(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(10) International Publication Number

WO 2007/103591 A2

(74) Agents: KING, Robert L. et al.; 7700 W. Parmer Lane,
MD: PL0O2, Austin, TX 78729 (US).

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
13 September 2007 (13.09.2007)

(51) International Patent Classification:
GOIR 31/28 (2006.01)

(21) International Application Number: (81) Designated States (unless otherwise indicated, for every

PCT/US2007/060660 kind of national protection available): AE, AG, AL, AM,

(22) International Filing Date: 18 January 2007 (18.01.2007) AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
N) CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,

(25) Filing Language: English GB, GD, GE, GH, GM, GT, N, HR, HU, ID, IL, IN, IS,
(26) Publication Language: English JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS,

LT, LU, LV, LY, MA, MD, MG, MK, MN, MW, MX, MY,

(30) Priority Data:
MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS,

11/355,681 16 February 2006 (16.02.2006) US RU. SC, SD, SE, SG. SK. SL. SM. SV, SY, TJ., TM. TN,
(71) Applicant (for all designated States except US): TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

FREESCALE SEMICONDUCTOR INC. [US/US];

6501 William Cannon Drive West, Austin, Texas 78735 (84) Designated States (unless otherwise indicated, for every

(US). kind of regional protection available): ARIPO (BW, GH,

GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,

(72) Inventors; and ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
(75) Inventors/Applicants (for US only'): MOBRISON, European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, F,

Gary R. [US/US]; 13036 Staton Drive, Austin, Texas FR, GB, GR, HU, IE, IS, IT, I.T, LU, LV, MC, NL, PL, PT,

78727—4513 (US). LY'ON, Jose A. [US/US]; 12209 RO, S, SI, SK, TR), OAPI (BF, B, CF, CG, CI, CM, GA,

Antoinette Place, Austin, Texas 78727' Us). MOYE'R, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

William C. [US/US]; 1111 Meadow Ridge Drive, Drip-

ping Springs, Texas 78620 (US). REIPOLD, Anthony Published:

M. [US/US]; 7700 Vail Valley Drive, Austin, Texas 78749
(US).

without international search report and to be republished
upon receipt of that report

[Continued on next page]

(54) Title: METHOD AND APPARATUS FOR TESTING A DATA PROCESSING SYSTEM

102 SINI 108 SINZ 110
RESET 106 Pmfb———————— o e gy - PORTION OF
— RANGDEONME RE\ATB;ERN | / 51128 146 ! ~ PROCESSOR 12
FORCED
[D Q D Q [
ERROR — N
ST 156 fiatiia il ceil I
CLOCK 104~ r 3 T !
t 140 |
S o I + 10 OTHER
INERPT [srop i TesT | ColER L_ Lz 129 142 || s 1 LOGIC 4
INIATR |~ conrrouer [s 1| 10 O |
22 5| [ResToRE VECTCR ’152: F’ RST Sy
STOP | | axTHUM CLOCKS TT 2541 t | STz
AND TEST 1P | CLOCK 104
INDICATOR | | MINIMWM CLOCKS Tf 298, 112
24 FROM 33 130 |
2 RESET RESET OTHER | L _— | SIGNATURE RESET 106
IN o Locrc—L»! 7 | ANALYZER
1% &7 SOUTT 109 T0 OTHER |
— r LOGIC 150 | 114§ SIGNATURE 120 , (118
RESET 106 - SE 138! |] SIGNATURE | JTEST RESULT
g | EercEy 1| LCOPARATOR REGISTER
RESET 48
! STGNATURE 115 -+——_1 CONPARE
STGNATURE TDENTIFIER 124 < expecren | P!
SIGNATURE TéJU/SFRgGM
CONPARE 1267 STORAGE
1167

77103591 A2 I 00 0 00O 0O A

& (57) Abstract: A method for testing at least one logic block of a processor (12) includes, during execution of a user application

& by the processor, the processor generating a stop and test indicator (24). In response to the generation of the stop and test indicator,
stopping the execution of the user application and, if necessary, saving a state of the at least one logic block of the processor. The

O method further includes applying a test stimulus for testing the at least one logic block of the processor. The test stimulus may be

a shifted into scan chains so as to perform scan testing of the processor during normal operation, such as during execution of a user
application.

WO 2007/103591 A2 {00000 0T 00000 00 O

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gagzette.

10

15

20

25

30

WO 2007/103591 PCT/US2007/060660

METHOD AND APPARATUS FOR TESTING A DATA PROCESSING SYSTEM

Field of the Invention

The present invention relates generally to data processing systems, and more

specifically, to testing a data processing system.

Related Art
Testing of data processing systems is important to ensure proper operation. Testing
may be performed in the factory after manufacture prior to using the data processing system
in a user application. This ensures that an end user receives a properly functioning product.
However, during operation of the data processing system by the end user, it may also be
desirable to continuously test the data processing system so that failures which can occur

during normal operation of the product may be detected.

Brief Description of the Drawings

The present invention is illustrated by way of example and not limited by the
accompanying figures, in which like references indicate similar elements, and in which:

FIG. 1 illustrates, in block diagram form, a data processing system in accordance with
one embodiment of the present invention;

FIG. 2 illustrates, in block diagram form, portions of a processor and stop and test
circuitry of FIG. 1, in accordance with one embodiment of the present invention;

FIG. 3 illustrates, in flow diagram form, a method of testing the processor of FIG. 1,
in accordance with one embodiment of the present invention; and

FIG. 4 illustrates, in block diagram form, a portion of the processor of FIG. 1 in
accordance with an embodiment of the present invention.

Skilled artisans appreciate that elements in the figures are illustrated for simplicity
and clarity and have not necessarily been drawn to scale. For example, the dimensions of
some of the elements in the figures may be exaggerated relative to other elements to help

improve the understanding of the embodiments of the present invention.

10

15

20

25

30

WO 2007/103591 PCT/US2007/060660

Detailed Description of the Drawings

After a data processing system is manufactured and delivered to an end user, testing
during normal operation may be desirable to ensure that the data processing system is still
functioning properly. For example, a data processing system may be used within an
automobile, where testing of this data processing system is desired after a user purchases the
automobile. Fragments of test code can be executed periodically during operation to test the
data processing system. However, this test code typically provides non-uniform and
incomplete test coverage. This test code is also typically slow and inefficient for testing the
data processing system. Furthermore, these test codes have to be fault graded which is both
time consuming and complex. Another alternative is scan testing. Scan testing may be used
to easily provide higher test coverage. However, if traditional scan testing is performed
during operation, the current state of the processor is lost each time scan testing is performed.
As will be described herein, embodiments of the present invention allow for software directed
intrusive testing of a data processing system during normal operation, where intrusive testing
may refer to testing which affects or loses the state of the data processing system. For
example, one embodiment uses scan test methodology in combination with logic built in self
test (LBIST) to test during normal operation. In one embodiment, a stop and test instruction
is used to initiate the testing.

As used herein, the term "bus" is used to refer to a plurality of signals or conductors
which may be used to transfer one or more various types of information, such as data,
addresses, control, or status. The conductors as discussed herein may be illustrated or
described in reference to being a single conductor, a plurality of conductors, unidirectional
conductors, or bidirectional conductors. However, different embodiments may vary the
implementation of the conductors. For example, separate unidirectional conductors may be
used rather than bidirectional conductors and vice versa. Also, plurality of conductors may
be replaced with a single conductor that transfers multiple signals serially or in a time
multiplexed manner. Likewise, single conductors carrying multiple signals may be separated
out into various different conductors carrying subsets of these signals. Therefore, many
options exist for transferring signals.

The terms "assert” or “set” and "negate" or "deassert" are used when referring to the
rendering of a signal, status bit, or similar apparatus into its logically true or logically false
state, respectively. If the logically true state is a logic level one, the logically false state is a

logic level zero. And if the logically true state is a logic level zero, the logically false state is
2.

