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METHOD AND APPARATUS FOR
PREDICTING FAILURE
IN A SYSTEM

The patent claims priority pursuant to 35 U.S.C. § 119(e)1 to provisional application
60/260,449 filed 01/08/2001.

FIELD OF THE INVENTION
This invention relates to a method and apparatus for predicting failure of a system.
More specifically it relates to a method and apparatus for integrating data measured from a
system, and/or data referenced from other sources, with component failure models to predict
component or overall system failure.

BACKGROUND OF THE INVENTION

Any product will eventually fail, regardless of how well it is engineered. Often
failure can be attributed to structural, material, or manufacturing defects, even for electronic
products. A failure at the component or sub-component level often results in failure of the
overall system. For example, cracking of a piston rod can result in failure of a car, and loss
of a solder joint can result in failure of an electronic component. A way to predict the
failure of a system or component would be useful to allow operators to repair or retire the
component or system before the actual failure, and thus avoid negative consequences
assoclated from an actual failure.

Advanced warning of a system or component failure is desirable for a number of
reasons. Industrial competitiveness is driving products toward increasingly lower cost with
higher reliability and minimized downtime. Advanced prediction of structural, mechanical
or system failure could have great economic impact to industries within the aerospace,
automotive, electronics, medical device, appliance and related sectors. Such failures present
safety or maintenance concerns-and often result in loss of market share.

Engineers currently attempt to design products for high reliability. But it is most
often the case that reliability information comes very late in the design process. Often a
statistically significant amount of reliability data is not obtained until after product launch
and warranty claims from use by consumers. This lack of data makes it common for

engineers to add robustness to their designs by using safety factors to ensure that a design
meets reliability goals.
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But safety factors tend to add material or structural components or add complexity to
the manufacturing process and are counterproductive where industry is attempting to cut
cost or reduce weight. Designing cost effective and highly reliable structures therefore
requires the ability to reduce the safety factor as much as possible for a given design. Safety
factors, however, are subjective in nature and usually based on historical use. Since modern
manufacturers are incorporating new technology and manufacturing methods faster than
ever before, exactly what safety factor is appropriate to today’s new complex, state-of-the-
art product is seldom, if ever, known with certainty. This complicates the engineering

process.

Designers have, over the years, developed models for damage mechanisms leading

 to failures in attempting to reduce reliance on safety factors. Failures can be attributed to

many different kinds of damage mechanisms such as fatigue, buckling, and corrosion.
These models are used during the design process, usually through deterministic analysis, to
identify feasible design concept alternatives. But poor or less than desired reliability is
often attributed to variability, and deterministic analysis fails to account for variability.

Variability affects product reliability through any number of factors including
loading scenarios, environmental condition changes, usage patterns, and maintenance
habits. Even a system response to a steady input can exhibit variability, such as a steady
flow pipe with varying degrees of corrosion.

~ - Historically, testing has been the means for evaluating effects of variability.
Unfortunately, testing is a slow, expensive process and evaluation of every possible source
of variability is not practical.

Over the years, probabilistic techniques have been developed for predicting
variability and, therefore, when coupled'with damage models of failure mechanisms,
probabilistic damage models predict the reliability of a population. But, given variability, a
prediction of the reliability of a population says little about the future life of an individual
member of the population. Safety factors are unsatisfactory methods for predicting the life
of an individual since they are based on historical information obtained from a population.
Safety factors are also an unsatisfactory method for quickly and efficiently designing against
failure since they rely on historical information obtained from test and component data. As
aresult, there exists a need for a method and apparatus for accurately predicting component
and/or system failure that accounts for variability without the need for extensive test data on

the component and/or system.
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SUMMARY OF THE INVENTION

The present invention is a method and apparatus for predicting system failure, or
system reliability, using a computer implemented model of the system. In an embodiment
of the invention that model relies upon probabilistic analysis. Probabilistic analysis can
incorporate any number of known failure mechanisms for an individual component, or
components, of a system into one model and from that model can determine the critical
variables upon which to base predictions of system failure. Failure can result from a
number of mechanisms or combination of mechanisms. A.probabilistic model of the system
can nest failure mechanisms within failure mechanisms or tie failure mechanisms to other
failure mechanisms, as determined appropriate from analysis of the inter-relationships
between both the individual failure mechanisms and individual components. This results in
amodel that accounts for various failure mechanisms, including fatigue, loading, age,
temperature, and other variables as determined necessary to describe the system. As a result
of probabilistic analysis, the variables that describe the system can also be ranked according
to the effect they have on the system.

Probabilistic analysis of a system predicts systemn and/or component failure, or
reliability, based on acquired data in conjunction with data obtained from references and
data inferred from the acquired data. This prediction of failure or reliability is then
communicated to those using or monitoring the system. Furthermore, the analyzed system
can be stationary or mobile with the method or apparatus of analysis and communication of
the failure prediction being performed either on the system or remotely from the system. In
addition, the apparatus may interface with other computer systems, with these other
computer systems supplying the required data, or deciding whether and/or how to
communicate a prediction.

An advantage of one embodiment of the invention is that it divides system variables
into three types: directly sensed ~ those that change during operation or product use;
referred — those that do not (significantly) change during operation or product use; and
inferred — those that change during operation or use but are not directly sensed. This
strategy divides the probabilistic approach into two broad categories, preprocess off-board
analysis and near real time on-board or off-board analysis, allowing for prediction of a
probability of failure based on immediate and historic use.

In one embodiment of the invention a computer implements a method for predicting
failure in a system. This method comprises: measuring data associated with a system;
creating a prediction of a failure of the system using a model of the system and the data; and

communicating the prediction to a user or operator.
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A second embodiment of the invention is an apparatus for predicting failure of a
system. This apparatus comprises: sensors for acquiring data from the system and a
computer, with the computer having a processor and memory. Within the memory are
instruction for measuring the data from the sensors; instructions for creating a prediction of
a failure of the system using a model and the data; and instructions for communicating the
prediction. The apparatus also comprises communication means for communicating the
prediction.

A third embodiment of the invention is a computer program product for predictirig
failure of a system for use in conjunction with a computer system. The computer program
product comprises a computer readable storage medium and a computer program
mechanism embedded therein. The computer program mechanism comprises: instructions
for receiving data; instructions for storing the data; instructions for creating a prediction of
failure of the system using a model and the data; and instructions for communicating this
prediction. Furthermore, embodiments of these apparatuses and method use a system model

developed with probabilistic methods.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other aspects and advantages of the present invention will be
better understood from the following detailed description of preferred embodiments of the
invention with reference to the drawings, in which:

Figure 1 is a schematic illustrating an embodiment of an apparatus of the present
invention employed on a dynamic system and an indication of the process flow;

Figures 2(a) - (d) illustrate a preferred embodiment of the off-board engineering
portion of a n embodiment of a method of the present invention;

Figures 3(a) and (b) illustrate an embodiment of the on-board failure prediction
portion of the method also depicted in Figs. 2(a) - (d);

Figure 4 illustrates an embodiment of the invention employéd in a static system; and

Figures 5(a) - 5(f) illustrate an example of the method of Figs. 1, 2, and 3 applied to
a composite helicopter rotor hub.

