間絶縁部を介した接触をより確実にすることができる。

(実施の形態5)

図11は、実施の形態5の湿式太陽電池モジュールを示す概略断面図である。実施の形態の湿式太陽電池モジュールは、図11に示されるように、実施の形態3の湿式太陽電池モジュールの最外に位置する外周封止層19と接する第1電極11および第2電極21に貫通部50を形成する以外は、実施の形態3の湿式太陽電池モジュールと同様のものである。

このような位置に貫通部50を設けることにより、第1絶縁性基板10と第2絶縁性基板20との接触をより確実にすることができる。

<実施例1>

実施例1では、図1に示されるZ型の湿式太陽電池モジュールを作製した。まず、縦60mm×横36mmのSn0.2膜付きガラス基板（商品名：Sn0.2膜付ガラス（日本板硝子社製））を用意した。ここで、ガラス基板は、第1絶縁性基板10に対応するものである。

この第1絶縁性基板10の表面の導電膜であるSn0.2膜に対し、第1絶縁性基板10の左端から9.5mmの位置と、その位置から6.5mm間隔で3箇所の位置とをレーザースカーブを用いて縦方向に平行に切断し、幅が100μmの絶縁部5と、Sn0.2からなる第1電極11とを形成した。

次に、上記で形成された絶縁部5上に、絶縁部5を中心として僅かに両側の第1電極11上をはみ出るように、スクリーン印刷機（LS_34TVCA)
ニューロング社製）を用いてSiO₂含有ペーストを塗布した。その後、SiO₂含有ペーストを500℃で、60分間焼成することにより緻密なセル間絶縁体16を形成した。当該セル間絶縁体16の膜厚は28リミ、幅0.6mm、長さ60mmであった。

次に、セル間絶縁体16が形成されていない第1電極11上に対し、平均粒径13nmの酸化チタンペースト（商品名：TiNano Oxide D／SP（ソラロニックス社製））をスクリーン印刷機を用いて塗布した。そして、酸化チタンペーストを500℃で、60分間焼成することにより、膜厚1.5μmの多孔性半導体層を形成した。

上記の多孔性半導体層は、第1絶縁性基板10の左端から6.4mmの位置を中心として、幅5mm、長さ50mmのサイズで1つ形成され、その左端の多孔性半導体層の中心から6.5mmの間隔で同様のサイズの多孔性半導体層を3つ形成した。このようにして第1絶縁性基板10の第1電極11上に4つの多孔性半導体層を形成した。

次に、多孔性半導体層上に平均粒径50nmのジルコニア粒子を含むペーストをスクリーン印刷機を用いて塗布した。その後、500℃で、60分間焼成することにより、平坦部分の膜厚が7μmの多孔性絶縁層42を形成した。当該多孔性絶縁層42は、第1絶縁性基板10の左端から6.6mmの位置を中心として、幅5.2mm、長さ50mmのサイズで1つ形成し、その多孔性絶縁層42の中心から6.5mmの間隔で同様のサイズの多孔性絶縁層42を3つ形成した。

次に、上記の多孔性絶縁層42上に、膜厚50nmのPt膜からなる触媒層43を電子ビーム蒸着機を用いて形成した。そして、触媒層43、セル間絶縁体16、および隣接する光電変換素子30の第1電極11上に、膜厚300nmのTi膜からなる第2電極21を電子ビーム蒸着機を用いて形成した。

次に、レーザスクリーブを用いてセル間絶縁体16が見えるようになるまで第2電極21の一部を除去することにより、図5に示される、貫通部50
(幅 0.4 mm × 長さ 4.5 mm) を形成した。

次に、エタノール (Aldrich Chemical Company 製) に、下記化学式の N719 (商品名: Ru535bisTBA (Solaronix社製)) を、濃度が 3×10^{-4} mol/L となるように溶解させることにより色素吸着用溶液を調製した。

そして、上記で調製した色素吸着用溶液中に、酸化チタンからなる多孔性半導体層を有する第 1 絶縁性基板 10 を 120 時間浸漬することにより、多孔性半導体層に色素を吸着させた。その後、色素吸着用溶液から取り出した第 1 絶縁性基板 10 をエタノール (Aldrich Chemical Company 製) で洗浄した後に、乾燥することにより光電変換層 41 を形成した。

[化 1]