10

15

20

25

30

WO 2007/103591 PCT/US2007/060660

a logic level one. Therefore, each signal described herein may be designed as positive or
negative logic, where negative logic can be indicated by a bar over the signal name or an
asterix (*) following the name. In the case of a negative logic signal, the signal is active low
where the logically true state corresponds to a logic level zero. In the case of a positive logic
signal, the signal is active high where the logically true state corresponds to a logic level one.
Note that any of the signals described herein can be designed as either negative or positive
logic signals. Therefore, those signals described as positive logic signals may be
implemented as negative logic signals, and those signals described as negative logic signals
may be implemented as positive logic signals.

FIG. 1 illustrates, in block diagram form, a data processing system 10 in accordance
with one embodiment of the present invention. Data processing system 10 includes a
processor 12, stop and test circuitry 14, interrupt controller 20, other modules 16, memory 18,
and bus 26. Processor 12, interrupt controller 20, stop and test circuitry 14, other modules
16, and memory 18 are all bidirectionally coupled to bus 26. Other modules 16 may include
any type and number of modules, such as, for example, other memories, processors, co-
processors, input/output devices, timers, or any other type of peripherals. Alternatively, no
other modules may be present in data processing system 10. Memory 18 may be any type of
memory, such as, for example, read only memory (ROM), random access memory (RAM),
etc. In one embodiment, user applications which are executed by processor 12 are stored in
memory 18. Also, in the illustrated embodiment, processor 12 includes other modules
monitor 50 (which, as will be described further below, is optional).

Stop and test circuitry 14 is coupled to interrupt controller 20 and processor 12.
Interrupt controller 20 provides an interrupt indicator 22 to stop and test circuitry 14. Stop
and test circuitry 14 provides a reset 48 to processor 12 and receives a stop and test indicator
24 from processor 12. Also, data processing system 10 includes multiplexers 30 and 32 and
demultiplexer 28, each receiving a stop and test enable 44. Processor 12 outputs scan out (1-
N) 40 to demultiplexer 28, which, based on stop and test enable 44, are provided as stop and
test scan out (1-N) 34 to stop and test circuitry 14 or as external scan out (1-N) 37.
Multiplexer 30 receives stop and test scan in (1-N) 35 from stop and test circuitry 14 and
external scan in (1-N) 38 and, based on stop and test enable 44, provides one of these as scan
in (1-N) 41 to processor 12. Multiplexer 32 receives stop and test scan enable 36 from stop
and test circuitry 14 and external scan enable 39 and, based on stop and test enable 44,
provides one of these as scan enable 42 to processor 12. Note that N in FIG. 1 represents any

integer greater than zero, and corresponds to the number of scan chains present in processor

_3-

10

15

20

25

30

WO 2007/103591 PCT/US2007/060660

12. Therefore, note that multiplexer 30 may include N multiplexers and demultiplexer 28
may include N demultiplexers. Also, in an alternate embodiment, demultiplexer 28 may not
be present. For example, the scan inputs may simply be ignored when scan testing is not
being performed.

External scan out (1-N) 37, external scan in (1-N) 38, and external scan enable 39
may each be routed to external pads or pins of data processing system 10. Alternatively, any
of these external signals can be multiplexed onto a lesser number of external pads or pins.
For example, all scan in chains may be input through a same pad or pin rather than input
through N pads or pins. Also, in alternate embodiments, different circuitry may be provided
to implement the functionality of multiplexers 30 and 32 and demultiplexer 28. In yet
another embodiment, external scan inputs and outputs (such as external scan out 37 and
external scan in 38) may not be provided at all, such that all scan inputs and outputs are
provided from and to stop and test circuitry 14.

In operation, when stop and test enable 44 is not asserted, multiplexers 30 and 32
select external scan in (1-N) 38 and external scan enable 39, respectively, such that external
scan in (1-N) 38 is provided as scan in (1-N) 41 to processor 12 and external scan enable 39
is provided as scan enable 42. Similarly, when stop and test enable 44 is not asserted,
demultiplexer 38 provides scan out (1-N) 40 from processor 12 to external scan out (1-N) 37.
In this manner, an external tester may be coupled to the scan input and outputs of processor
12 in order to scan test processor 12. For example, after manufacture of processor 12 or of
data processing system 10, processor 12 may be factory tested using a traditional tester
coupled to external scan out (1-N) 37, external scan in (1-N) 38 and external scan enable 39.
Therefore, traditional scan test methodology may be used to perform this factory testing.
However, stop and test circuitry 14 can be used to provide improved testing of processor 12
during actual operation, such as while being used by an end user. Operation of stop and test
circuitry 14 will be further described below in reference to FIGs. 2 and 3. (Note that
operation of other portions of data processing system 10 operate as known in the art, and
therefore, only those portions of data processing system 10 and processor 12 relevant to
understanding the embodiments described herein will be described in more detail.)

FIG. 2 illustrates a portion of processor 12 (within the dotted line) and a portion of
stop and test circuitry 14 (outside the dotted line) in accordance with one embodiment of the
present invention. In general, the circuitry of processor 12 can be illustrated as a plurality of
flip flops or latches which receive inputs from combinational logic or circuitry and provide

outputs to combinational logic or circuitry. For example, FIG. 2 illustrates a small portion of
4-

10

15

20

25

30

WO 2007/103591 PCT/US2007/060660

the circuitry of processor 12 which includes D flip flops 128-130 and 146-147 and
combinational logic 140 and 142. Each of combinational logic 140 and 142 may include any
type of combinatorial logic to perform a variety of different functions. For example, each of
140 and 142 may include any number of logic gates (such as, for example, AND gates, OR
gates, NOR gates, XOR gates, etc.).

Flip flop 128 and flip flop 129 provide their outputs to combinational logic 140 and
combinational logic 140 provides an output to multiplexer 144, which provides its output to
flip flop 146. Similarly, flip flop 129 and flip flop 130 provides their outputs to
combinational logic 142 and combinational logic 142 provides an output to multiplexer 145,
which provides its output to flip flop 147. Flip flop 130 also provides its output, Soutl 109,
to signature analyzer 112 and to other logic 150 (e.g., other combinational logic within
processor 12, not illustrated in FIG. 2). Multiplexer 144 also receives Sin2 110 as an input.
Each of flip flops 128-130 receive a data input from multiplexers 131-133, respectively.
Multiplexer 131 receives an input Sinl 108 from random pattern generator 102 and another
input from other logic 134 (e.g., other combinational logic within processor 12, not illustrated
in FIG. 2). Multiplexer 132 receives the output of flip flop 128 as an input and receives
another input from other logic 135 (e.g., other combinational logic within processor 12, not
illustrated in FIG. 2). Multiplexer 133 receives the output of flip flop 129 as an input and
receives another input from other logic 136 (e.g., other combinational logic within processor
12, not illustrated in FIG. 2). Also, flip flop 146 provides its output to an input of multiplexer
145 and to other logic 148 (e.g., other combinational logic within processor 12, not illustrated
in FIG. 2). Flip flop 147 provides its output SOUT2 111 to signature analyzer 112 and to
other logic 149 (e.g., other combinational logic within processor 12, not illustrated in FIG. 2).

Note that processor 12 may include any type of configuration. For example, the
outputs of any of the flip flops may be provided to any number of combinational logic
portions, and may even be fed back to a combinational logic portion which provides an input
to the same flip flop. Similarly, each flip flop can receive its input from any combinational
logic portion. Processor 12 may include any number of flip flops and any amount of
combinational logic, as needed, to perform the functions of processor 12. Also, processor 12
can be described as including any number of logic blocks coupled together, where each logic
block may include at least one scan chain or portion of a scan chain. Therefore, all of
processor 12 or one or more logic blocks of processor 12 can be scan tested.