Like reference numerals refer to corresponding elements throughout the several
drawings.
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DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

An embodiment of the present invention uses sensed data combined with
probabilistic engineering analysis models to provide a more accurate method for predicting
the probability of failure of a component or a system. This embodiment uses probabilistic
analysis models to address, on a component by component basis, the effects of the random
nature associated with use, loading, material makeup, environmental conditions, and
manufacturing differences. This embodiment assumes that the underlying physics of the
system behavior is deterministic and that the random nature of the system response is
attributed to the scatter (variability) in the iﬁput to the system and the parameters defining
the failure physics.

The underlying physics of the system behavior is captured by developing a system
response model. This model, which represents the nominal response of the system, uses
random variables as input parameters to represent the random system behavior. The system
response model may be based on the explicit mathematical formulas of mechanics of
materials, thermodynamics, etc. Computational methods such as finite element analysis and
computational fluid analysis, are sometimes used to assess the response of the system.

Closely coupled with the system response models are failure models. The failure models,

which address both initial and progressive damage, may be either in the form of maximum

load interactive criteria, or more specific models, which have been developed by the
system's original equipment manufacturers (OEMs), such as crack growth models.

Probabilistic analysis then determines the variation in the global system response as
well as variation in the local system response. This probabilistic analysis also quantitatively
assesses the importance of each of the random variables on the variation in the system
response. This allows for development of a rational design framework for deciding which
variables need to be controlled and how to increase the reliability of the system. The
embodiment of the invention incorporating probabilistic analysis, therefore, provides for
more accurate predictions of failure. Thus, this embodiment also provides a basis for more
rational design decisions, while reducing expense and time to market.

Fig. 1 is a schematic illustrating an embodiment of an apparatus of the present
invention employed on a dynamic system 22 and an indication of the process flow. System
22 is this embodiment is an automobile with the embodiment described as a device in the
automobile, but dynamic system 22 could be any dynamic system, such as a helicopter,
airplane, automobile, rail car, tractor, or an appliance. On-board Prognostic Instrument
Engineer (OPIE) 10, generally includes a central processing unit (CPU) 18; a computer

control 20; a user alert interface 26; and sensors 24. The CPU 18 receives input in the form
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of criteria, equations, models, and reference data 14 derived from engineering analysis
performed at step 12 and the OPIE 10 uses such input to make a failure prediction at step
16.

Engineering analysis step 12 essentially comprises the preparatory steps that produce
the criteria, equations, models, and reference data step 14 that are used in failure prediction
step 16 to assess the condition of the system or component of interest. Engineering analysis
step 12 includes the steps: identify failure mechanisms 40; model failure mechanisms 42;
formulate probabilistic strategy 46; and determine warning criteria 48. Engineering analysis
step 12 yields criteria, equations, models and reference data 14, which are further described
and shown in Fig. 2(d).

Continuing with Fig. 1, criteria, equations, models and reference data 14 are stored
onto a memory device 34 or incorporated into a computer program product within CPU 18
as a prediction analysis 30. Desired criteria from criteria, equations, models and reference
data 14 may also be programmed into overall system computer control 20.

Sensors 24 send information to computer control 20. Sensors 24 measure data on
any number of conditions, such as temperature, speed, vibration, stress, noise, and the status
and number of on/off cycles of various systems, but there is an unlimited variety of
potentially sensed data. Computer control 20 sends operation and sensor data 25 to CPU
18. Operation and sensor data 25 includes data from sensors 24 in addition to other data
collected by computer control 20, such as ignition cycles, light status, mileage, speed, and
numbers of activations of other sub-systems on system 22. Operation and sensor data 25 is
combined by CPU 18 with information from memory device 34 and information from
previous output data 32 that was stored in memory device 34 to create input 28.

CPU 18 analyzes input 28 as directed by prediction analysis 30 to produce the output
data 32. Output data 32 contains a prediction result 29 and possibly other information.
Output data 32 is then saved in memory device 34 while prediction result 29 is sent to
computer control 20. Computer control 20 determines from criteria contained in criteria,
equations, models and reference data 14, or from criteria developed separately, whether and
how to signal user alert interface 26 based on prediction result 29. These criteria could be
incorporated into CPU 18 instead, so that CPU 18 determined whether to activate user alert
interface 26.

User alert interface 26 is a number of individual components, with status, or alert
indicators for each as is necessary for the systems being analyzed for failure, such as, for
example, a yellow light signal upon predicted failure exceeding stated threshold value, A

variety of user alert signal devices could be appropriate for the specific situation. Computer
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control 20 could also be configured to de-activate certain components upon receipt of the
appropriate prediction result, e.g., vehicle ignition could be disabled should prediction result
29 indicate a brake failure.

Figs. 2(a) - 2(d) are flow charts depicting the operation of engineering analysis
process step 12 (Fig. 2(a)) that results in creation of criteria, equations, models, and
reference data 14 (Fig. 2(d)). In Fig. 2(a) engineering analysis step12 begins by identifying
failure mechanisms at step 40 through review of warranty and failure data (step 50) and
research of literature (step 52) to determine which of the identified failure mechanisms are
actual active failure mechanisms (step 54). This effort could incorporate discussions with
component design staff. Determination of active failure mechanisms can include a variety
of evaluations, discussions and interpretations of both component and system response.

Failure mechanisms describe how and why the component fails. For example,
mechanisms for delamination in a multi-layered material could include shear forces between
the layers, adhesive decomposition, or manufacturing defects. Failure mechanisms are then
modeled at step 42 by evaluating failure physics (step 56) while also evaluating the inter-
relationships between models 66. Evaluating failure physics (step 56) requires identifying
models from the designer or open literature (step 58), identifying the significant random
variables 59, evaluating and selecting the appropriate models (step 60), and developing
models for unique failure mechanisms (step 62) if no existing models are appropriate.
Identifying the significant random variables (step 59) requires determining whether

variation in a particular variable changes the outcome of the system. If so, then that variable

© is significant to some extent.

Inter-relationships between the selected models (step 66) are evaluated by literature
review and designer interview (step 68) with the appropriate models tied together
appropriately to simulate inter-relationships (step 70). Tying the models together as is
appropriate to simulate inter-relationships (step 70) necessarily requires identifying inputs
and outputs for each model (step 72) and a developed sequencing strategy (step 74).
Identifying inputs and outputs for each model 72 also facilitates the development of
sequencing strategy (step 74).

Figs. 2(a) - 2(c) show how to formulate probabilistic strategy at step 46.
Formulating probabilistic strategy is a method for predicting the probability of failure that
considers the variability of the input and system parameters. Still referring to Fig. 2(a), the
first step is to characterize variables (step 76). Variables are classified as those that can be
directly sensed 78 or that can be inferred 80 from directly sensed information. Otherwise,

variable values must come from reference information 82. A part of characterizing
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variables (step 76) is also to identify the randomness of each variable, i.e. determine the
statistical variation of each variable.

Now referring to Fig. 2(b), formulation of probabilistic approach at step 84 requires
identifying and selecting an appropriate probabilistic technique. Two primary probabilistic
approaches may be appropriate for prediction analysis 30 (Fig. 1): fast probability methods
(FPM), or simulation techniques (ST). FPM include response surface FPM 88 and direct
FPM 92 techniques. A response surface approximates the failure physics of the system with
a single mathematical rélationship. A direct method can have disjoint mathematical
relationship and is more simplistic. ST include response surface ST 90 and direct ST 94 as
well (FPM and ST techniques are discussed further with reference to F ig. 2(c) below, and
see Ang and W. Tang, Probability Concepts in Engineering Planning and Design, Vols.
and II, John Wiley & Sons, 1975.). Several factors during engineering analysis (step 12)
(Fig. 1) must be considered during selection of probabilistic strategy (step 46) including:
CPU 18 computational capacity or limitations; whether it is possible to formulate a response
surface equation; the mathematical form of the selected failure models (steps 60, 62) (Fig.
2(a)); the needed prediction accuracy; the characteristics of the monitored system; and the
desired update speed or efficiency, among others. All factors are weighed in the balance by
one of skill in the art, recognizing that engineering analysis 12 (Fig. 1) must determine
which probabilistic technique is most appropriate for prediction analysis 30 (Fig. 1) for the
particular type of system 22 (Fig. 1).

The system itself may dictate the approach. Of the primary probabilistic techniques
available for prediction analysis 30, direct FPM 92 and ST 94 methods will always provide
a solution to the system that facilitates prediction analysis 30. Response surface FPM 88
and ST 90, however, do not always provide a workable solution. For example, a response
surface cannot be formed when considering variables that vafy with time and present
discontinuities. Direct methods are then necessary. Potentially, such a situation could be
handled using multiple nested response surface equations, but a single response surface
equation will not suffice. Where a response surface may be used, however, its use can
increase the efficiency of the prediction calculations.

Referring to Fig. 2(c), FPM optional approaches include first order reliability
methods (FORM), second order reliability methods (SORM), advanced mean value (AMV)
methods and mean value (MV) methods. ST optional approaches include Monte Carlo
(MC) methods and importance sampling methods. These different methods are also
discussed in further detail in an Example within.
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Response surface techniques, whether response surface FPM 88 or ST 90 are
divided into capacity and demand segments (steps 112, 118) respectively. The capacity
section is based on referenced data 82 (Fig. 2(a)), while the demand section is based on
sensed data 78, and inferred data 80. For response surface FPM 88, one of the approaches
of FORM, SORM, AMV methods, or MV methods is used to produce a full cumulative
distribution function (CDF) for the capacity portion of the response surface equation (step
114). A CDF is a plot describing the spread or scatter in the results obtained from only the
capacity portion. For response surface ST 90, either MC or importance sampling methods
are used to produce a full CDF for the capacity portion of the response surface equation
120. An equation is then fit to the CDF plots (steps 116, 122). This equation produces a
failure prediction for data representing referenced data 82, the capacity section of the
response surface.

Direct techniques FPM 92 or ST 94 also have both capacity and demand
designations, but no response surface is involved. Direct methods are therefore most often
appropriate wheh a response surface cannot be created. The first step in direct FPM is to
establish a method for generating random variables and calculating the corresponding
random variable derivatives (step 124). The next step is to establish a scheme for using the
random variable derivatives in a failure model (step 126). The failure model is the one
developed in model failure physics (step 42) (Figs. 1, 2(a)). The scheme established in step
126 serves to produce many random variable derivatives for input into the failure model
from step 42 (Figs. 1; 2(a)). Then one must determine the convergence criteria (step 128) to
know when to cease inputting the random variable derivatives into the failure model.

Similarly, direct ST 94 uses the failure model from model failure physics (step 42).
As with direct FPM, direct ST 94 must also create a random variable generation method
(step 130). But direct ST 94 does not calculate derivatives of these random variables. The
next step using direct ST 94 is to establish a method for using the random variables
themselves in the failure model (step 132). " And the last step is to determine the number of
simulations to be conducted (étep 134), which sometimes requires trial and errorto
determine the number of simulations necessary to give a failure prediction with the desired
precision.

Returning to Fig. 2(b), the step 46 of formulating probabilistic strategy continues
with a determination of the analysis frequency (step 96), or the frequency with which
prediction analysis 30 (Fig. 1) analyzes input 28 (Fig. 1). To determine analysis frequency

(step 96) one must determine how often relevant direct sensed data is acquired and
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processed (step 98), determine the fastest update frequency required (step 100) and
determine the appropriate analysis frequency (step 102) for prediction analysis 30 (Fig. 1).

The last step 48 in engineering analysis (step 12 (Fig. 1)) is to develop warning
criteria (Fig. 1). Continuing with Fig. 2(b), determining warning criteria 48 requires
establishing the reliability or probability of failure (POF) threshold for sending a warning
(step 104) based on prediction analysis 30 (Fig. 1). The next step is to set the level of
analysis confidence needed before a warning signal is to be sent 106 and then to develop a
method for confidence verification prior to sending the warning (step 108). At some point,
listed last here, one must determine a type of warning appropriate for the system or user
(step 110).

Now referring to Fig. 2(d), the results of the previous steps are programmed at step
136 into memory device 34 (Fig. 1) and CPU 18 (Fig. 1) as appropriate criteria, equations,
models, and reference data. For response surface FPM 88 or ST 90, the appropriate criteria,
equations, models, and reference data 14 include: a mapping strategy for each variable and
response surface equation; a statistical distribution, or CDF, of the capacity portion of
response surface equation; and an analysis frequency strategy and warming criteria 138. The
mapping strategy essentially relates sensed, inferred, and referenced data to the variable in
the analysis that represents that data. For direct FPM 92 the appropriate criteria, equations,
models, and reference data 14 include: a variable derivative method for F ORM, SORM,
AMYV methods, or MV methods analysis; a convergencé criteria; and an analysis frequency
strategy and warning criteria 140. And for direct ST 94 the appropriate criteria, equations,
models, and reference data 14 include: a random variable generation method for MC or
importance sampling analysis; a number of simulations to be conducted; and an analysis
frequency strategy and warning criteria 142. One of ordinary skill in the art will know to
mesh the invention with the system of interest in a way that allows both the invention and
system to operate correctly.

Figs. 3(a) and 3(b) are flow charts that illustrate the operation of the failure
prediction step 16 depicted schematically in Fig. 1. Referring to Fig. 3a, the step of
prediction analysis 30 (Fig. 1) on CPU 18 (Fig. 1) receives the equations from criteria,
equations, models, and reference data 14. Failure prediction is performed by CPU 18 in
response to operations and sensor data 25 received from computer control 20. CPU 18
reads or receives operation and sensor data 25 from control computer 20 according to the
frequency strategy. Operation and sensor data 25 are combined with referenced data 82
(Fig. 2(a)) from memory 34 to create input 28. CPU 18 maps the data in input 28 to the
appropriate variables for prediction analysis 30.

