发明名称
多输入多输出天线系统空分复用的最大似然简化检测方法

摘要
多输入多输出天线系统空分复用的最大似然简化检测方法提出了一种最大似然(ML)和追零(ZF)检测相结合算法—简化最大似然算法(RML)，该算法与最大似然算法性能相同，但其复杂度比ML检测要低。具体实现过程为，当信道参数未知时，首先找到一个调制制式最大的发送天线，然后对其他发送天线上的调制星座进行ML穷举搜索，接着在接收信号中减去这些发送天线上信号的影响，再用ZF算法对调制阶数最大的天线进行解调。每一次ML穷举搜索对应一个ZF解调结果，最后在所有的发送天线ML穷举搜索和ZF解调信号组合中找出一个最优的组合，做为发送天线的解调信号。
1. 一种多输入多输出天线系统空分复用的最大似然简化检测方法，其特征在于在多输入多输出天线复用中，发送端有多个发送天线，不同的发送天线发送的数据不相同，采用某一发送天线的检测信号用近零“ZF”检测，而其它发送天线的检测采用最大似然“ML”检测而作搜索，这样可提高发送数据率；每个时刻每个天线发送的信号是从有限符号集中选出一个元素，该元素的实部和虚部分别对应频带调制的载波相分量和正交分量；设发送端有 M 个天线，第 i 个发送天线的发送信号集合为 $C_i = \{ c_{i1}, c_{i2}, \cdots c_{iN} \}$， s_i 为第 i 个发送天线的发送信号集合元素数；

在接收端用最大似然检测方法接收时，接收信号矢量为 y，信道增益矩阵为 H，且 H 在接收端用信道估计方法估计出来；

所述检测方法如下：

1) 选取最大信号集合元素数的发送天线 j 用于做 ZF 检测，即

$$ j = \arg \max_i \{ s_i, i = 1, 2, \cdots M \}, $$

2) 除第 j 个发送天线外，对其它发送天线上发送信号进行最大似然 ML 穷举搜索，得这些发送信号为 $\{ x_1, x_2, \cdots x_{j-1}, x_{j+1}, \cdots x_M \}$，其中 $x_i \in C_i,$

3) 在接收信号中去掉其它天线发送信号的影响，即：

$$ y_t = y - \sum_{i=1, i \neq j}^{M} h_i x_i $$

其中 h_i 为 H 的第 i 列，

4) 用 y_t 对第 j 个天线进行 ZF 检测，即：

$$ x_j = Q((h_j^h y_t)/(h_j^h h_j)),$$

其中 $Q()$ 为判决函数，其返回值为自变量参数与星座集中距离最近的星座点；上标 H 表示矩阵或向量的共轭转置，

5) 令 $x = \{ x_1, x_2, \cdots x_M \}$，计算 $d = \| y - Hx \|$，其中 “$\| \|$” 为向量的 2-范数，并保存假设发送矢量 x 和 2-范数 d，

6) 如果 $\{ x_1, x_2, \cdots x_{j-1}, x_{j+1}, \cdots x_M \}$ 没有搜索完所有可能出现的组合，则选一个新的组合，并返回到 3）重新计算，比较新的 d 与旧的 d 大小，如果新的 d 较小，则将 x 更新为新的组合；否则重新找一组新的组合返回 3）继续处理，
7）重复上述过程，一直到搜索完所有的组合，最后得到检测数据 x。

2. 根据权利要求 1 所述多输入多输出天线系统空分复用的最大似然简化检测方法，其特征在于选取 N 个发送天线进行最大似然 ML 检测，剩余的 $M-N$ 个发送天线采用迫零 ZF 检测，其中 $N < M$。

3. 根据权利要求 1 或 2 所述多输入多输出天线系统空分复用的最大似然简化检测方法，其特征在于 ZF 检测采用最小均方差 MMSE、串行干扰抵消 SUC、排序串行干扰抵消 OSUC 的线性检测方式。

4. 根据权利要求 1 或 2 所述多输入多输出天线系统空分复用的最大似然简化检测方法，其特征在于最大似然 ML 检测球形译码检测方式。
多输入多输出天线系统空分复用的最大似然简化检测方法

技术领域

本发明涉及一种多输入多输出（MIMO）天线数据复用传输模式的移动通信链路的检测方法。

背景技术

随着通信技术的发展和人们对高速数据通信的要求，MIMO 技术得到应用。因为在 MIMO 中，多个不同的数据流从不同的天线发送出去，接收端多天线接收并解调这些数据，这种基于复用的空分多址方式可以将频谱效率成倍地提高。