Outside of the dotted line of FIG. 2 is illustrated a portion of stop and test circuitry 14,

which includes a random pattern generator 102, a stop and test controller 100, signature
5.

10

15

20

25

30

WO 2007/103591 PCT/US2007/060660

analyzer 112, signature comparator 114, expected signature storage 116, and a test result
registers 118. Random pattern generator 102 provides Sinl 108 and Sin2 110 to processor
12. Note that Sinl 108 and Sin2 110 can be two of the scan in (1-N) 41 inputs to processor
12 illustrated in FIG. 1 which are received from stop and test circuitry 14 via multiplexers 30
when stop and test enable 44 is asserted. Soutl 109 and Sout2 111 are provided to signature
analyzer 112. Note that Soutl 109 and Sout2 111 can be two of the scan out (1-N) 40 outputs
from processor 12 illustrated in FIG. 1 which are provided from processor 12 to stop and test
circuitry 14 via demultiplexer 28 when stop and test enable 44 is asserted. Also, stop and test
controller 100 provides scan enable (SE) 138 to all of multiplexers 131-133, 144, and 145.
Note that SE 138 can be scan enable 42 to processor 12 illustrated in FIG. 1 which is received
from stop and test circuitry 14 via multiplexer 32 when stop and test enable 44 is asserted.

Note that in FIG. 2, the outputs and inputs between stop and test circuitry 14 and
processor 12 are illustrated as direct connections without multiplexers 28, 30, and 32 so as
not to overcomplicate FIG. 2. Also, if external scan connections are not required for
processor 12, then data processing system 10 may also not include multiplexers 28, 30, and
32, and the inputs and outputs between stop and test circuitry 14 and processor 12 would be
directly connected, as illustrated in FIG. 2.

Still referring to FIG. 2, stop and test controller 100 receives a reset 106 and provides
a reset 48 to all of flip flops 128-130, 146, and 147. In one embodiment, reset 106 is a signal
received via bus 26. Reset 106 is also provided to signature analyzer 112, random pattern
generator 102, and test result register 118. Stop and test controller 100 also includes restore
vector 152, maximum clocks 154, and minimum clocks 156. These may be registers or other
storage circuitry located in stop and test controller 100 (or may even be located elsewhere
within stop and test circuitry 14 or data processing system 10). Stop and test controller 100
receives interrupt indicator 22 from interrupts controller 20, provides forced error signal 158
and start 160 to random pattern generator 102, provides signature identifier 124 to expected
signature storage 116, and provides compare 126 to signature comparator 114. Signature
comparator 114 receives a signature 120 from signature analyzer 112 and an expected
signature 115 from expected signature storage 116, and compares the two and provides a
compare result 122 to test result register 118. Test result register 118 may also be
bidirectionally coupled to bus 26. Note that test result register 118 and expected signature
storage 116 may each be implemented as registers or may be implemented as any other

storage circuitry. For example, they may be located in memory within data processing

6-

10

15

20

25

30

WO 2007/103591 PCT/US2007/060660

system 10. Also, test result register 118 and expected signature storage 116 may be located
anywhere within data processing system 10.

A clock 104, which may be generated as known in the art, is provided to random
pattern generator 102, stop and test controller 100, signature analyzer 112, and processor 12
(e.g. to cach of flip flops 128-130, 146, and 147). Clock 104 may represent the only clock
within data processing system 10, or may represent one clock domain of data processing
system 10 or processor 12. In this case, other portions of processor 12 may, for example, be
located within a different clock domain and therefore receive a different clock (different from
clock 104). Each of the clock domain clocks may be generated from a same system clock or
may be separately generated. These clocks, regardless of the configuration, may be generated
and provided as known in the art.

In operation, note that multiplexers 131-133, 144, and 145 allow for the scan testing
of processor 12. These multiplexers are used to create various scan chains (two of which are
illustrated in FIG. 2, one having input Sinl 108 and output Soutl 109 and another having
input Sin2 110 and Sout2 111). For example, one scan chain includes flip flops 128-130,
where, when SE 138 is asserted, scan chain input Sinl 108 is provided as input to flip flop
128, the output of flip flop 128 is provided as input to flip flop 129, the output of flip flop 129
is provided as input to flip flop 130, and the output of flip flop 130 provides the scan chain
output Soutl 109. Similarly, another scan chain of processor 12 includes flip flops 146 and
147, where, when SE 138 is asserted, scan chain input Sin2 110 is provided as input to flip
flop 146, the output of flip flop 146 is provided as input to flip flop 147, and the output of flip
flop 147 provides the scan chain output Sout2 111. Therefore, when SE 138 is asserted, scan
inputs and outputs may be shifted in and out, respectively, in order to test all or portions of
processor 12.

When SE 138 is not asserted, note that processor 12 operates normally, where the
inputs flip flops 128-130, 146, and 147 are provided by combinational logic of processor 12,
and the output are provided to combinational logic of processor 12. That is, during normal
operation with SE 138 not asserted, the inputs and outputs of the flip flops are not chained,
thus not forming the scan chains described above.

Note that in the illustrated embodiment, a mux-D scan chain configuration is
illustrated where multiplexers are used at the inputs of each of the D flip flops so that the D
flip flops may be configured for normal operation and be configured as scan chains for
testing. However, note that other scan chain configurations and other memory elements may

be used. For example, a Level-Sensitive Scan Design (LSSD) configuration, as known in the
-7-

10

15

20

25

30

WO 2007/103591 PCT/US2007/060660

art, may be used. Note also that the scan chain configuration of processor 12 may vary. For
example, processor 12 may include a single scan chain or any number of scan chains. Also, a
single or any number of scan chains may exist for each clock domain, as was described
above. Also, each scan chain can be of any arbitrary length (thus including any arbitrary
number of flip flops or other memory elements). In addition, in some embodiments, the scan
chain organization may be configurable, such that scan chain connections may be modified
to allow for changing the number and/or length of the scan chains within a portion of
processor 12. This configuration may be accomplished by modifying the inputs to and
controls of multiplexers 131, 132, 133, 144, and 145 to effect an alternate interconnection of
the output of the flip flops of processor 12. This control may be supplied by stop and test
controller 100, or may be provided from elsewhere within data processing system 10.

Note that the flip flops of processor 12, during normal operation when SE 138 is
negated, store the current state of the processor. With each clock pulse, the values of the flip
flops are updated accordingly, based on the values which propagate through the
combinational logic from one flip flop to another. For example, during normal operation
when SE 138 is negated, the outputs of flip flops 128 and 129 propagate through
combinational logic 140 to produce an input to multiplexer 144. Upon clock 104 clocking
flip flop 146, this output of combinational logic 140 is stored into flip flop 146 via
multiplexer 144 (since the select signal for multiplexer 144, SE 138, is negated). When
shifting during scan testing is performed (where SE 138 is asserted), the flip flops form scan
chains (as was described above), where a number of scan chain inputs (i.e. test stimulus or
test inputs) are shifted in. Once a number of inputs has been shifted in, SE 138 is negated,
such that the next clock produces a functional cycle during testing where the test results,
resulting from the shifted-in test inputs propagating through the combinational logic, are
captured in the scan chains. SE 138 is then again asserted such that the captured output is
then shifted out. In this manner, inputs (test stimulus) are provided to processor 12 with SE
138 asserted, a clock is then provided with SE 138 negated so as to provide a functional
cycle, and the outputs are then read out of processor 12 with SE 138 again asserted.