-10 -
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Continuing with Fig. 3(a), prediction analysis 30 follows different paths depending
upon the technique chosen: probabilistic response surface FPM 88, or ST 90; probabilistic
direct FPM 92; or probabilistic direct ST 94.

For direct FPM 92, POF is determined at step 152 using FORM, SORM, AMV
methods or MV methods as previously determined (see Fig. 2(d)). Then POF is compared
at step 160 to exceedence criteria and verified per confidence criteria. Exceedence criteria
for direct FPM 92 can be defined as the state when POF exceeds the established reliability
or POF warning criteria threshold established at step 104 (Fig. 2(b)).

For direct ST 94, POF is determined at step 156 using MC or importance sampling
methods as previously determined (see Fig. 2(d)). Then POF is compared at step 160 to
exceedence criteria and verified per confidence criteria. Exceedence criteria can be defined
as the state when POF exceeds the established warning criteria threshold value established
at step 104. An example applicable to direct techniques 92 or 94 is where prediction
analysis 30 determined POF at steps 152, 156 at 1.2 percent which was compared to POF
threshold 104 of 1.0 percent, thus establishing the need for a warning signal.

For response surface FPM 88 or ST 90, the demand portion of the response surface
is calculated at step 146 and the POF determined at demand at step 148 using the CDF
equation. POF is then compared at step 160 to exceedence criteria and verified per
confidence criteria. Exceedence criteria can be defined as the state when the demand
portion of the response surface exceeds the capacity portion of the response surface that is
determined during engineering analysis step 12 (Fig. 1).

An example applicable to response surface FPM 88 or ST 90 is where the CDF is
represented by the simple equation POF = (constant)*(demand). The demand portion of the
response surface calculated at step 146 yields at step 148 a POF that is then compared to
POF threshold 104. POF is then verified using the method for confidence verification 108
(Fig. 2(b)) with memory device 34 (Fig. 1). For these analysis methods, if POF as
determined at steps 148, 152, 156 is compared and verified at step 160 and meets the
exceedence criteria, then in step 162 the warning criteria are followed and a warning
included in output data 32.

Output data 32 includes the variable readings; POF; selected warning criteria; and

warning information. For example, output warning criteria could be to turn on a light when
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the calculated POF is greater than 1 percent. The demand variable readings; calculated
values; POF; and selected warning criteria are stored at step 164 in memory device 34 and
the appropriate warning information is communicated at step166 as prediction results 29 to
the vehicle computer control 20. Prediction results 29 may contain only a portion of the
information in output data 32. The stored variable readings, POF, selected warning criteria
and warning information 164 serve as input for subsequent cycles.

Now referring to Fig. 3(b), at step 168 computer control 20 (Fig. 1) receives
information from on-board sensors 24 and systems and sends the appropriate operation and
sensor data (Fig. 1) to CPU 18 (Fig. 1), forming part of input 28 (Fig. 1). Operation and
sensor data 25 includes data from sensors 24 in addition to other data collected by computer
control 20, such as ignition cycles, brake light status, mileage, speed, and numbers of
activations of other systems on dynamic system 22. Computer control 20 also collects at
step 172 warning signal information as produced by CPU 18 and decides at step 178 if a
signal should be sent to user alert interface 26. At step 176 user alert interface 26 receives
the warning signal information from overall system computer control and at step 178
activates alerts as appropriate. User alert interface 26 shows a number of individual
components, with status, or alert, indicators for each as is necessary for the systems being
analyzed for failure, such as, for example, yellow light 27.

Fig. 4 is a schematic illustrating an embodiment of an apparatus of the present
invention employed on a static system 22 and an indication of the process flow. Prognostic
Instrument Engineering System (PIES) 11 would be used where system 22 is a structure
such as a bridge or a moving structure such as an airplane where the on-board information

(from operation and sensor data 25) is used for predictions analysis 30 using a CPU 18 that

- is not on the system 22. PIES 11 generally includes a central processing unit (CPU) 18; a

computer control 20; a user alert interface 26; and sensors 24. The CPU 18 receives Input
in the form of criteria, equations, models, and reference data 14 derived from engineering
analysis performed at step 12 and the PIES 11 uses such input to make a failure prediction
at step 16. PIES 11 is substantially similar to OPIE 10 (Fig. 1), a difference being that CPU
18 resides off-board and thus communication device 23 is needed to transmit data from
sensors 24 to overall system computer control 20.
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Engineering analysis step 12 essentially comprises the preparatory steps that produce
the criteria, equations, models, and reference data step 14 that are used in failure prediction
step 16 to assess the condition of the system or component of interest. Engineering analysis
step 12 includes the steps: identify failure mechanisms 40; model failure mechanisms 42;
formulate probabilistic strategy 46; and determine warning criteria 48. Engineering analysis
step 12 yields criteria, equations, models and reference data 14, which were further
described and shown in Fig. 2(d).

Continuing with Fig. 4, criteria, equations, models and reference data 14 are stored
onto a memory device 34 or incorporated into a computer program product within CPU 18
as a prediction analysis 30. Desired criteria from criteria, equations, models and reference
data 14 may also be programmed into overall system computer control 20.

Sensors 24 measure data on any number of conditions, such as temperature, speed,
vibration, stress, noise, and the status and number of on/off cycles of various systems, but
there 1s an unlimited variety of potentially sensed data. Data acquired by sensors 24 are
transmitted via communication device 23 (for example: hard wire, satellite, and cell phone
systems) 23 to computer control 20. Computer control 20 sends operation and sensor data
25 to CPU 18. Operation and sensor data 25 includes data from sensors 24 in addition to
other data collected by corhputer control 20, such as weather conditions. Operation and
sensor data 25 is combined by CPU 18 with information from memory device 34 and
information from previous output data 32 that was stored in memory device 34 to create
input 28.

CPU 18 analyzes input 28 as directed by prediction analysis 30 to produce the output
data 32. Output data 32 contains a prediction result 29 and possibly other information.
Output data 32 is then saved in memory device 34 while prediction result 29 is sent to
computer control 20. Computer control 20 determines from criteria contained in criteria,
equations, models and reference data 14, or from criteria developed separately, whether and
how to signal user alert interface 27 based on prediction result 29. These criteria could be
incorporated into CPU 18 instead, so that CPU 18 determined whether to activate user alert
interface 27.

User alert interface 27 is a number of individual components, with status, or alert

indicators for each as is necessary for the systems being analyzed for failure, such as, for
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example, a yellow light signal upon predicted failure exceeding stated threshold value. A
variety of user alert signal devices could be appropriate for the specific situation. Computer
control 20 could also be configured to de-activate certain components upon receipt of the
appropriate prediction result. For example, if a POF for a bridge structure exceeded
exceedence criteria, the State Department of Transportation might request that a team of
engineers visually inspect the bridge. Another example might be that PIES has predicted
increased POF due to continuous heat cycling that may have degraded solder connections
within an electronic component. Here a signal would be sent to the overall system
computer control 20 and a flash message would be sent as signal 38 to the system operator
user alert interface 26. |

The principles of the present invention are further illustrated by the following
example. This example describes one possible preferred embodiment for illustrative
purposes only. The example does not limit the scope of the invention as set forth in the

appended claims.

EXAMPLE 1

The following example describes the modeling and prediction of failure in an
exemplary embodiment according to the present invention.

Figs. 5(a) - 5(f) illustrate a preferred embodiment of the invention applied to a single
dynamic component, namely a composite helicopter rotor hub. Reference numerals refer to
the elements as they were discussed with respect to Figs. 1 - 4. In this example engineering
analysis step12 first incorporates a probabilistic approach using response surface FPM 88
techniques. Thereafter, the same example is used to demonstrate any difference that
response surface ST 90, direct FPM 92, or direct ST 94 would have yielded.

A helicopter rotor hub is a structure to which the blades of the helicopter are
attached. The rotor hub is a composite laminate structure, which means that it is
manufactured by laying plies of composite sheets together and joining them (with an
adhesive resin) to form an integral structure. Each composite sheet is called a ply. During
flight, the rotor hub experiences continuous cyclic loading due to rotation of the helicopter
blades, which causes structural fatigue failure. Upon inspection of failed hubs, it was

determined that the initial cause was a cracking problem in the composite rotor hub. Thus,
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an identified failure mechanism was the cracking in the rotor hub. Fig. 5(a) shows a one-
half schematic finite element model (FEM) of the hub. Upon closer examination, it was
observed that cracking was occurring at the laminate ply interfaces as depicted in Fig. 5(b).
After reviewing literature (failure reports in this case) and discussions with the part designer
(step 52), the active failure mechanisms were determined (step 54) to be the cracking at the
laminate ply interfaces. This was causing composite ply delamination. Thus, in general, an
identified failure mechanism from steps 40, 50, 52, and 54 generally illustrates how and
why a part failed.

The next step was to model the failure mechanism 42. The first step in modeling -
was to evaluate the failure physics (step 56). Discussions with the part designer identified a
model (step 58) used to model the failure of similar parts; virtual crack closure technique
(VCCT). VCCT was selected (step 60) to model the physics of delamination. VCCT was
used to calculate the strain energy release rate (G) at the delamination (crack) tip. If the
calculated strain energy release rate exceeded the critical strain energy release rate (G,
obtained from material tests, delamination failure was assumed to have occurred. VCCT

was used to calculate the strain energy release rate (G) at the delamination tip such that:

G=Gr+Gy Eq. (1)

where
1

G ==l v )+ B0, =3, and Be. 2)
] .

Gy == R —u)+ F,~u,)] Be- ()

In Eq. 2 and 3, u and v are tangential and perpendicular nodal displacements respectively
and F, and F, are the tangential and perpendicular nodal forces respectively. Delamination
onset was assumed to occur when the calculated G exceeded the G, derived from material
delamination tests. Since VCCT was adequate for modeling this failure mechanism no
unique model needed to be developed as in step 62.
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In this case, seven significant random variables were identified at step 59 and are
shown in Table I, where:

E,, Msi Longitudinal Young's modulus
E,, Msi Transverse Young's modulus
G,;, Msi Sheaf modulus

Vi3 Poisson's ratio

P, kips Tensile load

®, degrees  Bending angle

Gt Critical strain energy release rate
N Fatigue cycle

Table I: The Significant Random Variable for the Response Surface Fpm Example

Random Variables

Property Mean Std. Dev.
E,, Msi 6.9 0.09
E,, Msi 1.83 0.05
G;3 Msi 0.698 0.015
Vi3 0.28 0.01
P, kips 30.8 3.08
D, degrees 12 1.67
Geie 448.56 - 58.57Log.(N) 36.6J%/m

Computation of strain energy release rate, G, required determination of nodal forces and
displacements at the delamination tip as shown in Fig. 5(b). Determination of the nodal
forces and displacements required development of a finite element model (FEM) for the
rotor hub with the appropriate loads and material pfoperties of the hub.

Referring to Fig. 5(d), the physics of failure for the rotor hub required a combination
of different models. Once the models were selected at step 60 or developed at step 62, the
next step was to evaluate inter-relationships between models at step 66. This involved
identifying the inputs and outputs of each model (step 72) as well as identifying inter-
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relationships from the literature and designer interviews in step 72. Then the models were
tied at step 70 and the overall model sequencing strategy developed at step 74. Since the

material properties of the rotor hub were not readily available, they had to be derived from

~ the material properties of the individual composite plies 180 using a laminate model 182 to
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give the laminate material properties 186. Laminate properties 186 and load data 184 were
input into FEM 188 to yield nodal forces and displacements 190. Nodal forces and
displacements 190 were input into VCCT 192 to yield strain energy rate (G) 194.

Fig. 5(d) shows that the calculated strain energy release rate, G was determined from
the ply material properties 180 and the loads 184. G was the dependent variable and ply
material properties and the loads were the independent variables. The next step was to
develop a probabilistic strategy (step 46). First all the variables were characterized in step
76 in terms of randomness and as directly sensed 78, inferred 80, or referenced 82. P, and
O are the directly sensed variables and the material properties, including E,,, E,,, G,;, and
V3, and G, are inferred variables whose randomness is presented in Table I. The part
designer had gathered test data on G versus the number of fatigue cycles (N). Based on
the statistical analysis of this G vs. N data (see Fig. 5(c)), it was determined that G, is a
Gaussian (normal) random variable with its mean value and standard deviation shown in
Table I. There are several different probabilistic assessment approaches (step 84) available.
Direct ST 94 and FPM 92 and response surface ST 90 and FPM 88 techniques were .
discussed earlier and this example will apply each to the rotor hub.

One such approach is to use the first order reliability method (FORM), which is an
example of a fast probabilistic method (FPM), in conjunction with the response surface,
referred to previously as a response surface FPM (88) approach. First a response surface
must be developed relating G to the independent variables. Developing a response surface
1s widely discussed in the open literature. See A. Ang and W. Tang, Probability Concepts
in Engineering Planning and Design, Vol. 1, John Wiley & Sons, 1975. Based on the seven

random variables a Design of Experiment (DOE) scheme was chosen as shown in Table II.
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Table I1: Design of Experiments Scheme for Response Surface - FPM Approach

Variable Triall | Trial2 | Trial3 | Trial4 | Trial 5 | Trial6 | Trial 7

E, 1 0 0 0 0 0 0

E, 0 1 0 0 0 0 0
Gy; 0 0 1 0 0 0 0

v 0 0 0 1 0 0 0

P 0 0 0 0 1 0

) 0 0 0 0 0 1 0
Gerit 0 0 0 0 0 0 1

! { i { { l i

Strain Energy Rate Ell E,, Gy; v P D Gerit
Sensitivity to:

In Table I, Trial 1, E,, was changed from its nominal value (mean value, indicated
as 1), while all the remaining six variables were kept at their respective mean values
(indicated as 0) and the value of G 194 was calculated. This process was repeated for each
of the six other variables. Following this step, a regression analysis was performed and an
initial response surface was developed that related G to all the seven si gnificant random
variables. After this, an Analysis of Variance (ANOVA) was performed to determine if all
the seven significant random variables needed to be included in the response surface. The
ANOVA results yielded that out of the seven random variables only 4 random variables
(G, £, P and @) needed to be included in the response surface. Based on this, an updated
DOE scheme was adopted as shown in Fig. 5(e) to create a quadratic response surface
equation. Regression analysis yielded the final response surface equation shown in Eq. (4).
This strategy was verified by input of data published in the open literature and comparing
the output results with results published in the open literature.
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g= G- 175344 * (0.569 - 0.0861 E,, + 0.023P, . - 0.117® -
0.000546P%, ., + 0.0037607 + 0.0046P, @)

Eq. (4)

The next step in response surface FPM 88 (F ig; 2(b)) approach is to divide the
response surface into the capacity and demand segments (step112). The separation was as

follows: Eq. (5) represents the capacity segment of Eq. (4) and Eq. (6) represents the

demand segment of Eq. (4).

Capacity = G.; - 175.344 * (0.569 - 0.0861 E,;)
Demand = G, - 175.344 * (0.023P,,, - 0.117® - 0.000546P% +
0.0037602 + 0.0046P, ®)

Eq. (5)
Eq. (6)

For this particular example, the variables in the capacity section of the response
surface equation are the material property E,, and G;,. The variables in the demand portion

of the response surface equation are the load (P) and the angle of the load (®). Eq. (5) was

then used to produce a full CDF for the capacity portion of the response surface equation
(step 114). This CDF is shown in Fig. 5(f) with capacity equated to the probability of

faiture.

Using FORM all the variables in the capacity portion of the response surface (£,

and G are transformed to equivalent uncorrelated standard normal variables (Y1 and Y2).

In the transformed uncorrelated standard normal space, a linear approximation is

constructed to the capacity portion of the response surface and is given by the equation:

y = (9E-14)x® - (9E-11)x° + (3E-8)x* - (SE-6)x* + 0.0004x? - 0.0087x

Eq. (7)

To estimate the CDF using FORM a constrained optimization scheme is adopted to search

for the minimum distance from the origin to the transformed response surface.

Mathematically, the problem can be formulated as:

Minimize =y/¥ 7Y such that g(Y) = 0
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where, £ is the minimum distance and g(Y) is the transformed capacity portion of the
response surface. Several optimization routines are available to solve the above-constrained
optimization problem. The method used in this example was formulated by Rackwitz and
Fiessler. See Rackwitz, R. and Fiessler, B., Reliability Under Combined Random Load
Sequences, Computers and Structures, Vol. 9, No. 5, pp. 489-494, 1978. A first order
estimate of the failure probability is then computed as:

CDF =1 - F(-p) Eq. (9)

where F(-f) is the cumulative distribution function of a standard normal variable (i.e., a
normal variable with zero mean value and unit standard deviation).

A graph of the resultant CDF is shown in Fig. 5(f). Although mathematical
expressions exist to determine the CDF, these expressions involve multiple integrals, which

can be quite cumbersome to evaluate. Hence to make the process of CDF computation

faster and more tractable, an equation was fit to the CDF plot in step 116 using traditional

curve fit methods. For this example relevant direct sensed data was acquired and processed
(step 98) and POF could be predicted every flight cycle. Sensor data was also collected
continuously during flight, but it was decided that POF would only be reviewed after every
2 flight cycles (step 102). It was then determined in step 104 that a POF greater than 1
percent would trigger a warning "No-Go" signal that would in turn activate a yellow light
within user alert interface 26. Also it was decided that the method of confidence
verification (step 108) was that, within the same flight cycle, a second POF will be
determined based on updated sensor data. If prediction analysis 30 returned a POF greater
than 1 percent two successive times within the same flight cycle a warning should be sentin
step 110. That warning would be the "No-Go" signal that activated yellow light 27. This
completed engineering analysis step 12. '

Criteria, equations, models, and reference data 14, consisting of the variable
mapping strategy, response surface equation, statistical distribution of capacity portion of
the response surface equation, analysis frequency, and warning criteria were programmed
into memory 34 in step 138.
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Failure prediction (step 16) began by sending sensor data on the two directly sensed
variables (step 25), which for this example were P_,, and @. The next step 146 was to
compute the demand portion of the response surface equation. The result from the demand
portion of the response surface (Eq. (6)) was then input into the CDF equation derived from
the capacity portion of the response surface equation (Eq. (7)). Thus, the current POF at
demand was computed in step 148 based on the directly sensed data. The POF was
calculated after every second flight cycle based on P_,,. For this example the calculated
demand (or sensed/inferred) contribution from step 146 to the POF is shown in Table I for
the selected cycle numbers after acquisition and analysis of the appropriate sensed and
inferred data.

Table III: Response Surface - FPM Prediction Results

Cycle P 0 (demand) POF Warning
Cycle-1 30.8 12 68.52277995 0% Go
Cycle-3 33.88 10.33 | 44.54782678 0% Go
Cycle-5 27.72 13.67 | 86.06125102 0% Go
Cycle-7 36.96 1533 | 181.6366807 15%|  Go
Cycle-7 - 37 16 201.9535041 17% | No-Go

Table II also shows the POF determined at step 148 that is compared to the

exceedence criteria at step 160. When POF exceeded one percent twice consecutively

within the same cycle (cycle 7) the waming criteria was followed in step 162 and a "No-Go"
warning was issued as part of output data 32. Output data 32 included all the values from

Table IIl. These were stored in step 164 in memory 34 of CPU 18. Thus memory 34 stored

cycle data that served as input for subsequent éycles. Of that data in Table III, in this

example, only the warning or lack of warning of "No-Go" or "Go" was sent in step 166 to

the equivalent of control computer 20. After collecting the warning signal of "No-Go" in

step 172, control computer 20 decided in step 174 that the warning required further

communication to user alert interface system 26. Upon receipt of the warning at step 176,
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user alert interface 26 activated a yellow cockpit indicator light and highlighted "check rotor
hub" on a malfunction monitor.

A difference between the response surface FPM 88 and ST 90 approaches is the
method used to create the CDF. This response surface ST approach used Monte Carlo
(MC) methods to produce the CDF. Like the response surface FPM approach 88, the first
step in the response surface ST 90 approach was to separate the response surface equation
into capacity and demand portions at step 118. Following the division of the response
surface, Monte Carlo simulation methods were used to develop the full CDF of the capacity
portion of the response surface at step 120. For each MC simulation, random values of G_,
and E,;, were generated based on their respective statistical distribution types and respective
statistical parameters. With each set of G, and E,, values generated, the capacity portion
of the response surface equation was compﬁted. Following that, a histogram analysis was
performed to develop the CDF curve for the capacity portion of the response surface
equation.

Once the CDF curve fit was developed at step 122 for the capacity portion of the
response surface equation the failure prediction method followed the steps outlined in the
Response Surface FPM 88 approach following this embodiment of the invention. Table [V

shows the results of estimating the probability of failure using the response surface ST 90
approach.

Table IV: Response Surface - ST Prediction Results

Cycle P 0 (demand) POF Warning
Cycle-1 30.8 12 68.52277995 0% Go
Cycle-3 33.88 10.33 44.54782678 0% Go
CYcle-S 27.72 13.67 86.06125102 0% Go
Cycle-7 36.96 15.33 181.6366807 15% Go
Cycle-7 37 16 201.9535041 16% No-Go

The direct FPM approach 92 does not require the development of a response surface
to predict the probability of failure. This example used direct FORM to transform the seven
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random variables (in this example these variables are the material properties, G, P,,, and
®) to equivalent uncorrelated standard normal variables (represented by vector Y). After
transformation, a numerical differentiation scheme was employed at step 124 to determine
the derivatives of the random variables. In the transformed uncorrelated standard normal
space, a linear approximation was constructed to the final failure equation, which in this
case is G> Gy The derivatives of the random variables were used at step 126 to determine
the perturbed values of the random variables. To estimate the probability of failure using
FORM a constrained optimization scheme was adopted to search for the minimum distance
from the origin to the transformed failure equation. Mathemétically, the problem was
formulated the same at Equation (8) where  was the minimum distance, but where g(Y)
was the transformed failure equation. The method used in this example was formulated by
Rackwitz and Fiessler optimization scheme and was used to solve the above constrained
optimization scheme. See Rackwitz, R. and Fiessler, B., Reliability Under Combined
Random Load Sequen.ces, Computers and Structures, Vol. 9, No. S, pp. 489-494, 1978. The
constrained optimization scheme is an iterative process to estimate the probability of failure.
A convergence criterion was determined at step 128 (Fig. 2(c)) to force the iterations to
converge on a failure probability estimate. After the appropriate criteria, equations, models,
and reference data were programmed at step 136 into memory device 34, a first order
estimate of the POF was determined at step 152 using FORM as:

POF = F(-§) Eq. (10)
where F(-f) was the CDF of a standard normal variable (i.e., a normal variable with zero
mean value and unit standard deviation). Table V shows‘ example results from estimating
the probability of failure using Direct FPM approach.

Table V: Direct - FPM Prediction Results

Cycle P 0 POF Warning
Cycle-1 30.8 12 0% Go
Cycle-3 33.88 10.33 0% Go
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Cycle-5 27.72 13.67 0% Go
Cycle-7 36.96 15.33 14% Go
Cycle-7 37 16 14% No-Go

Like the direct FPM approach, the direct ST 94 approach also does not require the
development of a response surface. This example also used Monte Carlo (MC) methods
within direct ST 94. The same seven significant variables from Table I were selected.
Based on the analysis frequency, previously determined to be two flight cycles, once the
sensors gathered the values of the directly sensed variables, values of the inferred variables
were randomly generated in step 130 using MC methods and random values of G, and E,,
were generated based on their respective statistical distribution types and respective
statistical parameters. For each set of directly sensed data, several sets of the inferred -
variables were generated. For each set of inferred variables generated, the value of the
strain energy release rate G was computed in step 194 as shown in Fig. 5(d). The number of
sets of referred variables was based on the number of simulations to be conducted from step
134. Appropriate criteria, equations, models, and reference data were stored at step 136 in
memory 34 of CPU 18.

For each simulation, if G > G, a failure counter was incremented by one. For
example, let us assume that for each set of P, and @ sensed, M sets of the inferred
variables were generated. Among those M sets, for n sets (n <M), G was greater than G_,.
Then the probability of failure would be /M. Table VI shows example results from
estimating the probability of failure using Direct ST approach.

Table VI: Direct - ST Prediction Results
Cycle P 0 POF " Warning
Cycle-1 30.8 12 0% Go
Cycle-3 33.88 10.33 0% Go
Cycle-5 27.72 13.67 0% Go
Cycle-7 36.96 15.33 16% Go
Cycle-7 37 16 18% No-Go
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While the foregoing description and drawings represent embodiments of the present
invention, it will be understood that various additions, modifications and substitutions may
be made therein without departing form the spirit and scope of the present invention as
defined in the accompanying claifns. In particular, it will be clear to those skilled in the art
that the present invention may be embodied in other specific forms, structures,
arrangements, proportions, and with other elements, materials, and components, without
departing from the spirit or essential characteristics thereof. The presently disclosed
embodiments are therefore to be considered in all respects as illustrative and not restrictive,
the scope of the invention being indicated by the appended claims, and not limited to the
foregoing description. -
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CLAIMS
We claim:
1. A computer implemented method for predicting failure in a system, comprising:
measuring data associated with a system;
creating a prediction of a failure of said system using a probabilistic model
and said data; and

communicating said prediction.

2. The method of claim 1 wherein said measuring further comprises receiving system
information from said system.

3. The method of claim 1, wherein said creating further comprises creating a prediction
of a failure of a component of said system.

4. The method of claim 1, wherein said creating further comprises creating a prediction

of a failure of multiple systems based on said prediction.

5. The method of claim 1 wherein said measuring, creating, and communicating steps

are performed on said system.
6. The method of claim 1 further comprising comparing said prediction to criteria. .

7. The method of claim 1 wherein at least one of said creating and communicating

steps occurs at a remote location.
8. The method of claim 1 wherein said probabilistic model comprises multiple models.

9. The method of claim 1 further comprising ranking variables in said probabilistic
model according to said variable's contribution to said prediction.

10.  The method of claim 1 applied to predict failure in a material's microstructure.
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11.  The method of claim 1 wherein said data comprises referenced data, sensed data,
and inferred data and wherein said method further comprises relating said reference data to
a first set of variables, relating said sensed data to a second set of variables, and inferring a
third set of variables from said sensed data.

12.  The method of claim 1 further comprising sending said data to a remote location

and wherein said creating occurs at said remote location.

13.  The method of claim 12 further comprising receiving said prediction from said

remote location.

14.  The method of claim 1 further comprising developing said probabilistic model prior

to said creating.

15.  The method of claim 14 wherein said developing further comprises:

identifying at least one failure mechanism of a component of said system
from said component's characteristics selected from a group comprising: material
properties, environmental conditions, design characteristics, component loading, and
component usage; _

identifying significant random variables of said at least one failure
mechanism;

identifying statistical parameters of said significant random variables; and

formulating a strategy for probabilistic analysis.

16. The method of claim 15 wherein said data comprises referenced data, sensed data,
and inferred data and wherein said developing step further comprises determining which of
said significant random variables are related to said referenced data, which of said
significant random variables are related to said sensed data, and which of said significant

random variables are inferred from said sensed data.
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17.  The method of claim 12 wherein said developing further comprises setting criteria

for communicating said prediction.

18.  The method of claim 1, wherein said probabilistic model utilizes fast probability
methods.

19.  The method of claim 18, wherein said fast probability methods are selected from a
group including direct: First Order Reliability Methods, Second Order Reliability Methods,
Advanced Mean Value methods, and Mean Value methods.

20. The method of claim 18, wherein said fast probability methods are selected from a
group including response surface: First Order Reliability Methods, Second Order Reliability
Methods, Advanced Mean Value methods, and Mean Value methods.

21.  The method of claim 1, wherein said probabilistic model utilizes simulation
techniques.

22.  The method of claim 21, wherein said simulation techniques are direct methods

selected from a group including: Monte Carlo methods and importance sampling methods.

23. The method of claim 21, wherein said simulation techniques are response surface

methods selected from a group including: Monte Carlo methods and importance sampling

methods.

24.  The method of claim 15, wherein at least one said failure mechanism is described by

an equation and said equation is divided into a capacity section and a demand section.

25.  An apparatus for predicting failure of a system, said apparatus comprising:
sensors for acquiring data from a system;
a first computer comprising:

a Processor,
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a memory containing;

instructions for measuring said data;

instructions for creating a prediction of a failure of said system using
a probabilistic model and said data; and

instructions for communicating said prediction; and

a communication device for communicating said prediction. .

26.  The apparatus of claim 25 wherein said instructions for creating further comprise

instructions for predicting failure of at least one component of said system.

27.  The apparatus of claim 25 wherein said instructions for measuring further comprise

instructions for receiving system information from said system.

28.  The apparatus of claim 27 further comprising a second computer, said second
computer comprising:
a processor; and
a memory, said memory containing:
instructions for measuring said data;
instructions for storing said data;
instructions for sending said data to said first computer as said system

information.

29.  The apparatus of claim 25 further comprising:
a second computer, said second computer comprising:
a processor; and
a memory, said memory containing:
instructions for receiving said prediétion; and
instructions for communicating said prediction; and

a second communication device for communicating said prediction.
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30.  The apparatus of claim 25 wherein said communication device further comprises a
warning signal.

31.  The apparatus of claim 25, said apparatus further comprising a sending device for
sending said data to a remote location.

32, The apparatus of claim 31, wherein said first computer is located at said remote

location.

33.  The apparatus of claim 25 further comprising instructions for comparing said
prediction to criteria.

34.  The apparatus of claim 25 wherein said probabilistic model comprises multiple
models.

35.  The apparatus of claim 25 wherein said probabilistic model comprises variables

ranked according to said variables' contribution to said prediction.
36.  The apparatus of claim 25 applied to predict failure in a material's microstructure.

37. The.apparatus of claim 25 wherein said data comprises referenced data, sensed data,
and inferred data and wherein said apparatus further comprises instructions for: relating
said reference data to a first set of variables; relating said sensed data to a second set of
variables; and inferring a third set of variables from said sensed data.

38.  The apparatus of claim 25, wherein said probabilistic model utilizes fast probability
methods.

39.  The apparatus of claim 38, wherein said fast probability methods are selected from a
group including direct: First Order Reliability Methods, Second Order Reliability Methods,
Advanced Mean Value methods, and Mean Value methods.
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40.  The apparatus of claim 38, wherein said fast probability methods are selected from a
group including response surface: First Order Reliability Methods, Second Order Reliability
Methods, Advanced Mean Value methods, and Mean Value methods.

41.  The apparatus of claim 25, wherein said probabilistic model utilizes simulation

techniques.

42.  The apparatus of claim 41, wherein said simulation techniques are direct methods

selected from a group including: Monte Carlo methods, and importance sampling methods.

43.  The apparatus of claim 41, wherein said simulation techniques are response surface

methods selected from a group including: Monte Carlo methods, and importance sampling
methods.

44.  The apparatus of claim 25 wherein said instructions for creating further comprise
instructions for creating a prediction of a failure of multiple systems based on said

prediction.

45.  The apparatus of claim 25, said probabilistic model comprising at least one

failure mechanism of a component of said system.

46.  The apparatus of claim 25, wherein said at least one failure mechanism relates to a

material microstructure.

47.  The apparatus of claim 25, wherein said at least one failure mechanism is described

by an equation and said equation is divided into a capacity section and a demand section.

48. A computer program product for predicting failure of a system for use in
conjunction with a computer system, said computer program product comprising a
computer readable storage medium and a computer program mechanism embedded therein,

said computer program mechanism containing:
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instructions for measuring data;

instructions for storing said data;

instructions for creating a prediction of failure of said system using a
probabilistic model and said data; and

instructions for communicating said prediction.

49.  The computer program product of claim 48 wherein said instructions for measuring

data further comprise instructions for receiving system information from said system.

50.  The computer program product of claim 48 wherein said instructions for creating

further comprise instructions for creating a prediction of a failure of at least one component

of said system.

51.  The computer program product of claim 48 wherein said instructions for creating

further comprise instructions for creating a prediction of a failure of multiple systems based
on said prediction.

52. The computer program product of claim 48, said model comprising at least one
failure mechanism of a component of said system.

53.  The computer program product of claim 48, wherein said at least one failure
mechanism relates to a material microstructure. |

54.  The computer program product of claim 48, wherein said at least one failure
mechanism is described by an equation and said equation is divided into a capacity section
and a demand section.

55. The computer program product of claim 48 further comprising instructions for
comparing said prediction to criteria.

56.  The computer program product of claim 48 wherein said probabilistic model

comprises multiple models.
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57.  The computer program product of claim 48 further comprising ranking variables in

said probabilistic model according to said variables' contribution to said prediction.

58.  The computer program product of claim 48 applied to predict failure in a material's
microstructure,

59.  The computer program product of claim 48 wherein said data comprises referenced
data, sensed data, and inferred data and wherein said apparatus further comprises
instructions for: relating said reference data to a first set of variables; relating said sensed

data to a second set of variables; and inferring a third set of variables from said sensed data.

60.  The computer program product of claim 48, wherein said probabilistic model

utilizes fast probability methods.

61.  The computer program product of claim 60, wherein said fast probability methods
are selected from a group including direct: First Order Reliability Methods, Second Order
Reliability Methods, Advanced Mean Value methods, and Mean Value methods.

62.  The computer program product of claim 60, wherein said fast probability methods
are selected from a group including response surface: First Order Reliability Methods,
Second Order Reliability Methods, Advanced Mean Value methods, and Mean Value
methods.

63. . The computer program product of claim 48, wherein said probabilistic model
utilizes simulation techniques.

64.  The computer program product of claim 63, wherein said simulation techniques are
direct methods selected from a group including: Monte Carlo methods, and importance
sampling methods.
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65.  The computer program product of claim 63, wherein said simulation techniques are
response surface methods selected from a group including: Monte Carlo methods, and
importance sampling methods.

66.  The computer program product of claim 49 further comprising a second computer
program product, said second computer program product comprising a second computer
readable storage medium and a second computer program mechanism embedded therein,
said second computer program mechanism containing:

instructions for measuring said data;

instructions for storing said data; and

instructions for sending said data to said first computer as said system
information.

67.  The computer program product of claim 48 further comprising a second computer
program product, said second computer program product comprising a second computer
readable storage medium and a second computer program mechanism embedded therein,
said second computer program mechanism containing:

instructions for receiving said prediction; and

instructions for communicating said prediction.
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