次に、第 2 電極 21 に形成した貫通部 50 を介して感光性樹脂 (31X-101 (スリーポンド社製)) をディスペンサー (ULTRASAVE R (EFD社製)) を用いて塗布し、封止樹脂に第 2 絶縁性基板 20 (縦 56 m ジャッコー 32 インチ) を貼り合わせた。そして、紫外線ランプ (NOVACURE (EFD社製)) を用いて紫外線を照射することにより、感光性樹脂を硬化させてセル間封止部 17 を形成するとともに、第 2 絶縁性基板 20 を固定
した。セル間封止部 17 の幅は 0.4 mm であった。

その後、第 1 絶縁性基板 10 および第 2 絶縁性基板 20 の周囲に感光性樹脂を塗布し、セル間封止部 17 を形成したときと同様の紫外線ランプを用いて、感光性樹脂を硬化させることにより、外周封止層 19 を形成した。

次に、キャリア輸送部 8 に用いる酸化還元電解液として、アセトニトリル（Aldrich Chemical Company 製）に濃度 0.1 mol/L のヨウ化リチウム（Aldrich Chemical Company 製）、濃度 0.01 mol/L のヨウ素（Aldrich Chemical Company 製）、濃度 0.5 mol/L の TBP（Aldrich Chemical Company 製）、濃度 0.6 mol/L のジメチルプロピルイミダゾールアイオダイド (商品名: DMPII 四国化成製) を溶解させて調製した。そして、上記の酸化還元電解液を、キャピラリー効果を用いて第 2 絶縁性基板 20 の各光電変換素子 30 上に形成された電解液注入口 (図示せず) から注入した。

そして、樹脂により上記の電解液注入口を封止し、実施例 1 の湿式太陽電池モジュールを得た。

(比較例 1)
比较例 1 では、実施例 1 の湿式太陽電池モジュールのように、第 2 電極に貫通部 50 を形成しなかった。このこと以外は、実施例 1 と同様の工程により比較例 1 の湿式太陽電池モジュールを作製した。

(実施例 2)
実施例 2 では、実施例 1 の湿式太陽電池モジュールの製造工程に加えて、外周封止層 19 の直下の第 1 電極 11 に貫通部 50 を形成する工程をさらに含むこと以外は、実施例 1 と同様の方法により、図 8 に示される、湿式太陽電池モジュールを作製した。

実施例 2 の湿式太陽電池モジュールにおいて、貫通部 50 は、最外の光電変換素子の長辺に対し 0.1 mm のところを起点として、図 6 に示される、幅 0.4 mm x 長さ 10 mm の貫通部 50 を間隔 0.125 mm で 4 つ形成
したものをである。

（実施例 3）
実施例 3 では、実施例 1 の湿式太陽電池モジュールの製造工程の第 2 電極 21 に貫通部を形成する工程において、図 6 に示される形状の貫通部 50（幅 0.4 mm × 長さ 10 mm）を 0.125 mm 間隔で 4 つ形成した。これにより、実施例 1 と同様の方法により、実施例 3 の湿式太陽電池モジュールを作製した。

（実施例 4）
実施例 4 では、実施例 1 の湿式太陽電池モジュールの製造工程の第 2 電極 21 に貫通部を形成する工程において、図 7 に示される形状の貫通部 50（直径 0.4 mm の円形状）を 0.1 mm 間隔で 8 つ形成した。これにより、実施例 1 と同様の方法により、実施例 4 の湿式太陽電池モジュールを作製した。

（実施例 5）
実施例 5 では、W型の湿式太陽電池モジュールの作製。実施例 5 の湿式太陽電池モジュールは、図 9 に示されるように、第 1 光電変換素子 30a と第 2 光電変換素子 30b とを交互に形成したものである。以下に、この湿式太陽電池モジュールの製造方法を示す。

まず、縦 53 mm × 横 65 mm のサイズの SnO2 膜付きガラス基板（商品名：SnO2膜付ガラス（日本板硝子社製））を第 1 電極 11 として用い、縦 39 mm × 横 65 mm のサイズの SnO2 膜付きガラス基板（商品名：SnO2膜付ガラス（日本板硝子社製））を第 2 電極 21 として用いた。

図 12（A）は、第 1 絶縁性基板 10 上に形成される各層を上面から見た図であり、図 12（B）は、第 2 絶縁性基板 20 上に形成される各層を上面から見た図である。