In one embodiment, note that as the number of inputs are shifted in with SE 138
asserted, the same number of outputs are being shifted out. That is, each time a test input is
shifted in, a test output is simultaneously shifted out. Also, any number of test inputs and
outputs may be shifted in and out, respectively, before negating SE 138 to allow for a
functional cycle. This number may be any integer greater than or equal to 1. For example, in

one embodiment, after one input is shifted in (while one output is shifted out), SE 138 is
_8-

10

15

20

25

30

WO 2007/103591 PCT/US2007/060660

negated such that a functional cycle occurs with the next clock. In an alternate embodiment,
five inputs may be shifted in (while five outputs are shifted out) before negating SE 138 to
allow for a functional cycle. Therefore, during scan testing, clock 104 may be described as
allowing for test input/output shifting cycles where inputs and outputs are shifted into and out
of the scan chains with SE 138 asserted and as allowing for functional cycles where SE 138 is
negated such that the test results, resulting from the shifted-in test stimulus propagating
through the combinational logic, are captured.

For example, referring to FIG. 2, for scan testing, SE 138 is asserted and a particular number
of test inputs are scanned into the scan chains. That is, a particular number of clock cycles of
clock 104 are used to input test inputs into each chain. For example, in a first test
input/output shift cycle of clock 104, a test stimulus is shifted into each of flip flops 128 and
146 via Sinl 108 and Sin2 110, respectively. During this first test input/output shift cycle of
clock 104, values are also be shifted out from flip flops 130 and 147 via Soutl 109 and Sout2
111, respectively. During the next test input/output shift cycle of clock 104, the values that
were in flip flops 128 and 146 are shifted into flip flops 129 and 147, respectively, and the
value in flip flop 129 is shifted into flip flop 130. The values of flip flops 130 and 147 are
output as Soutl 109 and Sout2 111, respectively. Any number of these test input/output shift
cycles may occur, as desired. After the desired number of test input/output shift cycles, a
functional cycle is performed by negating SE 138. In this functional cycle, the values which
propagate from other logic 134, from other logic 135, from other logic 136, from
combinational logic 140, and from combinational logic 142 are captured into flip flops 128-
130, 146, and 147, respectively, with clock 104. During the next test input/output shift
cycles, these captured values are shifted out (as new inputs are being shifted in).

Note that typically, prior to starting scan testing, the flip flops are reset to a known
value, such as, for example, logic level zero. Also note that prior to starting scan testing, the
flip flops may be configured into one of several alternatives for defining the number of scan
chains and the scan chain lengths. The configuration control may be supplied from stop and
test controller 100 of FIG. 2, or from elsewhere within data processing system 10

Based on the test inputs shifted in, particular results are expected. Therefore, the
output values that are shifted out of the scan chains can be provided to a signature analyzer to
create a signature which is then compared to an expected signature corresponding to the
shifted-in test inputs. If they do not match, a failure is indicated. Note that in one
embodiment, predetermined vectors of inputs may be shifted in where each of these

predetermined vectors has a corresponding expected signature. Alternatively, LBIST may be
9.

10

15

20

25

30

WO 2007/103591 PCT/US2007/060660

used where a pseudo random number generator may be used to produce pseudo random
vectors (test inputs), i.e. not predetermined vectors. These vectors also have associated
expected signatures which can be used to determine pass or failure of the test.

Note that scan testing is a good way of providing the overall health of a system. That
18, it may be used to casily test all, a majority, or simply a large portion of the device being
tested (i.e. a device under test, or DUT, which is processor 12 in the example of FIG. 2).
However, since scan testing requires the use of the same flip flops which store states of the
DUT, it is very intrusive, in that the current state of the DUT is lost upon scan testing. Also,
LBIST is a convenient way to test the overall health of a DUT through the use of pseudo
random patterns in scan testing. LBIST provides scan stimulus based off of pseudo-random
numbers to the DUT. The fault coverage obtained through the usage of previously mentioned
scan stimulus can be represented by a non-linear coverage graph, where, for example, the
increase in test coverage begins to rapidly drop off after a certain number of clocks. The
actual coverage obtained is determined by the tool that was used during the LBIST generation
and the pass/fail status is determined by comparing the actual versus expected signatures.
There are typically two ways to obtain higher fault coverage: by inserting controllability
and/or observability points into the design or repeating the sequence longer. Therefore,
LBIST and scan testing is typically done at the factory, prior to shipping devices to end users
(thus prior to normal operation by an end user), where it is irrelevant whether the testing is
intrusive.

As will be described in reference to FIGs. 2 and 3, an embodiment of the present
invention allows for this type of intrusive testing during normal operation. That is, software
may be written which allows processor 12 to be scan tested during normal operation, such as
when in use by an end user. For example, in one embodiment, a software instruction, such as
a stop and test instruction, may be used in a user application to initiate the scan testing of
processor 12. Alternatively, a software instruction may result in some action which causes
the scan testing of processor 12. For example, an instruction which writes a bit to a particular
register or address location may initiate scan testing of processor 12. In this manner, note
that software executing on processor 12 can result in the generation of a stop and test
indicator which initiates scan testing of processor 12 itself. Therefore, an overall confidence
level of all or most of processor 12 can be achieved through software control during normal
operation without the need for writing complex software test functions, as is currently done in
the art. As described above, these software test functions only tested portions of processor 12

with software, and provided only limited coverage, unlike scan testing.

-10-

10

15

20

25

30

WO 2007/103591 PCT/US2007/060660

Also, as illustrated in FIG. 1, processor 12 may include other modules monitor 50
which monitors other modules, such as other modules 16, within data processing system 10,
to determine when a stop and test procedure should be performed. In one embodiment, other
modules monitor 50 may therefore provide a stop and test indicator to processor 12 in
response to a particular activity or activities of one or more other modules in data processing
system 10. In response to the stop and test indicator, scan testing of all or a portion of
processor 12 may be initiated, or portions of circuitry outside of processor 12 may be tested
instead of or in addition to processor 12. For example, other modules monitor 50 may also
provide an indication as to which of other modules 16 (or portions of other modules 16) are
to be scan tested during the stop and test procedure.

Note that the descriptions of FIGs. 2 and 3 will be provided with respect to processor
12 being the DUT. However, the descriptions herein also apply to the DUT being any
portion of processor 12 (such as one or more logic blocks of processor 12) or any other
portion of data processing system 10. That is, the scan chains of FIG. 2 may be of some other
module in data processing system 10 rather than being processor 12. In one embodiment,
stop and test circuitry 14 may be shared and used in testing processor 12 in addition to any of
the other modules of data processing system 10, or separate stop and test circuitry may be
used for processor 12 and for any other modules capable of being scan tested during normal
operation in the manner to be discussed herein.

FIG. 3 illustrates a method of scan testing during normal operation in accordance with
one embodiment of the present invention. For ease of explanation, it will be described in
reference to FIGs. 1 and 2; however, it can apply to any system and DUT, and not just data
processing system 10 and processor 12. Flow begins with block 200 where data processing
system 10, including processor 12, is manufactured. Flow proceeds to block 202 where
factory testing of data processing system 10 is performed. This factory testing may include,
for example, scan testing, LBIST, or any other type of testing, and is typically performed
prior to providing the system to any end user. This factory testing may be intrusive (i.e. may
scramble the state of the device), since the device is not yet being used in an end user
application. Furthermore, more time is typically available for this factory testing. Also, the
timing of this factory testing does not need to be controlled by the end user application.

Flow then proceeds to block 204 where data processing system 10 may be included in
an end user application. For example, data processing system 10 may be included into an
automobile, hand held device, etc. In one embodiment, the factory testing described in block

202 may be performed only on processor 12. In this case, processor 12, in block 204, may
11-

10

15

20

25

30

WO 2007/103591 PCT/US2007/060660

then be included into a data processing system such as data processing system 10 and may
then also be included into an end user application. In one embodiment, data processing
system 10 may itself be an end user application.