MIMO 复用的接收检测方法有线性检测、最大似然法（ML）检测等，线性检测方式又有迫零（ZF）检测、MMSE 检测等方式，相对于 ML 检测而言，这些检测方式实现起来更简单，但是其性能远不如 ML 检测，且当发送天线与接收天线数相同时，其空间分集度仅为 1。ML 检测可以获得较小的误码率，且当接收天数大于发送天线数时，其空间分集度为接收天线数；除此之外还有一些非线性的检测方式，诸如球形译码检测，格简化辅助（LRA）检测，连续干扰抵消（SUC）等检测方式，相对于 ML 检测与线性检测而言，这些方法在复杂度和性能方面体现一定程度的折中。其中 SUC 检测实现相对简单，而且其性能优于 ZF 检测和 MMSE 检测。

发明内容

技术问题：本发明的目的是给出一种多输入多输出（MIMO）天线系统空分复用的最大似然简化检测方法，本方法可以有效降低系统的复杂度，而不降低系统性能。

技术方案：本发明提供一种多天线移动通信系统 MIMO 复用的检测方法。该方法在多输入多输出天线复用中，发送端有多个发送天线，不同的发送天线发送的数据不相同，采用某一发送天线的检测信号用迫零 “ZF” 检测，而其它发送天线的检测采用最大似然 “ML” 检测穷举搜索，这样可提高发送数据率；每个时刻
每个天线发送的信号是从有限复信号集中选出一个元素，该元素的实部和虚部分别对应频带调制的载波同相分量和正交分量；设发送端有 M 个天线，第 i 个发送天线的发送信号集合为 $C_i = \{c_{i1}, c_{i2}, \cdots, c_{is_i}\}$，$s_i$ 为第 i 个发送天线的发送信号集合元素数。

在接收端用最大似然检测方法接收时，接收信号矢量为 y，信道增益矩阵为 H，且 H 在接收端用信道估计方法估计出来；所述检测方法如下：

1）选取最大信号集合元素数的发送天线 j 用于做 ZF 检测，即

$$ j = \arg \max_i \{s_i, i = 1, 2, \cdots, M\}, $$

2）除第 j 个发送天线外，对其他发送天线上发送信号进行最大似然 ML 穷举搜索，得这些发送信号为 $\{x_1, x_2, \cdots, x_{j-1}, x_{j+1}, \cdots, x_M\}$，其中 $x_i \in C_i$。

3）在接收信号中去掉其它天线发送信号的影响，即：

$$ y_t = y - \sum_{i=1, i \neq j}^M h_i x_i $$

其中 h_i 为 H 的第 i 列，

4）用 y_t 对第 j 个天线进行 ZF 检测，即：

$$ x_j = Q((h_j^H y_t)/(h_j^H h_j)) $$

其中 $Q(\cdot)$ 为判决函数，其返回值为自变量参数与星座集中距离最近的星座点；上标 H 表示矩阵或向量的共轭转置。

5）令 $x = \{x_1, x_2, \cdots, x_M\}$，计算 $d = \|y - Hx\|$，其中 “$\|\|$” 为向量的 2-范数，并保存假设发送矢量 x 和 2-范数 d。

6）如果 $\{x_1, x_2, \cdots, x_{j-1}, x_{j+1}, \cdots, x_M\}$ 没有搜索完所有可能出现的组合，则选一个新的组合，并返回到 3）重新计算，比较新的 d 与旧的 d 大小，如果新的 d 较小，则将 x 更新为新的组合；否则重新找一组新的组合返回 3）继续处理。

7）重复上述过程，一直到搜索完所有的组合，最后得到检测数据 x。

还可以选取 N 个发送天线进行最大似然 ML 检测，剩余的 $M-N$ 个发送天线采用近零 ZF 检测，其中 $N < M$。

在该方法中，ZF 检测采用最小均方差 MMSE，串行干扰抵消 SUC、排序串行干扰抵消 OSUC 的线性检测方式，最大似然 ML 检测球形译码检测方式。
有益效果：本发明的多输入多输出天线系统空分复用的最大似然简化检测方法提出了一种最大似然 (ML) 和迫零 (ZF) 检测相结合算法—简化最大似然算法 (RML)，该算法与最大似然算法性能相同，但其复杂度比 ML 检测要低。该方法可以简化检测算法使通信吞吐量增大，减少接收机复杂度（同时也减小了接收机体积，功耗等）。

附图说明

图 1 为多天线系统简化 ML 检测流程图。

具体实施方式

在 MIMO 复用中，发送端有多个发送天线，不同的发送天线发送的数据不相同，这样可使发送数据速率提高，但接收端用最大似然接收时，复杂度将会成指数形式增加。本发明所采用的方法是某一发送天线的信号检测用迫零 (ZF) 方法，而其它天线上的信号检测采用最大似然方法。经理论和实验证明这种检测方法和 ML 检测方法的性能相同，而复杂度比 ML 检测方法降低一个数量级。每个时刻每个天线发送的信号是从有限信号集中选出一个元素，该元素的实部和虚部分别对应频带调制的载波同相分量和正交分量。设发送端有 M 个天线，第 i 个发送天线的发送信号集合为 \(C_i = \{ c_{i_1}, c_{i_2}, \cdots, c_{i_k} \} \)，\(s_i \) 为第 i 个发送天线的发送信号集合元素数，接收信号矢量为 \(y \)，信道增益矩阵为 \(H \)，且 \(H \) 在接收端用信道估计方法估计出来。所述检测方法如下：