図 12 中の A が 18 mm、B が 18 mm、C が 5 mm、D が 7 mm、E が 5 mm、F が 5 mm となるように、第 1 電極 11 および第 2 電極 21 上に触
媒層4.3を形成した。当該触媒層4.3の形成は、スパッタを用いて白金を約
5nｍの膜厚で成膜することにより行なった。

次に、第1電極11および第2電極21上に（図12の「4.1」の部分に）
多孔性半導体層を作製した。当該多孔性半導体層の作製は、実施例1で用
いた酸化チタンベースト（商品名：D／S P（Solaronix社製））
を用いて、焼成後の形状が幅5ｍｍ×長さ50ｍｍ×膜厚15μｍとなるよう
に、スクリーン印刷機（製品名：LS－150（ニューロング精密工業製））
を用いて、第1電極11および第2電極21に塗膜した後に、室温に
て1時間レベリングを行なった後に、80℃のオーブン中で乾燥させ、空気
中で500℃の温度で焼成することにより行なった。

次に、図12中のIカ（7.5ｍｍ、Jカ（3.5ｍｍ、Kカ（6.5ｍ
m、Lカ（10.5ｍｍとなるように、絶縁部5を形成した。当該絶縁部5の
形成は、SnO2からなる第1電極11および第2電極21に対し、基本波長
が1.06μmのレーザ光（YAGレーザ）を照射して、SnO2を蒸発させ
ることにより行なった。

さらに、第1電極11および第2電極21に対し、基本波長のレーザ光（
YAGレーザ）を照射することにより、幅5mm×長さ8mmの貫通部50
を0.3mmの間隔で9つ形成した（図12）。

次に、実施例1で用いたN719（商品名：Ru535bisTBA（Sol
aronix社製）を、濃度が3×10⁻⁴mol／Lとなるようにエタノール（Al
drich Chemical Company製）に溶媒させることにより色素吸着用溶液を調製
した。

そして、上記で調製した色素吸着用溶液中に、多孔性半導体層を有する第
1絶縁性基板10および第2絶縁性基板20を120時間浸漬することによ
り、多孔性半導体層に色素を吸着させた。その後、色素吸着用溶液から取り
出した第1絶縁性基板10および第2絶縁性基板20をエタノール（Al
drich Chemical Company製）で洗浄した後に、乾燥させることにより電気変換層4.1を形成した。
次に、上述の工程で得られた第1絶縁性基板10および第2絶縁性基板20の貫通部50および絶縁部5上に、アイオノマー樹脂（ハイミラン1855（デュボン社製））を1mm×60mmで切り出したものをセル間絶縁部15として設置した。そして、図9の湿式太陽電池モジュールの形状となるように、第1絶縁性基板10と第2絶縁性基板20とを張り合わせ、約100℃のオーブン中で10分間加熱することにより圧着した。

次に、キャリア輸送部8に用いる酸化還元性電解液として、2種の電解液（電解液Aおよび電解液B）を作製した。

電解液Aは、アセトニトリル（Aldrich Chemical Company製）に、濃度0.1mol/Lのヨウ化リチウム（Aldrich Chemical Company製）、濃度0.02mol/Lのヨウ素（キシダ化学社製）、濃度0.5mol/LのTBP（Aldrich Chemical Company製）、濃度0.6mol/Lのジメチルプロピルイミダゾールアイオライド（商品名：DMPII（四国化成製））を溶解させることにより調製したものである。当該電解液Aのヨウ素濃度を‘M2’とする。

一方、電解液Bは、上記の電解液Aの組成のうち、ヨウ素を高濃度とした（ヨウ素の濃度：0.02mol/Lから0.05mol/Lにした）こと以外は電解液Aと同様の工程で調製したものである。当該電解液Bのヨウ素濃度を‘M1’とする。すなわち、ヨウ素濃度の比率M1/M2は2.5であり、比率5.1の範囲内であった。

本実施例の色素増感型太陽電池モジュールの第1光電変換素子30aには、電解液Bを注入し、第2光電変換素子30bには電解液Aをそれぞれキャピラリー効果を用いて注入した。その後、セル周辺部分をエポキシ樹脂にて封止することにより、実施例5の色素増感型太陽電池モジュールを得た。

（比較例2）

比較例2では、実施例5の湿式太陽電池モジュールのように、第1電極および第2電極に貫通部50を形成しなかった。このこと以外は、実施例5と
同様の工程により比較例２の湿式太陽電池モジュールを作製した。

（実施例６）
実施例６では、実施例５の湿式太陽電池モジュールの製造工程に加えて、図10中の左側の外周封止層19の直下の第１電極11、および図10中の右側の外周封止層19の直上の第２電極21に貫通部50を形成する工程を含むこと以外は、実施例5と同様の方法により、図10に示される、湿式太陽電池モジュールを作製した。

すなわち、図10に示されるように、第１電極11に貫通部50を形成した対向位置には、絶縁部5が形成され、第２電極21に貫通部50を形成した対向位置には、絶縁部5が形成されることとなる。

なお、形成される貫通部50は、図12に示される貫通部50と同一の形状を有するものであり、幅5mm×長さ8mmのものを0.3mm間隔で形成したものである。

（実施例７）
実施例７では、実施例５の湿式太陽電池モジュールの製造工程に加えて、図11中の左側の外周封止層19の両端の第１電極11および第２電極21に貫通部50を形成する工程を含むこと以外は、実施例5と同様の方法により、図11に示される、湿式太陽電池モジュールを作製した。

なお、形成される貫通部50は、図12に示される貫通部50と同一の形状を有するものであり、幅5mm×長さ8mmのものを0.3mm間隔で形成したものである。

（実施例８）
実施例８では、実施例１の湿式太陽電池モジュールの製造工程の第２電極の作製工程において、あらかじめ図5に示される貫通部が形成されるように設計したパターンのスクリーンを用いて、スクリーン印刷機（装置名：LS３４ＴＶＡ（ニューロング社製））により、第１電極11上にＩＴＯペーストを塗布した。この塗布したＩＴＯペーストを焼成することにより、膜厚1μmのＩＴＯ多孔質層からなる第２電極21を形成した。このＩＴＯペー
ストは、以下の方法により作製したものを用いた。

まず、平均粒子径が30nmのITOナノ粒子（シーアイ化成株式会社製）30gに対し、5mLの酢酸を加えて、乳鉱で5分間攪拌した。次に、5mLの水を加えて乳鉱で1分間攪拌するという工程を5回繰り返し、さらに5mLのエタノールを加えて乳鉱で1分間攪拌するという工程を15回繰り返した。そして、18mLのエタノールを加えて、乳鉱で1分間攪拌するという工程を6回繰り返した。

上記のようにして作製したベーストを、500mLのエタノールを用いてビーカーに移した。その後、スターラーで2分間攪拌してから、デルビネオールを100g加えた。そして、スターラーで2分間攪拌した後に、2秒間の超音波処理を2秒間隔で60回行なってから、再度スターラーで2分間攪拌した。

30-50mPassat5%intoluene:ethanol180:20258C#4
6080,Flukaのエチルセルロースを加えた後に、エタノール溶液を加えて10質量%のエチルセルロースに調整し、さらにスターラーによって2分間攪拌した。

次に、2秒間の超音波処理を2秒間隔で180回行なってから、再度スターラーで2分間攪拌した。その後、エバポレータを用いてエタノールを蒸発させて、3本ロール処理を行なうことにより、目的のITOベーストを作製した。

上記のようにしてスクリーン印刷法を用いて第2電極を作製したことが異なる他は、実施例1と同様の方法により、図8に示される、湿式太陽電池モジュールを作製した。

＜変換効率＞

実施例1-8および比較例1-2で作製した色素増感型太陽電池モジュールを、第1絶縁性基板が受光面となるように、第2絶縁性基板側を25℃に制御された黑色のステージに設置した。そして、第1絶縁性基板に対し、AM1.5の擬似太陽光（ソーラーシミュレータ）を照射した直後の湿式太陽
電池モジュールの変換効率（$E_{ff} \times \%$）と、$A M 1.5$の擬似太陽光を
100時間照射し続けた後の湿式太陽電池モジュールの変換効率（$E_{ff} \times \%$）を測定し、これにより得られた値を表1にまとめた。

[0198] [表1]

<table>
<thead>
<tr>
<th>構造</th>
<th>照射直後</th>
<th>100時間後</th>
<th>異常の有無</th>
<th>E_{ff} (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>実施例1</td>
<td>Z型</td>
<td>4.23</td>
<td>4.2</td>
<td>無し</td>
</tr>
<tr>
<td>実施例2</td>
<td>Z型</td>
<td>4.23</td>
<td>4.2</td>
<td>無し</td>
</tr>
<tr>
<td>実施例3</td>
<td>Z型</td>
<td>4.23</td>
<td>4.19</td>
<td>無し</td>
</tr>
<tr>
<td>実施例4</td>
<td>Z型</td>
<td>4.21</td>
<td>4.2</td>
<td>無し</td>
</tr>
<tr>
<td>実施例5</td>
<td>W型</td>
<td>4.74</td>
<td>4.76</td>
<td>無し</td>
</tr>
<tr>
<td>実施例6</td>
<td>W型</td>
<td>4.82</td>
<td>4.82</td>
<td>無し</td>
</tr>
<tr>
<td>実施例7</td>
<td>W型</td>
<td>4.82</td>
<td>4.82</td>
<td>無し</td>
</tr>
<tr>
<td>実施例8</td>
<td>Z型</td>
<td>4.82</td>
<td>4.82</td>
<td>無し</td>
</tr>
</tbody>
</table>

[0199] 表1に示されるように、擬似太陽光を照射した直後の実施例1～8および
比較例1～2の湿式太陽電池モジュールの変換効率には大差が見られず、ほ
ぼ同等の特性を得ることができたのに対し、擬似太陽光を100時間照射した後の変換効率は、実施例1〜8の湿式太陽電池モジュールが比較例1〜2の湿式太陽電池モジュールよりも、大幅に優れていることが明らかとなった。

そこで、擬似太陽光を100時間照射した後の比較例1〜2の湿式太陽電池モジュールのキャリア輸送部の電解液を顕微鏡により観察したところ、セル間絶縁部に電解液が存在していることが確認された。これは、比較例1〜2の湿式太陽電池モジュールは、セル間絶縁部でのセルの区画が不十分であり、第1絶縁性基板と第2絶縁性基板との接触が弱いことに起因するものと考えられる。

以上の結果から明らかのように、本発明の湿式太陽電池モジュールのように、第1電極または第2電極のいずれか一方をもしくは両方に貫通部を備えることにより、湿式太陽電池モジュール内の各層間での剥離を起こしにくくすることができ、これにより耐久性に優れた湿式太陽電池モジュールを提供することができる。

今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。

産業上の利用可能性

本発明の湿式太陽電池モジュールは、住宅用太陽電池システム、発電所のシステム等に適用することができる。

符号の説明

1, 2 湿式太陽電池モジュール、101, 202, 302 色素増感太陽電池モジュール、5 絶縁部、8 キャリア輸送部、10, 110, 210, 310 第1絶縁性基板、111, 211, 311, 311a 第1電極、15, 215 セル間絶縁部、16, 116, 316 セル間絶縁体、17, 117 セル間封止部、19, 219 外周封止層、20, 1
20, 220, 320 第2絶縁性基板、21, 121, 221, 321、321a 第2電極、30 光電変換素子、30a, 230a 第1光電変換素子、30b, 230b 第2光電変換素子、40 光電変換部、41, 141, 241 光電変換層、42, 142 多孔性絶縁層、242 電解質層、43, 143, 243 触媒層、50 貫通部、51 残留部、108 電解質、119 外周部、308 電解液、319 液封止材、341 色素増感半導体電極、343 対向電極。
請求の範囲

[請求項1] 2 個以上の光電変換素子 (3 0) が離間して配置され、第1絶縁性基板 (1 0) と第2絶縁性基板 (2 0) の間に挟持される湿式太陽電池モジュール (1) であって、

前記各光電変換素子 (3 0) は、第1電極 (1 1) と光電変換部 (4 0) と第2電極 (2 1) とで構成され、

離間して挟持配置している前記光電変換素子 (3 0) の間にはセル間絶縁部 (1 5) が設けられ、

前記第1電極 (1 1) または前記第2電極 (2 1) のうちの少なくとも一方には、貫通部 (5 0) が設けられ、

前記貫通部 (5 0) には前記セル間絶縁部 (1 5) の部材が充填される。

前記第1絶縁性基板 (1 0) と前記第2絶縁性基板 (2 0) の間の少なくとも一部を前記第1電極 (1 1) または前記第2電極 (2 1) を介さずに前記セル間絶縁部 (1 5) により接続する、湿式太陽電池モジュール (1)。

[請求項2] 前記貫通部 (5 0) は、その内部に前記セル間絶縁部 (1 5) を構成する部材が充填される、請求の範囲1に記載の湿式太陽電池モジュール (1)。

[請求項3] 前記光電変換部 (4 0) は、前記セル間絶縁部 (1 5) と接する、請求の範囲1または2に記載の湿式太陽電池モジュール (1)。

[請求項4] 前記光電変換素子 (3 0) は、前記第1絶縁性基板 (1 0) 上に、第1電極 (1 1) 、光電変換部 (4 0) 、および、第2電極 (2 1) がこの順に積層されたものであり、

前記光電変換部 (4 0) は、光電変換層 (4 1) 、キャリア輸送部 (8) を含有する多孔性絶縁層 (4 2) 、および触媒層 (4 3) がならなり、

前記光電変換層 (4 1) は、多孔性半導体層に色素が担持された層
であり、
前記光電変換層 (4 1)、前記キャリア輸送部 (8) を含有する多孔性絶縁層 (4 2)、および前記触媒層 (4 3) は、前記第 1 電極 (1 1) 側からこの順に積層され、
前記第 1 絶縁性基板 (1 0)、前記第 2 絶縁性基板 (2 0)、および前記セル間絶縁部 (1 5) に囲まれる空間には、キャリア輸送部 (8) が設けられる、請求の範囲 1 〜 3 のいずれかに記載の湿式太陽電池モジュール (1)。

[請求項 5] 隣接する 2 個の前記光電変換素子 (3 0) において、
一方の光電変換素子 (3 0) の前記第 2 電極 (2 1) は、他方の光電変換素子 (3 0) の前記第 1 電極 (1 1) と接する、請求の範囲 1 〜 4 のいずれかに記載の湿式太陽電池モジュール (1)。

[請求項 6] 前記光電変換素子 (3 0) が 1 個以上の第 1 光電変換素子 (3 0 a) と、1 個以上の第 2 光電変換素子 (3 0 b) とが交互に離間して配置され、
前記第 1 光電変換素子 (3 0 a) および前記第 2 光電変換素子 (3 0 b) はいずれも、前記第 1 絶縁性基板 (1 0) 上に、第 1 電極 (1 1)、光電変換部 (4 0)、および第 2 電極 (2 1) がこの順に積層されたものであり、
前記第 1 光電変換素子 (3 0 a) の光電変換部 (4 0) は、光電変換層 (4 1) と、キャリア輸送部 (8) と、触媒層 (4 3) とが前記第 1 電極 (1 1) 側からこの順に積層されたものであり、
前記第 2 光電変換素子 (3 0 b) の光電変換部 (4 0) は、触媒層 (4 3) と、キャリア輸送部 (8) と、光電変換層 (4 1) とが前記第 1 電極 (1 1) 側からこの順に積層されたものである、請求の範囲 1 〜 3 のいずれかに記載の湿式太陽電池モジュール (1)。

[請求項 7] 前記第 1 光電変換素子 (3 0 a) と、該第 1 光電変換素子 (3 0 a) に隣接する前記第 2 光電変換素子 (3 0 b) とは、前記第 1 電極 (1 1)
11）または前記第2電極（21）により電気的に直列接続される。
請求の範囲6に記載の湿式太陽電池モジュール（1）。

[請求項8] 前記第2電極（21）は、前記キャリア輸送部（8）に対して耐食
性を有する材料からなる、請求の範囲1〜7のいずれかに記載の湿式
太陽電池モジュール（1）。

[請求項9] 前記第2電極（21）は、Ti、Ni、およびAuからなる群より
選択された少なくとも1種の金属または該金属を少なくとも1種含む
化合物、フッ素ドープ酸化錫、もしくはITOのうちのいずれかから
なる、請求の範囲1〜8のいずれかに記載の湿式太陽電池モジュール
（1）。

[請求項10] 2個以上の前記光電変換素子（30）の外周部であって、
前記第1絶縁性基板（10）と前記第2絶縁性基板（20）との間
に、外周封止層（19）が形成される、請求の範囲1〜9のいずれか
に記載の湿式太陽電池モジュール（1）。