Flow proceeds from block 204, via point A, to block 206 where a user application is
executed. For example, once processor 12 is in an end user application, such as an
automobile, user applications are executed on processor 12. At this point, the data processing
system 10 is out of the factory and in the hands of an end user. Flow then proceeds to
decision diamond 208 where it is determined whether the user application has indicated a
stop and test procedure. As was discussed above, this may be done by the user application in
a variety of ways. In one embodiment, a stop and test software instruction within the user
application may have been decoded to indicate a stop and test procedure. Alternatively, a
software instruction within the user application which writes to a particular register or
memory location may have been detected by circuitry within processor 12, indicating a stop
and test procedure. In either case, when a stop and test procedure is indicated within
processor 12, stop and test indicator 24 is provided from processor 12 to stop and test
circuitry 14. In the former embodiment of the stop and test software instruction, the
instruction decoder of processor 12 may provide stop and test indicator 24, and in the latter
embodiment of writing to a particular location, circuitry which polls the particular location or
otherwise detects the write may provide stop and test indicator 24. (Alternatively, a stop and
test procedure can be indicated by other modules monitor 50, as was described above.)

Referring back to FIG. 3, if the user application has not indicated a stop and test
procedure, flow returns to point A where user applications continue to execute. If a stop and
test procedure is indicated, flow proceeds to block 210 where execution of the user
application is stopped and the state of processor 12 is saved. If necessary, the values within
all or a portion of the flip flops in processor 12 may be saved so as to be able to continue
executing from a same point after the stop and test procedure. Alternatively, though, the user
application may be in an idle state when a stop and test procedure is indicated, thus not
requiring the state to be saved. In yet another alternate embodiment, only some of the flip
flops may need to be saved, thus saving time and resources. In this alternate embodiment,
software may be used to indicate which portions of processor 12 are to be saved. Also, if the
saving of states is required, additional software instructions may be provided in the user
application to indicate which flip flops are to be saved and where, or an additional software

instruction may be provided which indicates that all flip flops are to be saved. Alternatively,

12

10

15

20

25

30

WO 2007/103591 PCT/US2007/060660

upon indication of a stop and test procedure, specialized hardware circuitry may be used to
perform a faster save of the current state of all or a portion of the flip flops.

After the state is optionally saved, flow proceeds to block 212 where stop and test
indicator 24 is provided to, for example, stop and test circuitry 14. Flow proceeds to block
214 where a reset is performed. For example, stop and test circuitry 14 provides reset 48 to
the flip flops of processor 12 and to any other circuitry that needs to be reset within data
processing system 10, such as, for example, random pattern generator 102, signature analyzer
112, and test results register 118. This ensures, for example, that the stop and test procedure
begins with known values. In one embodiment, the reset (such as reset 48) does not reset
everything, where, for example, software may be used to initialize registers.

Flow then proceeds to block 216 where a clock count check point is selected as a
current check point. That is, since the testing is being performed during normal operation,
such as during the execution of a user application, time may not allow for full testing each
time a stop and test procedure is indicated. Therefore, test results may only need to be
compared and analyzed if a particular number of clocks has been reached first. For example,
the following is a sample table which relates the number of clocks to fault coverage of the
DUT provided by LBIST. (The following table is only being provided as an example, where

the actual values would be design-sensitive.)

Number of Clocks Coverage
20 5%

100 10%

500 30%
2000 70%

Therefore, if 500 clocks can be provided, then a coverage of 30% is achieved, etc.
Therefore, in one embodiment, test results are only updated upon reaching particular clock
check points. In one embodiment, the clock check points are set up according to the desired
coverage levels, for example, at 5%, 10%, 30% etc., where the test results are updated after
20 clocks (corresponding to 5%), after 100 clocks (corresponding to 10%), after 500 clocks
(corresponding to 30%), etc. Also, in the current embodiment, the number of clocks in the
above table refer to functional clock cycles (as was described above) where clocks provided
for test input/output shift cycles are not counted. However, in an alternate embodiment, the
table can be set up such that the number of clocks represents all clocks provided. Therefore,

in block 216, a first clock count check point is selected, such as, for example, 20 clocks.

13-

10

15

20

25

30

WO 2007/103591 PCT/US2007/060660

Flow proceeds to block 218 where test stimulus is shifted in while shifting out test
results to signature analyzer 112 for x clocks with SE 138 asserted. As described above, any
number, X, of test input/output shift cycles may be performed, where x may be any integer
greater than or equal to one. Also, in the illustrated embodiment, LBIST is being performed
during the stop and test procedure. Therefore, referring to FIG. 2, stop and test controller
100, in response to stop and test indicator 24, provides start 160 to random pattern generator
102 (which, in one embodiment, is a pseudo random pattern generator) and asserts SE 138.
In response to start 160, random pattern generator 102 begins providing pseudo random
inputs to the scan chains via Sinl 108 and Sin2 110. (Note that as these inputs are being
provided via Sinl 108 and Sin2 110, outputs are also being shifted out via Soutl 109 and
Sout2 111.)

Flow then proceeds to block 220 where a system clock (e.g. clock 104) is provided
with SE 138 negated (so as to provide a functional clock cycle) so that test outputs can be
captured in the scan chains based on the test stimulus that was shifted in in block 218. Also,
a clock count is incremented, which keeps track of the clocks provided for functional cycles.
In one embodiment, this clock count is kept in test results register 118, where test results
register 118 may include, for example, a clock count field. That is, in one embodiment, test
result register 118 may store a value quantifying the clock cycles. Alternatively, this clock
count can be stored elsewhere within data processing system 10, where, as will be described
below, the clock count field of test result register 118 may only store a clock count when a
clock count check point is reached.

Flow proceeds to decision diamond 221 where it is determined whether an interrupt
has been received. For example, in one embodiment, data processing system 10 includes
interrupt controller 20 which determines when an interrupt is received in data processing
system 10. When an interrupt is received, it provides an interrupt indicator 22 to stop and test
circuitry 14. In the current embodiment, any interrupt causes the stop and test procedure to
end and normal operation to resume. Alternatively, only particular interrupts or interrupts of
a particular priority level may cause the stop and test procedure to end and normal operation
to resume. Referring back to FIG. 3, if an interrupt has been received (indicated to stop and
test circuitry 14 by interrupt indicator 22), flow proceeds through point B to block 234 where
another reset is performed. This reset is similar to the reset described in reference to block
214. Flow proceeds to block 236 where execution commences at a restore vector location.
That is, a restore vector can be used to indicate where execution by processor 12 should

resume. This restore vector may be restore vector 152 of FIG. 2 and stored within stop and
-14-

10

15

20

25

30

WO 2007/103591 PCT/US2007/060660

test controller 100 (or elsewhere within stop and test circuitry 14). Alternatively, the effect of
this restore vector could be inherent in the logic of processor 12, in which case, restore vector
152 in stop and test controller 100 would be unnecessary. Flow then proceeds to block 238
where the state, if it was saved in block 210, is restored. Flow then returns to point A where
user applications continue to execute.

Note that if, at decision diamond 221, an interrupt is received before the first clock
check point is reached, then no test results may be stored for the stop and test procedure
initiated by the yes branch from decision diamond 208 to block 210. If, at decision diamond
221 an interrupt has not been received, flow proceeds to decision diamond 222 where it is
determined whether the clock count (of, e.g., test result register 118) has reached or exceeded
the first clock count check point (i.e. the current check point). (Note that in one embodiment,
as described above, the clock count field of test result register 118 only stores the clock count
when a clock count check point is reached, thus test result register 118 may always show the
latest clock count check point reached. In this embodiment, the actual clock count which is
incremented in block 220 and used to determine if the current check point has been reached
or exceeded in decision diamond 222 may be stored elsewhere within processor 12 or data
processing system 10, or may even be stored in another field of test result register 118.) If, at
decision diamond 222, the current clock count check point has not been reached or exceeded,
flow returns to block 218 where more test stimulus is shifted in and more test results are
shifted out and to block 220 where another functional clock cycle will be performed, in an
attempt to reach the current check point.