1) 选取最大信号集合元素数的发送天线 j 用于做迫零检测，即

\[
j = \arg \max_i \{ s_i, i = 1, 2, \cdots, M \}\]

2) 除第 j 个发送天线外，对其它发送天线上发送信号进行 ML 穷举搜索，得这些发送信号为 \(\{ x_1, x_2, \cdots, x_{j-1}, x_{j+1}, \cdots, x_M \} \)，其中 \(x_i \in C_i \)。

3) 在接收信号中去掉其它天线发送信号的影响。即：

\[
y_i = y - \sum_{j=1, j \neq i}^{M} h_j x_j
\]

其中 \(h_j \) 为 \(H \) 的第 i 列。

4) 用 \(y_i \) 对第 j 个天线进行 ZF 检测，即：

\[
x_j = Q((h_j^H y_i)/(h_j^H h_j)), \quad \text{其中 } Q() \text{ 为判决函数, 其返回值为自变量参数与星座集中距离最近的星座点。上标 } H \text{ 表示矩}
\]
阵或向量的共轭转置。

5) 令 \(\{x_1, x_2, \ldots, x_r\} \)，计算 \(d = \|y - Hx\| \)，其中 \(\| \cdot \| \) 为向量的 2-范数，并保存 \(x \) 和 \(d \)。

6) 如果 \(\{x_1, x_2, \ldots, x_{j-1}, x_{j+1}, \ldots, x_r\} \) 没有搜索完所有可能出现的组合，则选一个新的组合，并返回到 3) 重新计算，比较新的 \(d \) 与旧的 \(d \) 大小，如果新的 \(d \) 较小，则将 \(x \) 更新为新的组合。否则重新找一组新的组合返回 3) 继续处理。

7) 重复上述过程，一直到搜索完所有的组合，最后得到检测数据 \(x \)。

以 3 发送天线为例，我们结合附图 1 对本发明做进一步的说明。

假设三个发送天线的调制方式相同（QPSK，也可以采用不同的调制方式和调制星座），可选的发送信号集合为 \(C = \{c_1, c_2, c_3, c_4\} = \{1, j, -1, -j\} \)，其中 \(j = \sqrt{-1} \) 为虚数单位。

设接收端为 \(N \) 个天线，当发送信号为 \(x = (x_1, x_2, x_3) \) 时，信道矩阵为:

\[
H = \begin{bmatrix}
h_{11} & h_{12} & \cdots & h_{1N} \\
h_{21} & h_{22} & \cdots & h_{2N} \\
h_{31} & h_{32} & \cdots & h_{3N}
\end{bmatrix}
\]

其中 \(h_{ij} \) 表示第 \(i \) 个发送天线与第 \(j \) 个接收天线之间的矩阵。

在接收端收到的信号为 \(y = (y_1, y_2, \ldots, y_N)^T \)。

由于各发送天线的调制形式相同，因而每一个发送天线可选的发送集合元素个数都为 4，我们选择任一发送天线做 ZF 检测，其它发送天线则进行搜索（即搜索所有的可能发送信号组合）。假设选第 3 个发送天线进行 ZF 检测，而第 1, 2 两个发送天线上进行搜索，检测结果为 \(x_d = (x_{d1}, x_{d2}, x_{d3}) \)。其检测的流程如图 1 所示。

首先在发送端对第 1, 2 两个发送天线进行穷举搜索。总共搜索次数为 16 次。在每次搜索时，先假设发送天线 1, 2 的信号是正确的，接收信号中减去发送天线 1, 2 的影响，因而在剩下的信号只剩下第 3 个发送天线和噪声的影响。对第 3 个天线的信号在其星座图上进行 ZF 检测。即第 3 个发送天线上的信号与天第 1, 2 个天线的信号有关。因而可以算出此时的噪声。当在天线 1, 2 上的所有可能性都遍历完以后，选择所计算的噪声最小的一组信号（发送天线 1, 2 及 ZF 检测
的发送天线 3）做为发送信号的译码。

以上仅是本发明的基本部分，应当指出，本发明的应用很容易扩展到其它方面。如对 QOSTC（准正交编码）的解调中需要对发送符号两两编组，然后对两个第两个符号进行 ML 检测，采用本方法先对其中一个符号进行穷举搜索然后对另外一个符号进行 ZF 检测。再比如，对多发送天线中的某些天线采用穷举搜索，而对另一部分天线（不仅仅是 1 个天线）采用 ZF, MMSE（最小均方误差），或者 OSUC（排序的干扰抵消）等检测方式，这样虽然在性能上有一部分损失，但有计算量上有大量减少。以及其它在本发明基础上的扩展都应属于本发明的专利保护范围。