[請求項11] 前記セル間絶縁部（15）は、少なくともセル間封止部（17）を
含む、請求の範囲1〜10のいずれかに記載の湿式太陽電池モジュール
（1）。

[請求項12] 前記セル間絶縁部（15）は、セル間絶縁体（16）およびセル間
封止部（17）からなる、請求の範囲1〜11のいずれかに記載の湿
式太陽電池モジュール（1）。
INTERNATIONAL SEARCH REPORT

International application No.
PCT / JP2 010 / 060086

A. CLASSIFICATION OF SUBJECT MATTER
H01M 4/00 (2006.01) i, H01L31 / 04 (2006.01) i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED
Minimum documentation searched (classification system followed by classification symbols)
H01M 4/00, H01L31 / 04

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Jitsuyo Shinan Koho 1922-1 996 Jitsuyo Shinan Toroku Koho 1996-2010
Kokai Jitsuyo Shinan Koho 1971-2010 Toroku Jitsuyo Shinan Koho 1994-2010

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>JP 2008-16351 A (Sharp Corp .), 24 January 2008 (24.01.2008), claims ; fig . 1 (Family : none)</td>
<td>1-12</td>
</tr>
<tr>
<td>Y</td>
<td>JP 2002-237317 A (Honda Motor Co., Ltd .), 23 August 2002 (23.08.2002), claims ; fig . 6 to 7 & US 2002/0122970 Al & US 2006/0108709 Al</td>
<td>1-12</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

Date of the actual completion of the international search
30 July , 2010 (30.07.10)

Date of mailing of the international search report
10 August , 2010 (10.08.10)

Name and mailing address of the ISA
Japanese Patent Office

Facsimile No.

Authorized officer
Telephone No.

Form PCT/ISA/210 (second sheet) (July 2009)
<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>JP 2005-228614 A (Bridge stone Corp.), 25 Aug 2005 (25.08.2005), claims ; fig. 1 (Family: none)</td>
<td>6-7</td>
</tr>
</tbody>
</table>
A. 発明の属する分野の分類 (国際特許分類 (I P C))

Int .Cl. H01M14/00 (2006. 01) i , H01L31/04 (2006. 01) i

B. 調査を行った分野

調査を行った最小限資料 (国際特許分類 (I P C))

Int .Cl. H01M14/00, H01L31/04

最小限資料以外の資料で調査を行った分野に含まれるもの

日本国実用新案公報 1922-1 9
日本国公開実用新案公報 1971-2 0
日本国実用新案登録公報 1996-2 0
日本国登録実用新案公報 1994-2 0

国際調査で使用した電子データベース (データベースの名称、調査に使用した用語)

C. 関連すると認められる文献

引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示 関連する 引用文献の カテゴリー・ 請求項の番号

C 株の続きにも文献が列挙されている。

 treadmill パテントファミリーに関する別紙を参照。

* 引用文献のカテゴリー

「A」特に関連のある文献ではなく、一般的技術水準を示すもの

「B」国際出願日前の出願または特許であるが、国際出願日以前に公表されたもの

「E」特許発明と示す文献は、他の文献の発明に比べて原理的・概念的に優先性があり、後発の発明に影響を与えるもの

「D」口頭による開示、使用、展示等に言及する文献

「I」国際出願前に、かつ特許権の主張の基礎となる出願

国際調査を完了した日 国際調査報告の発送日

30. 07. 2010 10. 08. 2010

国際調査権関の名称及びあて先 特許庁審査官 (権限のある職員)

日本国特許庁 (I S A ／ J P)

4 X 2930 前田 寛之

郵便番号 100－8915 電話番号 03－3581－1101

東京都千代田区霞が関三丁目4番3号 内線 3477
<table>
<thead>
<tr>
<th></th>
<th>引用文献のカテゴリ</th>
<th>引用文献名及一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>関連する請求項の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>JP 2005-228614 A (株式会社ブリヂストン) 2005. 08. 25, 【特許請求の範囲】、図1】（ファミリーなし）</td>
<td>6 - 7</td>
<td></td>
</tr>
</tbody>
</table>

様式 PCT/ISA/210 (第2ページの続き) (2009年7月)