If, at decision diamond 222, the clock count has reached or exceeded the current
check point, flow proceeds to block 224 where a signature calculated from the shifted-out test
outputs (e.g. Soutl 109 and Sout2 111) is compared with the expected signature and a
pass/fail indicator is adjusted accordingly. In one embodiment, test results register also
includes a pass/fail indicator which may be a single bit that remains a logic level one so long
as the tests continue to indicate a pass, and becomes a logic level zero when the tests results
in a fail (i.e. when the test results do not match the expected signature). Alternatively, a
pass/fail indicator may be provided within test results register 118 for each clock count check
point of the above table where a logic level one would indicate a pass at the corresponding
check point and a logic level zero would indicate a fail at the corresponding check point, or
vice versa. Alternatively, other methods of storing pass/fail results may be used.

Referring to FIG. 2, note that the test results shifted out from the scan chains via

Soutl 109 and Sout2 111 are provided to signature analyzer 112. Signature analyzer 112
15-

10

15

20

25

30

WO 2007/103591 PCT/US2007/060660

creates a signature 120 based on these outputs and provides signature 120 to signature
comparator 114 based on a compare 126 which is provided by stop and test controller 100 to
enable the comparison. Also, expected signature storage 116 provides expected signature
115 to signature comparator 114 for the comparison. The expected signature from expected
signature storage 116 is selected based on signature identifier 124 received from stop and test
controller 100. Therefore, stop and test controller 100 controls random pattern generator 102
and controls the selection of the expected signature accordingly. Note that a conventional
pseudo random pattern generator and signature analyzer, as known in the art, may be used.
Furthermore, the expected signatures stored in storage 116 may also be created as known in
the art. For example, expected signatures can be calculated by simulation of the DUT.

Still referring to FIG. 2, signature comparator 114 compares signature 120 with
expected signature 115 and provides compare result 122 to test results register 118. The
appropriate pass/fail indicator in test results register 118 can then be updated as needed to
reflect compare result 122. For example, if compare result 122 indicates a match, then
pass/fail indicator is set to indicate a pass (such as being set to a logic level one). If,
however, compare result 122 indicates a mismatch, then pass/fail indicator is set to indicate a
fail (such as being cleared to a logic level zero).

Referring back to FIG. 3, flow proceeds to decision diamond 226 where it is
determined whether a pass or fail was indicated as a result of the comparison in block 224. If
a pass occurred (indicating, e.g., that signature 120 did match expected signature 115, as
indicated by compare result 122), then flow proceeds to decision diamond 228. In decision
diamond 228, it is again determined whether an interrupt has been received. This interrupt,
as described above, may be indicated to stop and test circuitry 14 via interrupt 22. The same
descriptions provided for the interrupt in decision diamond 221 also apply to decision
diamond 228. If an interrupt has been received, flow proceeds to block 234 where flow
proceeds through blocks 234, 236, 238, 206, ctc., as was described above. Therefore, when
an interrupt is received, testing does not continue, and normal operation resumes (where, for
example, execution of the user application resumes).

However, if an interrupt has not been received at decision diamond 228, flow
proceeds to decision diamond 230 where it is determined whether a maximum clock count
has been reached. For example, in one embodiment, a maximum clock count may be used
(which may correspond, for example, to maximum clocks 154 of FIG. 2, stored in stop and
test controller 100, or elsewhere within stop and test circuitry 14). If the maximum clock

count has been reached, flow returns to decision diamond 228 to determined whether an
-16-

10

15

20

25

30

WO 2007/103591 PCT/US2007/060660

interrupt has been received. (Also, as will be discussed further below, if a failure has been
indicated, such as at block 227, flow also returns to decision diamond 228.) If the maximum
clock count has been reached, testing does not continue, and instead, flow continues between
decision diamonds 228 and 230 until an interrupt is received. At that point, flow proceeds
from decision diamond 228 to block 234, where normal operation resumes, as described
above. (In an alternate embodiment, upon reaching the maximum clock count, the stop and
test procedure stops and flow proceeds to block 234 where execution of the user application
resumes without awaiting for an interrupt.) If, at decision diamond 230, the maximum clock
count has not yet been reached (and since no interrupt has yet been received to stop the stop
and test procedure), flow proceeds to block 232 where a next clock count check point is
selected as the current check point. For example, referring to the table above, the next clock
count check point may refer to the next entry of 100 clocks. That is, the next time the test
results will be updated (in block 224) will be if the current clock count reaches 100 clocks
before an interrupt is received.

In one embodiment, if the clock count does not reach the current clock count check
point because, for example, an interrupt occurred before a sufficient number of functional
clocks was provided, the next stop and test procedure has to start again from the beginning,
where, for example, the current clock count check point for the next stop and test procedure is
set back to the first clock check point (which, in the sample table given above, is 20 clocks).

Referring back to decision diamond 226, if a fail occurred (indicating, e.g., that
signature 120 did not match expected signature 115, as indicated by compare result 122), then
flow proceeds to block 227 where a failure is indicated. Note that indicating a failure can
refer to the adjusting of the pass/fail indicator in test results register 118 described above in
reference to block 224, or may also include providing an additional output indicating failure.
Flow then proceeds to decision diamond 228 where it is determined whether an interrupt is
received. Flow proceeds as was already described above in reference to decision diamond
228. Note that, in the illustrated embodiment, flow continues between decision diamonds
228 and 230 until an interrupt has been received, causing flow to continue to block 234, thus
resuming normal operation (e.g., resuming execution of the user application). In an alternate
embodiment, at decision diamond 230, if the maximum clock count has been reached or if a
failure has been indicated, flow could immediately continue to block 234 and execution of
the user application could resume without having to wait for an interrupt to exit the stop and

test procedure.

17-

10

15

20

25

30

WO 2007/103591 PCT/US2007/060660

In an alternate embodiment, the flow of FIG. 3 may also include a minimum clocks
check. For example, as illustrated in FIG. 2, minimum clocks 156, stored within stop and test
controller 100 (or elsewhere within stop and test circuitry 14) may be used during the stop
and test procedure. In one embodiment, a minimum number of clocks should be received
before any results are updated. In another embodiment, a minimum number of clocks is
received before even checking if an interrupt has been received (such as at decision diamond
221). Also, in another alternate embodiment, the maximum clock count may not be used. In
this case, decision diamond 230 would only include a check for whether a failure occurred.

FIG. 3 was described in reference to LBIST testing being performed during the stop
and test procedure. However, in alternate embodiments, other types of scan testing may be
performed. Alternatively, other types of testing, including testing which scrambles a
processor’s state, other than or in addition to scan testing may be performed during the stop
and test procedure. In these cases, stop and test circuitry 14 may include different circuitry or
additional circuitry from that illustrated in FIG. 2 to accomplish the desired type or types of
testing. Furthermore, note that the flow of FIG. 3 is one example, and that alternate flows
may be used which include additional steps, which include less steps, or which combine
steps.

Also, note that the descriptions above describe scan testing where test stimulus are
shifted into the scan chains and test outputs are shifted out of the scan chains. However, in
alternate embodiments, test stimulus may be applied differently. For example, they may be
loaded into the scan chain or scan chains in parallel. Similarly, the scan test outputs may be
read from the scan chain or scan chains in parallel.

Therefore, it can be appreciated how various embodiments of the present invention,
such as, for example, the flow of FIG. 3, allow for software directed intrusive testing during
normal operation such that a data processing system, a processor, or portions thereof, can be
intrusively tested after leaving the factory and during normal operation such as in an end user
application. Since it is the software of processor 12 which “has knowledge” of when
processor 12 itself is idle or is otherwise able to be intrusively tested, the ability for software
running on processor 12 to be able to control how and when this intrusive testing is
performed (through the use, for example, of stop and test indicator 24) may allow for
improved testing during normal operation in an end user application. Similarly, it is typically
software (running on processor 12 or another processor coupled to bus 26) which has
knowledge of when a coprocessing or peripheral device coupled to bus 26 is or can be idle.

For example, the software may have this knowledge by monitoring system activity, by
18-

10

15

20

25

30

WO 2007/103591 PCT/US2007/060660

following a protocol, or by flow-control. Therefore, since the software knows when the state
of a device can be scrambled (through intrusive testing) and then recovered from in an
organized way (through, for example, reset and restoring operation), the software may
perform intrusive testing of processor 12 or of other portions of data processing system 10 or
both. In one embodiment, the stop and test indicator 24 from processor 12 may also indicate
which module or portion of data processing system 10 may be intrusively tested.

In the illustrated embodiment of FIG. 2, stop and test controller 100 provides a forced
error signal 158 to random pattern generator 102. This signal may be used to test and ensure
that the testing circuitry itself is operating correctly. For example, forced error signal 158
may be set such that a failure is ensured (such that at least one signature will not match a
corresponding expected signature by, for example, causing a variation in an output of random
pattern generator 102). However, if test results register 118 does not indicate a failure, then
there may be a problem with testing circuitry itself. Therefore, forced error signal 158
provides a way for producing a known result in order to ensure the proper operation of the
testing circuitry itself. A software instruction may be used to provide this forced error signal,
or alternatively, this may be done by hardware periodically to ensure proper operation.

FIG. 4 illustrates an alternate embodiment of a scan chain which may be present in
processor 12. The scan chain of FIG. 4 utilizes additional XOR gates to propagate inputs
faster into the farther ends of the scan chains, in accordance with one embodiment of the
present invention. FIG. 4 includes flip flops 301-306 which are configurable to operate in
normal operation (receiving inputs from combinational logic 312, 314, 316, 318, and 320,
respectively) and configurable to operate as a scan chain (received inputs from another flip
flop). Note that in the embodiment of FIG. 4, each flip flop internally includes the
functionality of the multiplexers which were located at the inputs of the flip flops in FIG. 2.
Each flip flop in FIG. 4 receives a scan enable (SE) and a clock input. When SE is negated,
each flip flop operates on the inputs received via the “D” input, thus allowing for normal
operation. When SE is asserted, each flip flop operates as a scan chain where inputs are
propagated into the scan chain via the “SD” input. Although not shown in FIG. 4, the outputs
of the flip flops would also be provided to combinational logic. Note that these same type of
flip flops may also be used in the embodiment of FIG. 2.

The scan chain of FIG. 4 also includes exclusive-OR (XOR) gates 308 and 310. XOR
gate 308 receives a first input from the output of flip flop 301 and a second input from the
output of flip flop 303. XOR gate 310 receives a first input from the output of flip flop 304

and a second input from the output of flip flop 305. The XOR gates allows test inputs to
-19-

10

15

20

25

30

WO 2007/103591 PCT/US2007/060660

propagate further down the scan chain with a fewer number of clocks. That is, since the
outputs of some of the flip flops (such as, for example, flip flop 301) are fed forward to flip
flops further down the scan chain (such as, for example, flip flop 304) via an XOR gate, the
flip flops which receive these forwarded values are able to change state earlier than waiting
for the test inputs to propagate through all of the previous flip flops of the scan chain. In this
manner, testing of the more remote sections of the scan chain can be performed with fewer
clock cycles because so long as the states of these more remote flip flops change states,
stimulus is provided to more circuitry, possibly allowing for more testing coverage.

Note that other logic gates, such as, for example, exclusive-NOR (XNOR) gates, can
be used in place or in addition to XOR gates 308 and 310. Also, any number of flip flops
may be present between the inputs of the gates, and is not limited to the number illustrated in
FIG. 4. For example, the placement of the gates, such as XOR gates 308 and 310, can be
chosen to produce the best scan stimulus for a particular design.

Also, note that one or more scan chains of processor 12 may be described as including
a first memory element, a chain of memory elements, and a second memory element, where
an output of the first memory element is connected to an input of the chain of memory
elements and to an input of at least one logic gate, and an output of the at least one logic gate
is connected to an input of the second memory element. For example, the memory elements
may be the flip flops within a scan chain, where the logic gates may be the XOR gates
described in reference to FIG. 4. The chain of memory elements may include any number of
memory elements.

In the foregoing specification, the invention has been described with reference to
specific embodiments. However, one of ordinary skill in the art appreciates that various
modifications and changes can be made without departing from the scope of the present
invention as set forth in the claims below. For example, the block diagrams may include
different blocks than those illustrated and may have more or less blocks or be arranged
differently. Also, the flow diagrams may also be arranged differently, include more or less
steps, be arranged differently, or may have steps that can be separated into multiple steps or
steps that can be performed simultancously with one another. Accordingly, the specification
and figures are to be regarded in an illustrative rather than a restrictive sense, and all such
modifications are intended to be included within the scope of present invention.

Benefits, other advantages, and solutions to problems have been described above with
regard to specific embodiments. However, the benefits, advantages, solutions to problems,

and any element(s) that may cause any benefit, advantage, or solution to occur or become

_20-

WO 2007/103591 PCT/US2007/060660

more pronounced are not to be construed as a critical, required, or essential feature or element

of any or all the claims. As used herein, the terms "comprises," "comprising," or any other
variation thereof, are intended to cover a non-exclusive inclusion, such that a process,
method, article, or apparatus that comprises a list of elements does not include only those
elements but may include other elements not expressly listed or inherent to such process,

method, article, or apparatus.

21-

WO 2007/103591 PCT/US2007/060660

CLAIMS

What is claimed is:

1. A method for testing at least one logic block of a processor, comprising;:
during execution of a user application by the processor, the processor
generating a stop and test indicator, in response to the generation of the
stop and test indicator stopping the execution of the user application
and, if necessary, saving a state of the at least one logic block of the
processor; and
applying a test stimulus for testing the at least one logic block of the

Proccessor.

2. The method of claim 1 further comprising decoding a stop and test instruction by the

processor to generate the stop and test indicator.

3. The method of claim 2 further comprising decoding the stop and test instruction to

determine a scan chain configuration prior to applying the test stimulus.

4. The method of claim 1, wherein applying the test stimulus further comprises shifting

in the test stimulus into at least one scan chain for a plurality of clock cycles.

5. The method of claim 4 wherein the at least one scan chain corresponds to the at least

one logic block of the processor.

6. The method of claim 4 further comprising resetting the at least one logic block of the

processor before shifting in the test stimulus.

2.

WO 2007/103591 PCT/US2007/060660

7. The method of claim 4 further comprising shifting out a first set of test results
corresponding to a first check point out of the at least one scan chain and receiving the first
set of test results into a signature analyzer to generate a first signature corresponding to the
first set of test results, wherein the first checkpoint corresponds to a first plurality of clock

cycles, and comparing the first signature to a first expected signature.

8. The method of claim 7 further comprising shifting out a second set of test results
corresponding to a second check point out of the at least one scan chain and receiving the
second set of test results into the signature analyzer to generate a second signature
corresponding to the second set of test results, wherein the second checkpoint corresponds to
a second plurality of clock cycles, and comparing the second signature to a second expected

signature.

9. The method of claim 4, wherein the at least one scan chain comprises at least a first
memory element, a chain of memory elements, and a second memory element, wherein an
output of the first memory element is connected to an input of the chain of memory elements
and to an input of at least one logic gate, and an output of the at least one logic gate is

connected to an input of the second memory element.

10. The method of claim 9, wherein the at least one logic gate is at least one of an

exclusive-OR gate or an exclusive-NOR gate.

11. The method of claim 1 further comprising operating the at least one logic block of the

processor using the test stimulus.

12. The method of claim 1 further comprising in response to a receipt of an interrupt,

executing the user application on the processor.

13. The method of claim 12, wherein executing the user application includes executing

the user application beginning at a restore vector.

_23.

WO 2007/103591 PCT/US2007/060660

14. The method of claim 13, wherein executing the user application further comprises
restoring the state of the at least one logic block of the processor, if the state of the at least

one logic block of the processor was saved.

15. The method of claim 1, wherein the plurality of clock cycles has at least one of a

predetermined maximum value and a predetermined minimum value.

16. The method of claim 1 further comprising shifting out test results out of the at least
one scan chain and receiving the test results into a signature analyzer to generate at least one

signature corresponding to the test results.

17. The method of claim 16 further comprising comparing the at least one signature to a

corresponding expected signature.

18. An apparatus for testing at least one logic block of a processor, comprising:

a test controller configured to, during execution of a user application by the
processor, generate a stop and test indicator, in response to the
generation of the stop and test indicator stop the execution of the user
application and, if necessary, save a state of the at least one logic block
of the processor;

at least one scan chain, wherein the test controller is further configured to
input a test stimulus for testing the at least one logic block of the
processor into the at least one scan chain for a plurality of clock cycles
and output test results out of the at least one scan chain;

a pattern generator configured to generate the test stimulus; and

a signature analyzer configured to generate at least one signature
corresponding to the output results and comparing the at least one

signature to a corresponding expected signature.

19. The apparatus of claim 18 further comprising a test results register configured to store

at least one value indicating test success or failure.

20. The apparatus of claim 19, wherein the test results register is further configured to

store a value quantifying the plurality of clock cycles.
_24.

WO 2007/103591 PCT/US2007/060660

21. The apparatus of claim 19, wherein the test results register is further configured to

store a value corresponding to a number of clock cycles for a last completed checkpoint.

22. The apparatus of claim 18 further comprising a test results register configured to store
a plurality of values indicating test success or failure, wherein each one of the plurality of

values corresponds to a checkpoint.

23. The apparatus of claim 18, wherein the test controller is further configured to generate
a forced error signal causing the at least one signature to not match the corresponding

expected signature.

24. The apparatus of claim 23, wherein the forced error signal causes a variation in an

output of the pattern generator.
25. The apparatus of claim 18 further comprising setting registers of the at least one logic

block of the processor to a predetermined value prior to the generation of the stop and test

indicator.

_25.

PCT/US2007/060660

WO 2007/103591

1/4

”

Ol W3LSAS
ONISSI004d
v1va

[LA

8I
AHONIW
\\QN sng
$7 YOLYOIONI
05 1531 QNY dOLS
A { \ y A
9T SOLINOW | —ri] 7T 0z
SJINON SINCON ¥3HLO| | BY ALINONID | 431104INOJ
43H10 e 1353) Jis3l Ny dols| iz 1dNYJ3INI
¢l d0SS3004d " NOLYITONI
W (DT oy (1)) #v 378WN3 LdNed3INT
92 TIgg) T FIS|L00 VOS] 1S3l 01) 1o weos 99
NS /q; /ﬂuﬁ | g ~1S3L ONY dOLS
AW\ A N
N (N-1) NI N¥2S
c€ ¢ | |52 - 1530 o dols
8e (N-1) V
- Y g¢
66 NTNvaS L8 L 39gvNd Nvos

F18YNI NYOS qynyapxg 1IN0 NYOS

TYNY3LX3

TYNYALX3

1531 ANV d01S

PCT/US2007/060660

WO 2007/103591

G 1A

91T
_— m—r 971 YN0
NOY4/01 FUNLYNIIS |
h%mwux 31933 L pz1 WILITINIOL JUNLYNOIS
YAMOD - Sl INLYNIIS |
f | @3103dd3 | 8y 1154
43LSTON |_) | Morvavdmoo |_ | | _ { ,
1S 1S3 | JnLwNoIs [gl 3 901 135
3 Torr 1 0GL 01907 L -
grr- 1 oz oIS St
43I0 01 501 LLN0S 158 < oy y
J vz |) 0 gl [TTOL01 10 NI
90 1353¢° | NINIIS [.u% — ST [SOl 1353y 13w [T 2
o | 0cI” €€l E 144
X a il "oo7 14 SHI0TO WANININ | | YOLYOTONI
™ 0 Y001 | \ | 1531 QN
. 1S9 dedq y — _wmm-,.w¥0040 WXV |~ Joys
™. i [158 J qw‘ zer 440103 015 A.Mwwm
| N ,
5 < agl Y3T104INOD
_ [bT D (e HOLYOTONT
61 01901 | 24 oo 2>]| T 1S3 N Q0S| g
IO 0L N0d3 omﬂ 109 L4vLS
| }
« 3
gyl 91907 | = ¥ 91907 POl M0
4IH10 oh.¢,// < JHI0 WOy || [T 86 NS
= 0 Of 1 v kit
| oy Hmva x | HOLYNINI9
¢l 40553904d | | NY3LLYd WOONVY <7
40 NOILY0d e — = (———————== = 901 133

Ol ¢NIS

L z01

PCT/US2007/060660

WO 2007/103591

3/4

& OLA

INIOd MO3HO INJH4NO

SY INIOd XO3HO INNOI
A0 LXN 193135

Lzez

LVIS QIAVS
J0LS3

¢330
NIV ¥ SYH 40

S3A

gcz -

J3HOVAY N338 INNOD X001)

401930 40153
IVEEIIINE)E

NNNIXYW SYH

o€

N
9¢e

1353

A(ENYENE)
N33 LdNAAIINT NV

/
vEe

SVH

00303303
40 QIHOVIY N338 INIOd
HIH) INN0Y X010

Sk

¢34N03304d 1531
ONY dOLS ¥ (3L1VOIONI
NOILYOIlddv 35N

VIS IAVS

JHL SWH

80¢

daLSTO3d SLINSH 1S3L NI INNnOD
MIHY ININRONT ANV QILYON
35 HIIM X301 W3LSAS ¥ 30IAOYd

0zz -

(L43SSY (35) T18YNI NYIS HLIM ‘SXO01) X

NIV
JLVIIONI

MNLYNOIS
03133dX3 HILYN JINLYNOIS
QLYINOTvI 5300

ON

9c¢

Y3L1SIORY SLINSH 1S3L NI
YOLYOIONI TIV4/SS¥d 1SNray QNY
FUNLYNOIS Q3103dX3 HIIM SLINS3Y 1541
NOY4 Q3LYINTVY JUNLYNOIS JAVdAOD

b2z’ {

Y

404 dIZATWNY JINLYNOIS 0L SLINSH 1SAL
X ONILJIHS F1IHM SHINAILS 1S3L NI L4IHS

g1z~

INIOd MI3HD INJHHND SV
INIOd ¥I3HD X M0M0 ¥ LIITIS

91z°

YA1STO SIS 1531 YIZATYNY
PNLYNITS MOLVYINI9 N¥3LLYd
HOONVY ‘40SS3004d 1353y

1z
MOLYOIONI 1SIL ONY dOLS 3IAONd

z1z° {

<oz

NOILYOIlddY d3SN ONILNJ3X3

90z -
v e

NOILYOI'lddv ¥3SN ON3 NI W3LSAS
ONISS300dd V1VQ INIONTONI

50z -

(15187 ‘1S3L NYIS 9°3)
WILSAS ONISSID0Md Y1YQ
40 ONIIS3L AMOLOVH W¥0AM3d

202"

@34NLIVANNYI
“40S53008d INIANTONI
NALSAS INISSIO0Hd Y1V(

00z °

PCT/US2007/060660

WO 2007/103591

4/4

r OLA

3
90¢

aS

\

¢l ¥0SS3004d
30 NOILY0d

0c€

1901
anod

01€

8IE

1901
anod

91¢
33
(21907
70€ anod
t
as

80¢

vIE

1901
anod

EN
20¢

crI€

1901
anod

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - claims
	Page 25 - claims
	Page 26 - claims
	Page 27 - claims
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings

