Abstract:
The present invention provides a pharmaceutical composition for preventing and/or treating epilepsy or epilepsy-related syndrome, for example an intractable epilepsy or its related syndrome such as drug-resistant epilepsy, comprising the phenyl alkyl carbamate compound as an active ingredient, and a use of the phenyl alkyl carbamate compound for preventing and/or treating epilepsy or epilepsy-related syndrome.
PHENYL ALKYL CARBAMATE COMPOUNDS FOR USE IN PREVENTING OR TREATING EPILEPSY OR EPILEPSY-RELATED SYNDROME

[Technical Field]

The present invention provides a pharmaceutical composition for preventing and/or treating a epilepsy or epilepsy-related syndrome, for example an intractable epilepsy or its related syndrome such as drug-resistant epilepsy, comprising the phenyl alkyl carbamate compound as an active ingredient, and a use of the phenyl alkyl carbamate compound for preventing and/or treating epilepsy or epilepsy-related syndrome.

BACKGROUND OF THE INVENTION

Epilepsy and its related syndromes may be classified according to whether the associated seizures are partial or generalized, and whether the etiology is idiopathic or symptomatic/cryptogenic. Several important syndromes can be further grouped according to age of onset and prognosis.

Epilepsy is a chronic brain disease in which epileptic seizures are the predominant feature. Generally, most epilepsies and diseases associated therewith are difficult to treat, since epilepsies are not etiologically elucidated. Thus, administration of an antiepileptic agent is a common approach toward suppressing epileptic seizures or inhibiting propagation of focal seizures to other portions.

The older established antiepileptic drugs (AEDs) such as phenytoin, carbamazepine, clonazepam, ethosuximide, valproic acid and barbiturates are widely prescribed but suffer from a range of side effect. Furthermore, there is a significant group of patients (20-30%) that are resistant to the currently available therapeutic agents. Fifty million people in the world have epilepsy, and there are between 16 and 51 cases of new-onset epilepsy per 100,000 people every year. A community-based study in southern France estimated that up to 22.5% of patients with epilepsy have drug-resistant epilepsy. Patients with drug-resistant epilepsy have increased risks of premature death, injuries, psychosocial dysfunction, and a reduced quality of life.

One study showed that the use-dependent blockade of the fast sodium current in dentate granule cells by carbamazepine was lost in hippocampi resected from patients with...
carbamazepine-resistant temporal-lobe epilepsy, although this finding did not extend to lamotrigine, which has a pharmacologic action similar to that of carbamazepine. Altered expression of subtypes of the γ-aminobutyric acid type A (GABAA) receptor has also been observed in patients with drug-resistant temporal-lobe epilepsy. Whether these changes result in reduced sensitivity to antiepileptic drugs that act on the receptor is unknown.

Since 1989 several new drugs have been launched, including felbamate, gabapentin, lamotrigine, oxcarbazepine, tiagabine, topiramate, vigabatrin, zonisamide and levetiracetam. While many of new drugs AEDs show improved efficacies and side-effect profiles, patients with intractable epilepsy remain untreated. Because of the need to individualize therapy, no rigid set of guidelines can be applied to determine medical intractability. There is still a need for improved medication.

[SUMMARY OF THE INVENTION]

An embodiment provides a pharmaceutical composition for the prevention and the treatment of an epilepsy or a epilepsy-related syndrome, comprising a phenyl alkyl carbamate compound of the following Chemical Formula 1, an enantiomer or a diastereomer thereof, or a mixture of enantiomers or diastereomers; or a pharmaceutically acceptable salt thereof.

Another embodiment is to provide a method of preventing and/or treating an epilepsy or a epilepsy-related syndrome in a subject comprising administering a pharmaceutically effective amount of a phenyl alkyl carbamate compound represented by Chemical Formula 1; a racemate, an enantiomer, a diastereomer, a mixture of enantiomers, or a mixture of diastereomers thereof; or a pharmaceutically acceptable salt thereof, to the subject in need.

Still other embodiment is to provide a phenyl alkyl carbamate compound represented by Chemical Formula 1; a racemate, an enantiomer, a diastereomer, a mixture of enantiomers, or a mixture of diastereomers thereof; or a pharmaceutically acceptable salt thereof, for use in the prevention and/or treatment of epilepsy or the manufacture of a pharmaceutical composition for preventing and/or treating an epilepsy or a epilepsy-related syndrome.

[DETAILED DESCRIPTION OF THE EMBODIMENTS]

Continuing its research work in the field of epilepsy, the present inventors, as results of studies on the development of the drugs useful for prevention and/or treatment of an epilepsy or a epilepsy-related syndrome, found that a substituted phenyl alkyl carbamate compounds of the following Chemical Formula 1 exhibits remarkably excellent anti-epilepsy
activity in various emulation models and simultaneously has very low toxicity, and completed the invention.

An embodiment of the present invention provides a pharmaceutical composition for prevention and/or treatment of an epilepsy or a epilepsy-related syndrome, comprising an organic compound, i.e., phenyl carbamate derivatives, more particularly, a phenyl alkyl carbamate compound represented by following Chemical Formula I; a racemate, an enantiomer, a diastereomer, a mixture of enantiomers, or a mixture of diastereomers thereof; or a pharmaceutically acceptable salt thereof:

[Chemical Formula I]

wherein,

X is a halogen, for example, chlorine, fluorine, iodine, or bromine,

n, that means the number of substituent X, is an integer from 1 to 5, for example, 1 or 2, wherein X is the same or different each other, when n is 2 or larger,

R^1 is a hydrogen or linear or branched Ci-C₄ alkyl group, for example, methyl group, ethyl group, isopropyl group, or butyl group,

A is selected from the group consisting of an allyl, a Cl-C₁₉ linear or branched alkyl group (such as a methyl, t-butyl, benzyl, p-methoxybenzyl, 2- napthylmethyl, trityl group etc.), a C₂-C₈ alkoxy alkyl ether group (such as a methoxy methy(MOM), methoxyethoxymethyl(MEM), thertahydropyranyl(THP), benzyloxymethyl(BOM), methylthiomethyl(MTM), trimethylsilylethoxymethyl(SEM), ethoxyethyl(EE) group etc.),

and a carbamoyl derivative represented by

B is selected from the group consisting of an allyl, a C₁-C₁₉ linear or branched alkyl group (such as a methyl, t-butyl, benzyl, p-methoxybenzyl, 2- napthylmethyl, trityl group etc.), a C₂-C₈ alkoxy alkyl ether group (such as a methoxy methy(MOM), methoxyethoxymethyl(MEM), thertahydropyranyl(THP), benzyloxymethyl(BOM), methylthiomethyl(MTM), trimethylsilylethoxymethyl(SEM), ethoxyethyl(EE) group etc.),
and a carbamoyl derivative represented by

\[
\begin{align*}
\text{H} & \quad \text{N} \quad \text{R}^3 \\
\text{O} & \quad \text{and}
\end{align*}
\]

\(R^2\) and \(R^3\) may be the same as or different from each other, and independently selected from the group consisting of hydrogen, a linear or branched lower alkyl group of \(C_1-C_4\), for example \(C_1-C_3\), a cycloalkyl group of \(C_3-C_8\), for example \(C_3-C_7\), and benzyl group, and more specifically, \(R^2\) and \(R^3\) may be the same as or different from each other, and independently selected from the group consisting of hydrogen, methyl group, propyl group, isopropyl group, cyclopropyl group, cyclohexyl group, bicycloheptane group, and benzyl group.

In an embodiment, when \(A\) is a carbamoyl group, \(B\) is an allyl, a linear or branched \(C_1-C_9\) alkyl group or a \(C_2-C_8\) alkoxy alkyl ether group; when \(B\) is a carbamoyl group, \(A\) is an allyl, a linear or branched \(C_1-C_{19}\) alkyl group or a \(C_2-C_8\) alkoxy alkyl ether group; or \(A\) and \(B\) are carbamoyl derivative at the same time.

In an embodiment of Chemical Formula 1, the \(C_1-C_9\) linear or branched alkyl group is independently linear or branched \(C_1-C_6\) lower aliphatic alkyl such as methyl, ethyl, \(t\)-butyl and the like; a substituted or unsubstituted \(C_3-C_{19}\) cycloaliphatic and substituted or unsubstituted \(C_6-C_8\) aromatic group such as benzyl, naphtyl, trityl and the like. The cycloaliphatic group and the aromatic group may be substituted with at least one selected from the group consisting of hydrogen, \(C_1-C_6\) lower alkyl and \(C_6-C_8\) alkoxy group.

The examples of \(C_1-C_6\) lower aliphatic alkyl include methyl, ethyl, propyl, \(t\)-butyl, pantyl, hexyl and the like. The examples of \(C_6-C_{18}\) aromatic group is benzyl such as benzyl, methylbenzyl, methoxybenzyl and the like, naphtyl such as 2-naphthylmethyl, trityl group and the like.

Another embodiment provides a pharmaceutical composition containing a phenyl alkyl carbamate derivative compound represented by Chemical Formula 1; a racemate, an enantiomer, a diastereomer, a mixture of enantiomers, or a mixture of diastereomers thereof; or a pharmaceutically acceptable salt thereof, as an active ingredient.

Since the compound has two chiral carbons at the 1st and 2nd positions from the \(X\) substituted phenyl alkyl carbamate derivative group, they may be in the form of a racemate, an enantiomer, a diastereomer, a mixture of enantiomers, or a mixture of diastereomers.

In a concrete embodiment, the compound may be selected from the group consisting of:
1-(2-chlorophenyl)-1-carbamoyloxypropyl-2-carbamate,
1-(2-chlorophenyl)-1-carbamoyloxypropyl-2-N-methylcarbamate,
1-(2-chlorophenyl)-1-carbamoyloxypropyl-2-N-propylcarbamate
1-(2-chlorophenyl)-1-carbamoyloxybutyl-2-carbamate,
1-(2-chlorophenyl)-1-carbamoyloxy-3-methyl-butyl-2-carbamate,
1-(2-chlorophenyl)-1-carbamoyloxyhexyl-2-carbamate,
1-(2-fluorophenyl)-1-carbamoyloxypropyl-2-carbamate,
1-(2-fluorophenyl)-1-carbamoyloxybutyl-2-carbamate,
1-(2-fluorophenyl)-1-carbamoyloxy-3-methyl-butyl-2-carbamate,
1-(2-fluorophenyl)-1-carbamoyloxyhexyl-2-carbamate,
1-(2,4-dichlorophenyl)-1-carbamoyloxypropyl-2-carbamate,
1-(2,4-dichlorophenyl)-1-carbamoyloxybutyl-2-carbamate,
1-(2,4-dichlorophenyl)-1-carbamoyloxy-3-methyl-butyl-2-carbamate,
1-(2,4-dichlorophenyl)-1-carbamoyloxyhexyl-2-carbamate,
1-(2,6-dichlorophenyl)-1-carbamoyloxypropyl-2-carbamate,
1-(2,6-dichlorophenyl)-1-carbamoyloxybutyl-2-carbamate,
1-(2,6-dichlorophenyl)-1-carbamoyloxy-3-methyl-butyl-2-carbamate,
1-(2,6-dichlorophenyl)-1-carbamoyloxyhexyl-2-carbamate,
1-(2,4-difluorophenyl)-1-carbamoyloxypropyl-2-carbamate
1-(2,5-difluorophenyl)-1-carbamoyloxypropyl-2-carbamate
1-(2,6-difluorophenyl)-1-carbamoyloxypropyl-2-carbamate
1-(2-chloro-6-fluorophenyl)-1-carbamoyloxypropyl-2-carbamate
1-(2-chlorophenyl)-1-(methoxy)-ethyl-2-carbamate,
1-(2-fluorophenyl)-1-(methoxy)-ethyl-2-carbamate,
1-(2-iodophenyl)-1-(methoxy)-ethyl-2-carbamate,
1-(2-iodophenyl)-1-(methoxy)-propyl-2-carbamate,
1-(2-iodophenyl)-1-(methoxy)-propyl-2-N-methylcarbamate,
1-(2-iodophenyl)-1-(methoxy)-propyl-2-N-propylcarbamate,
1-(2-iodophenyl)-1-(methoxy)-propyl-2-N-isopropylcarbamate,
1-(2-iodophenyl) - 1-(methoxy)-propyl-2-N-cyclopropylcarbamate,
1-(2-iodophenyl) - 1-(methoxy)-propyl-2-N-cyclohexylcarbamate,
1-(2-iodophenyl) - 1-(methoxy)-propyl-2-N-benzylcarbamate,
1-(2-iodophenyl) - 1-(methoxy)-propyl-2-N-bicyclo[2,2,1]heptanecarbamate
1-(2-iodophenyl) - 1-(methoxy)-butyl-2-carbamate,
1-(2-iodophenyl) - 1-(methoxy)-butyl-2-N-methylcarbamate,
1-(2-iodophenyl) - 1-(methoxy)-butyl-2-N-propylcarbamate,
1-(2-iodophenyl) - 1-(methoxy)-butyl-2-N-isopropylcarbamate,
1-(2-iodophenyl) - 1-(methoxy)-butyl-2-N-cyclopropylcarbamate,
1-(2-iodophenyl) - 1-(methoxy)-butyl-2-N-cyclohexylcarbamate,
1-(2-iodophenyl) - 1-(methoxy)-butyl-2-N-benzylcarbamate,
1-(2-iodophenyl) - 1-(methoxy)-butyl-2-N-bicyclo[2,2,1]heptanecarbamate,
1-(2-iodophenyl) - 1-(methoxy)-3-methyl-butyl-2-carbamate,
1-(2-iodophenyl) - 1-(methoxy)-3-methyl-butyl-2-N-methylcarbamate,
1-(2-iodophenyl) - 1-(methoxy)-3-methyl-butyl-2-N-propylcarbamate,
1-(2-iodophenyl) - 1-(methoxy)-3-methyl-butyl-2-N-isopropylcarbamate,
1-(2-iodophenyl) - 1-(methoxy)-3-methyl-butyl-2-N-cyclopropylcarbamate,
1-(2-iodophenyl) - 1-(methoxy)-3-methyl-butyl-2-N-cyclohexylcarbamate,
1-(2-iodophenyl) - 1-(methoxy)-3-methyl-butyl-2-N-benzylcarbamate,
1-(2-iodophenyl) - 1-(methoxy)-3-methyl-butyl-2-N-bicyclo[2,2,1]heptanecarbamate,
1-(2-iodophenyl) - 1-(methoxy)-hexyl-2-carbamate,
1-(2-iodophenyl) - 1-(methoxy)-hexyl-2-N-methylcarbamate,
1-(2-iodophenyl) - 1-(methoxy)-hexyl-2-N-propylcarbamate,
1-(2-iodophenyl) - 1-(methoxy)-hexyl-2-N-isopropylcarbamate,
1-(2-iodophenyl) - 1-(methoxy)-hexyl-2-N-cyclopropylcarbamate,
1-(2-iodophenyl) - 1-(methoxy)-hexyl-2-N-cyclohexylcarbamate,
1-(2-iodophenyl) - 1-(methoxy)-hexyl-2-N-benzylcarbamate,
1-(2-iodophenyl) - 1-(methoxy)-hexyl-2-N-bicyclo[2,2,1]heptanecarbamate,
1-(2-fluorophenyl)-1-(methoxy)-propyl-2-N-methylcarbamate,
1-(2-fluorophenyl)-1-(methoxy)-propyl-2-N-propylcarbamate,
1-(2-fluorophenyl)-1-(methoxy)-propyl-2-N-isopropylcarbamate,
1-(2-fluorophenyl)-1-(methoxy)-propyl-2-N-cyclopropylcarbamate,
1-(2-fluorophenyl)-1-(methoxy)-propyl-2-N-cyclohexylcarbamate,
1-(2-fluorophenyl)-1-(methoxy)-propyl-2-N-benzylcarbamate,
1-(2-fluorophenyl)-1-(methoxy)-propyl-2-N-bicyclo[2,2,1]-heptanecarbamate,
1-(2-fluorophenyl)-1-(methoxy)-butyl-2-carbamate,
1-(2-fluorophenyl)-1-(methoxy)-3-methyl-butyl-2-carbamate,
1-(2-fluorophenyl)-1-(methoxy)-hexyl-2-carbamate,
1-(4-fluorophenyl)-1-(methoxy)-propyl-2-carbamate,
1-(4-fluorophenyl)-1-(methoxy)-butyl-2-carbamate,
1-(4-fluorophenyl)-1-(methoxy)-3-methyl-butyl-2-carbamate,
1-(4-fluorophenyl)-1-(methoxy)-hexyl-2-carbamate,
1-(2-chlorophenyl)-1-(methoxy)-propyl-2-carbamate,
1-(2-chlorophenyl)-1-(methoxy)-propyl-2-N-methylcarbamate,
1-(2-chlorophenyl)-1-(methoxy)-propyl-2-N-propylcarbamate,
1-(2-chlorophenyl)-1-(methoxy)-propyl-2-N-isopropylcarbamate,
1-(2-chlorophenyl)-1-(methoxy)-propyl-2-N-cyclopropylcarbamate,
1-(2-chlorophenyl)-1-(methoxy)-propyl-2-N-cyclohexylcarbamate,
1-(2-chlorophenyl)-1-(methoxy)-propyl-2-N-benzylcarbamate,
1-(2-chlorophenyl)-1-(methoxy)-propyl-2-N-bicyclo[2,2,1]-heptanecarbamate,
1-(2-chlorophenyl)-1-(methoxy)-butyl-2-carbamate,
1-(2-chlorophenyl)-1-(methoxy)-3-methyl-butyl-2-carbamate,
1-(2-chlorophenyl)-1-(methoxy)-hexyl-2-carbamate,
1-(2,3-dichlorophenyl)-1-(methoxy)-propyl-2-carbamate,
1-(2,4-dichlorophenyl)-1-(methoxy)-propyl-2-carbamate,
1-(2,4-dichlorophenyl)-1-(methoxy)-butyl-2-carbamate,
1-(2,4-dichlorophenyl)-1-(methoxy)-3-methyl-butyl-2-carbamate,
1-(2,4-dichlorophenyl)-1-(methoxy)-hexyl-2-carbamate,
1-(2,6-dichlorophenyl)-1-(methoxy)-propyl-2-carbamate,
1-(2,6-dichlorophenyl)-1-(methoxy)-butyl-2-carbamate,
1-(2,6-dichlorophenyl)-1-(methoxy)-3-methyl-butyl-2-carbamate,
1-(2,6-dichlorophenyl)-1-(methoxy)-hexyl-2-carbamate,
1-(2-chlorophenyl)-1-(methoxymethoxy)-ethyl-2-carbamate,
1-(2-fluorophenyl)-1-(methoxymethoxy)-ethyl-2-carbamate,
1-(2-iodophenyl)-1-(methoxymethoxy)-ethyl-2-carbamate,
1-(2-chlorophenyl)-1-(methoxymethoxy)-propyl-2-carbamate,
1-(2-chlorophenyl)-1-(methoxymethoxy)-propyl-2-N-methylcarbamate,
1-(2-chlorophenyl)-1-(methoxymethoxy)-propyl-2-N-propylcarbamate,
1-(2-chlorophenyl)-1-(methoxymethoxy)-propyl-2-N-isopropylcarbamate,
1-(2-chlorophenyl)-1-(methoxymethoxy)-propyl-2-N-cyclopropylcarbamate,
1-(2-chlorophenyl)-1-(methoxymethoxy)-propyl-2-N-cyclohexylcarbamate,
1-(2-chlorophenyl)-1-(methoxymethoxy)-propyl-2-N-benzylcarbamate,
bicyclo[2,2,1]heptane carbamate
1-(2-chlorophenyl)-1-(methoxymethoxy)-butyl-2-carbamate,
1-(2-chlorophenyl)-1-(methoxymethoxy)-3-methyl-butyl-2-carbamate,
1-(2,3-dichlorophenyl)-1-(methoxymethoxy)-hexyl-2-carbamate,
1-(2,4-dichlorophenyl)-1-(methoxymethoxy)-propyl-2-carbamate,
1-(2,4-dichlorophenyl)-1-(methoxymethoxy)-butyl-2-carbamate,
1-(2,4-dichlorophenyl)-1-(methoxymethoxy)-3-methyl-butyl-2-carbamate,
1-(2,4-dichlorophenyl)-1-(methoxymethoxy)-hexyl-2-carbamate,
1-(2,5-dichlorophenyl)-1-(methoxymethoxy)-propyl-2-carbamate,
1-(2,6-dichlorophenyl)-1-(methoxymethoxy)-propyl-2-carbamate,
1-(2,6-dichlorophenyl)-1-(methoxymethoxy)-butyl-2-carbamate,
1-(2,6-dichlorophenyl)-1-(methoxymethoxy)-3-methyl-butyl-2-carbamate,
1-(2,6-dichlorophenyl)-1-(methoxymethoxy)-hexyl-2-carbamate,
1-(2-fluorophenyl)-1-(methoxymethoxy)-propyl-2-carbamate,
1-(2-fluorophenyl)-1-(methoxymethoxy)-propyl-2-N-methylcarbamate,
1-(2-fluorophenyl)-1-(methoxymethoxy)-propyl-2-N-propylcarbamate,
1-(2-fluorophenyl)-1-(methoxymethoxy)-propyl-2-N-isopropylcarbamate,
1-(2-fluorophenyl)-1-(methoxymethoxy)-propyl-2-N-cyclopropylcarbamate,
1-(2-fluorophenyl)-1-(methoxymethoxy)-propyl-2-N-cyclohexylcarbamate,
1-(2-fluorophenyl)-1-(methoxymethoxy)-propyl-2-N-benzylcarbamate,
1-(2-fluorophenyl)-1-(methoxymethoxy)-propyl-2-N-bicyclo[2,2,1]heptanecarbamate
1-(2-fluorophenyl)-1-(methoxymethoxy)-butyl-2-carbamate,
1-(2-fluorophenyl)-1-(methoxymethoxy)-3-methyl-butyl-2-carbamate,
1-(4-fluorophenyl)-1-(methoxymethoxy)-hexyl-2-carbamate,
1-(4-fluorophenyl)-1-(methoxymethoxy)-propyl-2-carbamate,
1-(4-fluorophenyl)-1-(methoxymethoxy)-butyl-2-carbamate,
1-(4-fluorophenyl)-1-(methoxymethoxy)-3-methyl-butyl-2-carbamate,
1-(4-fluorophenyl)-1-(methoxymethoxy)-hexyl-2-carbamate,
1-(2,6-difluorophenyl)-1-(methoxymethoxy)-propyl-2-carbamate,
1-(2-iodophenyl)-1-(methoxymethoxy)-propyl-2-carbamate,
1-(2-iodophenyl)-1-(methoxymethoxy)-propyl-2-N-methylcarbamate,
1-(2-iodophenyl)-1-(methoxymethoxy)-propyl-2-N-propylcarbamate,
1-(2-iodophenyl)-1-(methoxymethoxy)-propyl-2-N-isopropylcarbamate,
1-(2-iodophenyl)-1-(methoxymethoxy)-propyl-2-N-cyclopropylcarbamate,
1-(2-iodophenyl)-1-(methoxymethoxy)-propyl-2-N-cyclohexylcarbamate,
1-(2-iodophenyl)-1-(methoxymethoxy)-propyl-2-N-benzylcarbamate,
1-(2-iodophenyl)-1-(methoxymethoxy)-butyl-2-carbamate,
1-(2-iodophenyl)-1-(methoxymethoxy)-butyl-2-N-methylcarbamate,
1-(2-iodophenyl)-1-(methoxymethoxy)-butyl-2-N-propylcarbamate,
1-(2-iodophenyl)-1-(methoxymethoxy)-butyl-2-N-isopropylcarbamate,
1-(2-iodophenyl)-1-(methoxymethoxy)-butyl-2-N-cyclopropylcarbamate,
1-(2-iodophenyl)-1-(methoxymethoxy)-butyl-2-N-cyclohexylcarbamate,
1-(2-iodophenyl)-1-(methoxymethoxy)-butyl-2-N-benzylcarbamate,
1-(2-iodophenyl)-1-(methoxymethoxy)-hexyl-2-carbamate,
1-(2-iodophenyl)-1-(methoxymethoxy)-hexyl-2-N-methylcarbamate,
1-(2-iodophenyl)-1-(methoxymethoxy)-hexyl-2-N-propylcarbamate,
1-(2-iodophenyl)-1-(methoxymethoxy)-hexyl-2-N-isopropylcarbamate,
1-(2-iodophenyl)-1-(methoxymethoxy)-hexyl-2-N-cyclopropylcarbamate,
1-(2-iodophenyl)-1-(methoxymethoxy)-hexyl-2-N-cyclohexylcarbamate,
1-(2-iodophenyl)-1-(methoxymethoxy)-3-methyl-butyl-2-N-bicyclo[2.2.1]heptanecarbamate,
1-(2-iodophenyl)-1-(methoxynethoxy)-hexyl-2-carbamate,
1-(2-iodophenyl)-1-(methoxymethoxy)-hexyl-2-N-methylcarbamate,
1-(2-iodophenyl)-1-(methoxynethoxy)-hexyl-2-N-propyl carbamate,
1-(2-iodophenyl)-1-(methoxymethoxy)-hexyl-2-N-isopropyl carbamate,
1-(2-iodophenyl)-1-(methoxymethoxy)-hexyl-2-N-cyclopropylcarbamate,
1-(2-iodophenyl)-1-(methoxymethoxy)-hexyl-2-N-cyclohexylcarbamate,
1-(2-iodophenyl)-1-(methoxymethoxy)-hexyl-2-N-benzylcarbamate,
1-(2-iodophenyl)-1-(methoxynethoxy)-propyl-2-carbamate,
1-(3-iodophenyl)-1-(methoxynethoxy)-propyl-2-carbamate,
1-(3-iodophenyl)-1-(methoxynethoxy)-hexyl-2-carbamate,
1-(3-iodophenyl)-1-(methoxynethoxy)-3-methyl-butyl-2-carbamate,
1-(3-iodophenyl)-1-(methoxynethoxy)-hexyl-2-carbamate,
1-(2-chlorophenyl)-2-(methoxynethoxy)-propyl-1-carbamate,
1-(2-chlorophenyl)-2-(methoxy)-propyl-1-carbamate,
1-(2-fluorophenyl)-2-(methoxynethoxy)-propyl-1-carbamate,
1-(2-fluorophenyl)-2-(methoxy)-propyl-1-carbamate
1-(2-iodophenyl)-2-(methoxynethoxy)-propyl-1-carbamate and,
1-(2-iodophenyl)-2-(methoxy)-propyl-1-carbamate and,
a racemate of the compound, an enantiomer of the compound, a diastereomer of the compound, a mixture of enantiomers of the compound, or a mixture of diastereomers of the compound.

In an embodiment, the phenyl alkyl carbamate compound is selected from the group consisting of:

1-(2-chlorophenyl)-(S)-1-carbamoyloxypropyl-(S)-2-carbamate,
1-(2-chlorophenyl)-(S)-1-carbamoyloxypropyl-(S)-2-N-methylcarbamate,
1-(2-chlorophenyl)-(S)-1-carbamoyloxypropyl-(S)-2-N-propylcarbamate
1-(2-chlorophenyl)-(S)-1-carbamoyloxybutyl-(S)-2-carbamate,
1-(2-chlorophenyl)-(S)-1-carbamoyloxy-3-methyl-butyl-(S)-2-carbamate,
1-(2-chlorophenyl)-(S)-1-carbamoyloxyhexyl-(S)-2-carbamate,
1-(2-iodophenyl)-(S)-1-carbamoyloxypropyl-(S)-2-carbamate,
1-(2-iodophenyl)-(S)-1-carbamoyloxybutyl-(S)-2-carbamate,
l-(2-iodophenyl)-(S) \(-\text{carbamoyloxy-3-methyl-butyl-(S)-2-carbamate},
\]
\l-(2-iodophenyl)-(S) \(-\text{carbamoyloxyhexyl-(S)-2-carbamate},
\]
\l-(2-fluorophenyl)-(S) \(-\text{carbamoyloxypropyl-(S)-2-carbamate},
\]
\l-(2-fluorophenyl)-(S) \(-\text{carbamoyloxybutyl-(S)-2-carbamate},
\]
\l-(2-fluorophenyl)-(S) \(-\text{carbamoyloxy-3-methyl-butyl-(S)-2-carbamate},
\]
\l-(2-fluorophenyl)-(S) \(-\text{carbamoyloxyhexyl-(S)-2-carbamate},
\]
\l-(2,4-dichlorophenyl)-(S) \(-\text{carbamoyloxypropyl-(S)-2-carbamate},
\]
\l-(2,4-dichlorophenyl)-(S) \(-\text{carbamoyloxybutyl-(S)-2-carbamate},
\]
\l-(2,4-dichlorophenyl)-(S) \(-\text{carbamoyloxy-3-methyl-butyl-2-carbamate},
\]
\l-(2,4-dichlorophenyl)-(S) \(-\text{carbamoyloxyhexyl-(S)-2-carbamate},
\]
\l-(2,6-dichlorophenyl)-(S) \(-\text{carbamoyloxypropyl-(S)-2-carbamate},
\]
\l-(2,6-dichlorophenyl)-(S) \(-\text{carbamoyloxybutyl-(S)-2-carbamate},
\]
\l-(2,6-dichlorophenyl)-(S) \(-\text{carbamoyloxy-3-methyl-butyl-(S)-2-carbamate},
\]
\l-(2,6-dichlorophenyl)-(S) \(-\text{carbamoyloxyhexyl-(S)-2-carbamate},
\]
\l-(2-chloro-6-fluorophenyl)-(S) \(-\text{carbamoyloxypropyl-(S)-2-carbamate}
\]
\l-(2-chlorophenyl)-(S) \(-\text{(methoxy)-ethyl-2-carbamate},
\]
\l-(2-fluorophenyl)-(S) \(-\text{(methoxy)-ethyl-2-carbamate},
\]
\l-(2-iodophenyl)-(S) \(-\text{(methoxy)-ethyl-2-carbamate},
\]
\l-(2-iodophenyl)-(S) \(-\text{(methoxy)-propyl-(S)-2-carbamate},
\]
\l-(2-iodophenyl)-(S) \(-\text{(methoxy)-propyl-(S)-2-N-methylcarbamate},
\]
\l-(2-iodophenyl)-(S) \(-\text{(methoxy)-propyl-(S)-2-N-propylcarbamate},
\]
\l-(2-iodophenyl)-(S) \(-\text{(methoxy)-propyl-(S)-2-N-isopropylcarbamate},
\]
\l-(2-iodophenyl)-(S) \(-\text{(methoxy)-propyl-(S)-2-N-cyclopropylcarbamate},
\]
\l-(2-iodophenyl)-(S) \(-\text{(methoxy)-propyl-(S)-2-N-cyclohexylcarbamate},
\]
\l-(2-iodophenyl)-(S) \(-\text{(methoxy)-propyl-(S)-2-N-benzylcarbamate},
\]
\l-(2-iodophenyl)-(S) \(-\text{(methoxy)-propyl-(S)-2-N-bicyclo[2,2,1]heptancarbamate},
\]
\l-(2-iodophenyl)-(S) \(-\text{(methoxy)-propyl-(S)-2-N-bicyclo[2,2,1]heptancarbamate},
\]
\l-(2-iodophenyl)-(S) \(-\text{(methoxy)-butyl-(S)-2-carbamate},
\]
\l-(2-iodophenyl)-(S) \(-\text{(methoxy)-butyl-(S)-2-N-methylcarbamate},
\]
\l-(2-iodophenyl)-(S) \(-\text{(methoxy)-butyl-(S)-2-N-propylcarbamate},
\]
\l-(2-iodophenyl)-(S) \(-\text{(methoxy)-butyl-(S)-2-N-isopropylcarbamate},
\]
\l-(2-iodophenyl)-(S) \(-\text{(methoxy)-butyl-(S)-2-N-cyclopropylcarbamate},
\]
\l-(2-iodophenyl)-(S) \(-\text{(methoxy)-butyl-(S)-2-N-cyclohexylcarbamate},
\]
\l-(2-iodophenyl)-(S) \(-\text{(methoxy)-butyl-(S)-2-N-benzylcarbamate},
\]
l-(2-iodophenyl)-(S)-1-(methoxy)-butyl-(S)-2-N-bicyclo[2,2,1]heptanecarbamate,
l-(2-iodophenyl)-(S)-1-(methoxy)-3-methyl-butyl-(S)-2-carbamate,
l-(2-iodophenyl)-(S)-1-(methoxy)-3-methyl-butyl-(S)-2-N-methyl carbamate,
l-(2-iodophenyl)-(S)-1-(methoxy)-3-methyl-butyl-(S)-2-N-propyl carbamate,
l-(2-iodophenyl)-(S)-1-(methoxy)-3-methyl-butyl-(S)-2-N-isopropyl carbamate,
l-(2-iodophenyl)-(S)-1-(methoxy)-3-methyl-butyl-(S)-2-N-cyclopropyl carbamate,
l-(2-iodophenyl)-(S)-1-(methoxy)-3-methyl-butyl-(S)-2-N-cyclohexyl carbamate,
l-(2-iodophenyl)-(S)-1-(methoxy)-3-methyl-butyl-(S)-2-N-benzyl carbamate,
l-(2-iodophenyl)-(S)-1-(methoxy)-3-methyl-butyl-(S)-2-N-bicyclo[2,2,1]heptanecarbamate,
l-(2-iodophenyl)-(S)-1-(methoxy)-hexyl-(S)-2-carbamate,
l-(2-iodophenyl)-(S)-1-(methoxy)-hexyl-(S)-2-N-methyl carbamate,
l-(2-iodophenyl)-(S)-1-(methoxy)-hexyl-(S)-2-N-propyl carbamate,
l-(2-iodophenyl)-(S)-1-(methoxy)-hexyl-(S)-2-N-isopropyl carbamate,
l-(2-iodophenyl)-(S)-1-(methoxy)-hexyl-(S)-2-N-cyclopropyl carbamate,
l-(2-iodophenyl)-(S)-1-(methoxy)-hexyl-(S)-2-N-cyclohexyl carbamate,
l-(2-iodophenyl)-(S)-1-(methoxy)-hexyl-(S)-2-N-benzyl carbamate,
l-(2-iodophenyl)-(S)-1-(methoxy)-hexyl-(S)-2-N-bicyclo[2,2,1]heptanecarbamate,
l-(3-iodophenyl)-(S)-1-(methoxy)-propyl-(S)-2-carbamate,
l-(3-iodophenyl)-(S)-1-(methoxy)-butyl-(S)-2-carbamate,
l-(3-iodophenyl)-(S)-1-(methoxy)-3-methyl-butyl-(S)-2-carbamate,
l-(3-iodophenyl)-(S)-1-(methoxy)-hexyl-(S)-2-carbamate,
l-(2-fluorophenyl)-(S)-1-(methoxy)-propyl-(S)-2-carbamate,
l-(2-fluorophenyl)-(S)-1-(methoxy)-propyl-(S)-2-N-methyl carbamate,
l-(2-fluorophenyl)-(S)-1-(methoxy)-propyl-(S)-2-N-propyl carbamate,
l-(2-fluorophenyl)-(S)-1-(methoxy)-propyl-(S)-2-N-isopropyl carbamate,
l-(2-fluorophenyl)-(S)-1-(methoxy)-propyl-(S)-2-N-cyclopropyl carbamate,
l-(2-fluorophenyl)-(S)-1-(methoxy)-propyl-(S)-2-N-cyclohexyl carbamate,
l-(2-fluorophenyl)-(S)-1-(methoxy)-propyl-(S)-2-N-benzyl carbamate,
l-(2-fluorophenyl)-(S)-1-(methoxy)-propyl-(S)-2-N-bicyclo[2,2,1]heptanecarbamate,
l-(4-fluorophenyl)-(S)-1-(methoxy)-propyl-(S)-2-carbamate,
l-(4-fluorophenyl)-(S)-1-(methoxy)-butyl-(S)-2-carbamate,
l-(4-fluorophenyl)-(S)-1-(methoxy)-3-methyl-butyl-(S)-2-carbamate,
1-(4-fluorophenyl)-(S)-1-(methoxy)-hexyl-(S)-2-carbamate,
1-(2-chlorophenyl)-(S)-1-(methoxy)-propyl-(S)-2-carbamate,
1-(2-chlorophenyl)-(S)-1-(methoxy)-propyl-(S)-2-N-methylcarbamate,
1-(2-chlorophenyl)-(S)-1-(methoxy)-propyl-(S)-2-N-propylcarbamate,
1-(2-chlorophenyl)-(S)-1-(methoxy)-propyl-(S)-2-N-isopropylcarbamate,
1-(2-chlorophenyl)-(S)-1-(methoxy)-propyl-(S)-2-N-cyclopropylcarbamate,
1-(2-chlorophenyl)-(S)-1-(methoxy)-propyl-(S)-2-N-cyclohexylcarbamate,
1-(2-chlorophenyl)-(S)-1-(methoxy)-propyl-(S)-2-N-benzylcarbamate,
1-(2-chlorophenyl)-(S)-1-(methoxy)-propyl-(S)-2-N-bicyclo[2,2,1]heptanecarbamate
1-(2-chlorophenyl)-(S)-1-(methoxymethoxy)-ethyl-(S)-2-carbamate,
1-(2-fluorophenyl)-(S)-1-(methoxymethoxy)-ethyl-(S)-2-carbamate,
1-(2-iodophenyl)-(S)-1-(methoxymethoxy)-ethyl-(S)-2-carbamate,
1-(2-chlorophenyl)-(S)-1-(methoxymethoxy)-propyl-(S)-2-carbamate,
1-(2-chlorophenyl)-(S)-1-(methoxymethoxy)-propyl-(S)-2-N-methylcarbamate,
1-(2-chlorophenyl)-(S)-1-(methoxymethoxy)-propyl-(S)-2-N-propylcarbamate,
1-(2-chlorophenyl)-(S)-1-(methoxymethoxy)-propyl-(S)-2-N-isopropylcarbamate,
1-(2-chlorophenyl)-(S)-1-(methoxymethoxy)-propyl-(S)-2-N-cyclopropylcarbamate,
1-(2-chlorophenyl)-(S)-1-(methoxymethoxy)-propyl-(S)-2-N-cyclohexylcarbamate,
1-(2-chlorophenyl)-(S)-1-(methoxymethoxy)-propyl-2-N-benzylcarbamate,
1-(2-chlorophenyl)-(S)-1-(methoxymethoxy)-propyl-2-N-bicyclo[2,2,1]heptanecarbamate
1-(2-chlorophenyl)-(S)-1-(methoxymethoxy)-butyl-(S)-2-carbamate,
1-(2-chlorophenyl)-(S)-1-(methoxymethoxy)-3-methyl-butyl-(S)-2-carbamate,
1-(2-chlorophenyl)-(S)-1-(methoxymethoxy)-hexyl-(S)-2-carbamate,
1-(2,3-dichlorophenyl)-(S)-1-(methoxymethoxy)-propyl-(S)-2-carbamate,
1-(2,4-dichlorophenyl)-(S)-1-(methoxymethoxy)-propyl-(S)-2-carbamate,
1-(2,4-dichlorophenyl)-(S)-1-(methoxymethoxy)-butyl-(S)-2-carbamate,
1-(2,4-dichlorophenyl)-(S)-1-(methoxymethoxy)-3-methyl-butyl-(S)-2-carbamate,
1-(2,4-dichlorophenyl)-(S)-1-(methoxymethoxy)-hexyl-(S)-2-carbamate,
1-(2,5-dichlorophenyl)-(S)-1-(methoxymethoxy)-propyl-(S)-2-carbamate,
1-(2,6-dichlorophenyl)-(S)-1-(methoxymethoxy)-propyl-(S)-2-carbamate,
1-(2,6-dichlorophenyl)-(S)-1-(methoxymethoxy)-butyl-(S)-2-carbamate,
1-(2,6-dichlorophenyl)-(S)-1-(methoxymethoxy)-3-methyl-butyl-(S)-2-carbamate,
1-(2,6-dichlorophenyl)-(S)-1-(methoxymethoxy)-hexyl-(S)-2-carbamate,
1-(2-fluorophenyl)-(S)-1-(methoxymethoxy)-propyl-(S)-2-carbamate,
1-(2-fluorophenyl)-(S)-1-(methoxymethoxy)-propyl-(S)-2-N-methylcarbamate,
1-(2-fluorophenyl)-(S)-1-(methoxymethoxy)-propyl-(S)-2-N-propylcarbamate,
1-(2-fluorophenyl)-(S)-1-(methoxymethoxy)-propyl-(S)-2-N-isopropylcarbamate,
1-(2-fluorophenyl)-(S)-1-(methoxymethoxy)-propyl-(S)-2-N-cyclopropylcarbamate,
1-(2-fluorophenyl)-(S)-1-(methoxymethoxy)-propyl-(S)-2-N-cyclohexylcarbamate,
1-(2-fluorophenyl)-(S)-1-(methoxymethoxy)-propyl-(S)-2-N-benzylcarbamate,
1-(2-fluorophenyl)-(S)-1-(methoxymethoxy)-propyl-(S)-2-N-bicyclo[2.2,1]heptanecarbamate,
1-(4-fluorophenyl)-(S)-1-(methoxymethoxy)-propyl-(S)-2-carbamate,
1-(4-fluorophenyl)-(S)-1-(methoxymethoxy)-butyl-(S)-2-carbamate,
1-(4-fluorophenyl)-(S)-1-(methoxymethoxy)-3-methyl-butyl-(S)-2-carbamate,
1-(2,6-difluorophenyl)-(S)-1-(methoxymethoxy)-propyl-(S)-2-carbamate,
1-(2-iodophenyl)-(S)-1-(methoxymethoxy)-propyl-(S)-2-carbamate,
1-(2-iodophenyl)-(S)-1-(methoxymethoxy)-propyl-(S)-2-N-methyl carbamate,
1-(2-iodophenyl)-(S)-1-(methoxymethoxy)-propyl-(S)-2-N-propylcarbamate,
1-(2-iodophenyl)-(S)-1-(methoxymethoxy)-propyl-(S)-2-N-isopropylcarbamate,
1-(2-iodophenyl)-(S)-1-(methoxymethoxy)-propyl-(S)-2-N-cyclopropylcarbamate,
1-(2-iodophenyl)-(S)-1-(methoxymethoxy)-propyl-(S)-2-N-cyclohexylcarbamate,
1-(2-iodophenyl)-(S)-1-(methoxymethoxy)-propyl-(S)-2-N-benzylcarbamate.
l-(2-iodophenyl)-(S)-(methoxymethoxy)-propyl-(S)-2-N-isopropylcarbamate,
l-(2-iodophenyl)-(S)-(methoxymethoxy)-propyl-(S)-2-N-cyclopropylcarbamate,
l-(2-iodophenyl)-(S)-(methoxymethoxy)-propyl-(S)-2-N-cyclohexylcarbamate,
l-(2-iodophenyl)-(S)-(methoxymethoxy)-propyl-(S)-2-N-benzylcarbamate,
l-(2-iodophenyl)-(S)-(methoxymethoxy)-butyl-(S)-2-N-bicyclo[2,2,1]heptanecarbamate,
l-(2-iodophenyl)-(S)-(methoxymethoxy)-3-methyl-butyl-(S)-2-carbamate,
l-(2-iodophenyl)-(S)-(methoxymethoxy)-3-methyl-butyl-(S)-2-N-methylcarbamate,
l-(2-iodophenyl)-(S)-(methoxymethoxy)-3-methyl-butyl-(S)-2-N-propylcarbamate,
l-(2-iodophenyl)-(S)-(methoxymethoxy)-3-methyl-butyl-(S)-2-N-isopropylcarbamate,
l-(2-iodophenyl)-(S)-(methoxymethoxy)-3-methyl-butyl-(S)-2-N-cyclopropylcarbamate,
l-(2-iodophenyl)-(S)-(methoxymethoxy)-3-methyl-butyl-(S)-2-N-cyclohexylcarbamate,
l-(2-iodophenyl)-(S)-(methoxymethoxy)-3-methyl-butyl-(S)-2-N-benzylcarbamate,
l-(2-iodophenyl)-(S)-(methoxymethoxy)-3-methyl-butyl-(S)-2-N-bicyclo[2,2,1]heptanecarbamate,
1-(2-iodophenyl)-(S)-1-(methoxymethoxy)-hexyl-(S)-2-N-benzylcarbamate,
1-(2-iodophenyl)-(S)-1-(methoxymethoxy)-hexyl-(S)-2-N-bicyclo[2,2,1]heptanecarbamate
1-(3-iodophenyl)-(S)-1-(methoxymethoxy)-propyl-(S)-2-carbamate,
1-(3-iodophenyl)-(S)-1-(methoxymethoxy)-butyl-(S)-2-carbamate,
1-(3-iodophenyl)-(S)-1-(methoxymethoxy)-3-methyl-butyl-(S)-2-carbamate,
1-(2-chlorophenyl)-(S)-2-(methoxymethoxy)-propyl-(S)-1-carbamate,
1-(2-chlorophenyl)-(S)-2-(methoxy)-propyl-(S)-1-carbamate,
1-(2-fluorophenyl)-(S)-2-(methoxymethoxy)-propyl-(S)-1-carbamate,
1-(2-fluorophenyl)-(S)-2-(methoxy)-propyl-(S)-1-carbamate,
1-(2-chlorophenyl)-(R)-carbamoyloxypropyl-(R)-2-carbamate,
1-(2-iodophenyl)-(R)-carbamoyloxypropyl-(R)-2-carbamate,
1-(2-fluorophenyl)-(R)-1-carbamoyloxypropyl-(R)-2-carbamate,
1-(4-fluorophenyl)-(R)-1-carbamoyloxypropyl-(R)-2-carbamate,
1-(2,4-dichlorophenyl)-(R)-1-carbamoyloxypropyl-(R)-2-carbamate,
1-(2,6-dichlorophenyl)-(R)-1-carbamoyloxypropyl-(R)-2-carbamate,
1-(2,4-difluorophenyl)-(R)-1-carbamoyloxypropyl-(R)-2-carbamate
1-(2,5-difluorophenyl)-(R)-1-carbamoyloxypropyl-(R)-2-carbamate
1-(2,6-difluorophenyl)-(R)-1-carbamoyloxypropyl-(R)-2-carbamate
1-(2-chloro-6-fluorophenyl)-(R)-1-carbamoyloxypropyl-(R)-2-carbamate
1-(2-iodophenyl)-(R)-1-(methoxy)-propyl-(R)-2-carbamate,
1-(2-iodophenyl)-(R)-1-(methoxy)-butyl-(R)-2-carbamate,
1-(2-iodophenyl)-(R)-1-(methoxymethoxy)3-methyl-butyl-(R)-2-carbamate,
1-(2-iodophenyl)-(R)-1-(methoxymethoxy)-hexyl-(R)-2-carbamate,
1-(3-iodophenyl)-(R)-1-(methoxy)-propyl-(R)-2-carbamate,
1-(3-iodophenyl)-(R)-1-(methoxy)-butyl-(R)-2-carbamate,
1-(3-iodophenyl)-(R)-1-(methoxymethoxy)3-methyl-butyl-(R)-2-carbamate,
1-(3-iodophenyl)-(R)-1-(methoxymethoxy)-hexyl-(R)-2-carbamate,
1-(2-fluorophenyl)-(R)-1-(methoxymethoxy)-propyl-(R)-2-carbamate,
1-(4-fluorophenyl)-(R)-1-(methoxymethoxy)-propyl-(R)-2-carbamate,
1-(4-fluorophenyl)-(R)-1-(methoxy)-butyl-(R)-2-carbamate,
1-(4-fluorophenyl)-(R)-l-(methoxy)-3-methyl-butyl-(R)-2-carbamate,
1-(4-fluorophenyl)-(R)-l-(methoxy)-hexyl-(R)-2-carbamate,
1-(2-chlorophenyl)-(R)-l-(methoxy)-propyl-(R)-2-carbamate,
1-(2-chlorophenyl)-(R)-l-(methoxy)-propyl-(R)-2-N-methylcarbamate,
1-(2-chlorophenyl)-(R)-l-(methoxy)-propyl-(R)-2-N-propylcarbamate,
1-(2-chlorophenyl)-(R)-l-(methoxy)-propyl-(R)-2-N-isopropylcarbamate,
1-(2-chlorophenyl)-(R)-l-(methoxy)-propyl-(R)-2-N-cyclopropylcarbamate,
1-(2-chlorophenyl)-(R)-l-(methoxy)-propyl-(R)-2-N-cyclohexylcarbamate,
1-(2-chlorophenyl)-(R)-l-(methoxy)-propyl-(R)-2-N-benzylcarbamate,
1-(2-chlorophenyl)-(R)-l-(methoxy)-propyl-(R)-2-N-bicyclo[2,2,1]heptanecarbamate
1-(2-chlorophenyl)-(R)-l-(methoxymethoxy)-ethyl-(R)-2-carbamate,
1-(2-fluorophenyl)-(R)-l-(methoxymethoxy)-ethyl-(R)-2-carbamate,
1-(2-iodophenyl)-(R)-l-(methoxymethoxy)-ethyl-(R)-2-carbamate,
bicyclo[2,2,1]heptanecarbamate
l-(2-chlorophenyl)-(R)-l-(methoxymethoxy)-butyl-(R)-2-carbamate,
l-(2-chlorophenyl)-(R)-1-(methoxymethoxy)-3-methyl-butyl-(R)-2-carbamate,
l-(2-chlorophenyl)-(R)-1-(methoxymethoxy)-hexyl-(R)-2-carbamate,
l-(2,3-dichlorophenyl)-(R)-1-(methoxymethoxy)-propyl-(R)-2-carbamate,
l-(2,4-dichlorophenyl)-(R)-1-(methoxymethoxy)-propyl-(R)-2-carbamate,
l-(2,4-dichlorophenyl)-(R)-1-(methoxymethoxy)-butyl-(R)-2-carbamate,
l-(2,4-dichlorophenyl)-(R)-l-(methoxymethoxy)-3-methyl-butyl-(R)-2-carbamate,
l-(2,4-dichlorophenyl)-(R)-1-(methoxymethoxy)-hexyl-(R)-2-carbamate,
l-(2,5-dichlorophenyl)-(R)-l-(methoxymethoxy)-propyl-(R)-2-carbamate,
l-(2,6-dichlorophenyl)-(R)-l-(methoxymethoxy)-propyl-(R)-2-carbamate,
l-(2,6-dichlorophenyl)-(R)-1-(methoxymethoxy)-butyl-(R)-2-carbamate,
l-(2,6-dichlorophenyl)-(R)-l-(methoxymethoxy)-3-methyl-butyl-(R)-2-carbamate,
l-(2,6-dichlorophenyl)-(R)-1-(methoxymethoxy)-hexyl-(R)-2-carbamate,
l-(2-fluorophenyl)-(R)-1-(methoxymethoxy)-propyl-(R)-2-carbamate,
l-(4-fluorophenyl)-(R)-1-(methoxymethoxy)-propyl-(R)-2-carbamate,
l-(4-fluorophenyl)-(R)-1-(methoxymethoxy)-butyl-(R)-2-carbamate,
l-(4-fluorophenyl)-(R)-l-(methoxymethoxy)-3-methyl-butyl-(R)-2-carbamate,
l-(4-fluorophenyl)-(R)-1-(methoxymethoxy)-hexyl-(R)-2-carbamate,
l-(2-iodophenyl)-(R)-1-(methoxymethoxy)-propyl-(R)-2-carbamate,
l-(2-iodophenyl)-(R)-l-(methoxymethoxy)-butyl-(R)-2-carbamate,
l-(2-iodophenyl)-(R)-l-(methoxymethoxy)-3-methyl-butyl-(R)-2-carbamate,
l-(2-iodophenyl)-(R)-1-(methoxymethoxy)-hexyl-(R)-2-carbamate,
l-(3-iodophenyl)-(R)-1-(methoxymethoxy)-hexyl-(R)-2-carbamate,
l-(3-iodophenyl)-(R)-l-(methoxymethoxy)-propyl-(R)-2-carbamate,
l-(3-iodophenyl)-(R)-1-(methoxymethoxy)-butyl-(R)-2-carbamate,
l-(3-iodophenyl)-(R)-1-(methoxymethoxy)-3-methyl-butyl-(R)-2-carbamate,
l-(3-iodophenyl)-(R)-1-(methoxymethoxy)-hexyl-(R)-2-carbamate,
l-(2-chlorophenyl)-(S)-1-carbamoyloxypropyl-(R)-2-carbamate,
l-(2-chlorophenyl)-(R)-1-carbamoyloxypropyl-(S)-2-carbamate,
l-(2-chlorophenyl)-(S)-1-(methoxy)-propyl-(R)-2-carbamate,
l-(2-chlorophenyl)-(R)-l-(methoxy)-propyl-(S)-2-carbamate,
l-(2-chlorophenyl)-(S)-1-(methoxymethoxy)-propyl-(R)-2-carbamate, and
l-(2-chlorophenyl)-(R)-1-(methoxymethoxy)-propyl-(S)-2-carbamate.
Two substances in the form of regioisomers of a single carbamate of diol having halogen substituent at phenyl ring may be separated by flash column chromatography to obtain two kinds of single carbamate compounds.

Alternatively, the compound may be in the form of a pharmaceutically acceptable salt. The pharmaceutically acceptable salt may include an additional salt of acid or base, and its stereochemical isomer. For example, the compound may be in the form of an additional salt of an organic or inorganic acid. The salt may not be specially limited, and include any salts that maintain the activities of their parent compounds, with no undesirable effects, in the subject, when they are administered to the subject. Such salts may include inorganic and organic salts, such as salts of acetic acid, nitric acid, aspartic acid, sulfonic acid, sulfuric acid, maleic acid, glutamic acid, formic acid, succinic acid, phosphoric acid, phthalic acid, tannic acid, tartaric acid, hydrobromic acid, propionic acid, benzene sulfonic acid, benzoic acid, stearic acid, lactic acid, bicarbonic acid, bisulfuric acid, bitartaric acid, oxalic acid, butyric acid, calcium edetate, carbonic acid, chlorobezoic acid, citric acid, edetic acid, toluenesulfonic acid, fumaric acid, gluceptic acid, esilic acid, pamoic acid, gluconic acid, methyl nitric acid, malonic acid, hydrochloric acid, hydroiodic, hydroxynaphpholic acid, isethionic acid, lactobionic acid, mandelic acid, mucic acid, naphthyl acid, muconic acid, p-nitromethanesulfonic acid, hexamic acid, pantothenic acid, monohydrogen phosphoric acid, dihydrogen phosphoric acid, salicylic acid, sulfamic acid, sulfanilic acid, methane sulfonic acid, and the like. The additional salts of base may include salts of akali metal or alkaline earth metal, such as salts of ammonium, lithium, sodium, potassium, magnesium, calcium, and the like; salts having an organic base, such as benzathine, N-methyl-D-glucamine, hydrabamine, and the like; and salts having an amino acid such as arginine, lysine, and the like. In addition, these salts may be converted to a released form by treating with a proper base or acid.

The carbamate compound of the present invention may prepared by the following reaction formula.

Reaction Formula I: Synthesis of Diol- 1

\[
\begin{align*}
\text{trans olefin} & \quad R^1 \quad \text{AD-mix} \\
\text{Diol} & \quad R^1
\end{align*}
\]

A diol compound used in the synthesis of the carbamate compound may be
synthesized by dihydroxylation of a trans-olefin compound. A diol compound having optical activity may be synthesized using a sharpless asymmetric dihydroxylation catalyst.

Reaction Formula II: Synthesis of Diol-2

As indicated in the Reaction Formula II, the optically active substance of diol may also be synthesized using a reduction reagent after synthesizing a hydroxy-ketone compound using Haloro-Mandelic acid. In the Reaction Formula II, PG may be Trialkyl Silyl group (TMS, TES, TIPS, TBDMS, TBDDS), Ether group [MOM(Mothoxymethyl ether), MEM(2-Methoxyethoxymethyl ether), BOM(Benzyloxymethyl ether), MTM(Methylthiomethyl ether), SEM(2-(Trimethylsilyl)ethoxymethyl ether), PMBM(p-Methoxybenzyl ether), THP(Tetrahydropyranyl ether), Allyl ether, Trityl ether, Ester group [Ac(acetate), Bz(Benzoate), Pv(Pivaloate), Cbz(Benzyl carbonate), BOC(t-Butyl carbonate), Fmoc(9-Fulorenylmethyl)carboxanate, Alloc(Allyl Carbonate), Troc(Trichloroethyl carbonate), or p-Methoxybenzoate, Methyl carbonate, and so on.

Reaction Formula III: Carbamation reaction-1

As a highly selectivity form of regioisomer of single carbamate of diol having halogen substituent at phenyl ring.

Reaction Formula IV: Carbamation reaction-2
Two substances in the form of regioisomers of a single carbamate of diol having halogen substituent at phenyl ring may be separated by flash column chromatography to obtain two kinds of single carbamate compounds.

Reaction Formula V: Substitution reaction

R¹ is a hydrogen or linear or branched C₁-C₄ alkyl group, for example, methyl group, ethyl group, isopropyl group, or butyl group,

A is selected from the group consisting of an allyl, a C₁-C₉ linear or branched alkyl group (such as a methyl, t-butyl, benzyl, p-methoxybenzyl, 2- napthylmethyl, trityl group etc.), a C₂-C₈ alkoxy alkyl ether group (such as a methoxy methyl(MOM), methoxyethoxymethyl(MEM), thertahydropyranyl(THP), benzyloxymethyl(BOM), methylthiomethyl(MTM), trimethylsilylethoxymethyl(SEM), ethoxyethyl(EE) group etc.), and a carbamoyl derivative represented by

B is selected from the group consisting of an allyl, a C₁-C₁₉ linear or branched alkyl group (such as a methyl, t-butyl, benzyl, p-methoxybenzyl, 2- napthylmethyl, trityl group etc.), a C₂-C₈ alkoxy alkyl ether group (such as a methoxy methyl(MOM),
methoxyethoxymethyl (MEM), thertahydropyranyl (THP), benzyloxymethyl (BOM),
methylthiomethyl (MTM), trimethylsilylethoxymethyl (SEM), ethoxyethyl (EE) group etc.,
and a carbamoyl derivative represented by

\[
\begin{array}{c}
\text{H} \\
\text{N} \\
\text{O} \\
\text{R}^3
\end{array}
\]

\(R^2 \) and \(R^3 \) may be the same as or different from each other, and independently
selected from the group consisting of hydrogen, a linear or branched lower alkyl group of \(C_1 \)
- \(C_4 \), for example \(C_1 \)-C3, a cycloalkyl group of \(C_3 \)-C8, for example \(C_5 \)-C7, and benzyl group,
and more specifically, \(R^2 \) and \(R^3 \) may be the same as or different from each other, and
independently selected from the group consisting of hydrogen, methyl group, propyl group,
isopropyl group, cyclopropyl group, cyclohexyl group, bicycloheptane group, and benzyl
group.

In an embodiment, when \(A \) is a carbamoyl group, \(B \) is an allyl, linear or branched \(C_1 \)-
\(C_{19} \) alkyl group or a \(C_2 \)-C8 alkoxy alkyl ether group; when \(B \) is a carbamoyl group, \(A \) is an
allyl, a linear or branched \(C_1 \)-\(C_{19} \) alkyl group or a \(C_2 \)-C8 alkoxy alkyl ether group; or \(A \) and \(B \)
are carbamoyl derivative at the same time.

In an embodiment of Chemical Formula 1, the \(C_1 \)-\(C_{19} \) linear or branched alkyl group
is independently linear or branched \(C_1 \)-\(C_6 \) lower aliphatic alkyl such as methyl, ethyl, t-butyl
and the like; a substituted or unsubstituted \(C_1 \)-\(C_{19} \) cycloaliphatic and substituted or
unsubstituted \(C_6 \)-\(C_{18} \) aromatic group such as benzyl, naphtyl, trityl and the like. The
cycloaliphatic group and the aromatic group may be substituted with at least one selected
from the group consisting of hydrogen, \(C_1 \)-\(C_{6} \) lower alkyl and \(C_1 \)-\(C_{6} \) alkoxy group.

The examples of \(C_1 \)-\(C_6 \) lower aliphatic alkyl include methyl, ethyl, propyl, t-butyl,
pantyl, hexyl and the like. The examples of \(C_6 \)-\(C_{18} \) aromatic group is benzyl such as benzyl,
methylbenzyl, methoxybenzyl and the like, naphtyl such as 2-naphthylmethyl, trityl group and
the like.

\(A \) and \(B \) is independently \(C_2 \)-\(C_8 \) alkoxy alkyl ether group such as such as a methoxy
methy (MOM), methoxyethoxymethyl (MEM), thertahydropyranyl (THP),
benzyloxymethyl (BOM), methylthiomethyl (MTM), trimethylsilylethoxymethyl (SEM),
ethoxyethyl (EE) group and the like.

\(R^2 \) and \(R^3 \) may be independently selected from the group consisting of hydrogen, a
linear or branched alkyl group of \(C_1 \)-\(C_4 \), for example \(C_1 \)-\(C_3 \) alkyl, a cycloalkyl group of \(C_3 \)-\(C_8 \),
for example benzyl group, and more specifically, \(R^2 \) and \(R^3 \) may be selected from the group
consisting of hydrogen, methyl group, propyl group, isopropyl group, cyclopropyl group, cyclohexyl group, bicycloheptane group, and benzyl group.

Another embodiment provides a method of prevention and/or treatment of an epilepsy or a epilepsy-related syndrome, comprising administering a pharmaceutically effective amount of a phenyl carbamate compound represented by Chemical Formula 1; a racemate, an enantiomer, a diastereomer, a mixture of enantiomers, or a mixture of diastereomers thereof; or a pharmaceutically acceptable salt thereof, to a subject in need of preventing and/or treating drug-resistant epilepsy or drug-resistant epilepsy-related symptom. The method can be applied for preventing and/or treating drug-resistant epilepsy or drug-resistant epilepsy-related symptom.

The method may further comprise a step of identifying the subject in need of preventing and/or treating an epilepsy or a epilepsy-related syndrome, prior to the step of administering. Another embodiment provides a phenyl carbamate compound represented by Chemical Formula 1; a racemate, an enantiomer, a diastereomer, a mixture of enantiomers, or a mixture of diastereomers thereof; or a pharmaceutically acceptable salt thereof, for use in the prevention and/or treatment of an epilepsy or a epilepsy-related syndrome.

Another embodiment provides a use of a phenyl carbamate compound represented by Chemical Formula 1; a racemate, an enantiomer, a diastereomer, a mixture of enantiomers, or a mixture of diastereomers thereof; or a pharmaceutically acceptable salt thereof for the manufacture of a pharmaceutical composition for preventing and/or treating an epilepsy or a epilepsy-related syndrome.

In an embodiment, the present invention relates to a therapeutic or preventive agent for epilepsy and epilepsy-related syndrome, preferable intractable epilepsy and its related syndrome.

The characteristics of intractable epilepsy include 1) high occurrence of partial seizure followed by a generalized seizure (particularly temporal lobe epilepsy); 2) high occurrence of symptomatic epilepsy caused by an organic lesion in the brain; 3) long-term absence of treatment from the onset to consultation of a specialist and high occurrence of seizures; and 4) high occurrence of status epilepticus in the anamnesis. In other words, the temporal lobe is likely to be a portion of the brain responsible for intractable epilepsy. It is indicated that epilepsy becomes more intractable by changing of the nature thereof and evolving as acquired seizures are repeated.

Intractable epilepsy is categorized into three clinical types, i.e., (a) localization-related epilepsies and syndromes, (b) generalized epilepsies and syndromes, and (c) epilepsies and syndromes undetermined, whether focal or generalized.

Examples of (a) localization-related epilepsies and syndromes include temporal lobe
epilepsies, frontal lobe epilepsies, and multi-lobe epilepsies. Temporal lobe epilepsies and frontal lobe epilepsies are typical examples of intractable epilepsy. Multi-lobe epilepsies are considered to be caused by two or more lobes.

Examples of (b) generalized epilepsies and syndromes include myoclonic epilepsy.

Examples of (c) epilepsies and syndromes undetermined, whether focal or generalized, include severe myoclonic epilepsy, which exhibits a variety of seizure types. In particular, tonic-clonic seizures frequently occur, to thereby often lead to status epilepticus. Thus, special treatment conducted by a specialist for epilepsy is strongly required (Masako WATANABE, et al., Igakuno Ayumi, 183(1): 103-108, 1997).

Seizures associated with intractable epilepsy are categorized into a variety of types, e.g., tonic seizures, tonic-clonic seizures, atypical absence seizures, atonic seizures, myoclonic seizures, clonic seizures, simple partial seizures, complex partial seizures, and secondary generalized seizures. Of these, for tonic and atonic seizures, attention must be paid to injuries resulting from falls.

In addition, complex partial seizures may cause a behavior-caused accident during disturbance of consciousness. In intractable epilepsies, "complex partial seizures" associated with temporal lobe epilepsies and frontal lobe epilepsies occur at relatively high frequency in adults. Although said seizures occur at low frequency in children, the seizures are also intractable as in the case of adults (Progress of Epileptology, No. 2, Haruo AKIMOTO and Toshio YAMAUCHI, Iwanami Gakujutsu Shuppan, 1991, p 51-85).

In the present description, the term "intractable epilepsy" refers to epilepsies or seizures associated therewith corresponding to the following four epilepsies or seizures associated therewith:

(1) epilepsies difficult to treat in which suppression of seizures associated therewith cannot be controlled through a conventional pharmaceutical treatment (Masako WATANABE, et al., Igaku-no Ayumi, 183(1): 103-108, 1997);

(2) epilepsies corresponding to the following (a) to (c): (a) localization-related epilepsies such as temporal lobe epilepsis and cortical epilepsis; (b) generalized epilepsies and myoclonic epilepsy; and (c) epilepsies and syndromes undetermined, whether focal or generalized, such as severe myoclonic epilepsy;

(3) seizures associated with the above-described intractable epilepsis including tonic seizures, tonic-clonic seizures, atypical absence seizures, atonic seizures, myoclonic seizures, clonic seizures, simple partial seizures, complex partial seizures, and secondary generalized seizures; and

(4) epilepsies such as epilepsies following brain surgery, traumatic epilepsies, and relapsed epilepsies following surgery for epilepsy.

The antiepileptic agent of the present invention is effective for the above four types
of intractable epilepsies. Of these, the antiepileptic agent of the present invention is particularly effective for localization-related epilepsies corresponding to (2) (a); seizures such as secondary generalized seizures, complex partial seizures and status epilepticus corresponding to (3) and status epilepticus; and epilepsies following brain surgery, traumatic epilepsies, and relapsed epilepsies following surgery for epilepsy corresponding to (4). The antiepileptic agent of the present invention has a possibly excellent effect to epilepsies such as localization-related epilepsies, temporal lobe epilepsies, and cortical epilepsies.

"Temporal lobe epilepsy," which is one type of intractable epilepsy, is an epilepsy having a seizure focus in the temporal lobe, and is categorized under symptomatic and localization-related epilepsies, which also include frontal lobe epilepsies, parietal lobe epilepsies, and occipital lobe epilepsies, based on the international classification of epilepsy.

The syndromes of temporal lobe epilepsy vary in accordance with a focus-localized site and type of seizure propagation, in that the temporal lobe has an anatomically complex structure including neocortex, allocortex, and paleocortex. Temporal lobe epilepsy, as previously defined as a psychomotor seizure, mostly causes complex partial seizures as clinically observed seizures, and also causes simple partial seizures, secondary generalized seizures, and combinations thereof.

Simple partial seizures include autonomic and mental symptoms and sensory symptoms such as olfaction, audition, or vision, sometimes concomitant with symptoms of experiences such as deja-vu and jamais-vu. Complex partial seizures often exhibit motion stopping followed by eating-function automatism, and are divided into amygdala-hippocampus seizures and lateral temporal lobe seizures according to localization. In the case of temporal lobe epilepsy, 70-80% of the seizures are hippocampus seizures, in which aura, motion stopping, lip automatism, and clouding of consciousness are successively developed to result in amnesia. When the focus is in the amygdala, there are caused autonomic symptoms such as dysphoria in the epigastrium; phobia; and olfactory hallucination. Lateral temporal lobe seizures include auditory illusion, hallucination, and a dreamy state, and disturbance of speech when the focus is in the dominant hemisphere. Temporal lobe epilepsy exhibits a long-term psychosis-like state in addition to other symptoms and recognition-and-memory disorder more frequently than do other epilepsies (Medical Dictionary, Nanzando). Treatment of temporal lobe epilepsy is carried out through pharmacotherapy employing a maximum dose of a combination of drugs, or through surgical treatment.

"Cortex epilepsy, which is one type of intractable epilepsy, is an epilepsy having a focus in the cerebral cortex, and is classified as symptomatic epilepsy belonging to localization-related (focal) epilepsies and syndromes in the international classification of epilepsy. In the international classification, seizures associated with cortex epilepsy are classified as simple partial seizures, which are partial seizures without reduction of
consciousness. Accordingly, a n electroencephalogram taken during a seizure associated with cortex epilepsy (not always recorded on the scalp) exhibits localized contralateral electric discharge from the corresponding cortical field. The cortex epilepsy is classified as temporal lobe epilepsy, parietal lobe epilepsy, or occipital lobe epilepsy.

"Traumatic epilepsy," which is one type of intractable epilepsy, in a broad sense, is divided into two epilepsies, i.e., "early epilepsy" and "late epilepsy." "Early epilepsy" is caused through stimulation of the brain induced by convulsion within a week after suffering a trauma, and is not a true epilepsy. In contrast, "late epilepsy" is a true epilepsy that is caused one or more weeks after suffering a trauma. Most of the traumatic epilepsies are caused by formation of a focus at a traumatically damaged portion of the cortex, and they are considered to be typical examples of partial epilepsies.

"A secondary generalized seizure," which is one of the symptoms associated with intractable epilepsy, is one type of partial seizure, which exhibit a clinical syndrome and an electroencephalogram feature observed as excitation of neurons that shows initiation of a seizure in a limited portion of one cerebral hemisphere. The secondary generalized seizure is initiated as a simple partial seizure (without impairment of consciousness) or a complex partial seizure (with impairment of consciousness), and develops to general convulsion induced through secondary generalization. The main symptom thereof is convulsion such as a tonic-clonic seizure, a tonic seizure, or a clonic seizure.

"A complex partial seizure," which is one of the symptoms associated with intractable epilepsy, refers to a partial seizure with impairment of consciousness, and is similar to a seizure that has conventionally been called a psycho-motor seizure or a seizure associated with temporal lobe epilepsy. In the international classification draft (1981), the complex partial seizure is defined as a seizure with impairment of consciousness exhibiting an electroencephalogram during a seizure in which unilateral or bilateral electric discharge attributed to a focus in a diffuse or a temporal or front-temporal portion.

Clinically, an epileptic seizure results from a sudden and abnormal electrical discharge originating from a collection of interconnected neurons in the brain or elsewhere in the nervous system. Depending on the type of epilepsy involved, the resulting nerve cell activity may be manifested by a wide variety of clinical symptoms such as uncontrollable motor movements, changes in the patient's level of consciousness and the like. Epilepsy and epileptic seizures and syndromes may be classified in a variety of ways (See, The Treatment of Epilepsy, Principles & Practice, Third Edition, Elaine Wyllie, M.D. Editor, Lippincott Williams & Wilkins, 2001). However, as used herein the terms; "epilepsy", "epileptic seizures" and "epileptic syndromes" are meant to include all known types of epileptic seizures and syndromes including; partial seizures, including simple, complex and partial seizures evolving to generalized tonic-clonic convulsions and generalized seizures, both
convulsive and nonconvulsive and unclassified epileptic seizures.

Patients with epilepsy whose seizures do not successfully respond to antiepileptic drug (AED) therapy are considered to have drug-resistant epilepsy (DRE). This condition is also referred to as intractable, medically refractory, or pharmacoresistant epilepsy. The International League Against Epilepsy (ILAE) defines drug resistant epilepsy as a failure of adequate trials of two tolerated and appropriately chosen and used AED schedules (whether as monotherapies or in combination) to achieve sustained seizure freedom.

As used herein, the term "anti-epileptic drug(s)" or "AED(s)" generally encompasses pharmacological agents that reduce the frequency or likelihood of a seizure. There are many drug classes that comprise the set of antiepileptic drugs (AEDs), and many different mechanisms of action are represented. For example, some medications are believed to increase the seizure threshold, thereby making the brain less likely to initiate a seizure. Other medications retard the spread of neural bursting activity and tend to prevent the propagation or spread of seizure activity. Some AEDs, such as the Benzodiazepines, act via the GABA receptor and globally suppress neural activity. However, other AEDs may act by modulating a neuronal calcium channel, a neuronal potassium channel, a neuronal NMDA channel, a neuronal AMPA channel, a neuronal metabotropic type channel, a neuronal sodium channel, and/or a neuronal kainite channel. The phrase "Anti-epileptic drugs that block sodium channels", "sodium-channel-blocking AEDs" used herein refers to anti-epileptic drugs that block sodium channels. The sodium-channel-blocking AEDs can be selected from the group consisting of topiramate, carbamazepine, oxcarbazepine, phenytoin, lamotrigine, zonisamide, felbamate, ethosuximide, and valproate (valproic acid), as well as other existing or new AEDs which may be identified to block sodium channels in the future.

As used herein, the terms "subject" or "patient" are used herein interchangeably and as used herein, refer to a human being, who has been the object of treatment, observation or experiment.

The pharmaceutical composition may be formulated in various forms for oral or parenteral administration. For example, the pharmaceutical composition may be formulated in the oral administration form, such as a tablet, pill, soft or hard capsule, liquid, suspension, emulsion, syrup, granules, elixirs, and the like. In addition to the active ingredient, the oral administration form may further include pharmaceutically acceptable and conventional components, for example, a diluent such as lactose, dextrose, sucrose, mannitol, sorbitol, cellulose, glycine, and the like; a lubricant such as silica, talc, stearic acid, magnesium or calcium salt thereof, polyethylene glycol, and the like. In the case that the oral administration form is a tablet, it may further include a binder such as magnesium aluminium silicate, starch paste, gelatin, tragacanth, methylcellulose, sodium carboxymethylcellulose,
polyvinylpirrolidone, and the like; and optionally include one or more additives selected from the group consisting of a disintegrant such as starch, agar, arginic acid or sodium salt thereof, an absorbent, a colorant, a flavoring, a sweetener, and the like. Alternatively, the pharmaceutical composition may also be formulated in a parenteral administration form, which can be administered by subcutaneous injection, intravenous injection, intramuscular injection, injection into thoracic cavity, and the like. In order to formulate the parenteral administration form, the pharmaceutical composition may be prepared as a solution or suspension wherein the active ingredient is dissolved in water together with a stabilizer and/or a buffering agent, and such solution or suspension formulation may be prepared as a dosage form in ample or vial.

The pharmaceutical composition may be sterilized, and/or include further additives such as a preservative, a stabilizer, a hydrating agent, an emulsification accelerator, a salt and/or buffering agent for osmoregulation, and the like, and/or further therapeutically effective ingredients. The pharmaceutical composition may be formulated by any conventional method for mixing, granulating, coating, and the like.

The pharmaceutical composition may be administered to a mammal including human, in the pharmaceutically effective amount of 0.01 to 750 mg/kg(body weight), preferably 0.1 to 500 mg/kg(body weight) per one day, based on the active ingredient. The pharmaceutically effective amount may refers to an amount capable of exhibiting a desired effect, i.e., an effect of treating and/or preventing epilepsy. The pharmaceutically effective amount may be administered through oral or parenteral pathway (e.g., an intravenous injection, an intramuscular injection, etc.), one or two or more times per one day.

The pharmaceutically effective amount and the administration pathway of the present pharmaceutical composition may be properly adjusted by a person skilled in the relevant field considering the conditions of the subject (patient), desired effects, and the like. The subject may be a mammal including human or cells and/or tissues obtained therefrom.

EXAMPLE

The present invention is further explained in more detail with reference to the following examples. These examples, however, should not be interpreted as limiting the scope of the present invention in any manner.
Preparation Example 1: Synthesis of l-(2-chlorophenyl)-trans-l-propene

48ml of 2-chlorobenzaldehyde (0.42mol) and 49.7ml of 3-pentanone (0.47mol) were dissolved in 600mL of hexane in flask, and then stirred with raising the temperature. 53.6ml of Boron trifluoride etherate (BF$_3$OEt$_2$, 0.42mol) was added to the resultant under reflux conditions. When the reaction was completed, water was added thereto. After layer separation, the obtained organic layer was washed twice with 1M sodium hydroxide solution (1M NaOH), and then the separated organic layer was washed with water. The separated organic layer was dehydrated with anhydrous magnesium sulfate (MgSO$_4$) and concentrated. The concentrated residue was purified by a silica gel column chromatography to produce the title compound (38g, yield 58%). 1H NMR(400MHz, CDCl$_3$) 51.94(d, $J=4.8$Hz, 3H), 6.24(m, 1H), 6.78(d, $J=14$Hz, 1H), 7.11~7.51(m, 4H)

Preparation Example 2: Synthesis of l-(2-chlorophenyl)-trans-l-butene

The substantially same method as described in Preparation Example 1 was conducted, except that 3-heptanone was used instead of 3-pentanone, to obtain the title compound (2.9g, yield 83%). 1H NMR(400MHz, CDCl$_3$) 51.14(d, $J=7.6$Hz, 3H), 2.29~2.33(m, 2H), 6.28(dt, $J=16$Hz, 6.4Hz, 1H), 6.78(d, $J=15.6$Hz, 1H), 7.13~7.54(m, 4H)

Preparation Example 3: Synthesis of l-(2-chlorophenyi)-3-methyl-trans-l-butene

The substantially same method as described in Preparation Example 1 was conducted, except that 2,6-dimethyl-heptan-4-one was used instead of 3-pentanone, to obtain the title compound (8.0g, yield 50-90%).
1H NMR (400MHz, CDCl₃) 51.14 (d, J = 6.8Hz, 6H), 2.25~2.57 (m, 1H), 6.20 (dd, J = 16Hz, 7.2Hz, 1H), 7.64 (d, J = 16Hz, 1H), 7.12~7.54 (m, 4H)

Preparation Example 4: Synthesis of l-(2-chlorophenyl)-trans-l-hexene

![Chemical Structure](image)

The substantially same method as described in Preparation Example 1 was conducted, except that 6-undecanone was used instead of 3-pentanone, to obtain the title compound (10g, yield 85%).

1H NMR (400MHz, CDCl₃) 50.96 (t, J = 7.2Hz, 3H), 1.33~1.56 (m, 4H), 2.26~2.32 (m, 4H), 6.24 (dt, J = 15.6Hz, 7Hz, 1H), 6.78 (d, J = 16Hz, 1H), 7.13~7.54 (m, 4H)

Preparation Example 5: Synthesis of l-(2,4-dichlorophenyl)-trans-l-propene

![Chemical Structure](image)

The substantially same method as described in Preparation Example 1 was conducted, except that 2,4-dichlorobenzenaldehyde was used instead of 2-chlorobenzenaldehyde, to obtain the title compound (2.4g, yield 57%).

1H NMR (400MHz, CDCl₃) 51.95 (dd, J = 6.8Hz, 1.6Hz, 3H), 6.24 (m, 1H), 6.72 (d, J = 15.6Hz, 1H), 7.18~7.44 (m, 3H)

Preparation Example 6: Synthesis of l-(2,4-dichlorophenyl)-trans-l-butene

![Chemical Structure](image)

The substantially same method as described in Preparation Example 5 was conducted, except that 3-heptanone was used instead of 3-pentanone, to obtain the title compound (2.1g, yield 90%).

1H NMR (400MHz, CDCl₃) 51.14 (d, J = 7.6Hz, 3H), 2.20~2.33 (m, 2H), 6.26 (dt, J = 16Hz, 6.8Hz, 1H), 6.70 (d, J = 15.6Hz, 1H), 7.18~7.46 (m, 3H)
Preparation Example 7: Synthesis of 1-(2,6-dichlorophenyl)-3-methyl-trans-1-butene

The substantially same method as described in Preparation Example 5 was conducted, except that 2,6-dimethyl-heptan-4-one was used instead of 3-pentanone, to obtain the title compound (0.23g, yield 10-40%).

1H NMR(400MHz, CDC$_3$)$_3$ 81.15(d, $J=6.8$Hz, 6H), 2.53~2.58(m, 1H), 6.19(dd, $J=16.4$Hz, 6.8Hz, 1H), 6.31(d, $J=16.4$Hz, 1H), 7.18~7.46(m, 3H)

Preparation Example 8: Synthesis of 1-(2,4-dichlorophenyl)-trans-1-hexene

The substantially same method as described in Preparation Example 5 was conducted, except that 6-undecanone was used instead of 3-pentanone, to obtain the title compound (3.2g, yield 40-80%).

1H NMR(400MHz, CDC$_3$)$_3$ 50.96(t, $J=7.2$Hz, 3H), 1.38~1.52(m, 4H), 2.25~2.31(m, 2H), 6.22(dt, $J=15.6$Hz, 6.8Hz, 1H), 6.70(d, $J=15.6$Hz, 1H), 7.18~7.46(m, 3H)

Preparation Example 9: Synthesis of 1-(2,6-dichlorophenyl)-trans-1-propene

The substantially same method as described in Preparation Example 1 was conducted, except that 2,6-dichlorobenzenaldehyde was used instead of 2-chlorobenzenaldehyde, to obtain the title compound (0.4g, yield 10-40%).

1H NMR(400MHz, CDC$_3$)$_3$ 81.98(d, $J=8$Hz, 3H), 6.23-6.3 l(m, 1H), 6.40(d, $J=16$Hz, 1H), 7.05-7.32(m, 3H)

Preparation Example 10: Synthesis of 1-(2,6-dichlorophenyl)-trans-1-butene
Preparation Example 9: Synthesis of 1-(2,6-dichlorophenyl)-3-methyl-trans-l-butenec

The substantially same method as described in Preparation Example 9 was conducted, except that 3-heptanone was used instead of 3-pentanone, to obtain the title compound (1.2g, yield 10-40%).

\[^1H \text{NMR}(400\text{MHz, CDC}_1\text{)} \]
6.17(t, J=7.6Hz, 3H), 2.30~2.37(m, 2H), 6.29(dt, J=16.4Hz, 6Hz, 1H), 6.37(d, J=16.4Hz, 1H), 7.05~7.32(m, 3H)

Preparation Example 11: Synthesis of 1-(2,6-dichlorophenyl)-3-methyl-trans-l-butenec

The substantially same method as described in Preparation Example 9 was conducted, except that 2,6-dimethyl-heptan-4-one was used instead of 3-pentanone, to obtain the title compound (0.23g, yield 10-40%).

\[^1H \text{NMR}(400\text{MHz, CDC}_1\text{)} \]
51.15(d, J=6.8Hz, 6H), 2.53~2.58(m, 1H), 6.19(dd, J=16.4Hz, 6.8Hz, 1H), 6.31(d, J=16.4Hz, 1H), 7.05~7.32(m, 3H)

Preparation Example 12: Synthesis of 1-(2,6-dichlorophenyl)-trans-1-hexene
d

The substantially same method as described in Preparation Example 9 was conducted, except that 6-undecanone was used instead of 3-pentanone, to obtain the title compound (0.2g, yield 10-40%).

\[^1H \text{NMR}(400\text{MHz, CDC}_1\text{)} \]
60.99(t, J=7.2Hz, 3H), 1.14~1.59(m, 4H), 2.30~2.36(m, 2H), 6.24(dt, J=16Hz, 6.6Hz, 1H), 6.38(d, J=16.4Hz, 1H), 7.05~7.33(m, 3H)

Preparation Example 13: Synthesis of 1-(2,3-dichlorophenyl)-trans-1-propene
The substantially same method as described in Preparation Example 1 was conducted, except that 2,3-dichlorobenzenaldehyde was used instead of 2-chlorobenzenaldehyde, to obtain the title compound (0.2 g, yield 10-40%).

1H NMR (400 MHz, CDCl$_3$) δ 51.94 (d, J = 4.8 Hz, 3H), 6.24 (m, 1H), 6.78 (d, J = 14 Hz, 1H), 7.11-7.51 (m, 3H)

Preparation Example 14: Synthesis of 1-(2-chlorophenyl)-(S,S)-l,2-propanediol

1-(2-chlorophenyl)-trans-l-propene (1.5 g, Preparation Example 1) was dissolved in 30 mL of the mixture of t-BuOH/H$_2$O (1:1 V/V). At 0 °C, AD-mix-a (Aldrich, U.S.A.) (13.7 g) and methane sulfone amide (CH$_3$S\cdotO$_2$N\cdotH$_2$, 0.76 g, 0.0080 mol) were added thereto and stirred overnight. When the reaction was completed, the obtained product was washed with an aqueous solution of sodium sulfite (Na$_2$SO$_3$) and ethylacetate (EA). Then, the organic layer was dehydrated with anhydrous magnesium sulfate (MgSO$_4$), filtrated, and concentrated under reduced pressure. The concentrated residue was purified by silica gel column chromatography to produce the title compound (1.65 g, yield 90%).

1H NMR (400 MHz, CDCl$_3$) δ 51.20 (d, J = 6.4 Hz, 3H), 2.48 (d, J = 4.0 Hz, 1H), 2.92 (d, J = 4.4 Hz, 1H), 3.93-3.97 (m, 1H), 4.97 (t, J = 4.8 Hz, 1H), 7.22-7.51 (m, 4H)

13CNMR (100 MHz, CDCl$_3$) δ 61.88, 71.5, 74.4, 127.1, 128.1, 128.9, 129.5, 132.6, 138.9

Preparation Example 15: Synthesis of 1-(2-chlorophenyl)-(R,R)-l,2-propanediol

Cl OH

1-(2-chlorophenyl)-trans-l-propene (2.5 g, Preparation Example 1) was dissolved in 50 mL of the mixture of t-BuOH/H$_2$O (1:1 V/V). At 0 °C, AD-mix-a (Aldrich, U.S.A.) (23.5 g) and methane sulfone amide (CH$_3$S\cdotO$_2$N\cdotH$_2$, 1.27 g, 0.013 mol) were added thereto and stirred overnight. When the reaction was completed, the obtained product was washed...
with an aqueous solution of sodium sulfite (Na$_2$SO$_3$) and ethylacetate (EA). Then, the organic layer was dehydrated with anhydrous magnesium sulfate (MgSO$_4$), filtrated, and concentrated under reduced pressure. The concentrated residue was purified by a silica gel column chromatography to produce the title compound (2.96g, yield 90%).

1H NMR(400MHz, CDC$_3$)$_3$: 61.20(d, J=6.4Hz, 3H), 2.48(d, J=4.0Hz, 1H), 2.92(d, J=4.4Hz, 1H), 3.93~3.97(m, 1H), 4.97(t, J=4.8Hz, 1H), 7.22~7.51(m, 4H)

Preparation Example 16: Synthesis of the mixture of l-(2-chlorophenyl)-(S,S)-1,2-propanediol and l-(2-chlorophenyl)-(R,R)-1,2-propanediol

![Chemical Structure](image)

1-(2-chlorophenyl)-trans-l-propene (6.53g, Preparation Example 1) was dissolved in 45mL of the mixture of acetone/t-BuOH/H$_2$O (5:1:1 V/V). At the room temperature, N-methylmorpholine-N-oxide (7.5lg) and OsO$_4$ (0.54g) were added thereto and stirred for 2-3 hours. When the reaction was completed, the obtained product was washed with water and methylenechloride (MC). Then, the organic layer was dehydrated with anhydrous magnesium sulfate (MgSO$_4$), filtrated, and concentrated under reduced pressure. The concentrated residue was purified by a silica gel column chromatography to produce the title compound (6.42g, yield 80%).

1H NMR(400MHz, CDC$_3$)$_3$: 51.20(d, J=6.4Hz, 3H), 2.48(d, J=4.0Hz, 1H), 2.92(d, J=4.4Hz, 1H), 3.93~3.97(m, 1H), 4.97(t, J=4.8Hz, 1H), 7.22~7.51(m, 4H)

Preparation Example 17: Synthesis of l-(2-chlorophenyl)-(S,S)-1,2-butanediol

![Chemical Structure](image)

The substantially same method as described in Preparation Example 14 was conducted, except that l-(2-chlorophenyl)-trans-l-butene (Preparation Example 2) was used instead of l-(2-chlorophenyl)-trans-l-propene (Preparation Example 1), to obtain the title compound (0.36g, yield 95%).

1H NMR(400MHz, CDC$_3$)$_3$: 51.01(t, J=7.4Hz, 3H), 1.52~1.65(m, 2H), 2.01(d, J=4.4Hz, 1H), 2.74(d, J=5.2Hz, 1H), 3.69~3.75(m, 1H), 5.05(t, J=5.0Hz, 1H), 7.23~7.54(m,
Preparation Example 18: Synthesis of l-(2-chlorophenyl)-(R,R)-1,2-butanediol

\[
\begin{align*}
\text{Cl} & \quad \text{OH} \\
& \quad \text{HO} \\
\end{align*}
\]

The substantially same method as described in Preparation Example 15 was conducted, except that l-(2-chlorophenyl)-trans-l-butene (Preparation Example 2) was used instead of l-(2-chlorophenyl)-trans-l-propene (Preparation Example 1), to obtain the title compound (0.84g, yield 60-95%).

\[^1H\text{ NMR}(400MHz, \text{CDCl}_3) 51.01(t, J=7.4Hz, 3H), 1.52-1.65(m, 2H), 2.01(d, J=4.4Hz, IH), 2.74(d, J=5.2Hz, IH), 3.69-3.75(m, IH), 5.05(t, J=5.0Hz, IH), 7.23-7.54(m, 4H)\]

Preparation Example 19: Synthesis of the mixture of l-(2-chlorophenyl)-(S,S)-1,2-butanediol and l-(2-chlorophenyl)-(R,R)-1,2-butanediol

\[
\begin{align*}
\text{Cl} & \quad \text{OH} \\
& \quad \text{HO} \\
\end{align*}
\quad \&
\begin{align*}
\text{Cl} & \quad \text{OH} \\
& \quad \text{HO} \\
\end{align*}
\]

The substantially same method as described in Preparation Example 16 was conducted, except that l-(2-chlorophenyl)-trans-l-butene (Preparation Example 2) was used instead of l-(2-chlorophenyl)-trans-l-propene (Preparation Example 1), to obtain the title compound (5.1g, yield 60-90%).

\[^1H\text{ NMR}(400MHz, \text{CDCl}_3) 61.01(t, J=7.4Hz, 3H), 1.52-1.65(m, 2H), 2.01(d, J=4.4Hz, IH), 2.74(d, J=5.2Hz, IH), 3.69-3.75(m, IH), 5.05(t, J=5.0Hz, IH), 7.23-7.54(m, 4H)\]

Preparation Example 20: Synthesis of l-(2-chlorophenyl)-3-methyl-(S,S)-1,2-butanediol

\[
\begin{align*}
\text{Cl} & \quad \text{OH} \\
& \quad \text{HO} \\
\end{align*}
\]

The substantially same method as described in Preparation Example 14 was
conducted, except that 1-(2-chlorophenyl)-3-methyl-trans-1-butene (Preparation Example 3) was used instead of 1-(2-chlorophenyl)-trans-1-propene (Preparation Example 1), to obtain the title compound (0.96g, yield 60-90%).

1H NMR(400MHz, CDC$_1$$_3$) 51.07(t, J=7.2Hz, 6H), 1.83~1.89(m, 1H), 1.92(d, J=5.6Hz, 1H), 2.69(d, J=6.4Hz, 1H), 3.53-3.56(m, 1H), 5.22~5.25(m, 1H), 7.23~7.55(m, 4H)

Preparation Example 21: Synthesis of 1-(2-chlorophenyl)-3-methyl-(R,R)-1,2-butanediol

The substantially same method as described in Preparation Example 15 was conducted, except that 1-(2-chlorophenyl)-3-methyl-trans-1-butene (Preparation Example 3) was used instead of 1-(2-chlorophenyl)-trans-1-propene (Preparation Example 1), to obtain the title compound (4.2g, yield 60-90%).

1H NMR(400MHz, CDC$_1$$_3$) 51.07(t, J=7.2Hz, 6H), 1.82~1.90(m, 1H), 1.93(d, J=5.6Hz, 1H), 2.79(d, J=6Hz, 1H), 3.53~3.57(m, 1H), 5.23~5.25(m, 1H), 7.23~7.54(m, 4H)

Preparation Example 22: Synthesis of the mixture of 1-(2-chlorophenyl)-3-methyl-(S,S)-1,2-butanediol and 1-(2-chlorophenyl)-3-methyl-(R,R)-1,2-butanediol

The substantially same method as described in Preparation Example 16 was conducted, except that 1-(2-chlorophenyl)-3-methyl-trans-1-butene (Preparation Example 3) was used instead of 1-(2-chlorophenyl)-trans-1-propene (Preparation Example 1), to obtain the title compound (0.8g, yield 60-90%).

1H NMR(400MHz, CDC$_1$$_3$) 51.07(t, J=7.2Hz, 6H), 1.83~1.90(m, 1H), 1.92(d, J=5.6Hz, 1H), 2.69(d, J=6.4Hz, 1H), 3.53~3.56(m, 1H), 5.22~5.25(m, 1H), 7.23~7.55(m, 4H)

Preparation Example 23: Synthesis of 1-(2-chlorophenyl)-(S,S)-1,2-hexanediol
The substantially same method as described in Preparation Example 14 was conducted, except that l-(2-chlorophenyl)-trans-l-hexene (Preparation Example 4) was used instead of l-(2-chlorophenyl)-trans-l-propene (Preparation Example 1), to obtain the title compound (0.37g, yield 90%).

\[
\begin{align*}
\text{H NMR (400MHz, CDC1}_3) & \quad 60.90(t, J=7.2Hz, 3H), 1.35-1.65(m, 6H), 2.08(d, J=4.4Hz, 1H), 2.71(d, J=5.2Hz, 1H), 3.78-3.83(m, 1H), 5.04(t, J=5.0Hz, 1H), 7.23-7.53(m, 4H)
\end{align*}
\]

Preparation Example 24: Synthesis of l-(2-chlorophenyl)-(R,R)-l,2-hexanediol

The substantially same method as described in Preparation Example 15 was conducted, except that l-(2-chlorophenyl)-trans-l-hexene (Preparation Example 4) was used instead of l-(2-chlorophenyl)-trans-l-propene (Preparation Example 1), to obtain the title compound (4.2g, yield 60-90%).

\[
\begin{align*}
\text{H NMR (400MHz, CDC1}_3) & \quad 60.91(t, J=6.6Hz, 3H), 1.35-1.65(m, 6H), 2.08(d, J=4.8Hz, 1H), 2.70(d, J=5.2Hz, 1H), 3.80-3.83(m, 1H), 5.05(t, J=5.0Hz, 1H), 7.24-7.56(m, 4H)
\end{align*}
\]

Preparation Example 25: Synthesis of the mixture of l-(2-chlorophenyl)-(S,S)-1,2-hexanediol and l-(2-chlorophenyl)-(R,R)-l,2-hexanediol

The substantially same method as described in Preparation Example 16 was conducted, except that l-(2-chlorophenyl)-trans-l-hexene (Preparation Example 4) was used instead of l-(2-chlorophenyl)-trans-l-propene (Preparation Example 1), to obtain the title compound (7.9g, yield 60-90%).

\[
\begin{align*}
\text{H NMR (400MHz, CDC1}_3) & \quad 80.90(t, J=7.2Hz, 3H), 1.26-1.55(m, 6H), 2.08(d, J=4.4Hz, 1H), 2.71(d, J=5.2Hz, 1H), 3.78-3.83(m, 1H), 5.04(t, J=5.0Hz, 1H), 7.23-7.53(m, 4H)
\end{align*}
\]
Preparation Example 26: Synthesis of 1-(2,4-dichlorophenyl)-(S,S)-l,2-propanediol

The substantially same method as described in Preparation Example 14 was conducted, except that 1-(2,4-ichlorophenyl)-trans-l-propene (Preparation Example 5) was used instead of 1-(2-chlorophenyl)-trans-l-propene (Preparation Example 1), to obtain the title compound (0.33g, yield 60-95%).

1H NMR (400MHz, CDC$_3$) 61.22(d, $J=6.4Hz$, 3H), 2.10(d, $J=4.4Hz$, 1H), 2.71(d, $J=4.8Hz$, 1H), 3.90~3.95(m, 1H), 4.94(t, $J=5.0Hz$, 1H), 7.31(dd, $J=2.0Hz$, $J=8.0Hz$, 1H), 7.40(d, $J=2.0Hz$, 1H), 7.49(d, $J=8.4Hz$, 1H)

Preparation Example 27: Synthesis of 1-(2,4-dichlorophenyl)-(R,R)-l,2-propanediol

The substantially same method as described in Preparation Example 15 was conducted, except that 1-(2,4-ichlorophenyl)-trans-l-propene (Preparation Example 5) was used instead of 1-(2-chlorophenyl)-trans-l-propene (Preparation Example 1), to obtain the title compound (0.45g, yield 60-95%).

1H NMR (400MHz, CDC$_3$) 81.22(d, $J=6.4Hz$, 3H), 2.10(d, $J=4.4Hz$, 1H), 2.71(d, $J=4.8Hz$, 1H), 3.90~3.95(m, 1H), 4.94(t, $J=5.0Hz$, 1H), 7.31~7.49(m, 3H)

Preparation Example 28: Synthesis of the mixture of 1-(2,4-dichlorophenyl)-(S,S)-l,2-propanediol and 1-(2,4-dichlorophenyl)-(R,R)-l,2-propanediol
The substantially same method as described in Preparation Example 16 was conducted, except that I-(2,4-dichlorophenyl)-trans-l-propene (Preparation Example 5) was used instead of I-(2-chlorophenyl)-trans-l-propene (Preparation Example 1), to obtain the title compound (0.45g, yield 60-95%).

\[\text{H NMR (400MHz, CDCl}_3): \delta 5.22(d, J=6.4Hz, 3H), 2.10(d, J=4.4Hz, 1H), 2.71(d, J=4.8Hz, 1H), 3.90-3.95(m, 1H), 4.94(t, J=5.0Hz, 1H), 7.31-7.49(m, 3H) \]

Preparation Example 29: Synthesis of I-(2,4-dichlorophenyl)-(S,S)-I,2-butanediol

![Chemical Structure](image)

The substantially same method as described in Preparation Example 14 was conducted, except that I-(2,4-dichlorophenyl)-trans-l-butene (Preparation Example 6) was used instead of I-(2-chlorophenyl)-trans-l-propene (Preparation Example 1), to obtain the title compound (0.32g, yield 90%).

\[\text{H NMR (400MHz, CDCl}_3): \delta 1.02(t, J=7.4Hz, 3H), 1.54-1.61(m, 2H), 2.07(d, J=4.8Hz, 1H), 2.74(d, J=4.8Hz, 1H), 3.65-3.68(m, 1H), 5.01(t, J=5.0Hz, 1H), 7.31-7.49(m, 3H) \]

Preparation Example 30: Synthesis of I-(2,4-dichlorophenyl)-(R,R)-I,2-butanediol

![Chemical Structure](image)

The substantially same method as described in Preparation Example 15 was conducted, except that I-(2,4-dichlorophenyl)-trans-l-butene (Preparation Example 6) was used instead of I-(2-chlorophenyl)-trans-l-propene (Preparation Example 1), to obtain the title compound (0.43g, yield 60-90%).

\[\text{H NMR (400MHz, CDCl}_3): \delta 5.02(t, J=7.4Hz, 3H), 1.54-1.61(m, 2H), 2.07(d, J=4.8Hz, 1H), 2.74(d, J=4.8Hz, 1H), 3.65-3.68(m, 1H), 5.01(t, J=5.0Hz, 1H), 7.31-7.49(m, 3H) \]
Preparation Example 31: Synthesis of the mixture of l-(2,4-dichlorophenyl)-(S,S)-1,2-butanediol and l-(2,4-dichlorophenyl)-(R,R)-1,2-butanediol

![Chemical Structure]

The substantially same method as described in Preparation Example 16 was conducted, except that l-(2,4-dichlorophenyl)-trans-l-butene (Preparation Example 6) was used instead of l-(2-chlorophenyl)-trans-l-propene (Preparation Example 1), to obtain the title compound (0.33g, yield 60-90%).

\[\text{H NMR}(400\text{MHz, CDC}1\text{)}: 5.1.02(t, J=7.4\text{Hz}, 3\text{H}), 1.54-1.61(m, 2\text{H}), 2.07(d, J=4.8\text{Hz}, 1\text{H}), 2.74(d, J=4.8\text{Hz}, 1\text{H}), 3.65-3.68(m, 1\text{H}), 5.01(t, J=5.0\text{Hz}, 1\text{H}), 7.73-7.49(m, 3\text{H})\]

Preparation Example 32: Synthesis of l-(2,4-dichlorophenyl)-3-methyl-(S,S)-1,2-butanediol

![Chemical Structure]

The substantially same method as described in Preparation Example 14 was conducted, except that l-(2,4-dichlorophenyl)-3-methyl-trans-l-butene (Preparation Example 7) was used instead of l-(2-chlorophenyl)-trans-l-propene (Preparation Example 1), to obtain the title compound (0.25g, yield 60-95%).

\[\text{H NMR}(400\text{MHz, CDC}1\text{)}: 5.1.00(d, J=6.8\text{Hz}, 6\text{H}), 1.60-1.65(m, 1\text{H}), 2.35(d, J=4.0\text{Hz}, 1\text{H}), 3.12(d, J=8.4\text{Hz}, 1\text{H}), 4.13-4.18(m, 1\text{H}), 5.36(t, J=7.6\text{Hz}, 1\text{H}), 7.17-7.35(m, 3\text{H})\]

Preparation Example 33: Synthesis of l-(2,4-dichlorophenyl)-3-methyl-(R,R)-1,2-butanediol

![Chemical Structure]

The substantially same method as described in Preparation Example 15 was conducted, except that l-(2,4-dichlorophenyl)-3-methyl-trans-l-butene (Preparation Example...
7) was used instead of l-(2-chlorophenyl)-trans-l-propene (Preparation Example 1), to obtain
the title compound (0.36 g, yield 60-95%).

\[^1H \text{ NMR}(400\text{MHz, CDC}1_{3}) \delta 5.00\text{(d, } J=6.8\text{Hz, 6H), 1.60-1.65(m, 1H), 2.35(d,}
\]
\[J=4.0\text{Hz, 1H), 3.12(d, } J=8.4\text{Hz, 1H), 4.13-4.18(m, 1H), 5.36(t, } J=7.6\text{Hz, 1H), 7.17-7.35(m,}
\]
\[3H) \]

Preparation Example 34: Synthesis of the mixture of l-(2,4-dichlorophenyl)-3-
methyl-(S,S)-l,2-butanediol and l-(2,4-dichlorophenyl)-3-methyl-(R,R)-l,2-butanediol

![Chemical Structure]

The substantially same method as described in Preparation Example 16 was conducted, except that l-(2,4-dichlorophenyl)-3-methyl-trans-l-butene (Preparation Example 7) was used instead of l-(2-chlorophenyl)-trans-l-propene (Preparation Example 1), to obtain the title compound (0.26 g, yield 60-95%).

\[^1H \text{ NMR}(400\text{MHz, CDC}1_{3}) \delta 5.00\text{(d, } J=6.8\text{Hz, 6H), 1.60-1.65(m, 1H), 2.35(d,}
\]
\[J=4.0\text{Hz, 1H), 3.12(d, } J=8.4\text{Hz, 1H), 4.13-4.18(m, 1H), 5.36(t, } J=7.6\text{Hz, 1H), 7.17-7.35(m,}
\]
\[3H) \]

Preparation Example 35: Synthesis of l-(2,4-dichlorophenyl)-(S,S)-l,2-
hexanediol

![Chemical Structure]

The substantially same method as described in Preparation Example 14 was conducted, except that l-(2,4-dichlorophenyl)-trans-l-propene (Preparation Example 8) was used instead of l-(2-chlorophenyl)-trans-l-propene (Preparation Example 1), to obtain the title compound (1.1 g, yield 60-90%).

\[^1H \text{ NMR}(400\text{MHz, CDC}1_{3}) \delta 0.89-0.93(\eta_3\text{H), 1.30-1.39(m, 2H), 1.49-1.52(m,}
\]
\[2H), 1.56-1.62(m, 2H), 2.05(d, } J=5.2\text{Hz, 1H), 2.74(d, } J=5.2\text{Hz, 1H), 3.72-3.77(m, 1H),}
\]
\[4.98(t, } J=4.8\text{Hz, 1H), 7.28-7.50(m, 3H) \]

Preparation Example 36: Synthesis of l-(2,4-dichlorophenyl)-(R,R)-l,2-
hexanediol

\[
\begin{align*}
\text{Cl} & \quad \text{OH} \\
\text{Cl} & \quad \text{HO} \\
\end{align*}
\]

The substantially same method as described in Preparation Example 15 was conducted, except that \(1-(2,4\text{-dichlorophenyl})\)-trans-1-propene (Preparation Example 8) was used instead of \(1-(2\text{-chlorophenyl})\)-trans-1-propene (Preparation Example 1), to obtain the title compound (1.2g, yield 60-95%).

\[\text{H} \text{NMR}(400 \text{MHz, CDCl}_3) \ 0.89-0.93(\text{m, 3H}), \ 1.30-1.39(\text{m, 2H}), \ 1.49-1.52(\text{m, 2H}), \ 1.56-1.62(\text{m, 2H}), \ 2.05(\text{d, } J=5.2 \text{Hz, 1H}), \ 2.74(\text{d, } J=5.2 \text{Hz, 1H}), \ 3.72-3.77(\text{m, 1H}), \ 4.98(\text{t, } J=4.8 \text{Hz, 1H}), \ 7.28-7.50(\text{m, 3H})\]

Preparation Example 37: Synthesis of the mixture of \(1-(2,4\text{-dichlorophenyl})-(S,S)-1,2\text{-hexanediol}\) and \(1-(2,4\text{-dichlorophenyl})-(R,R)-1,2\text{-hexanediol}\)

\[
\begin{align*}
\text{Cl} & \quad \text{OH} \\
\text{Cl} & \quad \text{HO} \\
\end{align*}
\]

The substantially same method as described in Preparation Example 16 was conducted, except that \(1-(2,4\text{-dichlorophenyl})\)-trans-1-propene (Preparation Example 8) was used instead of \(1-(2\text{-chlorophenyl})\)-trans-1-propene (Preparation Example 1), to obtain the title compound (0.67g, yield 60-95%).

\[\text{H} \text{NMR}(400 \text{MHz, CDCl}_3) \ 0.89-0.93(\text{m, 3H}), \ 1.30-1.39(\text{m, 2H}), \ 1.49-1.52(\text{m, 2H}), \ 1.56-1.62(\text{m, 2H}), \ 2.05(\text{d, } J=5.2 \text{Hz, 1H}), \ 2.74(\text{d, } J=5.2 \text{Hz, 1H}), \ 3.72-3.77(\text{m, 1H}), \ 4.98(\text{t, } J=4.8 \text{Hz, 1H}), \ 7.28-7.50(\text{m, 3H})\]

Preparation Example 38: Synthesis of \(1-(2,6\text{-dichlorophenyl})-(S,S)-1,2\text{-propanediol}\)

\[
\begin{align*}
\text{Cl} & \quad \text{OH} \\
\text{Cl} & \quad \text{HO} \\
\end{align*}
\]

The substantially same method as described in Preparation Example 14 was conducted, except that \(1-(2,6\text{-dichlorophenyl})\)-trans-1-propene (Preparation Example 9) was used instead of \(1-(2\text{-chlorophenyl})\)-trans-1-propene (Preparation Example 1), to obtain the
Preparation Example 39: Synthesis of l-(2,6-dichlorophenyl)-(R,R)-l,2-propanediol

The substantially same method as described in Preparation Example 15 was conducted, except that l-(2,6-dichlorophenyl)-trans-l-propene (Preparation Example 9) was used instead of l-(2-chlorophenyl)-trans-l-propene (Preparation Example 1), to obtain the title compound (0.84g, yield 60-90%).

\[^{1}H\text{ NMR}(400\text{MHz, } \text{CDCl}_3): 61.10(d, J=6.4\text{Hz, } 3\text{H}), 2.72(d, J=2.4\text{Hz, } 1\text{H}), 3.10(d, J=8.4\text{Hz, } 1\text{H}), 4.47\sim4.54(m, 1\text{H}), 5.24(t, J=8.8\text{Hz, } 1\text{H}), 7.18\sim7.36(m, 3\text{H})\]

Preparation Example 40: Synthesis of the mixture of l-(2,6-dichlorophenyl)-(S,S)-l,2-propanediol and l-(2,6-dichlorophenyl)-(R,R)-l,2-propanediol

The substantially same method as described in Preparation Example 16 was conducted, except that l-(2,6-dichlorophenyl)-trans-l-propene (Preparation Example 9) was used instead of l-(2-chlorophenyl)-trans-l-propene (Preparation Example 1), to obtain the title compound (0.91g, yield 60-90%).

\[^{1}H\text{ NMR}(400\text{MHz, } \text{CDCl}_3): 61.10(d, J=6.4\text{Hz, } 3\text{H}), 2.72(d, J=2.4\text{Hz, } 1\text{H}), 3.10(d, J=8.4\text{Hz, } 1\text{H}), 4.47\sim4.54(m, 1\text{H}), 5.24(t, J=8.8\text{Hz, } 1\text{H}), 7.18\sim7.36(m, 3\text{H})\]

Preparation Example 41: Synthesis of l-(2,6-dichlorophenyl)-(S,S)-l,2-butanediol
The substantially same method as described in Preparation Example 14 was conducted, except that l-(2,6-dichlorophenyl)-trans-l-butene (Preparation Example 10) was used instead of l-(2-chlorophenyl)-trans-l-propene (Preparation Example 1), to obtain the title compound (1.23 g, yield 60-95%).

1H NMR (400 MHz, CDCl$_3$): 50.97 (t, J = 7.6 Hz, 3H), 1.26-1.53 (m, 2H), 2.64 (dd, J = 0.8 Hz, J = 4.0 Hz, 1H), 3.14 (d, J = 8.4 Hz, 1H), 4.22-4.26 (m, 1H), 5.26 (t, J = 8.4 Hz, 1H), 7.17-7.35 (m, 3H)

Preparation Example 42: Synthesis of l-(2,6-dichlorophenyl)-(R,R)-l,2-butanediol

The substantially same method as described in Preparation Example 15 was conducted, except that l-(2,6-dichlorophenyl)-trans-l-butene (Preparation Example 10) was used instead of l-(2-chlorophenyl)-trans-l-propene (Preparation Example 1), to obtain the title compound (0.96 g, yield 60-95%).

1H NMR (400 MHz, CDCl$_3$): 50.97 (t, J = 7.6 Hz, 3H), 1.26-1.53 (m, 2H), 2.64 (dd, J = 0.8 Hz, J = 4.0 Hz, 1H), 3.14 (d, J = 8.4 Hz, 1H), 4.22-4.26 (m, 1H), 5.26 (t, J = 8.4 Hz, 1H), 7.17-7.35 (m, 3H)

Preparation Example 43: Synthesis of the mixture of l-(2,6-dichlorophenyl)-(S,S)-l,2-butanediol and l-(2,6-dichlorophenyl)-(R,R)-l,2-butanediol

The substantially same method as described in Preparation Example 16 was conducted, except that l-(2,6-dichlorophenyl)-trans-l-butene (Preparation Example 10) was used instead of l-(2-chlorophenyl)-trans-l-propene (Preparation Example 1), to obtain the
title compound (0.86g, yield 60-95%).

\[^1\text{H} \text{ NMR(400MHz, CDC1}_3 \] 60.97(t, \(J=7.6\text{Hz}, 3\text{H})\), 1.26~1.53(m, 2H), 2.64(dd, \(J=0.8\text{Hz}, J=4.0\text{Hz}, 1\text{H})\), 3.14(d, \(J=8.4\text{Hz}, 1\text{H})\), 4.22~4.26(m, 1H), 5.26(t, \(J=8.4\text{Hz}, 1\text{H})\), 7.17~7.35(m, 3H)

Preparation Example 44: Synthesis of l-(2,6-dichlorophenyl)-3-methyl-(S,S)-l,2-butanediol

\[
\text{Cl} \quad \begin{array}{c} \text{Cl} \\ \text{Cl} \\ \text{OH} \\ \text{Cl} \\ \text{HO} \end{array}
\]

The substantially same method as described in Preparation Example 14 was conducted, except that l-(2,6-dichlorophenyl)-3-methyl-trans-l-butene(Preparation Example 11) was used instead of l-(2-chlorophenyl)-trans-l-propene(Preparation Example 1), to obtain the title compound (0.25g, yield 60-95%).

\[^1\text{H} \text{ NMR(400MHz, CDC1}_3 \] 51.00(d, \(J=6.8\text{Hz}, 6\text{H})\), 1.60~1.65(m, 1H), 2.35(d, \(J=4.0\text{Hz}, 1\text{H})\), 3.12(d, \(J=8.4\text{Hz}, 1\text{H})\), 4.13~4.18(m, 1H), 5.36(t, \(J=7.6\text{Hz}, 1\text{H})\), 7.17~7.35(m, 3H)

Preparation Example 45: Synthesis of l-(2,6-dichlorophenyl)-3-methyl-(R,R)-1,2-butanediol

\[
\text{Cl} \quad \begin{array}{c} \text{Cl} \\ \text{Cl} \\ \text{OH} \\ \text{Cl} \\ \text{HO} \end{array}
\]

The substantially same method as described in Preparation Example 15 was conducted, except that l-(2,6-dichlorophenyl)-3-methyl-trans-l-butene(Preparation Example 11) was used instead of l-(2-chlorophenyl)-trans-l-propene(Preparation Example 1), to obtain the title compound (0.37g, yield 60-95%).

\[^1\text{H} \text{ NMR(400MHz, CDC1}_3 \] 51.00(d, \(J=6.8\text{Hz}, 6\text{H})\), 1.60~1.65(m, 1H), 2.35(d, \(J=4.0\text{Hz}, 1\text{H})\), 3.12(d, \(J=8.4\text{Hz}, 1\text{H})\), 4.13~4.18(m, 1H), 5.36(t, \(J=7.6\text{Hz}, 1\text{H})\), 7.17~7.35(m, 3H)

Preparation Example 46: Synthesis of the mixture of l-(2,6-dichlorophenyl)-3-methyl-(S,S)-l,2-butanediol and l-(2,6-dichlorophenyl)-3-methyl-(R,R)-l,2-butanediol
The substantially same method as described in Preparation Example 16 was conducted, except that l-(2,6-dichlorophenyl)-3 -methyl-trans- l-butene(Preparation Example 11) was used instead of l-(2-chlorophenyl)-trans-l-propene(Preparation Example 1), to obtain the title compound (0.47g, yield 60-95%).

1H NMR(400MHz, CDCl$_3$) 51.00(d, J=6.8Hz, 6H), 1.60~1.65(m, 1H), 2.35(d, J=4.0Hz, 1H), 3.12(d, J=8.4Hz, 1H), 4.13~4.18(m, 1H), 5.36(t, J=7.6Hz, 1H), 7.17~7.35(m, 3H)

Preparation Example 47: Synthesis of l-(2,6-dichlorophenyl)-(S,S)-l,2-hexanediol

The substantially same method as described in Preparation Example 14 was conducted, except that l-(2,6-dichlorophenyl)-trans-l-hexene(Preparation Example 12) was used instead of l-(2-chlorophenyl)-trans-l-propene(Preparation Example 1), to obtain the title compound (0.36g, yield 60-90%).

1H NMR(400MHz, CDCl$_3$) 60.85(t, J=6.8Hz, 3H), 1.20~1.31(m, 4H), 1.45~1.53(m, 2H), 2.61~2.62(m, 1H), 3.12(d, J=8.4Hz, 1H), 4.28~4.33(m, 1H), 5.25(t, J=8.4Hz, 1H), 7.18~7.35(m, 3H)

Preparation Example 48: Synthesis of l-(2,6-dichlorophenyl)-(R,R)-l,2-hexanediol

The substantially same method as described in Preparation Example 15 was conducted, except that l-(2,6-dichlorophenyl)-trans-l-hexene(Preparation Example 12) was used instead of l-(2-chlorophenyl)-trans-l-propene(Preparation Example 1), to obtain the
Preparation Example 49: Synthesis of the mixture of 1-(2,6-dichlorophenyl)-(S,S)-1,2-hexanediol and 1-(2,6-dichlorophenyl)-(R,R)-1,2-hexanediol

The substantially same method as described in Preparation Example 16 was conducted, except that 1-(2,6-dichlorophenyl)-trans-1-hexene (Preparation Example 12) was used instead of 1-(2-chlorophenyl)-trans-1-propene (Preparation Example 1), to obtain the title compound (0.62 g, yield 60-90%).

1H NMR(400MHz, CDCl$_3$) 80.85(t, J=6.8Hz, 3H), 1.20-1.10(m, 4H), 1.45-1.53(m, 2H), 2.61-2.62(m, 1H), 3.12(d, J=8.4Hz, 1H), 4.28-4.33(m, 1H), 5.25(t, J=8.4Hz, 1H), 7.18-7.35(m, 3H)

Preparation Example 50: Synthesis of methyl 2-(2-chlorophenyl)-(R)-2-hydroxyacetate

15 g of (R)-2-chloromandelic acid was mixed with methanol (CH$_3$OH, 150 ml) and phosphorus chloride oxide (POCl$_3$, 0.76 ml) in a flask by stirring using a magnetic stirrer at the room temperature for 6 hours. When the reaction was completed, the obtained product was washed with an aqueous solution of sodium sulfite (Na$_2$SC>3) and ethylacetate (EA). Then, the organic layer was dehydrated with anhydrous magnesium sulfate (MgSO$_4$), filtrated, and concentrated under reduced pressure. The concentrated residue was purified by a silica gel column chromatography to produce the title compound (15.64 g, yield 95%).

1H NMR(400MHz, CDCl$_3$) δ 3.59(d, J=5.2, 1H), 3.79(t, J=6.0, 3H), 5.59(d, J=5.2, 1H), 7.28-7.43(m, 4H)
Preparation Example 51: Synthesis of 2-(2-chlorophenyl)-(R)-2-hydroxy-N-methoxy-N-methylacetamide

\[
\begin{align*}
\text{Cl} & & \text{OH} & & \text{O} \\
\text{N} & & \text{O} & & \text{O}
\end{align*}
\]

N,O-dimethylhydroxylamine hydrochloride (N,O-dimethylhydroxylamine.HCl, 15.2g) was dissolved in dichloromethane (DCM, 150ml), and cooled to 0°C using an ice-bath. Then, 77.7ml of 2.0M trimethylaluminium in hexane was slowly added thereto in drop-wise manner for 30 minutes. Thereafter, the ice-bath was removed, and the obtained product was stirred at the room temperature for 2 hours. Methyl-2-(2-chlorophenyl)-(R)-2-hydroxyacetate(15.64g) dissolved in dichloromethane(DCM, 150ml) was added in drop-wise manner thereto at the room temperature for 30 minutes, and subjected to reflux for 12 hours. When the reaction was completed, the obtained product was cooled to 0°C, and washed by a slow drop-wise addition of hydrochloric acid (HCl, 200ml). The obtained organic layer was washed with distilled water and brine, dehydrated with anhydrous magnesium sulfate (MgSO₄), filtrated, and concentrated under reduced pressure. The concentrated residue was purified by a silica gel column chromatography to produce the title compound (14.68g, yield 82%).

\[^1{\text{H}}\text{NMR}(400\text{MHz, CDC}_3)\] 53.23(s, 3H), 3.28(s, 3H), 4.33(d, \(J=6.0\text{Hz}\), 1H), 5.81(d, \(J=5.6\text{Hz}\), 1H), 7.23~7.42(m, 4H)

Preparation Example 52: Synthesis of 2-(2-chlorophenyl)-N-methoxy-(R)-2-(methoxymethoxy)-N-methylacetamide

\[
\begin{align*}
\text{Cl} & & \text{O} & & \text{O} \\
\text{N} & & \text{O} & & \text{O}
\end{align*}
\]

2-(2-chlorophenyl)-(R)-2-hydroxy-N-methoxy-N-methylacetamide (14.68g) obtained in Preparation Example 51 was dissolved in dichloromethane (DCM, 140ml), and cooled to 0°C. Diisopropylethylamine (55.67ml) was slowly added thereto in drop-wise manner, and stirred for 10 minutes. Chloro methyl methyl ether (25.25ml) was slowly added thereto in drop-wise manner for 30 minutes. After 30 minutes, the ice-bath was removed and the
obtained product was stirred for 30 at room temperature. When the reaction was completed, the obtained product was cooled to 0°C. And then, to the obtained product, 1M sodium hydroxide solution (1M NaOH, 20ml) was added in drop-wise manner, and dichloromethane (DMC) was injected. Then the obtained product was washed with water. The obtained organic layer was dehydrated with anhydrous magnesium sulfate (MgSO₄), filtrated, and concentrated under reduced pressure. The concentrated residue was purified by a silica gel column chromatography to produce the title compound (15.57g, yield 89%).

\[\text{H NMR}(400\text{MHz, CDCl}_3): 63.19(s, 3H), 3.42(s, 3H), 3.47(s, 3H), 4.75(d, J=6.8, 1H), 4.81(d, J=6.8, 1H), 6.07(s, 1H), 7.27-7.58(m, 4H) \]

Preparation Example 53: Synthesis of l-(2-chlorophenyl)-(R)-l-(methoxymethoxy)propane-2-on

![Chemical Structure](image)

2-(2-chlorophenyl)-N-methoxy-(R)-2-(methoxymethoxy)-N-methylacetamide (15.57g) obtained in Preparation Example 52 was dissolved in tetrahydrofuran (THF, 150ml), and cooled to 0°C. 3.0M methyl magnesium bromide (MeMgBr) solution in ether was added thereto in drop-wise manner for 30 minutes, and the obtained product was stirred for 1 hour at 0°C. When the reaction was completed, diethyl ether (100ml) was added thereto. The obtained product was washed with 10%(w/v) potassium hydrogen sulfate (KHSO₄, 100ml) and then, washed again with brine. The obtained organic layer was dehydrated with anhydrous magnesium sulfate (MgSO₄), filtrated, and concentrated under reduced pressure. The concentrated residue was purified by a silica gel column chromatography to produce the title compound (11.83g, yield 90%).

\[\text{H NMR}(400\text{MHz, CDCl}_3): 52.18(s, 3H), 3.39(s, 3H), 4.65(d, J=6.8, 1H), 4.74(d, J=6.8, 1H), 5.63(s, 1H), 7.30-7.45(m, 4H) \]

Preparation Example 54: Synthesis of l-(2-chlorophenyl)-(R)-l-(methoxymethoxy)-(S)-2-propanol
1-(2-chlorophenyl)-(R)-l-(methoxymethoxy)propane-2-on (1.83g) obtained in Preparation Example 53 was dissolved in toluene (HOMl), and cooled to -40°C. Sodium bis(2-methoxyethoxy)aluminumhydride solution (15.7ml) in toluene was slowly added thereto for 30 minutes, and then, the obtained product was stirred for 1 hour. When the reaction was completed, the obtained product was washed by slow drop-wise addition of sodium potassium tartrate (100ml). The obtained organic layer was dehydrated with anhydrous magnesium sulfate (MgSO₄), filtrated, and concentrated under reduced pressure. The concentrated residue was purified by a silica gel column chromatography to produce the title compound (10.38g, yield 87%).

^1H NMR (400MHz, CDCl₃) 61.13(d, J=6.4, 3H), 2.33(d, J=7.2, 1H), 3.44(s, 3H), 4.10~4.18(m, 1H), 4.61(d, J=6.4, 1H), 4.69(d, J=6.8, 1H), 5.14(d, J=3.6, 1H), 7.22~7.55(m, 4H)

Preparation Example 55: Synthesis of 1-(2-chlorophenyl)-(R,S)-l,2-propanediol

1-(2-chlorophenyl)-(R)-l-(methoxymethoxy)-(S)-2-propanol (0.38g) obtained in Preparation Example 54 was dissolved in methanol (CH₃OH, 100ml), and then, cooled to 0°C. 8M hydrochloric acid (HCl, 56.2ml) was slowly added in drop-wise manner to the obtained product, and then, the obtained product was warmed to the room temperature, and stirred for 15 hours. When the reaction was completed, the obtained product was cooled to 0°C. 5N sodium hydroxide (NaOH, 30ml) was slowly added thereto, and the obtained product was subjected to vacuum concentration. The obtained product was diluted with ethylacetate. The obtained organic layer was washed with distilled water, dehydrated with anhydrous magnesium sulfate (MgSO₄), filtrated, and concentrated under reduced pressure. The concentrated residue was purified by a silica gel column chromatography to produce the title compound (7.05g, yield 60-90%).
1H NMR(400MHz, CDCl₃) 51.07(d, J=6.8, 3H), 2.01(d, J=5.6, 1H), 2.61(s, 1H), 4.21~4.27(m, 1H), 5.24(d, J=3.6, 1H), 7.22~7.64(m, 4H)

Preparation Example 56: Synthesis of l-(2-chlorophenyl)-(S,R)-1,2-propanediol

\[\text{Cl} \quad \text{OH} \quad \text{HO} \]

The substantially same method as described in Preparation Example 50-55 was conducted, except that (S)-2-chloromandelic acid was used instead of (R)-2-chloromandelic acid, to obtain the title compound (5.04g, yield 84%).

1H NMR(400MHz, CDCl₃) 51.07(d, J=6.8, 3H), 2.00(d, J=5.6, 1H), 2.54(d, J=3.6, 1H), 4.22~4.26(m, 1H), 5.25(t, J=3.2, 1H), 7.22~7.65(m, 4H)

Preparation Example 57: Synthesis of l-(2,3-dichlorophenyl)-(S,S)-1,2-propanediol

\[\text{Cl} \quad \text{Cl} \quad \text{OH} \quad \text{HO} \]

The substantially same method as described in Preparation Example 14 was conducted, except that l-(2,3-dichlorophenyl)-trans-l-propene(Preparation Example 13) was used instead of l-(2-chlorophenyl)-trans-l-propene(Preparation Example 1), to obtain the title compound (0.9g, yield 60-90%).

1H NMR(400MHz, CDCl₃) 51.10(d, J=6.4Hz, 3H), 2.72(d, J=2.4Hz, 1H), 3.10(d, J=8.4Hz, 1H), 4.47~4.54(m, 1H), 5.24(t, J=8.8Hz, 1H), 7.18~8.21 (m, 3H)

Preparation Example 58: Synthesis of l-(2,3-dichlorophenyl)-(R,R)-1,2-propanediol

\[\text{Cl} \quad \text{Cl} \quad \text{OH} \quad \text{HO} \]

The substantially same method as described in Preparation Example 15 was conducted, except that l-(2,3-dichlorophenyl)-trans-l-propene(Preparation Example 13) was used instead of l-(2-chlorophenyl)-trans-l-propene(Preparation Example 1), to obtain the
title compound (0.84g, yield 60-90%).

1H NMR(400MHz, CDCl$_3$) 51.10(d, $J=6.4$Hz, 3H), 2.72(d, $J=2.4$Hz, 1H), 3.10(d, $J=8.4$Hz, 1H), 4.47~4.54(m, 1H), 5.24(t, $J=8.8$Hz, 1H), 7.18~(m, 3H)

Preparation Example 59: Synthesis of the mixture of l-(2,3-dichlorophenyl)-(S,S)-l,2-propanediol and l-(2,3-dichlorophenyl)-(R,R)-l,2-propanediol

The substantially same method as described in Preparation Example 16 was conducted, except that l-(2,3-dichlorophenyl)-trans-l-propene (Preparation Example 13) was used instead of l-(2-chlorophenyl)-trans-l-propene (Preparation Example 1), to obtain the title compound (0.91g, yield 60-90%).

1H NMR(400MHz, CDCl$_3$) 51.10(d, $J=6.4$Hz, 3H), 2.72(d, $J=2.4$Hz, 1H), 3.10(d, $J=8.4$Hz, 1H), 4.47~4.54(m, 1H), 5.24(t, $J=8.8$Hz, 1H), 7.18~(m, 3H)

Preparation Example 60: Synthesis of l-(2-fluorophenyl)-trans-l-propene

The substantially same method as described in Preparation Example 1 was conducted, except that 2-fluorobenzenaldehyde was used instead of 2-chlorobenzenealdehyde, to obtain the title compound (6.67g, yield 61%).

1H NMR (400MHz, CDCl$_3$) 61.94(d, $J=6.8$Hz, 3H), 6.30~6.38(m, 1H), 6.57(d, $J=16$Hz, 1H), 7.00~7.41(m, 4H)

Preparation Example 61: Synthesis of l-(2-fluorophenyl)-(S,S)-l,2-propanediol

The substantially same method as described in Preparation Example 14 was conducted, except that l-(2-fluorophenyl)-trans-l-propene (Preparation Example 60) was used instead of l-(2-chlorophenyl)-trans-l-propene (Preparation Example 1), to obtain the
Preparation Example 62: Synthesis of l-(2-fluorophenyl)-(R,R)-l,2-propanediol

The substantially same method as described in Preparation Example 15 was conducted, except that l-(2-fluorophenyl)-trans-l-propene (Preparation Example 60) was used instead of l-(2-chlorophenyl)-trans-l-propene (Preparation Example 1), to obtain the title compound (3.29g, yield 79%).

1H NMR(400MHz, CDCl$_3$) 51.15(d, J=6.4Hz, 3H), 2.43(d, J=3.6Hz, 1H), 2.69(d, J=4.8Hz, 1H), 3.90~3.98(m, 1H), 4.78(dd, J=4.4, 7.2Hz, 1H), 7.04~7.50(m, 4H)

Preparation Example 63: Synthesis of 2-iodobenzenealdehyde

In a flask, 2-iodobenzyl alcohol (4g, 17.09mmol) was dissolved in dichloromethane (MC, 85ml), and then, manganese oxide (MnO$_2$, 14.86g, 170.92mmol) was added thereto. The obtained reaction product was stirred under the reflux condition. When the reaction was completed, the obtained reaction product was cooled to the room temperature, and then, filtrated and concentrated using celite, to obtain the title compound (3.6g, yield 91%).

1H NMR(400MHz, CDCl$_3$)57.30~7.99(m, 4H), 10.10(s, 1H)

Preparation Example 64: Synthesis of l-(2-iodophenyl)-trans-l-propene

The substantially same method as described in Preparation Example 1 was conducted, except that 2-iodobenzenealdehyde (Preparation Example 63) was used instead of 2-chlorobenzenealdehyde, to obtain the title compound (3.4g, yield 65%).

1H NMR(400MHz, CDCl$_3$)61.95(dd, J=6.8Hz, 1.6Hz, 3H), 6.09-6.1 8(m, 1H),
Preparation Example 65: Synthesis of l-(2-iodophenyl)-trans-l-butene

\[
\text{I} \quad \text{trans} \quad \text{C=C} \quad \text{H}
\]

The substantially same method as described in Preparation Example 64 was conducted, except that 3-heptanone was used instead of 3-pentanone, to obtain the title compound (8.5g, yield 75%).

\[^1\text{H} \text{ NMR}(400\text{MHz}, \text{CDCl}_3)5.146(t, J=7.6\text{Hz}, 3\text{H}), 2.26-2.34(\text{m}, 2\text{H}), 6.17(\text{dt}, J=15.6\text{Hz}, 6.6\text{Hz} 1\text{H}), 6.57(\text{d}, J=15.6\text{Hz}, 1\text{H}), 6.89-7.85(\text{m}, 4\text{H}) \]

Preparation Example 66: Synthesis of l-(2-iodophenyl)-(S,S)-l,2-propanediol

\[
\text{I} \quad \text{OH} \quad \text{OH}
\]

The substantially same method as described in Preparation Example 14 was conducted, except that l-(2-iodophenyl)-trans-l-propene (Preparation Example 64) was used instead of l-(2-chlorophenyl)-trans-l-propene (Preparation Example 1), to obtain the title compound (3.4g, yield 88%).

\[^1\text{H} \text{ NMR}(400\text{MHz}, \text{CDCl}_3)5.127(d, J=6.4\text{Hz}, 3\text{H}), 2.26(\text{br s}, 1\text{H}), 2.74(\text{br s}, 1\text{H}), 3.99(t, J=6.0\text{Hz}, 1\text{H}), 4.81(d, J=4.0\text{Hz}, 1\text{H}), 7.01-7.87(\text{m}, 4\text{H}) \]

Preparation Example 67: Synthesis of l-(2-iodorophenyl)-(R,R)-l,2-propanediol

\[
\text{I} \quad \text{OH} \quad \text{OH}
\]

The substantially same method as described in Preparation Example 15 was conducted, except that l-(2-iodophenyl)-trans-l-propene (Preparation Example 64) was used instead of l-(2-chlorophenyl)-trans-l-propene (Preparation Example 1), to obtain the title compound (7.4g, yield 84%).

\[^1\text{H} \text{ NMR}(400\text{MHz}, \text{CDCl}_3)6.126(d, J=6.4\text{Hz}, 3\text{H}), 2.35(\text{br s}, 1\text{H}), 2.85(\text{br d}, J=4.0\text{Hz}, 1\text{H}), 3.98(t, J=6.2\text{Hz}, 1\text{H}), 4.80(\text{dd}, J=5.0, 4.4\text{Hz}, 1\text{H}), 7.00-7.87(\text{m}, 4\text{H}) \]
Preparation Example 68: Synthesis of l-(2-iodophenyl)-(S,S)-l,2-butanediol

The substantially same method as described in Preparation Example 14 was conducted, except that l-(2-iodophenyl)-trans-l-butene (Preparation Example 65) was used instead of l-(2-chlorophenyl)-trans-l-propene (Preparation Example 1), to obtain the title compound (9.5g, yield 84%).

1H NMR(400MHz, CDCl$_3$)61.04(t, J=7.6Hz, 3H), 1.60-1.71(m, 2H), 2.07(br s, IH), 2.74(br s, IH), 3.71~3.76(m, IH), 4.87(d, J=4.8Hz, IH), 7.01~7.87(m, 4H)

Preparation Example 69: Synthesis of l-(2-iodophenyl)-(R,R)-l,2-butanediol

The substantially same method as described in Preparation Example 15 was conducted, except that l-(2-iodophenyl)-trans-l-butene (Preparation Example 65) was used instead of l-(2-chlorophenyl)-trans-l-propene (Preparation Example 1), to obtain the title compound (1.9g, yield 70-90%).

1H NMR(400MHz, CDCl$_3$) 81.01(t, J=7.4Hz, 3H), 1.52-1.65(m, 2H), 2.01(d, J=4.4Hz, IH), 2.74(d, J=5.2Hz, IH), 3.69-3.75(m, IH), 5.05(t, J=5.0Hz, IH), 7.03~7.84(m, 4H)

Preparation Example 70: Synthesis of l-(2-iodophenyl)-3-methyl-trans-l-butene

The substantially same method as described in Preparation Example 3 was conducted, except that 2-iodobenzenaldehyde was used instead of 2-chlorobenzenaldehyde, to obtain the title compound (0.37g, yield 10-40%).

1H NMR(400MHz, CDCl$_3$) 51.14(d, J=6.8Hz, 6H), 2.25~2.57(m, IH), 6.20(dd, J=16Hz, 7.2Hz, IH), 7.64(d, J=16Hz, IH), 7.04-7.82(m, 4H)
Preparation Example 71: Synthesis of l-(2-iodophenyl)-trans-l-hexene

![Chemical structure image]

The substantially same method as described in Preparation Example 4 was conducted, except that 2-iodobenzenaldehyde was used instead of 2-chlorobenzenaldehyde, to obtain the title compound (1.21g, yield 10-40%).

1H NMR(400MHz, CDCl$_3$) 50.96(t, J=7.2Hz, 3H), 1.33~1.56(m, 4H), 2.26~2.32(m, 4H), 6.24(dt, J=15.6Hz, 7Hz, 1H), 6.78(d, J=16Hz, 1H), 7.12~7.51(m, 4H)

Preparation Example 72: Synthesis of l-(2-fluorophenyl)-trans-l-butene

![Chemical structure image]

The substantially same method as described in Preparation Example 2 was conducted, except that 2-fluorobenzenaldehyde was used instead of 2-chlorobenzenaldehyde, to obtain the title compound (0.72g, yield 10-40%).

1H NMR(400MHz, CDCl$_3$) 51.14(d, J=7.6Hz, 3H), 2.29~2.33(m, 2H), 6.28(dt, J=16Hz, 6.4Hz, 1H), 6.78(d, J=15.6Hz, 1H), 7.15~7.55(m, 4H)

Preparation Example 73: Synthesis of l-(2-fluorophenyl)-3-methyl-trans-l-butene

![Chemical structure image]

The substantially same method as described in Preparation Example 3 was conducted, except that 2-fluorobenzenaldehyde was used instead of 2-chlorobenzenaldehyde, to obtain the title compound (1.31g, yield 10-40%).

1H NMR(400MHz, CDCl$_3$) 61.14(d, J=6.8Hz, 6H), 2.25~2.57(m, 1H), 6.20(dd, J=16Hz, 7.2Hz, 1H), 7.64(d, J=16Hz, 1H), 7.11~7.55(m, 4H)

Preparation Example 74: Synthesis of l-(2-fluorophenyl)-trans-l-hexene
The substantially same method as described in Preparation Example 4 was conducted, except that 2-fluorobenzenaldehyde was used instead of 2-chlorobenzenaldehyde, to obtain the title compound (1.02g, yield 10-40%).

\[^1H \text{ NMR}(400\text{MHz, CDCl}_3) \]
5 50.96(t, \(J = 7.2\text{Hz} \), 3H), 1.33~1.56(m, 4H), 2.26~2.32(m, 4H), 6.24(dt, \(J = 15.6\text{Hz} \), 7Hz, 1H), 6.78(d, \(J = 16\text{Hz} \), 1H), 7.14~7.52(m, 4H)

Preparation Example 75: Synthesis of 1-(3-iodophenyl)-trans-1-propene

The substantially same method as described in Preparation Example 64 was conducted, except that 3-iodobenzenaldehyde was used instead of 2-iodobenzenaldehyde, to obtain the title compound (1.22g, yield 10-40%).

\[^1H \text{ NMR}(400\text{MHz, CDCl}_3) \]
10 51.95(dd, \(J = 6.8\text{Hz} \), 1.6Hz, 3H), 6.09-6.18(m, 1H), 6.60(dd, \(J = 15.6\text{Hz} \), 1.8Hz, 1H), 6.87~7.80(m, 4H)

Preparation Example 76: Synthesis of 1-(3-iodophenyl)-trans-1-butene

The substantially same method as described in Preparation Example 65 was conducted, except that 3-iodobenzenaldehyde was used instead of 2-iodobenzenaldehyde, to obtain the title compound (1.12g, yield 10-40%).

\[^1H \text{ NMR}(400\text{MHz, CDCl}_3) \]
20 61.46(t, \(J = 7.6\text{Hz} \), 3H), 2.26~2.34(m, 2H), 6.17(dt, \(J = 15.6\text{Hz} \), 6.6Hz 1H), 6.57(d, \(J = 15.6\text{Hz} \), 1H), 6.86~7.8 l(m, 4H)

Preparation Example 77: Synthesis of 1-(3-iodophenyl)-3-methyl-trans-1-butene

The substantially same method as described in Preparation Example 70 was conducted, except that 3-iodobenzenaldehyde was used instead of 2-iodobenzenaldehyde, to
obtain the title compound (0.62g, yield 10-40%).

\[^1H \text{ NMR}(400\text{MHz, CDC}_1\text{)} \]

51.14(d, \(J = 6.8\text{Hz, 6H} \), 2.25~2.57(m, 1H), 6.20(dd, \(J = 16\text{Hz, 7.2Hz, 1H} \), 7.64(d, \(J = 16\text{Hz, 1H} \), 6.88~7.64(m, 4H)

Preparation Example 78: Synthesis of \(l \)-(3-iodophenyl)-\(l \)-hexene

The substantially same method as described in Preparation Example 71 was conducted, except that 3-iodobenzenaldehyde was used instead of 2-iodobenzenaldehyde, to obtain the title compound (0.42g, yield 10-40%).

\[^1H \text{ NMR}(400\text{MHz, CDC}_1\text{)} \]

80.96(t, \(J = 7.2\text{Hz, 3H} \), 1.33~1.56(m, 4H), 2.26~2.32(m, 4H), 6.24(dt, \(J = 15.6\text{Hz, 7Hz, 1H} \), 6.78(d, \(J = 16\text{Hz, 1H} \), 6.88~7.59(m, 4H)

Preparation Example 79: Synthesis of \(l \)-(4-fluorophenyl)-\(l \)-propene

The substantially same method as described in Preparation Example 60 was conducted, except that 4-fluorobenzenaldehyde was used instead of 2-fluorobenzenaldehyde, to obtain the title compound (0.29g, yield 10-40%).

\[^1H \text{ NMR}(400\text{MHz, CDC}_1\text{)} \]

51.94(d, \(J = 7.6\text{Hz, 3H} \), 2.29~2.33(m, 2H), 6.28(dt, \(J = 16\text{Hz, 6.4Hz, 1H} \), 6.78(d, \(J = 15.6\text{Hz, 1H} \), 6.88.15~7.05(m, 4H)

Preparation Example 80: Synthesis of \(l \)-(4-fluorophenyl)-\(l \)-butene

The substantially same method as described in Preparation Example 72 was conducted, except that 4-fluorobenzenaldehyde was used instead of 2-fluorobenzenaldehyde, to obtain the title compound (1.03g, yield 10-40%).

\[^1H \text{ NMR}(400\text{MHz, CDC}_1\text{)} \]

51.14(d, \(J = 7.6\text{Hz, 3H} \), 2.29~2.33(m, 2H), 6.28(dt, \(J = 16\text{Hz, 6.4Hz, 1H} \), 6.78(d, \(J = 15.6\text{Hz, 1H} \), 6.88.15~7.05(m, 4H)

Preparation Example 81: Synthesis of \(l \)-(4-fluorophenyl)-3-methyl-\(l \)-
butene

The substantially same method as described in Preparation Example 73 was conducted, except that 4-fluorobenzenaldehyde was used instead of 2-fluorobenzenaldehyde, to obtain the title compound (1.41 g, yield 10-40%)

1H NMR(400MHz, CDC$_3$I) 51.14(d, $J=6.8$Hz, 6H), 2.25~2.57(m, 1H), 6.20(dd, $J=16$Hz, 7.2Hz, 1H), 7.64(d, $J=16$Hz, 1H), 6.83~7.09(m, 4H)

Preparation Example 82: Synthesis of 1-(4-fluorophenyl)-trans-1-hexene

The substantially same method as described in Preparation Example 74 was conducted, except that 4-fluorobenzenaldehyde was used instead of 2-fluorobenzenaldehyde, to obtain the title compound (0.43 g, yield 10-40%)

1H NMR(400MHz, CDC$_3$I) 60.96(t, $J=7.2$Hz, 3H), 1.33~1.56(m, 4H), 2.26~2.32(m, 4H), 6.24(dt, $J=15.6$Hz, 7Hz, 1H), 6.78(d, $J=16$Hz, 1H), 6.84~7.07(m, 4H)

Preparation Example 83: Synthesis of 1-(2-iodophenyl)-3-methyl-(S,S)-1,2-butandiol

The substantially same method as described in Preparation Example 14 was conducted, except that 1-(2-iodophenyl)-3-methyl-trans-1-butene(Preparation Example 70) was used instead of 1-(2-chlorophenyl)-trans-1-propene(Preparation Example 1), to obtain the title compound (0.52 g, yield 60-90%).

1H NMR(400MHz, CDC$_3$I) 51.07(t, $J=7.2$Hz, 6H), 1.83~1.89(m, 1H), 1.92(d, $J=5.6$Hz, 1H), 2.69(d, $J=6.4$Hz, 1H), 3.53~3.56(m, 1H), 5.22~5.25(m, 1H), 7.04~7.85(m, 4H)

Preparation Example 84: Synthesis of 1-(2-iodophenyl)-3-methyl-(R,R)-1,2-
butanediol

\[\text{HO} \quad \text{HO} \]

The substantially same method as described in Preparation Example 15 was conducted, except that \(l-(2\text{-iodophenyl})\)-trans-\(l\)-butene (Preparation Example 65) was used instead of \(l-(2\text{-chlorophenyl})\)-trans-\(l\)-propene (Preparation Example 1), to obtain the title compound (0.52g, yield 60-90\%)

\[^1H\text{ NMR}(400\text{MHz, CDCl}_3) 51.04(t, J=7.6\text{Hz}, 3\text{H}), 1.60-1.71(\text{m}, 2\text{H}), 2.07(\text{br s, 1H}), 2.74(\text{br s, 1H}), 3.71-3.76(\text{m, 1H}), 4.87(\text{d, } J=4.8\text{Hz}, 1\text{H}), 7.01-7.87(\text{m, 4H}) \]

Preparation Example 85: Synthesis of \(l-(2\text{-iodophenyl})-(S,S)-l,2\)-hexanediol

\[\text{HO} \quad \text{HO} \]

The substantially same method as described in Preparation Example 14 was conducted, except that \(l-(2\text{-iodophenyl})\)-trans-\(l\)-hexene (Preparation Example 71) was used instead of \(l-(2\text{-chlorophenyl})\)-trans-\(l\)-propene (Preparation Example 1), to obtain the title compound (1.21g, yield 60-90\%)

\[^1H\text{ NMR}(400\text{MHz, CDCl}_3) 50.90(t, J=7.2\text{Hz}, 3\text{H}), 1.35-1.65(\text{m, 6H}), 2.08(\text{d, } J=4.4\text{Hz, 1H}), 2.71(\text{d, } J=5.2\text{Hz, 1H}), 3.78-3.83(\text{m, 1H}), 5.04(\text{t, } J=5.0\text{Hz, 1H}), 7.02-7.79(\text{m, 4H}) \]

Preparation Example 86: Synthesis of \(l-(2\text{-iodophenyl})-(R,R)-l,2\)-hexanediol

\[\text{HO} \quad \text{HO} \]

The substantially same method as described in Preparation Example 15 was conducted, except that \(l-(2\text{-iodophenyl})\)-trans-\(l\)-hexene (Preparation Example 71) was used instead of \(l-(2\text{-chlorophenyl})\)-trans-\(l\)-propene (Preparation Example 1), to obtain the title compound (0.74g, yield 60-90\%)

\[^1H\text{ NMR}(400\text{MHz, CDCl}_3) 60.90(t, J=7.2\text{Hz}, 3\text{H}), 1.35-1.65(\text{m, 6H}), 2.08(\text{d, } J=4.4\text{Hz, 1H}), 2.71(\text{d, } J=5.2\text{Hz, 1H}), 3.78-3.83(\text{m, 1H}), 5.04(\text{t, } J=5.0\text{Hz, 1H}), 7.02-7.79(\text{m, 4H}) \]
Preparation Example 87: Synthesis of l-(3-iodophenyl)-(S,S)-l,2-propanediol

The substantially same method as described in Preparation Example 66 was conducted, except that l-(3-iodophenyl)-trans-l-propene (Preparation Example 75) was used instead of l-(2-iodophenyl)-trans-l-propene (Preparation Example 64), to obtain the title compound (2.03 g, yield 60-90%).

1H NMR(400MHz, CDCl$_3$)δ 1.27(d, $J=6.4$Hz, 3H), 2.26(br s, lH), 2.74(br s, lH), 3.99(t, $J=6.0$Hz, lH), 4.81(d, $J=4.0$Hz, lH), 6.98~7.50(m, 4H)

Preparation Example 88: Synthesis of l-(3-iodophenyl)-(R,R)-l,2-propanediol

The substantially same method as described in Preparation Example 67 was conducted, except that l-(3-iodophenyl)-trans-l-propene (Preparation Example 75) was used instead of l-(2-iodophenyl)-trans-l-propene (Preparation Example 64), to obtain the title compound (1.12 g, yield 60-90%).

1H NMR(400MHz, CDCl$_3$)δ 1.27(d, $J=6.4$Hz, 3H), 2.26(br s, lH), 2.74(br s, lH), 3.99(t, $J=6.0$Hz, lH), 4.81(d, $J=4.0$Hz, lH), 6.98~7.50(m, 4H)

Preparation Example 89: Synthesis of l-(3-iodophenyl)-(S,S)-l,2-butanediol

The substantially same method as described in Preparation Example 68 was conducted, except that l-(3-iodophenyl)-trans-l-butene (Preparation Example 76) was used instead of l-(2-iodophenyl)-trans-l-propene (Preparation Example 64), to obtain the title compound (2.03 g, yield 60-90%).

1H NMR(400MHz, CDCl$_3$)δ 1.04(t, $J=7.6$Hz, 3H), 1.60~1.71(m, 2H), 2.07(br s, lH), 2.74(br s, lH), 3.71~3.76(m, lH), 4.87(d, $J=4.8$Hz, lH), 6.99~7.52(m, 4H)
Preparation Example 90: Synthesis of l-(3-iodophenyl)-(R,R)-l,2-butanediol

![Chemical structure]

The substantially same method as described in Preparation Example 84 was conducted, except that l-(3-iodophenyl)-trans-l-butene (Preparation Example 76) was used instead of l-(2-iodophenyl)-trans-l-propene (Preparation Example 64), to obtain the title compound (1.18g, yield 60-90%).

1H NMR(400MHz, CDCl$_3$) 51.04(t, J=7.6Hz, 3H), 1.60-1.71(m, 2H), 2.07(br s, 1H), 2.74(br s, 1H), 3.71-3.76(m, 1H), 4.87(d, J=4.8Hz, 1H), 6.99~7.52(m, 4H)

Preparation Example 91: Synthesis of l-(3-iodophenyl)-3-methyl-(S,S)-l,2-butanediol

![Chemical structure]

The substantially same method as described in Preparation Example 83 was conducted, except that l-(3-iodophenyl)-3-methyl-trans-l-butene(Preparation Example 77) was used instead of l-(2-iodophenyl)-3-methyl-trans-l-butene(Preparation Example 70), to obtain the title compound (0.5g, yield 60-90%).

1H NMR(400MHz, CDCl$_3$) 61.07(t, J=7.2Hz, 6H), 1.83~1.89(m, 1H), 1.92(d, J=5.6Hz, 1H), 2.69(d, J=6.4Hz, 1H), 3.53-3.56(m, 1H), 5.22~5.25(m, 1H), 6.92~7.50(m, 4H)

Preparation Example 92: Synthesis of l-(3-iodophenyl)-3-methyl-(R,R)-l,2-butanediol

![Chemical structure]

The substantially same method as described in Preparation Example 90 was conducted, except that l-(3-iodophenyl)-3-methyl-trans-l-butene(Preparation Example 77) was used instead of l-(3-iodophenyl)-trans-l-butene (Preparation Example 76), to obtain the title compound (1.10g, yield 60-90%).

1H NMR(400MHz, CDCl$_3$) 61.07(t, J=7.2Hz, 6H), 1.83~1.89(m, 1H), 1.92(d,
Preparation Example 93: Synthesis of l-(3-iodophenyl)-(S,S)-l,2-hexanediol

The substantially same method as described in Preparation Example 85 was conducted, except that l-(3-iodophenyl)-trans-l-hexene (Preparation Example 78) was used instead of l-(2-iodophenyl)-trans-l-hexene (Preparation Example 71), to obtain the title compound (0.95 g, yield 60-90%).

1H NMR (400 MHz, CDC$_3$) 50.90 (t, $J=7.2$ Hz, 3H), 1.35~1.65 (m, 6H), 2.08 (d, $J=4.4$ Hz, 1H), 2.71 (d, $J=5.2$ Hz, 1H), 3.78~3.83 (m, 1H), 5.04 (t, $J=5.0$ Hz, 1H), 6.95~7.49 (m, 4H)

Preparation Example 94: Synthesis of l-(3-iodophenyl)-(R,R)-l,2-hexanediol

The substantially same method as described in Preparation Example 86 was conducted, except that l-(3-iodophenyl)-trans-l-hexene (Preparation Example 78) was used instead of l-(2-iodophenyl)-trans-l-hexene (Preparation Example 71), to obtain the title compound (0.41 g, yield 60-90%).

1H NMR (400 MHz, CDC$_3$) 50.90 (t, $J=7.2$ Hz, 3H), 1.35~1.65 (m, 6H), 2.08 (d, $J=4.4$ Hz, 1H), 2.71 (d, $J=5.2$ Hz, 1H), 3.78~3.83 (m, 1H), 5.04 (t, $J=5.0$ Hz, 1H), 6.95~7.49 (m, 4H)

Preparation Example 95: Synthesis of l-(4-fluorophenyl)-(S,S)-l,2-propanediol

The substantially same method as described in Preparation Example 87 was conducted, except that l-(4-fluorophenyl)-trans-l-propene (Preparation Example 79) was used instead of l-(3-iodophenyl)-trans-l-propene (Preparation Example 75), to obtain the
Preparation Example 96: Synthesis of l-(3-fluorophenyl)-(R,R)-l,2-propanediol

The substantially same method as described in Preparation Example 88 was conducted, except that l-(4-fluorophenyl)-trans-l-propene (Preparation Example 79) was used instead of l-(3-iodophenyl)-trans-l-propene (Preparation Example 75), to obtain the title compound (1.27g, yield 60-90%).

1H NMR(400MHz, CDCl$_3$) 81.15(d, J=6.4Hz, 3H), 2.43(d, J=3.6Hz, 1H), 2.69(d, J=4.8Hz, 1H), 3.90~3.98(m, 1H), 4.78(dd, J=4.4, 7.2Hz, 1H), 6.85~7.04(m, 4H)

Preparation Example 97: Synthesis of l-(4-fluorophenyl)-(S,S)-l,2-butanediol

The substantially same method as described in Preparation Example 89 was conducted, except that l-(4-fluorophenyl)-trans-l-butene (Preparation Example 80) was used instead of l-(3-iodophenyl)-trans-l-butene (Preparation Example 76), to obtain the title compound (0.43g, yield 60-90%).

1H NMR(400MHz, CDCl$_3$) 81.04(t, J=7.6Hz, 3H), 1.60~1.71(m, 2H), 2.07(br s, 1H), 2.74(br s, 1H), 3.71~3.76(m, 1H), 4.87(d, J=4.8Hz, 1H), 6.88~7.05(m, 4H)

Preparation Example 98: Synthesis of l-(3-fluorophenyl)-(R,R)-l,2-butanediol

The substantially same method as described in Preparation Example 90 was conducted, except that l-(4-fluorophenyl)-trans-l-butene (Preparation Example 80) was used instead of l-(3-iodophenyl)-trans-l-butene (Preparation Example 76), to obtain the title
compound (1.13g, yield 60-90%).

1H NMR(400MHz, CDCl$_3$) δ1.04(t, J=7.6Hz, 3H), 1.60~1.71(m, 2H), 2.07(br s, 1H), 2.74(br s, 1H), 3.71~3.76(m, 1H), 4.87(d, J=4.8Hz, 1H), 6.88~7.05(m, 4H)

Preparation Example 99: Synthesis of 1-(4-fluorophenyl)-3-methyl-(S,S)-l,2-butanediol

The substantially same method as described in Preparation Example 91 was conducted, except that 1-(4-fluorophenyl)-3-methyl-trans-l-butene(Preparation Example 81) was used instead of 1-(3-iodophenyl)-3-methyl-trans-l-butene(Preparation Example 77), to obtain the title compound (0.71g, yield 60-90%).

1H NMR(400MHz, CDCl$_3$) δ1.07(t, J=7.2Hz, 6H), 1.83~1.89(m, 1H), 1.92(d, J=5.6Hz, 1H), 2.69(d, J=6.4Hz, 1H), 3.53~3.56(m, 1H), 5.22~5.25(m, 1H), 6.87~7.02(m, 4H)

Preparation Example 100: Synthesis of 1-(3-fluorophenyl)-3-methyl-(R,R)-l,2-butanediol

The substantially same method as described in Preparation Example 92 was conducted, except that 1-(4-fluorophenyl)-3-methyl-trans-l-butene(Preparation Example 81) was used instead of 1-(3-iodophenyl)-3-methyl-trans-l-butene(Preparation Example 77), to obtain the title compound (1.21g, yield 60-90%).

1H NMR(400MHz, CDCl$_3$) δ1.07(t, J=7.2Hz, 6H), 1.83~1.89(m, 1H), 1.92(d, J=5.6Hz, 1H), 2.69(d, J=6.4Hz, 1H), 3.53~3.56(m, 1H), 5.22~5.25(m, 1H), 6.87~7.02(m, 4H)

Preparation Example 101: Synthesis of 1-(4-fluorophenyl)-(S,S)-l,2-hexanediol

1H NMR(400MHz, CDCl$_3$) δ1.04(t, J=7.6Hz, 3H), 1.60~1.71(m, 2H), 2.07(br s, 1H), 2.74(br s, 1H), 3.71~3.76(m, 1H), 4.87(d, J=4.8Hz, 1H), 6.88~7.05(m, 4H)
The substantially same method as described in Preparation Example 93 was conducted, except that l-(4-fluorophenyl)-trans-l-hexene (Preparation Example 82) was used instead of l-(3-iodophenyl)-trans-l-hexene (Preparation Example 78), to obtain the title compound (1.13g, yield 60-90%)

1H NMR(400MHz, CDCl$_3$) 50.90(t, $J=7.2$Hz, 3H), 1.35-1.65(m, 6H), 2.08(d, $J=4.4$Hz, 1H), 2.71(d, $J=5.2$Hz, 1H), 3.78-3.83(m, 1H), 5.04(t, $J=5.0$Hz, 1H), 6.88-7.09(m, 4H)

Preparation Example 102: Synthesis of l-(3-fluorophenyl)-(R,R)-l,2-hexanediol

The substantially same method as described in Preparation Example 94 was conducted, except that l-(4-fluorophenyl)-trans-l-hexene (Preparation Example 82) was used instead of l-(3-iodophenyl)-trans-l-hexene (Preparation Example 78), to obtain the title compound (1.42g, yield 60-90%)

1H NMR(400MHz, CDCl$_3$) 50.90(t, $J=7.2$Hz, 3H), 1.35-1.65(m, 6H), 2.08(d, $J=4.4$Hz, 1H), 2.71(d, $J=5.2$Hz, 1H), 3.78-3.83(m, 1H), 5.04(t, $J=5.0$Hz, 1H), 6.88-7.09(m, 4H)

Preparation Example 103: Synthesis of l-(2-chlorophenyl)-(S)-l-hydroxypropyl-(S)-2-carbamate

1-(2-chlorophenyl)-(S,S)-1,2-propanediol (2.33g) obtained in Preparation Example 14, tetrahydrofuran (THF, 12ml), and carbonyldiimidazole (CDI, 3.04g) were put into a flask and stirred at the room temperature. After approximately 3 hours, ammonia solution (NH$_4$OH, 4ml) was added thereto. When the reaction was completed, the obtained product was washed with 1M HCl solution and ethylacetate (EA). The separated organic layer was dehydrated with anhydrous magnesium sulfate (MgSO$_4$), filtrated, and concentrated under reduced pressure. The concentrated residue was purified by a silica gel column
chromatography, to obtain the title compound (1.40g, yield 49%).

M.P. 83-84 °C

1H NMR(400MHz, CDCl$_3$) 51.24(d, $J=6.4$Hz, 3H), 2.91(d, $J=4.8$Hz, 1H), 4.68(br s, 2H), 5.06~5.09(m, 1H), 5.18~5.21(m, 1H), 7.23~7.55(m, 4H)

13C NMR(100MHz, CDCl$_3$) 516.4, 73.1, 75.0, 127.0, 128.4, 129.1, 129.5, 132.7, 138.0, 156.6

Preparation Example 104: Synthesis of l-(2-chlorophenyl)-(R)-l-hydroxypropyl-(R)-2-carbamate

![Chemical Structure]

The substantially same method as described in Preparation Example 103 was conducted, except that l-(2-chlorophenyl)-(R,R)-1,2-propanediol obtained in Preparation Example 15 was used instead of l-(2-chlorophenyl)-(S,S)-1,2-propanediol, to obtain the title compound (1.74g, yield 50%).

M.P. 85-86 °C

1H NMR(400MHz, CDCl$_3$) 51.24(d, $J=6.4$Hz, 3H), 2.98(d, $J=4.0$Hz, 1H), 4.73(br s, 2H), 5.04~5.10(m, 1H), 5.18~5.20(m, 1H), 7.24~7.55(m, 4H)

Preparation Example 105: Synthesis of l-(2-chlorophenyl)-l-hydroxypropyl-2-carbamate

![Chemical Structure]

The substantially same method as described in Preparation Example 103 was conducted, except that the mixture of l-(2-chlorophenyl)-(S,S)-1,2-propanediol and l-(2-chlorophenyl)-(R,R)-1,2-propanediol obtained in Preparation Example 16 was used instead of l-(2-chlorophenyl)-(S,S)-1,2-propanediol, to obtain the title compound (0.41g, yield 38%).

1H NMR(400MHz, CDCl$_3$) 61.14(d, $J=6.8$Hz, 3H), 3.34(d, $J=3.2$Hz, 1H), 5.06(br s, 2H), 5.09~5.15(m, 1H), 5.18~5.20(m, 1H), 7.18~7.59(m, 4H)
Preparation Example 106: Synthesis of l-(2-chlorophenyl)-(R)-l-hydroxypropyl-(S)-2-carbamate

![Chemical Structure]

The substantially same method as described in Preparation Example 103 was conducted, except that l-(2-chlorophenyl)-(R,S)-l,2-propanediol obtained in Preparation Example 55 was used instead of l-(2-chlorophenyl)-(S,S)-l,2-propanediol, to obtain the title compound (1.7g, yield 50%).

1H NMR (400MHz, CDC13) 81.20(d, J=6.8, 3H), 2.68(s, 1H), 4.67(s, 2H), 5.16~5.22(m, 1H), 5.36(t, J=3.2, 1H), 7.23~7.61(m, 4H)

Preparation Example 107: Synthesis of l-(2-chlorophenyl)-(S)-l-hydroxypropyl-(R)-2-carbamate

![Chemical Structure]

The substantially same method as described in Preparation Example 103 was conducted, except that l-(2-chlorophenyl)-(S,R)-l,2-propanediol obtained in Preparation Example 56 was used instead of l-(2-chlorophenyl)-(S,S)-l,2-propanediol, to obtain the title compound (1.74g, yield 50%).

1H NMR (400MHz, CDC13) 51.20(d, J=6.4, 3H), 2.83(d, J=3.6, 1H), 4.78(s, 2H), 5.15~5.21(m, 1H), 5.36(t, J=3.2, 1H), 7.23~7.63(m, 4H)

Preparation Example 108: Synthesis of l-(2-chlorophenyl)-(S)-l-hydroxybutyl-(S)-2-carbamate

![Chemical Structure]

The substantially same method as described in Preparation Example 103 was conducted, except that l-(2-chlorophenyl)-(S,S)-l,2-butanediol obtained in Preparation
Example 17 was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-propanediol, to obtain the title compound (1.0g, yield 45%).

1H NMR(400MHz, CDCl$_3$) δ 0.96(t, J = 7.4Hz, 3H), 1.57~1.73(m, 2H), 3.01(d, J = 5.6Hz, 1H), 4.74(br s, 2H), 4.95(dt, J = 7.2, 8.8Hz, 1H), 5.23(t, J = 5.6Hz, 1H), 7.22~7.54(m, 4H)

Preparation Example 109 : Synthesis of l-(2-chlorophenyl)-(R)-l-hydroxybutyl-(R)-2-carbamate

The substantially same method as described in Preparation Example 103 was conducted, except that l-(2-chlorophenyl)-(R,R)-1,2-butanediol obtained in Preparation Example 18 was used instead of l-(2-chlorophenyl)-(S,S)-1,2-propanediol, to obtain the title compound (1.5g, yield 25%).

1H NMR(400MHz, CDCl$_3$) δ 0.94(t, J=7.4Hz, 3H), 1.53~1.73(m, 2H), 2.92(s, 1H), 4.78(br s, 2H), 4.91~4.96(m, 1H), 5.22(d, J=5.5Hz, 1H), 7.20~7.54(m, 4H)

Preparation Example 110 : Synthesis of l-(2-chlorophenyl)-l-hydroxybutyl-2-carbamate(8)

The substantially same method as described in Preparation Example 103 was conducted, except that l-(2-chlorophenyl)-1,2-butanediol obtained in Preparation Example 19 was used instead of l-(2-chlorophenyl)-(S,S)-1,2-propanediol, to obtain the title compound (1.8g, yield 30%).

1H NMR(400MHz, CDCl$_3$) δ 0.97(t, J=7Hz, 3H), 1.58~1.74(m, 2H), 2.94(d, J=6Hz, 1H), 4.69(br s, 2H), 4.94~4.99(m, 1H), 5.24(t, J=6Hz, 1H), 7.23~7.56(m, 4H)

Preparation Example 111: Synthesis of l-(2-chlorophenyl)-(S)-l-hydroxy-3-methyl-butyl-(S)-2-carbamate
The substantially same method as described in Preparation Example 103 was conducted, except that l-(2-chlorophenyl)-3-methyl-(S,S)-1,2-butanediol obtained in Preparation Example 20 was used instead of l-(2-chlorophenyl)-(S,S)-1,2-propanediol, to obtain the title compound (0.72g, yield 48%).

\[\text{H NMR} (400 MHz, CDCl3) \]

\[61.01 (d, J = 6.4 Hz, 3H), 1.09 (d, J = 6.8 Hz, 3H), 2.06 (m, 1H), 2.75 (d, J = 6.8 Hz, 1H), 4.58 (br s, 2H), 4.85-4.88 (m, 1H), 5.34-5.37 (m, 1H), 7.22-7.33 (m, 2H), 7.35-7.37 (m, 1H), 7.51-7.53 (m, 1H) \]

Preparation Example 112: Synthesis of l-(2-chlorophenyl)-(R)-l-hydroxy-3-methyl-butyl-(R)-2-carbamate

The substantially same method as described in Preparation Example 103 was conducted, except that l-(2-chlorophenyl)-3-methyl-(R,R)-1,2-butanediol obtained in Preparation Example 22 was used instead of l-(2-chlorophenyl)-(S,S)-1,2-propanediol, to obtain the title compound (0.65g, yield 43%).

\[\text{H NMR} (400 MHz, CDCl3) \]

\[61.01 (d, J = 6.4 Hz, 3H), 1.09 (d, J = 6.8 Hz, 3H), 2.06 (m, 1H), 2.73 (d, J = 6.8 Hz, 1H), 4.57 (br s, 2H), 4.85-4.88 (m, 1H), 5.34-5.37 (m, 1H), 7.24-7.30 (m, 2H), 7.35-7.37 (m, 1H), 7.51-7.53 (m, 1H) \]

Preparation Example 113: Synthesis of l-(2-chlorophenyl)-l-hydroxy-3-methyl-butyl-2-carbamate

The substantially same method as described in Preparation Example 103 was conducted, except that l-(2-chlorophenyl)-3-methyl-1,2-butanediol obtained in Preparation Example 22 was used instead of l-(2-chlorophenyl)-(S,S)-1,2-propanediol, to obtain the title.
compound (1.5g, yield 23%).

\[^1H \text{ NMR}(400\text{MHz,} \quad \text{CDCl}_3) \delta 0.88(d, J=7\text{Hz}, \quad 3\text{H}), 1.33-1.42(m, \quad 4\text{H}), 1.53-1.71(m, \quad 2\text{H}), 2.89(d, J = 5.6\text{Hz}, \quad 1\text{H}) 4.64(br s, \quad 2\text{H}), 5.04(dt, J = 5.0, 9.0\text{Hz}, \quad 1\text{H}), 5.20(t, J = 5.6\text{Hz}, \quad 1\text{H}), 7.23-7.55(m, \quad 4\text{H}) \]

Preparation Example 114: Synthesis of l-(2-chlorophenyl)-(S)-l-hydroxyhexyl-(S)-2-carbamate

The substantially same method as described in Preparation Example 103 was conducted, except that l-(2-chlorophenyl)-(S,S)-l,2-hexanediol obtained in Preparation Example 23 was used instead of l-(2-chlorophenyl)-(S,S)-l,2-propanediol, to obtain the title compound (0.24g, yield 49%).

\[^1H \text{ NMR}(400\text{MHz,} \quad \text{CDCl}_3) \delta 0.88(i, J=7\text{Hz}, \quad 3\text{H}), 1.33-1.42(m, \quad 4\text{H}), 1.53-1.71(m, \quad 2\text{H}), 2.89(d, J = 5.6\text{Hz}, \quad 1\text{H}) 4.64(br s, \quad 2\text{H}), 5.04(dt, J = 5.0, 9.0\text{Hz}, \quad 1\text{H}), 5.20(t, J = 5.6\text{Hz}, \quad 1\text{H}), 7.23-7.55(m, \quad 4\text{H}) \]

Preparation Example 115: Synthesis of l-(2-chlorophenyl)-(R)-l-hydroxyhexyl-(R)-2-carbamate

The substantially same method as described in Preparation Example 103 was conducted, except that l-(2-chlorophenyl)-(R,R)-l,2-hexanediol obtained in Preparation Example 24 was used instead of l-(2-chlorophenyl)-(S,S)-l,2-propanediol, to obtain the title compound (2.2g, yield 44%).

\[^1H \text{ NMR}(400\text{MHz,} \quad \text{CDCl}_3) \delta 0.89(dd, J=5\text{Hz}, \quad 3\text{H}), 1.28-1.43(m, \quad 4\text{H}), 1.52-1.58(m, \quad 1\text{H}), 1.65-1.72(m, \quad 1\text{H}), 2.90(d, J=6\text{Hz}, \quad 1\text{H}), 4.64(br s, \quad 2\text{H}), 5.01-5.06(m, \quad 1\text{H}), 5.22(t, J=6\text{Hz}, \quad 1\text{H}), 7.22-7.56(m, \quad 4\text{H}) \]

**Preparation Example 116: Synthesis of l-(2-chlorophenyl)-l-hydroxyhexyl-2-...
carbamate

\[
\begin{align*}
\text{Cl} & \quad \text{OH} \\
& \quad \text{O} \quad \text{NH}_2 \\
& \quad \text{O}
\end{align*}
\]

The substantially same method as described in Preparation Example 103 was conducted, except that l-(2-chlorophenyl)-1,2-hexanediol obtained in Preparation Example 25 was used instead of l-(2-chlorophenyl)-(S,S)-1,2-propanediol, to obtain the title compound (1.6g, yield 34%).

\(^1\text{H NMR}(400\text{MHz}, \text{CDCl}_3) \ \delta \ 0.88(\text{dd}, J=5\text{Hz}, 3\text{H}), 1.31-1.43(\text{m}, 4\text{H}), 1.63-1.70(\text{m}, 1\text{H}), 1.52-1.60(\text{m}, 1\text{H}), 3.06(\text{d}, J=6\text{Hz}, 1\text{H}), 4.75(\text{br s}, 2\text{H}), 5.00-5.05(\text{m}, \text{1H}), 5.21(\text{t}, J=6\text{Hz}, \text{1H}), 7.22-7.55(\text{m}, 4\text{H})

\text{Preparation Example 117: Synthesis of l-(2-chlorophenyl)-(S)-l-hydroxypropyl-(S)-2-methylcarbamate}

\[
\begin{align*}
\text{Cl} & \quad \text{OH} \\
& \quad \text{O} \quad \text{N} \\
& \quad \text{O}
\end{align*}
\]

The substantially same method as described in Preparation Example 103 was conducted, except that methylamine was used instead of ammonia solution(NH\text{4OH}), to obtain the title compound (1.6g, yield 51%).

\(^1\text{H NMR}(400\text{MHz}, \text{CDCl}_3) \ 51.03-1.25(\text{m}, 3\text{H}), 2.76(\text{s}, 3\text{H}), 3.34(\text{s}, 1\text{H}), 4.80(\text{br s} \text{1H}), 5.04(\text{t}, J=12.5\text{Hz}, \text{1H}), 5.14(\text{s}, \text{1H}), 7.20-7.53(\text{m}, 4\text{H})

\text{Preparation Example 118: Synthesis of l-(2-chlorophenyl)-(S)-l-hydroxypropyl-(S)-2-propylcarbamate}

\[
\begin{align*}
\text{Cl} & \quad \text{OH} \\
& \quad \text{O} \quad \text{N} \\
& \quad \text{O}
\end{align*}
\]

The substantially same method as described in Preparation Example 103 was conducted, except that propylamine was used instead of ammonia solution(NH\text{4OH}), to obtain the title compound (0.79g, yield 25%).
Preparation Example 119: Synthesis of l-(2-chlorophenyl)-(S)-l-hydroxypropyl-(R)-2-isopropylcarbamate

\[
\begin{align*}
\text{Cl} & \quad \text{OH} \\
& \quad \text{O} \quad \text{N} \\
& \quad \text{O}
\end{align*}
\]

The substantially same method as described in Preparation Example 103 was conducted, except that isopropylamine was used instead of ammonia solution (NH₄OH), to obtain the title compound (1.5g, yield 41%).

\[\text{H NMR}(400\text{MHz}, \text{ CDCl}_3) 51.14(\text{dd}, J=6.5\text{Hz}, \text{ 6H}), \ 1.19(\text{d}, J=6.4\text{Hz}, \text{ 3H}), \ 3.21(\text{s}, \ \text{IH}), \ 3.73\text{~}3.82(\text{m}, \ \text{IH}), \ 4.59(\text{br s}, \ \text{IH}), \ 5.01\text{~}5.07(\text{m}, \ \text{IH}), \ 5.14(\text{t}, J=5.8\text{Hz}, \ \text{IH}), \ 7.20\text{~}7.53(\text{m}, \ 4\text{H})\]

Preparation Example 120: Synthesis of l-(2-chlorophenyl)-(S)-l-hydroxypropyl-(R)-2-cyclopropylcarbamate

\[
\begin{align*}
\text{Cl} & \quad \text{OH} \\
& \quad \text{O} \quad \text{N} \quad \text{O}
\end{align*}
\]

The substantially same method as described in Preparation Example 103 was conducted, except that cyclopropylamine was used instead of ammonia solution (NH₄OH), to obtain the title compound (2.2g, yield 43%).

\[\text{H NMR}(400\text{MHz}, \text{ CDCl}_3) 60.50\text{~}0.56(\text{m}, \text{ 2H}), \ 0.74(\text{d}, J=7.21\text{Hz}, \text{ 2H}), \ 1.25(\text{s}, \text{ 3H}), \ 2.56\text{~}2.61(\text{m}, \text{ IH}), \ 3.72(\text{s}, \text{ IH}), \ 4.98(\text{br s}, \text{ IH}), \ 5.05\text{~}5.11(\text{m}, \text{ IH}), \ 7.16(\text{s}, \text{ IH}), \ 7.23\text{~}7.54(\text{m}, \text{ 4H})\]

Preparation Example 121: Synthesis of l-(2-chlorophenyl)-(S)-l-hydroxypropyl-(R)-2-cyclohexyl carbamate
The substantially same method as described in Preparation Example 103 was conducted, except that cyclohexylamine was used instead of ammonia solution (NH₄OH), to obtain the title compound (1.1g, yield 26%).

\[
^1H \text{ NMR}(400MHz, \text{ CDC}_13) \delta \begin{array}{l}
1.06~1.40(m, 7H), 1.56~1.61(m, 2H), 1.69~1.71(m, 2H), 1.87~1.94(m, 2H), 3.19(d, J=4.32Hz, IH), 3.45(s, 1H), 4.64(br s, IH), 5.02~5.07(m, IH), 5.14(t, J=6.08Hz, IH) \end{array} 7.20~7.53(m, 4H)
\]

Preparation Example 122: Synthesis of l-(2-chlorophenyl)-(S)-l-hydroxypropyl-(S)-2-benzyl carbamate

The substantially same method as described in Preparation Example 103 was conducted, except that benzylamine was used instead of ammonia solution (NH₄OH), to obtain the title compound (1.2g, yield 18%).

\[
^1H \text{ NMR}(400MHz, \text{ CDC}_13) \delta \begin{array}{l}
1.27(d, J=10Hz, 3H), 3.12(d, J=5Hz, IH), 4.37(d, J=6Hz, 2H), 5.12~5.19(m, 3H), 7.15~7.56(m, 9H) \end{array}
\]

The substantially same method as described in Preparation Example 103 was conducted, except that 2-aminonorbornane was used instead of ammonia solution (NH₄OH), to obtain the title compound (1.7g, yield 32%).

\[
^1H \text{ NMR}(400MHz, \text{ CDC}_13) \delta \begin{array}{l}
61.08~1.35(m, 9H), 1.65(br s, IH), 1.75~1.71(m, IH), 2.14~2.24(m, IH), 2.27~2.30(m, IH), 3.23~3.29(m, IH), 3.47~3.52(m, IH), 4.67(br s, IH), 5.14(t, J=6.08Hz, IH) 7.20~7.53(m, 4H) \end{array}
\]
Preparation Example 124: Synthesis of \(l-(2\text{-chlorophenyl})-(R)-(R)-2\text{-methylcarbamate} \)

\[
\begin{align*}
\text{Cl} & \quad \text{OH} & \quad \text{O} & \quad \text{N} \\
\text{O} & \quad \text{O} & \quad \text{O} & \quad \text{O}
\end{align*}
\]

The substantially same method as described in Example 2 was conducted, except that methylamine was used instead of ammonia solution \((NH_4OH)\), to obtain the title compound (3.36g, yield 60%).

\(^1\text{H} NMR(400MHz, CDCl}_3 \) \(\delta \)
- 1.20(d, \(J=6.8Hz \), 3H), 2.80(d, \(J=4.8Hz \), 3H), 3.20(d, \(J=4.4Hz \), 1H), 4.75(br s, 1H), 5.03~5.09(m, 1H), 5.14~5.17(m, 1H), 7.22~7.55(m, 4H)

Preparation Example 125: Synthesis of \(l-(2\text{-chlorophenyl})-(R)-(R)-2\text{-propylcarbamate} \)

\[
\begin{align*}
\text{Cl} & \quad \text{OH} & \quad \text{O} & \quad \text{N} \\
\text{O} & \quad \text{O} & \quad \text{O} & \quad \text{O}
\end{align*}
\]

The substantially same method as described in Preparation Example 104 was conducted, except that propylamine was used instead of ammonia solution \((NH_4OH)\), to obtain the title compound (3.1g, yield 53%).

\(^1\text{H} NMR(400MHz, CDCl}_3 \) \(\delta \)
- 60.92(t, \(J=7.6Hz \), 3H), 1.21(d, \(J=6.4Hz \), 3H), 1.51(m, 2H), 3.09-3.14(m, 2H), 3.28(d, \(J=4.4Hz \), 1H), 4.82(br s, 1H), 5.03~5.09(m, 1H), 5.14~5.17(m, 1H), 7.22~7.55(m, 4H)

Preparation Example 126: Synthesis of \(l-(2\text{-chlorophenyl})-(R)-(R)-2\text{-isopropylcarbamate} \)

\[
\begin{align*}
\text{Cl} & \quad \text{OH} & \quad \text{O} & \quad \text{N} \\
\text{O} & \quad \text{O} & \quad \text{O} & \quad \text{O}
\end{align*}
\]

The substantially same method as described in Preparation Example 104 was conducted, except that isopropylamine was used instead of ammonia solution \((NH_4OH)\), to
obtain the title compound (0.16 g, yield 27%).

\[^1\text{H} \text{NMR}(400\text{MHz, CDCl}_3)\] 50.88~1.16 (m, 6H), 1.19~1.26 (m, 3H), 3.34 (s, 1H), 3.71~3.78 (m, 1H), 4.62 (br s, 1H), 5.03 (t, J=5.8 Hz, 1H), 5.13 (d, J=4.9 Hz, 1H), 7.20~7.53 (m, 4H)

Preparation Example 127: Synthesis of 1-(2-chlorophenyl)-(R)-l-hydroxypropyl-(R)-2-cyclopropylcarbamate

![Chemical structure](image)

The substantially same method as described in Preparation Example 104 was conducted, except that cyclopropyl amine was used instead of ammonia solution (NH\(_4\)OH), to obtain the title compound (3.7 g, yield 60%).

\[^1\text{H} \text{NMR}(400\text{MHz, CDCl}_3)\] 50.49~0.54 (m, 2H), 0.74 (d, J=7.2 Hz, 2H), 1.22 (s, 3H), 2.55~2.60 (m, 1H), 3.16 (s, 1H), 5.00 (s, 1H), 5.04~5.1 (m, 1m, IH), 5.16 (s, 1H), 7.23~7.54 (m, 4H)

Preparation Example 128: Synthesis of 1-(2-chlorophenyl)-(R)-l-hydroxypropyl-(R)-2-cyclohexyl carbamate

![Chemical structure](image)

The substantially same method as described in Preparation Example 104 was conducted, except that cyclohexylamine was used instead of ammonia solution (NH\(_4\)OH), to obtain the title compound (1.9 g, yield 28%).

\[^1\text{H} \text{NMR}(400\text{MHz, CDCl}_3)\] 61.05~1.38 (m, 8H), 1.58~1.70 (m, 3H), 1.85~1.95 (m, 2H), 3.39~3.47 (m, 1H), 3.56 (s, 1H), 4.79 (br s, 1H), 5.01~5.07 (m, 1H), 5.14 (t, J=5.2 Hz, 1H), 7.20~7.54 (m, 4H)

Preparation Example 129: Synthesis of 1-(2-chlorophenyl)-(R)-l-hydroxypropyl-(R)-2-benzylcarbamate

76
The substantially same method as described in Preparation Example 104 was conducted, except that benzylamine was used instead of ammonia solution (NH₄OH), to obtain the title compound (0.52g, yield 19%).

1H NMR (400MHz, CDCl₃) 5.12 (d, J=6Hz, 3H), 1.64 (s, IH), 3.13 (d, J=4.4Hz, IH), 4.37 (d, J=5.6Hz, 2H), 5.12~5.19 (m, 2H), 7.23~7.55 (m, 9H)

Preparation Example 130: Synthesis of 1-(2-chlorophenyl)-(R)-1-hydroxypropyl-(R)-2-bicyclo[2,2,1]heptanecarbamate

The substantially same method as described in Preparation Example 104 was conducted, except that 2-aminonorbornane was used instead of ammonia solution (NH₄OH), to obtain the title compound (1.7g, yield 20~50%).

1H NMR (400MHz, CDCl₃) 61.08~1.35 (m, 9H), 1.65 (br s, IH), 1.75~1.71 (m, IH), 2.14~2.24 (m, IH), 2.27~2.30 (m, IH), 3.23~3.29 (m, IH), 3.47~3.52 (m, IH), 4.67 (br s, IH), 5.01~5.09 (m, IH), 5.12~5.18 (m, IH), 7.22~7.55 (m, 4H)

Preparation Example 131: Synthesis of 1-(2-chlorophenyl)-l-hydroxypropyl-2-methylcarbamate

The substantially same method as described in Preparation Example 105 was conducted, except that methylamine was used instead of ammonia solution (NH₄OH), to obtain the title compound (2.6g, yield 45%).

1H NMR (400MHz, CDCl₃) δ 1.21 (d, J=6Hz, 3H), 2.81 (d, J=5Hz, 3H), 3.14 (d, J=4Hz, IH), 4.72 (br s, IH), 5.07 (dd, J=6Hz, IH), 5.16 (t, J=6Hz, IH), 7.22~7.56 (m, 4H)
Preparation Example 132: Synthesis of l-(2-chlorophenyi)-l-hydroxypropyl-2-propylcarbamate

The substantially same method as described in Preparation Example 105 was conducted, except that propylamine was used instead of ammonia solution(NH₄OH), to obtain the title compound (1.0g, yield 17%).

1H NMR(400MHz, CDCl₃) δ 0.92(t, J=7Hz, 3H), 1.21(d, J=6Hz, 3H), 1.53(dd, J=7Hz, 2H), 3.13(dd, J=7Hz, 2H), 3.28(d, IH), 4.82(S, IH), 5.06(dd, J=7Hz, IH), 5.16(t, J=5Hz, IH), 7.21~7.56(m, 4H)

Preparation Example 133: Synthesis of l-(2-chlorophenyi)-l-hydroxypropyl-2-isopropylcarbamate

The substantially same method as described in Preparation Example 105 was conducted, except that isopropylamine was used instead of ammonia solution(NH₄OH), to obtain the title compound (0.54g, yield 16%).

1H NMR(400MHz, CDCl₃) δ 1.16(dd, J=6Hz, 6H), 1.21(d, J=6Hz, 3H), 3.23(d, J=6Hz, IH), 3.75-3.84(m, IH), 4.61(br s, IH), 5.06(t, J=6Hz, IH), 5.16(t, J=6Hz, IH), 7.22-7.56(m, 4H)

Preparation Example 134: Synthesis of l-(2-chlorophenyi)-l-hydroxypropyl-2-cyclopropylcarbamate

The substantially same method as described in Preparation Example 105 was conducted, except that cyclopropylamine was used instead of ammonia solution(NH₄OH), to
obtain the title compound (1.0g, yield 17%).

1H NMR(400MHz, CDCl$_3$) δ 0.50(t, J=6Hz, 2H), 0.77(t, J=3Hz, 2H), 1.12(d, J=7Hz, 3H), 2.53~2.59(m, IH), 3.22(d, J=4Hz, IH), 5.08(dd, J=6Hz, IH), 5.15(S, IH), 7.22~7.55(m, 4H)

Preparation Example 135: Synthesis of l-(2-chlorophenyl)-l-hydroxypropyl-2-cyclohexylcarbamate

The substantially same method as described in Preparation Example 105 was conducted, except that cyclohexylamine was used instead of ammonia solution(NH$_4$OH), to obtain the title compound (2.2g, yield 33%).

1H NMR(400MHz, CDCl$_3$) δ 1.07~1.17(m, 3H), 1.21(d, J=6Hz, 3H), 1.29~1.42(m, 3H), 1.72(dd, J=6Hz, 2H), 1.92(dd, J=6Hz, 2H), 3.26(d, J=4Hz, IH), 3.46(t, J=4Hz, IH), 4.68(d, J=6Hz, IH), 5.07(dd, J=6Hz, IH), 5.16(t, J=6Hz, IH), 7.22~7.55(m, 4H)

Preparation Example 136: Synthesis of l-(2-chlorophenyl)-l-hydroxypropyl-2-benzylcarbamate

The substantially same method as described in Preparation Example 105 was conducted, except that benzylamine was used instead of ammonia solution(NH$_4$OH), to obtain the title compound (1.3g, yield 19%).

1H NMR(400MHz, CDCl$_3$) δ 1.25(d, J=6Hz, 3H), 3.16(d, J=4Hz, IH), 4.36(d, J=6Hz, 2H), 5.14(dd, J=6Hz, 3H), 7.23~7.56(m, 9H), yield: 19%(1.3g)

The substantially same method as described in Preparation Example 105 was conducted, except that 2-aminonorbornane was used instead of ammonia solution (NH₄OH), to obtain the title compound (1.7g, yield 20-50%).

\[^1H \text{ NMR}(400\text{MHz, } \text{CDCl}_3) 61.08-1.35(\text{m, } 9\text{H}), 1.65(\text{br s, } 1\text{H}), 1.75-1.71(\text{m, } 1\text{H}), 2.14-2.24(\text{m, } 1\text{H}), 2.27-2.30(\text{m, } 1\text{H}), 3.23-3.29(\text{m, } 1\text{H}), 3.47-3.52(\text{m, } 1\text{H}), 4.67(\text{br s, } 1\text{H}), 5.01-5.09(\text{m, } 1\text{H}), 5.12-5.18(\text{m, } 1\text{H}), 7.22-7.55(\text{m, } 4\text{H}) \]

Preparation Example 138: Synthesis of l-(2,4-dichlorophenyl)-(S)-l-hydroxypopyl-(S)-2-carbamate

The substantially same method as described in Preparation Example 103 was conducted, except that l-(2,4-dichlorophenyl)-(S,S)-l,2-propanediol obtained in Preparation Example 26 was used instead of l-(2-chlorophenyl)-(S,S)-l,2-propanediol, to obtain the title compound (0.14g, yield 34%).

\[^1H \text{ NMR}(400\text{MHz, } \text{CDCl}_3) 61.22(\text{d, } J = 6.4\text{Hz, } 3\text{H}), 4.16(\text{br t, } 1\text{H}) 4.96(\text{br t, } 3\text{H}), 5.07(\text{t, } J = 4.8\text{Hz, } 1\text{H}), 7.23-7.52(\text{m, } 3\text{H}) \]

Preparation Example 139: Synthesis of l-(2,6-dichlorophenyl)-(S)-l-hydroxypopyl-(S)-2-carbamate

The substantially same method as described in Preparation Example 103 was conducted, except that l-(2,6-dichlorophenyl)-(S,S)-l,2-propanediol obtained in Preparation Example 38 was used instead of l-(2-chlorophenyl)-(S,S)-l,2-propanediol, to obtain the title compound (0.22g, yield 49%).
Preparation Example 140: Synthesis of l-(2,3-dichlorophenyl)-(S)-l-hydroxypropyl-(S)-2-carbamate

![Chemical Structure Image]

The substantially same method as described in Preparation Example 103 was conducted, except that l-(2,3-dichlorophenyl)-(S,S)-l,2-propanediol obtained in Preparation Example 57 was used instead of l-(2-chlorophenyl)-(S,S)-l,2-propanediol, to obtain the title compound (0.21 g, yield 20-60%).

1H NMR (400 MHz, CDCl$_3$) 6.15 (d, $J = 6.4$ Hz, 3H), 3.66 (d, $J = 9.2$ Hz, 1H), 4.73 (br s, 2H), 5.43 (t, $J = 9.0$ Hz, 1H), 5.62–5.69 (m, 1H), 7.18–7.22 (m, 3H).

Preparation Example 141: Synthesis of l-(2,4-dichlorophenyl)-(S)-l-hydroxybutyl-(S)-2-carbamate

![Chemical Structure Image]

The substantially same method as described in Preparation Example 103 was conducted, except that l-(2,4-dichlorophenyl)-(S,S)-l,2-butanediol obtained in Preparation Example 29 was used instead of l-(2-chlorophenyl)-(S,S)-l,2-propanediol, to obtain the title compound (0.23 g, yield 52%).

1H NMR (400 MHz, CDCl$_3$) 6.15 (d, $J = 6.4$ Hz, 3H), 3.66 (d, $J = 9.2$ Hz, 1H), 4.73 (br s, 2H), 5.43 (t, $J = 9.0$ Hz, 1H), 5.62–5.69 (m, 1H), 7.18–7.22 (m, 3H).

Preparation Example 142: Synthesis of l-(2,6-dichlorophenyl)-(S)-l-hydroxybutyl-(S)-2-carbamate

![Chemical Structure Image]
The substantially same method as described in Preparation Example 103 was conducted, except that l-(2,6-dichlorophenyl)-(S,S)-1,2-butanediol obtained in Preparation Example 41 was used instead of l-(2-chlorophenyl)-(S,S)-1,2-propanediol, to obtain the title compound (0.49g, yield 34%).

\[\text{NMR}(400\text{MHz}, \text{CDCl}_3) 60.92(t, J = 7.4\text{Hz}, 3\text{H}), 1.30-1.38(m, 1\text{H}), 1.57-1.64(m, 1\text{H}), 3.74(d, J = 9.2\text{Hz}, 1\text{H}), 4.80(br\text{ s}, 2\text{H}), 5.40-5.50(m, 2\text{H}), 7.17-7.34(m, 3\text{H}) \]

Preparation Example 143: Synthesis of l-(2,4-dichlorophenyl)-(S)-l-hydroxy-3-methyl-butyl-(S)-2-carbamate

The substantially same method as described in Preparation Example 103 was conducted, except that l-(2,4-dichlorophenyl)-3-methyl-(S,S)-1,2-butanediol obtained in Preparation Example 32 was used instead of l-(2-chlorophenyl)-(S,S)-1,2-propanediol, to obtain the title compound (0.13g, yield 20-60%).

\[\text{NMR}(400\text{MHz}, \text{CDCl}_3) 61.00(t, J = 7.2\text{Hz}, 6\text{H}), 1.73-1.79(m, 1\text{H}), 3.67-3.69(m, 1\text{H}), 4.85(br\text{ s}, 2\text{H}), 5.40-5.43(m, 1\text{H}), 5.49-5.54(m, 1\text{H}), 7.30-7.50(m, 3\text{H}) \]

Preparation Example 144: Synthesis of l-(2,6-dichlorophenyl)-(S)-l-hydroxy-3-methyl-butyl-(S)-2-carbamate

The substantially same method as described in Preparation Example 103 was conducted, except that l-(2,6-dichlorophenyl)-3-methyl-(S,S)-1,2-butanediol obtained in Preparation Example 44 was used instead of l-(2-chlorophenyl)-(S,S)-1,2-propanediol, to obtain the title compound (0.12g, yield 20%).
Preparation Example 145: Synthesis of 1-(2,4-dichlorophenyl)-(S)-l-
hydroxyhexyl-(S)-2-carbamate

\[
\begin{align*}
\text{Cl} & \quad \text{OH} \\
\text{Cl} & \quad \text{O} \quad \text{NH}_2
\end{align*}
\]

The substantially same method as described in Preparation Example 103 was conducted, except that 1-(2,4-dichlorophenyl)-(S,S)-1,2-hexanediol obtained in Preparation Example 35 was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-propanediol, to obtain the title compound (0.94g, yield 81%).

\[\text{H NMR}(400MHz, \text{CDCl}_3) \ 6.00(t, \ J = 7.2Hz, 6H), 1.73-1.79(m, 1H), 3.67-3.69(m, 1H), 4.85(br s, 2H), 5.40-5.43(m, 1H), 5.49-5.54(m, 1H), 7.16-7.33(m, 3H)\]

Preparation Example 146: Synthesis of 1-(2,6-dichlorophenyl)-(S)-l-
hydroxyhexyl-(S)-2-carbamate

\[
\begin{align*}
\text{Cl} & \quad \text{OH} \\
\text{Cl} & \quad \text{O} \quad \text{NH}_2
\end{align*}
\]

The substantially same method as described in Preparation Example 103 was conducted, except that 1-(2,6-dichlorophenyl)-(S,S)-1,2-hexanediol obtained in Preparation Example 47 was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-propanediol, to obtain the title compound (0.15g, yield 31%).

\[\text{H NMR}(400MHz, \text{CDCl}_3) \ 60.89(t, \ J = 3.6Hz, 3H), 1.28-1.42(m, 4H), 1.52-1.59(m, 1H), 1.64-1.71(m, 1H), 2.98(d, \ J = 5.6Hz, 1H), 4.67(br s, 2H), 4.96-5.00(m, 1H), 5.17(t, \ J = 5.6Hz, 1H), 7.30-7.49(m, 3H)\]

Preparation Example 147: Synthesis of 1-(2,4-dichlorophenyl)-(R)-l-
hydroxypropyl-(R)-2-carbamate
The substantially same method as described in Preparation Example 103 was conducted, except that 1-(2,4-dichlorophenyl)-(R,R)-1,2-propanediol obtained in Preparation Example 27 was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-propanediol, to obtain the title compound (0.14g, yield 20-60%).

1H NMR(400MHz, CDCl$_3$) 61.22(d, $J = 6.4$Hz, 3H), 4.16(br t, 1H) 4.96(br t, 3H), 5.07(t, $J = 4.8$Hz, 1H), 7.23~7.52(m, 3H)

Preparation Example 148: Synthesis of 1-(2,6-dichlorophenyl)-(R)-1-hydroxypropyl-(R)-2-carbamate

The substantially same method as described in Preparation Example 103 was conducted, except that 1-(2,6-dichlorophenyl)-(R,R)-1,2-propanediol obtained in Preparation Example 39 was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-propanediol, to obtain the title compound (0.2lg, yield 20-60%).

1H NMR(400MHz, CDCl$_3$) 61.15(d, $J = 6.4$Hz, 3H), 3.66(d, $J = 9.2$Hz, 1H), 4.73(br s, 2H), 5.43(t, $J = 9.0$Hz, 1H), 5.62~5.69(m, 1H), 7.18~7.22(m, 3H),

Preparation Example 149: Synthesis of 1-(2,3-dichlorophenyl)-(R)-1-hydroxypropyl-(R)-2-carbamate

The substantially same method as described in Preparation Example 103 was conducted, except that 1-(2,3-dichlorophenyl)-(R,R)-1,2-propanediol obtained in Preparation Example 58 was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-propanediol, to obtain the title compound (0.08g, yield 20-60%).
Preparation Example 150: Synthesis of 1-(2,4-dichlorophenyl)-(R)-1-hydroxybutyl-(R)-2-carbamate

The substantially same method as described in Preparation Example 103 was conducted, except that 1-(2,4-dichlorophenyl)-(R,R)-1,2-butanediol obtained in Preparation Example 30 was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-propanediol, to obtain the title compound (0.23g, yield 20-60%).

^1H NMR(400MHz, CDCl3) 60.96(t, J = 7.4Hz, 3H), 1.58~1.74(m, 2H), 2.98(d, J = 5.6Hz, 1H) 4.68(br s, 2H), 5.59(dt, J = 5.2, 8.8Hz, 1H), 5.19(t, J = 5.4Hz, 1H), 7.30~7.50(m, 3H)

Preparation Example 151: Synthesis of 1-(2,6-dichlorophenyl)-(R)-1-hydroxybutyl-(R)-2-carbamate

The substantially same method as described in Preparation Example 103 was conducted, except that 1-(2,6-dichlorophenyl)-(R,R)-1,2-butanediol obtained in Preparation Example 42 was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-propanediol, to obtain the title compound (0.49g, yield 20-60%).

^1H NMR(400MHz, CDCl3) 60.92(t, J = 7.4Hz, 3H), T.30~1.38(m, 2H), 1.57~1.64(m, 1H), 3.74(d, J = 9.2Hz, 1H), 4.80(br s, 2H), 5.40~5.50(m, 2H), 7.17~7.34(m, 3H)

Preparation Example 152: Synthesis of 1-(2,4-dichlorophenyl)-(R)-1-hydroxy-3-methyl-butyl-(R)-2-carbamate
The substantially same method as described in Preparation Example 103 was conducted, except that l-(2,4-dichlorophenyl)-3-methyl-(R,R)-1,2-butanediol obtained in Preparation Example 33 was used instead of l-(2-chlorophenyl)-(S,S)-1,2-propanediol, to obtain the title compound (0.23g, yield 20-60%).

1H NMR(400MHz, CDCl$_3$) 6.00(t, J = 7.2Hz, 6H), 1.73~1.79(m, 1H), 3.67~3.69(m, 1H), 4.85(br s, 2H), 5.40~5.43(m, 1H), 5.49~5.54(m, 1H), 7.30~7.50(m, 3H)

Preparation Example 153: Synthesis of l-(2,6-dichlorophenyl)-(R)-l-hydroxy-3-methyl-butyl-(R)-2-carbamate

The substantially same method as described in Preparation Example 103 was conducted, except that l-(2,6-dichlorophenyl)-3-methyl-(R,R)-1,2-butanediol obtained in Preparation Example 45 was used instead of l-(2-chlorophenyl)-(S,S)-1,2-propanediol, to obtain the title compound (0.14g, yield 20-60%).

1H NMR(400MHz, CDCl$_3$) 6.00(t, J = 7.2Hz, 6H), 1.73~1.79(m, 1H), 3.67~3.69(m, 1H), 4.85(br s, 2H), 5.40~5.43(m, 1H), 5.49~5.54(m, 1H), 7.16~7.33(m, 3H)

Preparation Example 154: Synthesis of l-(2,4-dichlorophenyl)-(R)-l-hydroxyhexyl-(R)-2-carbamate

The substantially same method as described in Preparation Example 103 was conducted, except that l-(2,4-dichlorophenyl)-(R,R)-1,2-hexanediol obtained in Preparation Example 36 was used instead of l-(2-chlorophenyl)-(S,S)-1,2-propanediol, to obtain the title compound (0.84g, yield 20-60%).
Preparation Example 155: Synthesis of l-(2,6-dichlorophenyl)-(R)-l-hydroxyhexyl-(R)-2-carbamate

\[
\begin{align*}
\text{Cl} & \quad \text{OH} & \quad \text{O} & \quad \text{NH}_2 \\
\text{Cl} & \quad \text{O} & \quad \text{NH}_2
\end{align*}
\]

The substantially same method as described in Preparation Example 103 was conducted, except that l-(2,6-dichlorophenyl)-(R,R)-l,2-hexanediol obtained in Preparation Example 48 was used instead of l-(2-chlorophenyl)-(S,S)-l,2-propanediol, to obtain the title compound (0.15g, yield 20-60%).

\[\text{H NMR}(400\text{MHz, CDCl}_3) 60.84(t, J = 7.0\text{Hz, 3H}), 1.20-1.35(m, 4\text{H}), 1.36-1.41(m, 1\text{H}), 1.59-1.63(m, 1\text{H}), 3.71(d, J = 10.0\text{Hz, 1H}), 4.74(br s, 2\text{H}), 5.40-5.44(m, 1\text{H}), 5.52-5.57(m, 1\text{H}), 7.17-7.35(m, 3\text{H})\]

Preparation Example 156: Synthesis of l-(2,4-dichlorophenyl)-l-hydroxypropyl-2-carbamate

\[
\begin{align*}
\text{Cl} & \quad \text{OH} & \quad \text{O} & \quad \text{NH}_2 \\
\text{Cl} & \quad \text{O} & \quad \text{NH}_2
\end{align*}
\]

The substantially same method as described in Preparation Example 103 was conducted, except that l-(2,4-dichlorophenyl)-l,2-propanediol obtained in Preparation Example 28 was used instead of l-(2-chlorophenyl)-(S,S)-l,2-propanediol, to obtain the title compound (0.14g, yield 20-60%).

\[\text{H NMR}(400\text{MHz, CDCl}_3) 61.22(d, J = 6.4\text{Hz, 3H}), 4.16(br t, 1\text{H}) 4.96(br t, 3\text{H}), 5.07(t, J = 4.8\text{Hz, 1H}), 7.23-7.52(m, 3\text{H})\]

Preparation Example 157: Synthesis of l-(2,6-dichlorophenyl)-l-hydroxypropyl-2-carbamate
The substantially same method as described in Preparation Example 103 was conducted, except that l-(2,6-dichlorophenyl)-1,2-propanediol obtained in Preparation Example 40 was used instead of l-(2-chlorophenyl)-(S,S)-1,2-propanediol, to obtain the title compound (0.19g, yield 20-60%).

1H NMR(400MHz, CDCl$_3$) δ 1.15(d, $J = 6.4$Hz, 3H), 3.66(d, $J = 9.2$Hz, 1H), 4.73(br s, 2H), 5.43(t, $J = 9.0$Hz, 1H), 5.62~5.69(m, 1H), 7.18~7.22(m, 3H)

Preparation Example 158: Synthesis of l-(2,3-dichlorophenyl)-l-hydroxypropyl-2-carbamate

The substantially same method as described in Preparation Example 103 was conducted, except that l-(2,3-dichlorophenyl)-1,2-propanediol obtained in Preparation Example 59 was used instead of l-(2-chlorophenyl)-(S,S)-1,2-propanediol, to obtain the title compound (0.23g, yield 20-60%).

1H NMR(400MHz, CDCl$_3$) δ 1.15(d, $J = 6.4$Hz, 3H), 3.66(d, $J = 9.2$Hz, 1H), 4.73(br s, 2H), 5.43(t, $J = 9.0$Hz, 1H), 5.62~5.69(m, 1H), 7.18~7.22(m, 3H),

Preparation Example 159: Synthesis of l-(2,4-dichlorophenyl)-l-hydroxybutyl-2-carbamate

The substantially same method as described in Preparation Example 103 was conducted, except that l-(2,4-dichlorophenyl)-1,2-butanediol obtained in Preparation Example 31 was used instead of l-(2-chlorophenyl)-(S,S)-1,2-propanediol, to obtain the title compound (0.23g, yield 20-60%).
\[^1H \text{NMR}(400\text{MHz}, \text{CDCl}_3) \]
60.96 (t, \(J = 7.4\text{Hz} \), 3H), 1.58-1.74 (m, 2H), 2.98 (d, \(J = 5.6\text{Hz} \), 1H) 4.68 (br s, 2H), 5.59 (dt, \(J = 5.2, 8.8\text{Hz} \), 1H), 5.19 (t, \(J = 5.4\text{Hz} \), 1H), 7.30-7.50 (m, 3H)

Preparation Example 160: Synthesis of l-(2,6-dichlorophenyl)-l-hydroxybutyl-2-carbamate

![Chemical Structure]

The substantially same method as described in Preparation Example 103 was conducted, except that l-(2,6-dichlorophenyl)-1,2-butanediol obtained in Preparation Example 43 was used instead of l-(2-chlorophenyl)-(S,S)-l,2-propanediol, to obtain the title compound (0.49g, yield 20-60%).

\[^1H \text{NMR}(400\text{MHz}, \text{CDCl}_3) \]
61.00 (t, \(J = 7.4\text{Hz} \), 3H), 1.30-1.38 (m, 1H), 1.57-1.64 (m, 1H), 3.74 (d, \(J = 9.2\text{Hz} \), 1H), 4.80 (br s, 2H), 5.40-5.50 (m, 2H), 7.17-7.34 (m, 3H)

Preparation Example 161: Synthesis of l-(2,4-dichlorophenyl)-l-hydroxy-3-methyl-butyl-2-carbamate

![Chemical Structure]

The substantially same method as described in Preparation Example 103 was conducted, except that l-(2,4-dichlorophenyl)-3-methyl-1,2-butanediol obtained in Preparation Example 34 was used instead of l-(2-chlorophenyl)-(S,S)-l,2-propanediol, to obtain the title compound (0.13g, yield 20-60%).

\[^1H \text{NMR}(400\text{MHz}, \text{CDCl}_3) \]
61.00 (t, \(J = 7.2\text{Hz} \), 6H), 1.73-1.79 (m, 1H), 3.67-3.69 (m, 1H), 4.85 (br s, 2H), 5.40-5.43 (m, 1H), 5.49-5.54 (m, 1H), 7.30-7.50 (m, 3H)

Preparation Example 162: Synthesis of l-(2,6-dichlorophenyl)-l-hydroxy-3-methyl-butyl-2-carbamate

![Chemical Structure]
The substantially same method as described in Preparation Example 103 was conducted, except that 1-(2,6-dichlorophenyl)-3-methyl-1,2-butanediol obtained in Preparation Example 46 was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-propanediol, to obtain the title compound (0.13g, yield 20-60%).

1H NMR(400MHz, CDC$_3$) 61.00(t, $J = 7.2$Hz, 6H), 1.73-1.79(m, 1H), 3.67-3.69(m, 1H), 4.85(br s, 2H), 5.40-5.43(m, 1H), 5.49-5.54(m, 1H), 7.16-7.33(m, 3H)

Preparation Example 163: Synthesis of 1-(2,4-dichlorophenyl)-l-hydroxyhexyl-2-carbamate

The substantially same method as described in Preparation Example 103 was conducted, except that 1-(2,4-dichlorophenyl)-1,2-hexanediol obtained in Preparation Example 37 was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-propanediol, to obtain the title compound (0.94g, yield 20-60%).

1H NMR (400MHz, CDC$_3$) 80.89(t, $J = 3.6$Hz, 3H), 1.28-1.42(m, 4H), 1.52-1.59(m, 1H), 1.64-1.71(m, 1H), 2.98(d, $J = 5.6$Hz, 1H), 4.67(br s, 2H), 4.96-5.00(m, 1H), 5.17(t, $J = 5.6$Hz, 1H), 7.30-7.49(m, 3H)

Preparation Example 164: Synthesis of 1-(2,6-dichlorophenyl)-l-hydroxyhexyl-2-carbamate

The substantially same method as described in Preparation Example 103 was conducted, except that 1-(2,6-dichlorophenyl)-1,2-hexanediol obtained in Preparation...
Example 49 was used instead of l-(2-chlorophenyl)-(S,S)-1,2-propanediol, to obtain the title compound (0.15g, yield 20-60%).

\(^1\)H NMR(400MHz, CDCl\(_3\)) 60.84(t, J = 7.0Hz, 3H), 1.20~1.35(m, 4H), 1.36~1.41(m, IH), 1.59~1.63(m, IH), 3.71(d, J = 10.0Hz, 1H), 4.74(br s, 2H), 5.40~5.44(m, 1H), 5.52~5.57(m, IH), 7.17~7.35(m, 3H)

Preparation Example 165 : Synthesis of l-(2-fluorophenyl)-(S)-l-hydroxypropyl-(S)-2-carbamate

![Chemical Structure](attachment:image.png)

The substantially same method as described in Preparation Example 103 was conducted, except that l-(2-fluorophenyl)-(S,S)-1,2-propanediol(12.23g) obtained in Preparation Example 61 was used instead of l-(2-chlorophenyl)-(S,S)-1,2-propanediol, to obtain the title compound (6.11g, yield 40%).

\(^1\)H NMR(400MHz, CDCl\(_3\)) 51.19(d, J=5.2Hz, 3H), 2.93(d, J=4.4Hz, IH), 4.71(br s, 2H), 4.99~5.06(m, H), 7.04~7.48(m, 4H)

Preparation Example 166 : Synthesis of l-(2-fluorophenyl)-(R)-l-hydroxypropyl-(R)-2-carbamate

![Chemical Structure](attachment:image.png)

The substantially same method as described in Preparation Example 103 was conducted, except that l-(2-fluorophenyl)-(R,R)-1,2-propanediol(6.26g) obtained in Preparation Example 62 was used instead of l-(2-chlorophenyl)-(S,S)-1,2-propanediol, to obtain the title compound (3.13g, yield 40%).

\(^1\)H NMR(400MHz, CDCl\(_3\)) 51.19(d, J=5.2Hz, 3H), 2.93(d, J=4.4Hz, IH), 4.71(br s, 2H), 4.99~5.06(m, H), 7.04~7.48(m, 4H)

Preparation Example 167 : Synthesis of l-(2-iodophenyl)-(S)-l-hydroxypropyl-(S)-2-carbamate

91
The substantially same method as described in Preparation Example 103 was conducted, except that l-(2-iodophenyl)-(S,S)-1,2-propanediol obtained in Preparation Example 66 was used instead of l-(2-chlorophenyl)-(S,S)-1,2-propanediol, to obtain the title compound (2.2g, yield 30-60%).

\[^1H \text{NMR}(400\text{MHz}, \text{CDCl}_3) \delta 1.27(d, J=6.4\text{Hz}, 3\text{H}), 3.09(\text{br s}, 1\text{H}), 4.83(\text{br s}, 2\text{H}), 5.00-5.10(\text{m}, 2\text{H}), 7.00-7.76(\text{m}, 4\text{H}) \]

Preparation Example 168: Synthesis of l-(2-iodophenyl)-(R)-1-hydroxypropyl-(R)-2-carbamate

The substantially same method as described in Preparation Example 103 was conducted, except that l-(2-iodophenyl)-(R,R)-1,2-propanediol obtained in Preparation Example 67 was used instead of l-(2-chlorophenyl)-(S,S)-1,2-propanediol, to obtain the title compound (3.13g, yield 30-60%).

\[^1H \text{NMR}(400\text{MHz}, \text{CDCl}_3) \delta 1.27(d, J=6.4\text{Hz}, 3\text{H}), 2.95(d, J=3.6\text{Hz}, 1\text{H}), 4.73(\text{br s}, 2\text{H}), 5.01-5.11(\text{m}, 2\text{H}), 7.01-7.86(\text{m}, 4\text{H}) \]

Preparation Example 169: Synthesis of l-(2-iodophenyl)-(S)-1-hydroxybutyl-(S)-2-carbamate

The substantially same method as described in Preparation Example 103 was conducted, except that l-(2-iodophenyl)-(S,S)-1,2-butanediol obtained in Preparation Example 68 was used instead of l-(2-chlorophenyl)-(S,S)-1,2-propanediol, to obtain the title compound (3.6g, yield 30-60%).

\[^1H \text{NMR}(400\text{MHz}, \text{CDCl}_3) \delta 51.27(d, J=6.4\text{Hz}, 3\text{H}), 3.09(\text{br s}, 1\text{H}), 4.83(\text{br s}, 2\text{H}), \]
Preparation Example 170: Synthesis of l-(2-chlorophenyl)-(S)-2-hydroxypropyl-(S)-l-carbamate

$$\begin{array}{c}
\text{Cl} & \text{O} & \text{NH}_2 \\
\text{O} & \text{Cl} & \text{OH}
\end{array}$$

A regioisomer of monocarbamate was separated and purified by conducting the silica gel column chromatography as described in Preparation Example 103, to obtain the title compound (0.34g, yield 10%).

1H NMR(400MHz, CDC$_3$) 81.24(d, $J = 6.8$Hz, 3H), 2.13(d, $J = 4.4$Hz, 1H), 4.12~4.16(m, 1H), 4.85(br s, 2H), 5.98(d, $J = 5.6$Hz, 1H), 7.24~7.43(m, 4H)

Preparation Example 171: Synthesis of l-(2-chlorophenyl)-(R)-2-hydroxypropyl-(R)-l-carbamate

$$\begin{array}{c}
\text{Cl} & \text{O} & \text{NH}_2 \\
\text{O} & \text{Cl} & \text{OH}
\end{array}$$

A regioisomer of monocarbamate was separated and purified by conducting the silica gel column chromatography as described in Preparation Example 104, to obtain the title compound (0.77g, yield 16%).

1H NMR(400MHz, CDC$_3$) 81.24(d, $J = 6.4$Hz, 3H), 2.04(d, $J = 4.8$Hz, 1H), 4.11~4.18(m, 1H), 4.74(br s, 2H), 6.00(d, $J = 5.6$Hz, 1H), 7.24~7.43(m, 4H)

Preparation Example 172: Synthesis of l-(2-chlorophenyl)-2-hydroxypropyl-l-carbamate

$$\begin{array}{c}
\text{Cl} & \text{O} & \text{NH}_2 \\
\text{O} & \text{Cl} & \text{OH}
\end{array}$$

A regioisomer of monocarbamate was separated and purified by conducting the silica gel column chromatography as described in Preparation Example 105, to obtain the title
compound (0.16g, yield 10-30%).

1H NMR(400MHz, CDCl$_3$) 51.24(d, $J = 6.4$Hz, 3H), 2.04(d, $J = 4.8$Hz, 1H), 4.11-4.18(m, 1H), 4.74(br s, 2H), 6.00(d, $J = 5.6$Hz, 1H), 7.24-7.43(m, 4H)

Preparation Example 173 : Synthesis of l-(2-chlorophenyl)-(S)-2-hydroxypropyl-(S)-l-methylcarbamate

![Chemical Structure](attachment:Chemical.png)

A regioisomer of monocarbamate was separated and purified by conducting the silica gel column chromatography as described in Preparation Example 117, to obtain the title compound (0.70g, yield 10-30%).

1H NMR(400MHz, CDCl$_3$) 51.21(d, $J = 6.4$Hz, 3H), 2.80(d, $J = 4.8$Hz, 3H), 3.12(s, 1H), 4.09-4.16(m, 1H), 4.86(br s, 1H), 5.99(d, $J = 6.0$Hz, 1H), 7.23-7.40(m, 4H)

Preparation Example 174 : Synthesis of l-(2-chlorophenyl)-(R)-2-hydroxypropyl-(R)-l-methylcarbamate

![Chemical Structure](attachment:Chemical.png)

A regioisomer of monocarbamate was separated and purified by conducting the silica gel column chromatography as described in Preparation Example 124, to obtain the title compound (0.69g, yield 10-30%).

1H NMR(400MHz, CDCl$_3$) 81.21(d, $J = 6.4$Hz, 3H), 2.80(d, $J = 4.8$Hz, 3H), 3.12(s, 1H), 4.09-4.16(m, 1H), 4.86(br s, 1H), 5.99(d, $J = 6.0$Hz, 1H), 7.23-7.40(m, 4H)

Preparation Example 175 : Synthesis of l-(2-chlorophenyl)-2-hydroxypropyl-l-methylcarbamate

![Chemical Structure](attachment:Chemical.png)

A regioisomer of monocarbamate was separated and purified by conducting the silica
gel column chromatography as described in Preparation Example 131, to obtain the title compound (0.73g, yield 10%).

1H NMR(400MHz, CDC$_3$) δ 1.22(d, $J=6$Hz, 3H), 2.15(d, $J=4$Hz, 1H), 2.81(d, $J=5$Hz, 3H), 4.12(dd, $J=6$Hz, 1H), 4.83(br s, 1H), 6.00(d, $J=6$Hz, 1H), 7.23−7.41(m, 4H)

Preparation Example 176 : Synthesis of l-(2-chlorophenyl)-(S)-2-hydroxypropyl-(S)-l-propylcarbamate

A regioisomer of monocarbamate was separated and purified by conducting the silica gel column chromatography as described in Preparation Example 118, to obtain the title compound (0.15g, yield 10-30%).

1H NMR(400MHz, CDC$_3$) δ 0.91(t, $J=7$Hz, 3H), 1.22(d, $J=6$Hz, 3H), 1.52(dd, $J=7$Hz, 2H), 2.23(d, $J=4$Hz, 1H), 3.09−3.21(m, 2H), 4.09−4.17(m, 1H), 4.93(s, 1H), 5.99(d, $J=6$Hz, 1H), 7.23−7.47(m, 4H)

Preparation Example 177 : Synthesis of l-(2-chlorophenyl)-(R)-2-hydroxypropyl-(R)-l-propylcarbamate

A regioisomer of monocarbamate was separated and purified by conducting the silica gel column chromatography as described in Preparation Example 125, to obtain the title compound (0.04g, yield 10-30%).

1H NMR(400MHz, CDC$_3$) δ 0.91(t, $J=7$Hz, 3H), 1.22(d, $J=6$Hz, 3H), 1.52(dd, $J=7$Hz, 2H), 2.23(d, $J=4$Hz, 1H), 3.09−3.21(m, 2H), 4.09−4.17(m, 1H), 4.93(s, 1H), 5.99(d, $J=6$Hz, 1H), 7.23−7.47(m, 4H)

Preparation Example 178 : Synthesis of l-(2-chlorophenyl)-2-hydroxypropyl-l-propylcarbamate
A regioisomer of monocarbamate was separated and purified by conducting the silica gel column chromatography as described in Preparation Example 132, to obtain the title compound (0.15g, yield 10%).

1H NMR(400MHz, CDCl$_3$) δ 0.91(t, J=7Hz, 3H), 1.22(d, J=6Hz, 3H), 1.52(dd, J=7Hz, 2H), 2.23(d, J=4Hz, 1H), 3.09~3.21(m, 2H), 4.09~4.17(m, 1H), 4.93(s, 1H), 5.99(d, J=6Hz, 1H), 7.23~7.47(m, 4H)

Preparation Example 179 : Synthesis of 1-(2-chlorophenyl)-(S)-2-hydroxypropyl-(S)-l-isopropylcarbamate

1H NMR(400MHz, CDCl$_3$) δ 1.10(d, J=6Hz, 3H), 1.15~1.19(m, 6H), 2.41(s, 1H), 3.76~4.08(m, 1H), 4.34(s, 1H), 4.83(br.s 1H), 5.95(d, J=5.3Hz, 1H), 7.19~7.39(m, 4H)

Preparation Example 180 : Synthesis of 1-(2-chlorophenyl)-(R)-2-hydroxypropyl-(R)-l-isopropylcarbamate

1H NMR(400MHz, CDCl$_3$) δ 1.13(d, J=6Hz, 3H), 1.20(dd, J=9.2Hz, 6H), 2.23(s, 1H), 3.77~3.82(m, 1H), 4.10(s, 1H), 4.76(br s, 1H), 5.98(d, J=5.6Hz, 1H), 7.23~7.41(m, 4H)
Preparation Example 181 : Synthesis of 1-(2-chlorophenyl)-2-hydroxypropyl-l-isopropylcarbamate

A regioisomer of monocarbamate was separated and purified by conducting the silica gel column chromatography as described in Preparation Example 133, to obtain the title compound (0.09g, yield 40%).

\[^1H\text{NMR}(400\text{MHz, CDC}_{13})\delta 1.14(\text{d}, J=6\text{Hz}, 3\text{H}), 1.21(\text{dd}, J=6\text{Hz}, 6\text{H}), 2.16(\text{d}, J=5\text{Hz}, \text{IH}), 3.81(\text{t}, J=6\text{Hz}, \text{IH}), 4.11(\text{d}, J=5\text{Hz}, \text{IH}), 4.73(\text{br s}, \text{IH}), 5.98(\text{d}, J=5\text{Hz}, \text{IH}), 7.24\text{~}7.41(\text{m, 4H}) \]

Preparation Example 182 : Synthesis of 1-(2-chlorophenyl)-(S)-2-hydroxypropyl-(S)-l-cyclopropylcarbamate

A regioisomer of monocarbamate was separated and purified by conducting the silica gel column chromatography as described in Preparation Example 120, to obtain the title compound (0.53g, yield 10-30%).

\[^1H\text{NMR}(400\text{MHz, CDC}_{13})\delta 0.53\text{~}0.60(\text{m, 2H}), 0.74(\text{s, 2H}), 1.21(\text{d}, J=6.0\text{Hz}, 3\text{H}), 2.19(\text{s, IH}), 2.59(\text{s, IH}), 4.11\text{~}4.15(\text{m, IH}), 5.13(\text{br s, IH}), 5.99(\text{d}, J=5.20\text{Hz}, \text{IH}), 7.23\text{~}7.40(\text{m, 4H}) \]

Preparation Example 183 : Synthesis of 1-(2-chlorophenyl)-(R)-2-hydroxypropyl-(R)-l-cyclopropylcarbamate

A regioisomer of monocarbamate was separated and purified by conducting the silica gel column chromatography as described in Preparation Example 127, to obtain the title compound.
compound (0.58g, yield 10%).

1H NMR(400MHz, CDCl$_3$) δ 0.53~0.60(m, 2H), 0.74(s, 2H), 1.21(d, J=6.0Hz, 3H), 2.19(s, 1H), 2.59(s, 1H), 4.11~4.15(m, 1H), 5.13(br s, 1H), 5.99(d, J=5.20Hz, 1H), 7.23~7.40(m, 4H)

Preparation Example 184: Synthesis of l-(2-chlorophenyl)-2-hydroxypropyl-l-cyclopropylcarbamate

A regioisomer of monocarbamate was separated and purified by conducting the silica gel column chromatography as described in Preparation Example 134, to obtain the title compound (0.38g, yield 14%).

1H NMR(400MHz, CDCl$_3$) δ 0.71(s, 2H), 1.19(d, J=6Hz, 3H), 2.45(S, 1H), 2.57(S, 1H), 4.08~4.12(m, 1H), 5.26(s, 1H), 5.97(d, J=4Hz, 1H), 7.22~7.54(m, 4H)

Preparation Example 185: Synthesis of l-(2-chlorophenyl)-(S)-2-hydroxypropyl-(S)-l-cyclohexylcarbamate

A regioisomer of monocarbamate was separated and purified by conducting the silica gel column chromatography as described in Preparation Example 121, to obtain the title compound (0.24g, yield 10-30%).

1H NMR(400MHz, CDCl$_3$) δ 1.10~1.39(m, 7H), 1.61(s, 3H), 1.71~1.74(m, 2H), 1.87(d, J=11.2Hz, 1H), 2.48(d, J=10.8Hz, 1H), 3.46(t, J=4Hz, 1H), 4.10~4.11(m, 1H), 4.80(br s 1H), 5.97(d, J=5.6Hz, 1H), 7.23~7.41(m, 4H)

Preparation Example 186: Synthesis of l-(2-chlorophenyl)-(R)-2-hydroxypropyl-(R)-l-cyclohexylcarbamate
Preparation Example 187: Synthesis of 1-(2-chlorophenyl)-2-hydroxypropyl-1-cyclohexylcarbamate

A regioisomer of monocarbamate was separated and purified by conducting the silica gel column chromatography as described in Preparation Example 135, to obtain the title compound (0.26 g, yield 10%).

$1H$ NMR(400MHz, CDCl$_3$) δ 1.12–1.19(m, 3H), 1.22(d, $J=6$Hz, 3H), 1.27–1.37(m, IH), 1.71(t, $J=6$Hz, 2H), 1.86–1.88(m, IH), 1.97–2.00(m, IH), 2.18(d, $J=4$Hz, IH), 3.47(S, IH), 4.12(t, $J=6$Hz, IH), 4.78(S, IH), 5.97(d, $J=5.6$Hz, IH), 7.23–7.40(m, 4H)

Preparation Example 188: Synthesis of 1-(2-chlorophenyl)-(S)-2-hydroxypropyl-(S)-l-benzylcarbamate

A regioisomer of monocarbamate was separated and purified by conducting the silica gel column chromatography as described in Preparation Example 122, to obtain the title compound (0.19 g, yield 10–30%).

$1H$ NMR(400MHz, CDCl$_3$) δ 1.23(d, $J=6$Hz, 3H), 2.16(d, $J=4$Hz, IH), 4.12(t, $J=6$Hz,
Preparation Example 189: Synthesis of 1-(2-chlorophenyl)-(R)-2-hydroxypropyl-(R)-1-benzylcarbamate

A regioisomer of monocarbamate was separated and purified by conducting the silica gel column chromatography as described in Preparation Example 129, to obtain the title compound (0.07 g, yield 10-30%).

1H NMR (400 MHz, CDCl$_3$) δ 1.23 (d, J=6 Hz, 3H), 2.16 (d, J=4 Hz, 1H), 4.12 (t, J=6 Hz, 1H), 4.31~4.44 (m, 2H), 5.22 (br S, 1H), 6.04 (d, J=6 Hz, 1H), 7.27~7.42 (m, 9H)

Preparation Example 190: Synthesis of 1-(2-chlorophenyl)-2-hydroxypropyl-1-benzylcarbamate

A regioisomer of monocarbamate was separated and purified by conducting the silica gel column chromatography as described in Preparation Example 136, to obtain the title compound (0.21 g, yield 14%).

1H NMR (400 MHz, CDCl$_3$) δ 1.23 (d, J=6 Hz, 3H), 2.16 (d, J=4 Hz, 1H), 4.12 (t, J=6 Hz, 1H), 4.31~4.44 (m, 2H), 5.22 (br S, 1H), 6.04 (d, J=6 Hz, 1H), 7.27~7.42 (m, 9H)

Preparation Example 191: Synthesis of 1-(2,4-dichlorophenyl)-(S)-2-hydroxypropyl-(S)-1-carbamate
A regioisomer of monocarbamate was separated and purified by conducting the silica gel column chromatography as described in Preparation Example 138, to obtain the title compound (0.05g, yield 10-30%).

\[^1H \text{NMR}(400\text{MHz}, \text{CDCl}_3) 61.13(d, J = 6.8\text{Hz}, 3\text{H}), 2.49(d, J = 4.0\text{Hz}, 1\text{H}), 4.66-4.74(\text{m}, 1\text{H}), 4.76(\text{br} s, 2\text{H}), 6.20(d, J = 8.8\text{Hz}, 1\text{H}), 7.30(\text{d}, J=8.4\text{Hz}, 1\text{H}), 7.39(\text{d}, J=2.0\text{Hz}, 2\text{H}), 7.50(\text{dd}, J=8.4\text{Hz}, 2.0\text{Hz}, 1\text{H}) \]

Preparation Example 192 : Synthesis of l-(2,6-dichlorophenyl)-(S)-2-hydroxypropyl-(S)-l-carbamate

A regioisomer of monocarbamate was separated and purified by conducting the silica gel column chromatography as described in Preparation Example 139, to obtain the title compound (0.07g, yield 24%).

\[^1H \text{NMR}(400\text{MHz}, \text{CDCl}_3) 61.13(d, J = 6.8\text{Hz}, 3\text{H}), 2.49(d, J = 4.0\text{Hz}, 1\text{H}), 4.66-4.74(\text{m}, 1\text{H}), 4.76(\text{br} s, 2\text{H}), 6.20(d, J = 8.8\text{Hz}, 1\text{H}), 7.25-7.40(\text{m}, 3\text{H}) \]

Preparation Example 193 : Synthesis of l-(2,3-dichlorophenyl)-(S)-2-hydroxypropyl-(S)-l-carbamate

A regioisomer of monocarbamate was separated and purified by conducting the silica gel column chromatography as described in Preparation Example 140, to obtain the title compound (0.08g, yield 10-30%).

\[^1H \text{NMR}(400\text{MHz}, \text{CDCl}_3) 61.15(d, J = 6.4\text{Hz}, 3\text{H}), 3.66(d, J = 9.2\text{Hz}, 1\text{H}), 4.73(\text{br} s, 2\text{H}), 5.43(t, J = 9.0\text{Hz}, 1\text{H}), 5.62-5.69(\text{m}, 1\text{H}), 7.18-7.22(\text{m}, 3\text{H}) \]

Preparation Example 194 : Synthesis of l-(2,4-dichlorophenyl)-(S)-2-hydroxybutyl-(S)-l-carbamate

A regioisomer of monocarbamate was separated and purified by conducting the silica gel column chromatography as described in Preparation Example 141, to obtain the title compound (0.08g, yield 10-30%).

\[^1H \text{NMR}(400\text{MHz}, \text{CDCl}_3) 61.15(d, J = 6.4\text{Hz}, 3\text{H}), 3.66(d, J = 9.2\text{Hz}, 1\text{H}), 4.73(\text{br} s, 2\text{H}), 5.43(t, J = 9.0\text{Hz}, 1\text{H}), 5.62-5.69(\text{m}, 1\text{H}), 7.18-7.22(\text{m}, 3\text{H}) \]
A regioisomer of monocarbamate was separated and purified by conducting the silica gel column chromatography as described in Preparation Example 141, to obtain the title compound (0.07g, yield 10-30%).

^1^H NMR(400MHz, CDCl\textsubscript{3}) 60.77(t, J = 7.4Hz, 3H), 0.92~1.01(m, 1H), 1.18~1.28(m, 1H), 4.06–4.13(m, 1H), 4.96(d, J = 6.0Hz, 1H), 5.91(d, J = 8.8Hz, 1H), 6.4(br s, 2H), 7.30~7.50(m, 3H)

Preparation Example 195: Synthesis of l-(2,6-dichlorophenyl)-(S)-2-hydroxybutyl-(S)-l-carbamate

A regioisomer of monocarbamate was separated and purified by conducting the silica gel column chromatography as described in Preparation Example 142, to obtain the title compound (0.1 lg, yield 29%).

^1^H NMR(400MHz, CDCl\textsubscript{3}) 60.77(t, J = 7.4Hz, 3H), 0.92~1.01(m, 1H), 1.18~1.28(m, 1H), 4.06–4.13(m, 1H), 4.96(d, J = 6.0Hz, 1H), 5.91(d, J = 8.8Hz, 1H), 6.4(br s, 2H), 7.25~7.40(m, 3H)

Preparation Example 196: Synthesis of l-(2,4-dichlorophenyl)-(S)-2-hydroxy-3-methyl-butyl-(S)-l-carbamate

A regioisomer of monocarbamate was separated and purified by conducting the silica gel column chromatography as described in Preparation Example 143, to obtain the title compound (0.01lg, yield 10-30%).
1H NMR (400 MHz, CDCl$_3$) 6.00 (t, $J = 7.2$ Hz, 6H), 1.73–1.79 (m, 1H), 3.67–3.69 (m, 1H), 4.96 (d, $J = 6.0$ Hz, 1H), 5.91 (d, $J = 8.8$ Hz, 1H), 6.42 (br s, 2H), 7.30–7.50 (m, 3H)

Preparation Example 197: Synthesis of 1-(2,6-dichlorophenyl)-(S)-2-hydroxy-3-methyl-butyI-(S)-l-carbamate

A regioisomer of monocarbamate was separated and purified by conducting the silica gel column chromatography as described in Preparation Example 144, to obtain the title compound (0.03 g, yield 10–30%).

1H NMR (400 MHz, CDCl$_3$) 5.00 (t, $J = 7.2$ Hz, 6H), 1.73–1.79 (m, 1H), 3.67–3.69 (m, 1H), 4.96 (d, $J = 6.0$ Hz, 1H), 5.91 (d, $J = 8.8$ Hz, 1H), 6.42 (br s, 2H), 7.25–7.40 (m, 3H)

Preparation Example 198: Synthesis of 1-(2,4-dichlorophenyl)-(S)-2-hydroxyhexyl-(S)-l-carbamate

A regioisomer of monocarbamate was separated and purified by conducting the silica gel column chromatography as described in Preparation Example 145, to obtain the title compound (0.21 g, yield 10–30%).

1H NMR (400 MHz, CDCl$_3$) 6.85 (t, $J = 7.2$ Hz, 3H), 1.18–1.33 (m, 4H), 1.48–1.55 (m, 2H), 2.35 (d, $J = 4.4$ Hz, 1H), 4.45–4.50 (m, 1H), 4.76 (br s, 2H), 6.21 (d, $J = 8.4$ Hz, 1H), 7.30–7.50 (m, 3H)

Preparation Example 199: Synthesis of 1-(2,6-dichlorophenyl)-(S)-2-hydroxyhexyl-(S)-l-carbamate
A regioisomer of monocarbamate was separated and purified by conducting the silica gel column chromatography as described in Preparation Example 146, to obtain the title compound (0.06g, yield 29%).

1H NMR(400MHz, CDCl$_3$) 80.85(t, $J = 7.2$Hz, 3H), 1.18-1.33(m, 4H), 1.48-1.55(m, 2H), 2.35(d, $J = 4.4$Hz, 1H), 4.45-4.50(m, 1H), 4.76(br s, 2H), 6.21(d, $J = 8.4$Hz, 1H), 7.16-7.34(m, 3H)

Preparation Example 200 : Synthesis of l-(2,4-dichlorophenyl)-(R)-2-hydroxypropyl-(R)-l-carbamate

![Chemical structure](image)

A regioisomer of monocarbamate was separated and purified by conducting the silica gel column chromatography as described in Preparation Example 147, to obtain the title compound (0.04g, yield 10-30%).

1H NMR(400MHz, CDCl$_3$) 51.13(d, $J = 6.8$Hz, 3H), 2.49(d, $J = 4.0$Hz, 1H), 4.66-4.74(m, 1H), 4.76(br s, 2H), 6.20(d, $J = 8.8$Hz, 1H), 7.30-7.50(m, 3H)

Preparation Example 201 : Synthesis of l-(2,6-dichlorophenyl)-(R)-2-hydroxypropyl-(R)-l-carbamate

![Chemical structure](image)

A regioisomer of monocarbamate was separated and purified by conducting the silica gel column chromatography as described in Preparation Example 148, to obtain the title compound (0.09g, yield 10-30%).

1H NMR(400MHz, CDCl$_3$) 61.13(d, $J = 6.8$Hz, 3H), 2.49(d, $J = 4.0$Hz, 1H), 4.66-4.74(m, 1H), 4.76(br s, 2H), 6.20(d, $J = 8.8$Hz, 1H), 7.25-7.40(m, 3H)

Preparation Example 202 : Synthesis of l-(2,3-dichlorophenyl)-(R)-2-hydroxypropyl-(R)-l-carbamate

![Chemical structure](image)
A regioisomer of monocarbamate was separated and purified by conducting the silica gel column chromatography as described in Preparation Example 149, to obtain the title compound (0.25 g, yield 10-30%).

\[\text{H NMR(400MHz, CDCl}_3 \text{) 61.15(d, } J = 6.4 \text{Hz, 3H), 3.66(d, } J = 9.2 \text{Hz, 1H), 4.73(br s, 2H), 5.43(t, } J = 9.0 \text{Hz, 1H), 5.62-5.69(m, 1H), 7.18-7.22(m, 3H)} \]

Preparation Example 203: Synthesis of l-(2,4-dichlorophenyl)-(R)-2-hydroxybutyl-(R)-l-carbamate

A regioisomer of monocarbamate was separated and purified by conducting the silica gel column chromatography as described in Preparation Example 150, to obtain the title compound (0.08 g, yield 10-30%).

\[\text{H NMR(400MHz, CDCl}_3 \text{) 80.77(t, } J = 7.4 \text{Hz, 3H), 0.92-1.01(m, 1H), 1.18-1.28(m, 1H), 4.06-4.13(m, 1H), 4.96(d, } J = 6.0 \text{Hz, 1H), 5.91(d, } J = 8.8 \text{Hz, 1H), 6.4(br s, 2H), 7.30-7.50(m, 3H)} \]

Preparation Example 204: Synthesis of l-(2,6-dichlorophenyl)-(R)-2-hydroxybutyl-(R)-l-carbamate

A regioisomer of monocarbamate was separated and purified by conducting the silica gel column chromatography as described in Preparation Example 151, to obtain the title compound (0.09 g, yield 10-30%).

\[\text{H NMR(400MHz, CDCl}_3 \text{) 50.77(t, } J = 7.4 \text{Hz, 3H), 0.92-1.01(m, 1H), 1.18-1.28(m, 1H), 4.06-4.13(m, 1H), 4.96(d, } J = 6.0 \text{Hz, 1H), 5.91(d, } J = 8.8 \text{Hz, 1H), 6.4(br s, 2H), 7.25-7.40(m, 3H) } \]
Preparation Example 205: Synthesis of 1-(2,4-dichlorophenyl)-(R)-2-hydroxy-3-methyl-butyl-(R)-l-carbamate

A regioisomer of monobarbamate was separated and purified by conducting the silica gel column chromatography as described in Preparation Example 152, to obtain the title compound (0.01 g, yield 10-30%).

1H NMR(400MHz, CDCl$_3$) 61.00(t, J = 7.2Hz, 6H), 1.73~1.79(m, 1H), 3.67~3.69(m, 1H), 4.96(d, J=6.0Hz, 1H), 5.91(d, J=8.8Hz, 1H), 6.42(br s, 2H), 7.30~7.50(m, 3H)

Preparation Example 206: Synthesis of 1-(2,6-dichlorophenyl)-(R)-2-hydroxy-3-methyl-butyl-(R)-l-carbamate

A regioisomer of monobarbamate was separated and purified by conducting the silica gel column chromatography as described in Preparation Example 153, to obtain the title compound (0.01 g, yield 10-30%).

1H NMR(400MHz, CDCl$_3$) 61.00(t, J = 7.2Hz, 6H), 1.73-1.79(m, 1H), 3.67-3.69(m, 1H), 4.96(d, J=6.0Hz, 1H), 5.91(d, J=8.8Hz, 1H), 6.42(br s, 2H), 7.25~7.40(m, 3H)

Preparation Example 207: Synthesis of 1-(2,4-dichlorophenyl)-(R)-2-hydroxyhexyl-(R)-l-carbamate

A regioisomer of monobarbamate was separated and purified by conducting the silica gel column chromatography as described in Preparation Example 154, to obtain the title compound (0.21g, yield 10-30%).
H NMR(400MHz, CDCl$_3$) 80.85(t, $J=7.2$Hz, 3H), 1.18-1.33(m, 4H), 1.48-1.55(m, 2H), 2.35(d, $J=4.4$Hz, 1H), 4.45-4.50(m, 1H), 4.76(br s, 2H), 6.21(d, $J=8.4$Hz, 1H), 7.30-7.50(m, 3H)

Preparation Example 208: Synthesis of l-(2,6-dichlorophenyl)-(R)-2-hydroxyhexyl-(R)-1-carbamate

A regioisomer of monocarbamate was separated and purified by conducting the silica gel column chromatography as described in Preparation Example 155, to obtain the title compound (0.12g, yield 10-30%).

H NMR(400MHz, CDCl$_3$) 60.85(t, $J=7.2$Hz, 3H), 1.18-1.33(m, 4H), 1.48-1.55(m, 2H), 2.35(d, $J=4.4$Hz, 1H), 4.45-4.50(m, 1H), 4.76(br s, 2H), 6.21(d, $J=8.4$Hz, 1H), 7.16-7.34(m, 3H)

Preparation Example 209: Synthesis of l-(2,4-dichlorophenyl)-2-hydroxypropyl-l-carbamate

A regioisomer of monocarbamate was separated and purified by conducting the silica gel column chromatography as described in Preparation Example 156, to obtain the title compound (0.05g, yield 10-30%).

H NMR(400MHz, CDCl$_3$) 61.13(d, $J=6.8$Hz, 3H), 2.49(d, $J=4.0$Hz, 1H), 4.66-4.74(m, 1H), 4.76(br s, 2H), 6.20(d, $J=8.8$Hz, 1H), 7.30-7.50(m, 3H)

Preparation Example 210: Synthesis of l-(2,6-dichlorophenyl)-2-hydroxypropyl-l-carbamate
A regioisomer of monocarbamate was separated and purified by conducting the silica gel column chromatography as described in Preparation Example 157, to obtain the title compound (0.06 g, yield 10-30%).

\[^1H \text{NMR}(400MHz, CDC1\textsubscript{3}) 6.13(d, J = 6.8Hz, 3H), 2.49(d, J = 4.0Hz, 1H), 4.66-4.74(m, 1H), 4.76(br s, 2H), 6.20(d, J = 8.8Hz, 1H), 7.25-7.40(m, 3H) \]

Preparation Example 211 : Synthesis of l-(2,3-dichlorophenyl)-(R)-2-hydroxypropyl-(R)-l-carbamate

A regioisomer of monocarbamate was separated and purified by conducting the silica gel column chromatography as described in Preparation Example 158, to obtain the title compound (0.02 g, yield 10-30%).

\[^1H \text{NMR}(400MHZ, CDCl\textsubscript{3}) 6.15(d, J = 6.4Hz, 3H), 3.66(d, J = 9.2Hz, 1H), 4.73(br s, 2H), 5.43(t, J = 9.0Hz, 1H), 5.62-5.69(m, 1H), 7.18-7.22(m, 3H), \]

Preparation Example 212 : Synthesis of l-(2,4-dichlorophenyl)-2-hydroxybutyl-1-carbamate

A regioisomer of monocarbamate was separated and purified by conducting the silica gel column chromatography as described in Preparation Example 159, to obtain the title compound (0.07 g, yield 10-30%).

\[^1H \text{NMR}(400MHz, CDC1\textsubscript{3}) 6.077(t, J=7.4Hz, 3H), 0.92-1.01(m, 1H), 1.18-1.28(m, 1H), 4.06-4.13(m, 1H), 4.96(d, J=6.0Hz, 1H), 5.91(d, J=8.8Hz, 1H), 6.4(br s, 2H), 7.30-7.50(m, 3H) \]
Preparation Example 213: Synthesis of 1-(2,6-dichlorophenyl)-2-hydroxybutyl-l-carbamate

A regioisomer of monocarbamate was separated and purified by conducting the silica gel column chromatography as described in Preparation Example 160, to obtain the title compound (0.10g, yield 10-30%).

1H NMR (400MHz, CDCl$_3$) δ 80.77 (t, J = 7.4Hz, 3H), 0.92-1.01 (m, 1H), 1.18-1.28 (m, 1H), 4.06-4.13 (m, 1H), 4.96 (d, J = 6.0Hz, 1H), 5.91 (d, J = 8.8Hz, 1H), 6.42 (br s, 2H), 7.25-7.40 (m, 3H)

Preparation Example 214: Synthesis of 1-(2,4-dichlorophenyl)-2-hydroxy-3-methyl-butyl-l-carbamate

A regioisomer of monocarbamate was separated and purified by conducting the silica gel column chromatography as described in Preparation Example 161, to obtain the title compound (0.04g, yield 10-30%).

1H NMR (400MHz, CDCl$_3$) δ 81.00 (t, J = 7.2Hz, 6H), 1.73-1.79 (m, 1H), 3.67-3.69 (m, 1H), 4.96 (d, J = 6.0Hz, 1H), 5.91 (d, J = 8.8Hz, 1H), 6.42 (br s, 2H), 7.30-7.50 (m, 3H)

Preparation Example 215: Synthesis of 1-(2,6-dichlorophenyl)-2-hydroxy-3-methyl-butyl-l-carbamate
A regioisomer of monocarbamate was separated and purified by conducting the silica
gel column chromatography as described in Preparation Example 162, to obtain the title
compound (0.12 g, yield 10-30%).

\(^1\)H NMR(400MHz, C\text{D}C_13) 81.00(t, J = 7.2Hz, 6H), 1.73-1.79(m, 1H), 3.67-3.69(m, 1H), 4.96(d, J = 6.0Hz, 1H), 5.91(d, J = 8.8Hz, 1H), 6.42(brs, 2H), 7.25-7.40(m, 3H)

Preparation Example 216: Synthesis of l-(2,4-dichlorophenyl)-2-hydroxyhexyl-
1-carbamate

A regioisomer of monocarbamate was separated and purified by conducting the silica
gel column chromatography as described in Preparation Example 163, to obtain the title
compound (0.21 g, yield 10-30%).

\(^1\)H NMR(400MHz, C\text{D}C_13) 50.85(t, J = 7.2Hz, 3H), 1.18-1.33(m, 4H), 1.48-1.55(m, 2H), 2.35(d, J = 4.4Hz, 1H), 4.45-4.50(m, 1H), 4.76(brs, 2H), 6.21(d, J = 8.4Hz, 1H), 7.30-7.50(m, 3H)

Preparation Example 217: Synthesis of l-(2,6-dichlorophenyl)-2-hydroxyhexyl-
1-carbamate

A regioisomer of monocarbamate was separated and purified by conducting the silica
gel column chromatography as described in Preparation Example 164, to obtain the title
compound (0.12 g, yield 10-30%).

\(^1\)H NMR(400MHz, C\text{D}C_13) 60.85(t, J = 7.2Hz, 3H), 1.18-1.33(m, 4H), 1.48-1.55(m, 2H), 2.35(d, J = 4.4Hz, 1H), 4.45-4.50(m, 1H), 4.76(brs, 2H), 6.21(d, J = 8.4Hz, 1H), 7.16-7.34(m, 3H)
Preparation Example 218: Synthesis of l-(2-iodophenyl)-(S)-l-hydroxy-3-methyl-butyI-(S)-2-carbamate

The substantially same method as described in Example 169 was conducted, except that l-(2-iodophenyl)-3-methyl-(S,S)-l,2-butanediol (Preparation Example 83) was used instead of l-(2-iodophenyl)-(S,S)-l,2-butanediol (Preparation Example 68), to obtain the title compound (1.92g, yield 20-50%).

1H NMR (400MHz, CDCl$_3$) 50.97(d, J=6.4Hz, 6H), 2.36~2.52(m, 1H), 3.34(s, 1H), 4.80(br s 2H), 5.04(t, J=12.5Hz, 1H), 5.14(s, 1H), 7.01~7.63(m, 4H)

Preparation Example 219: Synthesis of l-(2-iodophenyl)-(S)-l-hydroxyhexyl-(S)-2-carbamate

The substantially same method as described in Preparation Example 103 was conducted, except that l-(2-iodophenyl)-(S,S)-l,2-hexanediol obtained in Preparation Example 85 was used instead of l-(2-chlorophenyl)-(S,S)-l,2-propanediol, to obtain the title compound (1.68g, yield 30-60%).

1H NMR (400MHz, CDCl$_3$) 50.84(t, J=7.0Hz, 3H), 1.20~1.35(m, 4H), 1.36~1.41(m, 1H), 1.59~1.63(m, 1H), 3.71(d, J = 10.0Hz, 1H), 4.74(br s, 2H), 5.40~5.44(m, 1H), 5.52~5.57(m, 1H), 6.96~7.57(m, 4H)

Preparation Example 220: Synthesis of l-(2-iodophenyl)-(S)-l-hydroxypropyl-(S)-2-methylcarbamate

The substantially same method as described in Example 117 was conducted, except
that l-(2-iodophenyl)-(S,S)-l,2-propandiol (Preparation example 66) was used instead of 1-(2-chlorophenyl)-(S,S)-l,2-propandiol (Preparation example 14), to obtain the title compound (1.0lg, yield 20-50%).

\[\text{H NMR(400MHz, CDC1\textsubscript{3}) } \delta 1.03-1.25(m, 3H), 2.76(s, 3H), 3.34(s, 1H), 4.80(br s 1H), 5.04(t, J=12.5Hz, 1H), 5.14(s, 1H), 7.01-7.63(m, 4H) \]

Preparation Example 221: Synthesis of l-(2-iodophenyl)-(S)-l-hydroxypropyl-(S)-2-propylcarbamate

The substantially same method as described in Example 118 was conducted, except that l-(2-iodophenyl)-(S,S)-l,2-propandiol (Preparation example 66) was used instead of 1-(2-chlorophenyl)-(S,S)-l,2-propandiol (Preparation example 14), to obtain the title compound (0.72g, yield 20-50%).

\[\text{H NMR(400MHz, CDC1\textsubscript{3}) } \delta 60.90(t, J=6.8Hz, 3H), 1.20(d, J=5.96Hz, 3H), 1.49(dd, J=14.2Hz, 2H), 3.11(d, J=6.28Hz, 2H), 3.34(s, 1H), 4.84(br s, 1H), 5.05(t, J=5.88Hz, 1H), 5.14(s, 1H), 7.02-7.63(m, 4H) \]

Preparation Example 222: Synthesis of l-(2-iodophenyl)-(S)-l-hydroxypropyl-(S)-2-isopropylcarbamate

The substantially same method as described in Example 119 was conducted, except that l-(2-iodophenyl)-(S,S)-l,2-propandiol (Preparation example 66) was used instead of 1-(2-chlorophenyl)-(S,S)-l,2-propandiol (Preparation example 14), to obtain the title compound (1.08g, yield 20-50%).

\[\text{H NMR(400MHz, CDC1\textsubscript{3}) } \delta 51.14(dd, J=6.5Hz, 6H), 1.19(d, J=6.4Hz, 3H), 3.21(s, 1H), 3.73-3.82(m, 1H), 4.59(br s, 1H), 5.01-5.07(m, 1H), 5.14(t, J=5.8Hz, 1H), 7.01-7.65(m, 4H) \]
Preparation Example 223: Synthesis of l-(2-iodophenyl)-(S)-l-hydroxypropyl-(S)-2-cyclopropylcarbamate

The substantially same method as described in Example 120 was conducted, except that l-(2-iodophenyl)-(S,S)-l,2-propandiol (Preparation example 66) was used instead of 1-(2-chlorophenyl)-(S,S)-l,2-propandiol (Preparation example 14), to obtain the title compound (1.02g, yield 20-50%).

1H NMR (400MHz, CDC$_3$) δ 5.00-0.56(m, 2H), 0.74(d, J=7.21Hz, 2H), 1.25(s, 3H), 2.56-2.61(m, 1H), 3.72(s, 1H), 4.98(br s, 1H), 5.05-5.11(m, 1H), 7.16(s, 1H), 7.03-7.64(m, 4H)

Preparation Example 224: Synthesis of l-(2-iodophenyl)-(S)-l-hydroxypropyl-(S)-2-cyclohexyl carbamate

The substantially same method as described in Example 121 was conducted, except that l-(2-iodophenyl)-(S,S)-l,2-propandiol (Preparation example 66) was used instead of 1-(2-chlorophenyl)-(S,S)-l,2-propandiol (Preparation example 14), to obtain the title compound (1.84g, yield 20-50%).

1H NMR (400MHz, CDC$_3$) δ 1.06-1.40(η, 7H), 1.56-1.61(m, 2H), 1.69-1.71(m, 2H), 1.87-1.94(m, 2H), 3.19(d, J=4.32Hz, 1H), 3.45(s, 1H), 4.64(br s, 1H), 5.02-5.07(m, 1H), 5.14(t, J=6.08Hz, 1H) 7.02-7.63(m, 4H)

Preparation Example 225: Synthesis of l-(2-iodophenyl)-(S)-l-hydroxypropyl-(S)-2-benzyl carbamate

1H NMR (400MHz, CDC$_3$) δ 1.06-1.40(η, 7H), 1.56-1.61(m, 2H), 1.69-1.71(m, 2H), 1.87-1.94(m, 2H), 3.19(d, J=4.32Hz, 1H), 3.45(s, 1H), 4.64(br s, 1H), 5.02-5.07(m, 1H), 5.14(t, J=6.08Hz, 1H) 7.02-7.63(m, 4H)
The substantially same method as described in Example 122 was conducted, except that 1-(2-iodophenyl)-(S,S)-1,2-propandiol (Preparation example 66) was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-propandiol (Preparation example 14), to obtain the title compound (0.72g, yield 20-50%).

1H NMR (400MHz, CDCl$_3$) δ 1.27 (d, J=10Hz, 3H), 3.12 (d, J=5Hz, 1H), 4.37 (d, J=6Hz, 2H), 5.12-5.19 (m, 3H), 7.05-7.66 (m, 9H)

Preparation Example 226: Synthesis of 1-(2-chlorophenyl)-(S)-l-hydroxypropyl-(S)-2-bicyclo[2,2,1]heptanes carbamate

![Chemical Structure]

The substantially same method as described in Example 123 was conducted, except that 1-(2-iodophenyl)-(S,S)-1,2-propandiol (Preparation example 66) was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-propandiol (Preparation example 14), to obtain the title compound (0.82g, yield 20-50%).

1H NMR (400MHz, CDCl$_3$) δ 1.08-1.35 (m, 9H), 1.65 (br s, IH), 1.75-1.71 (m, IH), 2.14-2.24 (m, IH), 2.27-2.30 (m, IH), 3.23-3.29 (m, IH), 3.47-3.52 (m, IH), 4.67 (br s, IH), 5.01-5.09 (m, IH), 5.12-5.18 (m, IH), 7.02-7.65 (m, 4H)

Preparation Example 227: Synthesis of 1-(2-fluorophenyl)-(S)-l-hydroxypropyl-(S)-2-methylcarbamate

![Chemical Structure]

The substantially same method as described in Example 220 was conducted, except that 1-(2-fluorophenyl)-(S,S)-1,2-propandiol (Preparation example 61) was used instead of 1-(2-iodophenyl)-(S,S)-1,2-propandiol (Preparation example 66), to obtain the title compound (1.19g, yield 20-50%).

1H NMR (400MHz, CDCl$_3$) δ 61.03-1.25 (m, 3H), 2.76 (s, 3H), 3.34 (s, IH), 4.80 (br s, IH), 5.04 (t, J=12.5Hz, IH), 5.14 (s, IH), 6.90-7.50 (m, 4H)
Preparation Example 228: Synthesis of l-(2-fluorophenyl)-(S)-l-hydroxypropyl-
(S)-2-propylcarbamate

The substantially same method as described in Example 221 was conducted, except that l-(2-fluorophenyl)-(S,S)-l,2-propandiol (Preparation example 61) was used instead of l-(2-iodophenyl)-(S,S)-l,2-propandiol (Preparation example 66), to obtain the title compound (0.86g, yield 20-50%).

1H NMR(400MHz, CDCl$_3$) 50.90(t, J=6.8Hz, 3H), 1.20(d, J=5.96Hz, 3H), 1.49(dd, J=14.2Hz, 2H), 3.11(d, J=6.28Hz, 2H), 3.34(s, IH), 4.84(br s, IH), 5.05(t, J=5.88Hz, IH), 5.14(s, IH), 6.99~7.53(m, 4H)

Preparation Example 229: Synthesis of l-(2-fluorophenyl)-(S)-l-hydroxypropyl-
(S)-2-isopropylcarbamate

The substantially same method as described in Example 222 was conducted, except that l-(2-fluorophenyl)-(S,S)-l,2-propandiol (Preparation example 61) was used instead of l-(2-iodophenyl)-(S,S)-l,2-propandiol (Preparation example 66), to obtain the title compound (0.48g, yield 20-50%).

1H NMR(400MHz, CDCl$_3$) 51.14(dd, J=6.5Hz, 6H), 1.19(d, J=6.4Hz, 3H), 3.21(s, IH), 3.73~3.82(m, IH), 4.59(br s, IH), 5.01~5.07(m, IH), 5.14(t, J=5.8Hz, IH), 7.01~7.62(m, 4H)

Preparation Example 230: Synthesis of l-(2-fluorophenyl)-(S)-l-hydroxypropyl-(S)-2-cyclopropylcarbamate

115
The substantially same method as described in Example 223 was conducted, except that 1-(2-fluorophenyl)-(S,S)-1,2-propandiol (Preparation example 61) was used instead of 1-(2-iodophenyl)-(S,S)-1,2-propandiol (Preparation example 66), to obtain the title compound (0.39 g, yield 20-50%)

1H NMR (400MHz, CDCl$_3$) 50.50-0.56(m, 2H), 0.74(d, J=7.21Hz, 2H), 1.25(s, 3H), 2.56-2.61(m, 1H), 3.72(s, 1H), 4.98(br s, 1H), 5.05-5.11(m, 1H), 7.16(s, 1H), 7.01-7.65(m, 4H)

Preparation Example 231: Synthesis of 1-(2-fluorophenyl)-(S)-l-hydroxypropyl-(S)-2-cyclohexyl carbamate

The substantially same method as described in Example 225 was conducted, except that 1-(2-fluorophenyl)-(S,S)-1,2-propandiol (Preparation example 61) was used instead of 1-(2-iodophenyl)-(S,S)-1,2-propandiol (Preparation example 66), to obtain the title compound (0.54 g, yield 20-50%)

1H NMR (400MHz, CDCl$_3$) 51.06-1.40(m, 7H), 1.56-1.61(m, 2H), 1.69-1.71(m, 2H), 1.87-1.94(m, 2H), 3.19(d, J=4.32Hz, 1H), 3.45(s, 1H), 4.64(br s 1H), 5.02-5.07(m, 1H), 5.14(t, J=6.08Hz, 1H) 7.00-7.65(m, 4H)

Preparation Example 232: Synthesis of 1-(2-fluorophenyl)-(S)-l-hydroxypropyl-(S)-2 benzyl carbamate

The substantially same method as described in Example 226 was conducted, except that 1-(2-fluorophenyl)-(S,S)-1,2-propandiol (Preparation example 61) was used instead of 1-
(2-iodophenyl)-(S,S)-1,2-propandiol (Preparation example 66), to obtain the title compound (0.39g, yield 20-50%)

\[^1H \text{NMR}(400\text{MHz, } \text{CDCl}_3) \delta 1.27(d, J=10\text{Hz}, 3\text{H}), 3.12(d, J=5\text{Hz}, 1\text{H}), 4.37(d, \\
J=6\text{Hz}, 2\text{H}), 5.12-5.19(m, 3\text{H}), 7.01-7.67(m, 9\text{H}) \]

Preparation Example 233: Synthesis of 1-(2-fluoropheny)-l-hydroxypropyl-(S)-2-bicyclo[2,2,1]heptanescarbamate

The substantially same method as described in Example 227 was conducted, except that 1-(2-fluorophenyl)-(S,S)-1,2-propandiol (Preparation example 61) was used instead of 1-(2-iodophenyl)-(S,S)-1,2-propandiol (Preparation example 66), to obtain the title compound (0.57g, yield 20-50%)

\[^1H \text{NMR}(400\text{MHz, } \text{CDCl}_3) \delta 1.08-1.35(m, 9\text{H}), 1.65(br s, 1\text{H}), 1.75-1.71(m, 1\text{H}), \\
2.14-2.24(m, 1\text{H}), 2.27-2.30(m, 1\text{H}), 3.23-3.29(m, 1\text{H}), 3.47-3.52(m, 1\text{H}), 4.67(br s, 1\text{H}), \\
5.01-5.09(m, 1\text{H}), 5.12-5.18(m, 1\text{H}), 7.01-7.66(m, 4\text{H}) \]

Preparation Example 234: Synthesis of 1-(2-iodophenyl)-(S)-l-hydroxybutyl-(S)-2-methylcarbamate

The substantially same method as described in Example 117 was conducted, except that 1-(2-iodophenyl)-(S,S)-1,2-butanediol (Preparation example 68) was used instead of 1-(2-iodophenyl)-(S,S)-1,2-propandiol (Preparation example 66), to obtain the title compound (1.81g, yield 20-50%).

\[^1H \text{NMR}(400\text{MHz, } \text{CDCl}_3) \delta 80.97(d, J=6.4\text{Hz}, 3\text{H}), 1.56(m, 2\text{H}), 2.76(s, 3\text{H}), 3.34(s, \\
IH), 4.80(br s IH), 5.04(t, J=12.5\text{Hz, } \text{IH}), 5.14(s, \text{IH}), 7.01-7.63(m, 4\text{H}) \]

Preparation Example 235: Synthesis of 1-(2-iodophenyl)-(S)-l-hydroxybutyl-
The substantially same method as described in Example 118 was conducted, except that 1-(2-iodophenyl)-(S,S)-1,2-butanediol (Preparation example 68) was used instead of 1-(2-iodophenyl)-(S,S)-1,2-propandiol (Preparation example 66), to obtain the title compound (0.92 g, yield 20-50%).

\[^{1}\text{H} \text{NMR}(400\text{MHz}, \text{CDCl}_3)\] 60.90 (t, 3H), 1.20 (d, J=5.96 Hz, 3H), 1.49 (dd, J=14.2 Hz, 2H), 1.57 (m, 2H), 3.11 (d, J=6.28 Hz, 2H), 3.34 (s, 1H), 4.84 (br s, 1H), 5.05 (t, J=5.88 Hz, 1H), 5.14 (s, 1H), 7.02-7.63 (m, 4H)

Preparation Example 236: Synthesis of 1-(2-iodophenyl)-(S)-l-hydroxybutyl-(S)-2-isopropylcarbamate

The substantially same method as described in Example 119 was conducted, except that 1-(2-iodophenyl)-(S,S)-1,2-butanediol (Preparation example 68) was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-propandiol (Preparation example 14), to obtain the title compound (1.28 g, yield 20-50%).

\[^{1}\text{H} \text{NMR}(400\text{MHz}, \text{CDCl}_3)\] 50.96 (t, J=6.8 Hz, 3H), 1.14 (dd, J=6.5 Hz, 6H), 1.57 (m, 2H), 3.21 (s, 1H), 3.73-3.82 (m, 1H), 4.59 (br s, 1H), 5.01-5.07 (m, 1H), 5.14 (t, J=5.8 Hz, 1H), 7.01-7.65 (m, 4H)

Preparation Example 237: Synthesis of 1-(2-iodophenyl)-(S)-l-hydroxybutyl-(S)-2-cyclopropylcarbamate

The substantially same method as described in Example 120 was conducted, except
that l-(2-iodophenyl)-(S,S)-1,2-butanediol (Preparation example 68) was used instead of l-(2-chlorophenyl)-(S,S)-1,2-propandiol (Preparation example 14), to obtain the title compound (1.51g, yield 20-50%).

\[^1H \text{ NMR}(400MHz, CDCl}_3 \delta 50.50-0.56(m, 2H), 0.74(d, J=7.21Hz, 2H), 0.96(t, J=6.8Hz, 3H), 1.25(m, 2H), 2.56-2.61(m, 1H), 3.72(s, 1H), 4.98(br s, 1H), 5.05-5.11(m, 1H), 7.16(s, 1H), 6.96-7.57(m, 4H) \]

Preparation Example 238: Synthesis of l-(2-iodophenyl)-(S)-1-hydroxybutyl-(S)-2-cyclohexyl carbamate

![Chemical structure](image)

The substantially same method as described in Example 121 was conducted, except that l-(2-iodophenyl)-(S,S)-1,2-butanediol (Preparation example 68) was used instead of l-(2-chlorophenyl)-(S,S)-1,2-propandiol (Preparation example 14), to obtain the title compound (1.92g, yield 20-50%).

\[^1H \text{ NMR}(400MHz, CDCl}_3 \delta 0.96(t, J=6.8Hz, 3H), 1.06-1.40(m, 7H), 1.56-1.61(m, 2H), 1.69-1.71(m, 2H), 1.87-1.94(m, 2H), 3.19(d, J=4.32Hz, 1H), 3.45(s, 1H), 4.64(br s, 1H), 5.02-5.07(m, 1H), 5.14(t, J=6.08Hz, 1H) 7.02-7.63(m, 4H) \]

Preparation Example 239: Synthesis of l-(2-iodophenyl)-(S)-1-hydroxybutyl-(S)-2-benzyl carbamate

![Chemical structure](image)

The substantially same method as described in Example 122 was conducted, except that l-(2-iodophenyl)-(S,S)-1,2-butanediol (Preparation example 68) was used instead of l-(2-chlorophenyl)-(S,S)-1,2-propandiol (Preparation example 14), to obtain the title compound (1.52g, yield 20-50%).

\[^1H \text{ NMR}(400MHz, CDCl}_3 \delta 0.96(t, J=6.8Hz, 3H), 1.55-1.62(m, 2H), 3.12(d, J=5Hz, 1H), 4.37(d, J=6Hz, 2H), 5.12-5.19(m, 3H), 7.05-7.66(m, 9H) \]

\[
\text{OH} \quad \begin{array}{c}
\text{O} \\
\text{N} \\
\text{O}
\end{array} \
\text{C}_6\text{H}_4
\]

The substantially same method as described in Example 123 was conducted, except that \(l\)-(2-iodophenyl)-(S,S)-l,2-butanediol (Preparation example 68) was used instead of \(l\)-(2-chlorophenyl)-(S,S)-l,2-propandiol (Preparation example 14), to obtain the title compound (1.08 g, yield 20-50%).

\[^1H\text{ NMR}(400\text{MHz, CDC}_3)\]

\[
50.96(t, J=6.8\text{Hz}, 3\text{H}), 1.08-1.35(m, 6\text{H}), 1.55-1.62(m, 2\text{H}), 1.65(br s, 1\text{H}), 1.75-1.71(m, 1\text{H}), 2.14-2.24(m, 1\text{H}), 2.27-2.30(m, 1\text{H}), 3.23-3.29(m, 1\text{H}), 3.47-3.52(m, 1\text{H}), 4.67(br s, 1\text{H}), 5.01-5.09(m, 1\text{H}), 5.12-5.18(m, 1\text{H}), 7.02-7.65(m, 4\text{H})
\]

Preparation Example 241: Synthesis of \(l\)-(2-iodophenyl)-(S)-l-hydroxy-3-methyl-butyl-(S)-2-methylcarbamate

\[
\text{OH} \quad \begin{array}{c}
\text{O} \\
\text{N} \\
\text{O}
\end{array} \
\text{C}_6\text{H}_4
\]

The substantially same method as described in Example 117 was conducted, except that \(l\)-(2-iodophenyl)-3-methyl-(S,S)-l,2-butanediol (Preparation example 83) was used instead of \(l\)-(2-iodophenyl)-(S,S)-l,2-propandiol (Preparation example 66), to obtain the title compound (1.92 g, yield 20-50%).

\[^1H\text{ NMR}(400\text{MHz, CDC}_3)\]

\[
60.97(d, J=6.4\text{Hz}, 6\text{H}), 2.36-2.52(m, 1\text{H}), 2.76(s, 3\text{H}), 3.34(s, 1\text{H}), 4.80(br s 1\text{H}), 5.04(t, J=12.5\text{Hz}, 1\text{H}), 5.14(s, 1\text{H}), 7.01-7.63(m, 4\text{H})
\]

Preparation Example 242: Synthesis of \(l\)-(2-iodophenyl)-(S)-l-hydroxy-3-methyl-butyl-(S)-2-propylcarbamate
The substantially same method as described in Example 118 was conducted, except that 1-(2-iodophenyl)-3-methyl-(S,S)-1,2-butanediol (Preparation example 83) was used instead of 1-(2-iodophenyl)-(S,S)-1,2-propandiol (Preparation example 66), to obtain the title compound (1.82g, yield 20-50%).

\[\text{HNMR}(400MHz, \text{CDCl}_3) 50.96(t, J=6.8Hz, 3H), 1.10(d, J=6.4Hz, 6H), 1.49(dd, J=14.2Hz, 2H), 2.38-2.42(m, 1H), 3.11(d, J=6.28Hz, 2H), 3.34(s, 1H), 4.84(br s, 1H), 5.05(t, J=5.88Hz, 1H), 5.14(s, 1H), 7.02-7.63(m, 4H) \]

Preparation Example 243: Synthesis of 1-(2-iodophenyl)-(S)-1-hydroxy-3-methyl-butyl-(S)-2-isopropylcarbamate

The substantially same method as described in Example 119 was conducted, except that 1-(2-iodophenyl)-3-methyl-(S,S)-1,2-butanediol (Preparation example 83) was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-propandiol (Preparation example 14), to obtain the title compound (1.77g, yield 20-50%).

\[\text{HNMR}(400MHz, \text{CDCl}_3) 81.01(d, J=6.8Hz, 6H), 1.14(d, J=6.5Hz, 6H), 2.39-2.47(m, 1H), 3.90-3.98(m, 1H), 3.73-3.82(m, 1H), 4.59(br s, 1H), 5.01-5.07(m, 1H), 5.14(t, J=5.8Hz, 1H), 7.01-7.65(m, 4H) \]

Preparation Example 244: Synthesis of 1-(2-iodophenyl)-(S)-1-hydroxy-3-methyl-butyl-(S)-2-cyclopropylcarbamate

The substantially same method as described in Example 120 was conducted, except that 1-(2-iodophenyl)-3-methyl-(S,S)-1,2-butanediol (Preparation example 83) was used...
instead of 1-(2-chlorophenyl)-(S,S)-1,2-propandiol (Preparation example 14), to obtain the title compound (1.81g, yield 20-50%).

\[\begin{align*}
\text{1H NMR(400MHz, CDC1\textsubscript{3})} & \delta 0.50-0.56 (\nu, 2H), 0.74 (d, J=7.21Hz, 2H), 1.01 (d, J=6.8Hz, 6H), 2.38-2.44 (m, IH), 2.56-2.61 (m, IH), 3.72 (s, IH), 4.98 (br s, IH), 5.05-5.1 (l (m, IH), 7.16 (s, IH), 6.96-7.57 (m, 4H)
\end{align*}\]

Preparation Example 245: Synthesis of 1-(2-iodophenyl)-(S)-1-hydroxy-3-methyl-butyl-(S)-2-cyclohexyl carbamate

![Chemical Structure](image)

The substantially same method as described in Example 121 was conducted, except that 1-(2-iodophenyl)-3-methyl-(S,S)-1,2-butanediol (Preparation example 83) was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-propandiol (Preparation example 14), to obtain the title compound (1.29g, yield 20-50%).

\[\begin{align*}
\text{1H NMR(400MHz, CDC1\textsubscript{3})} & \delta 1.01 (d, J=6.8Hz, 6H), 1.11-1.21 (m, 4H), 1.47-1.49 (m, 4H), 1.69-1.71 (m, 2H), 2.38-2.44 (m, IH), 3.19 (d, J=4.32Hz, IH), 3.45 (s, IH), 4.64 (br s IH), 5.02-5.07 (m, IH), 5.14 (t, J=6.08Hz, IH) 7.02-7.63 (m, 4H)
\end{align*}\]

Preparation Example 246: Synthesis of 1-(2-iodophenyl)-(S)-1-hydroxy-3-methyl-butyl-(S)-2-benzyl carbamate

![Chemical Structure](image)

The substantially same method as described in Example 122 was conducted, except that 1-(2-iodophenyl)-(S,S)-1,2-butanediol (Preparation example 68) was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-propandiol (Preparation example 14), to obtain the title compound (1.91g, yield 20-50%).

\[\begin{align*}
\text{1H NMR(400MHz, CDC1\textsubscript{3})} & \delta 1.10 (d, J=6.8Hz, 3H), 2.42 (m, IH), 3.12 (d, J=5Hz, IH), 4.37 (d, J=6Hz, 2H), 5.12-5.19 (m, 3H), 7.05-7.66 (m, 9H)
\end{align*}\]

Preparation Example 247: Synthesis of 1-(2-chlorophenyl)-(S)-1-hydroxy-3-
methylbutyl-(S)-2-bicyclo[2,2,1]heptanescarbamate

The substantially same method as described in Example 123 was conducted, except that l-(2-iodophenyl)-(S,S)-1,2-butanediol (Preparation example 68) was used instead of l-(2-chlorophenyl)-(S,S)-1,2-propandiol (Preparation example 14), to obtain the title compound (1.68g, yield 20-50%).

\[
\text{H NMR(400MHz, CDCl}_3\text{)} \begin{align*}
&= 51.01(d, J=6.8Hz, 6H), \\
&= 1.08\sim1.35(m, 6H), \\
&= 1.55\sim1.62(m, 2H), \\
&= 1.65(br s, 1H), \\
&= 1.75\sim1.71(m, 1H), \\
&= 2.14\sim2.24(m, 1H), \\
&= 2.42(m, 1H), \\
&= 2.27\sim2.30(m, 1H), \\
&= 3.23\sim3.29(m, 1H), \\
&= 3.47\sim3.52(m, 1H), \\
&= 4.67(br s, 1H), \\
&= 5.01\sim5.09(m, 1H), \\
&= 5.12\sim5.18(m, 1H), \\
&= 7.02\sim7.65(m, 4H)
\end{align*}
\]

Preparation Example 248: Synthesis of l-(2-iodophenyl)-(S)-l-hydroxyhexyl-(S)-2-methylcarbamate

The substantially same method as described in Example 117 was conducted, except that l-(2-iodophenyl)-(S,S)-1,2-hexanediol (Preparation example 85) was used instead of l-(2-iodophenyl)-(S,S)-1,2-propandiol (Preparation example 66), to obtain the title compound (1.58g, yield 20-50%).

\[
\text{H NMR(400MHz, CDCl}_3\text{)} \begin{align*}
&= 60.97(t, J=6.4Hz, 3H), \\
&= 1.29\sim1.33(m, 4H), \\
&= 1.53(m, 2H), \\
&= 2.76(s, 3H), \\
&= 3.34(s, 1H), \\
&= 4.80(br s 1H), \\
&= 5.04(t, J=12.5Hz, 1H), \\
&= 5.14(s, 1H), \\
&= 7.01\sim7.63(m, 4H)
\end{align*}
\]

Preparation Example 249: Synthesis of l-(2-iodophenyl)-(S)-l-hydroxyhexyl-(S)-2-propylcarbamate
The substantially same method as described in Example 118 was conducted, except that 1-(2-iodophenyl)-(S,S)-1,2-hexanediol (Preparation Example 85) was used instead of 1-(2-iodophenyl)-(S,S)-1,2-propandiol (Preparation Example 66), to obtain the title compound (1.38g, yield 20-50%).

Preparation Example 250: Synthesis of 1-(2-iodophenyl)-(S)-l-hydroxyhexyl-(S)-2-isopropylcarbamate

![Chemical Structure](image)

The substantially same method as described in Example 119 was conducted, except that 1-(2-iodophenyl)-(S,S)-1,2-hexanediol (Preparation Example 85) was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-propandiol (Preparation Example 14), to obtain the title compound (1.73g, yield 20-50%).

Preparation Example 251: Synthesis of 1-(2-iodophenyl)-(S)-l-hydroxyhexyl-(S)-2-cyclopropylcarbamate

![Chemical Structure](image)

The substantially same method as described in Example 120 was conducted, except that 1-(2-iodophenyl)-(S,S)-1,2-hexanediol (Preparation Example 85) was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-propandiol (Preparation Example 14), to obtain the title compound (1.81g, yield 20-50%).

1H NMR (400MHz, CDCl3) 50.50~0.56(m, 2H), 0.74(d, J=7.21Hz, 2H), 0.97(t,
Preparation Example 252: Synthesis of 1-(2-iodophenyl)-(S)-l-hydroxyhexyl-(S)-2-cyclohexyl carbamate

The substantially same method as described in Example 121 was conducted, except that 1-(2-iodophenyl)-(S,S)-1,2-hexanediol (Preparation Example 85) was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-propandiol (Preparation Example 14), to obtain the title compound (1.79g, yield 20-50%).

1H NMR (400MHz, CDCl$_3$) 50.97(t, $J=6.4$Hz, 3H), 1.11~1.21(m, 4H), 1.29~1.33(m, 4H), 1.47~1.49(m, 4H), 1.53(m, 2H), 1.69-1.71(m, 2H), 3.19(d, $J=4.32$Hz, 1H), 3.45(s, 1H), 4.64(br s, 1H), 5.02~5.07(m, 1H), 5.14(t, $J=6.08$Hz, 1H) 7.02~7.63(m, 4H)

Preparation Example 253: Synthesis of 1-(2-iodophenyl)-(S)-l-hydroxyhexyl-(S)-2-benzyl carbamate

The substantially same method as described in Example 122 was conducted, except that 1-(2-iodophenyl)-(S,S)-1,2-hexanediol (Preparation Example 85) was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-propandiol (Preparation Example 14), to obtain the title compound (1.51g, yield 20-50%).

1H NMR (400MHz, CDCl$_3$) 60.97(t, $J=6.4$Hz, 3H), 1.29~1.33(m, 4H), 1.53(m, 2H), 3.12(d, $J=5$Hz, 1H), 4.37(d, $J=6$Hz, 2H), 5.12~5.19(m, 3H), 7.05~7.66(m, 9H)

The substantially same method as described in Example 123 was conducted, except that 1-(2-iodophenyl)-(S,S)-1,2-butanediol (Preparation Example 68) was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-propanediol (Preparation Example 14), to obtain the title compound (1.68g, yield 20-50%).

1H NMR (400MHz, CDCl$_3$) 80.97 (t, J=6.4Hz, 3H), 1.08–1.35 (m, 6H), 1.29–1.33 (m, 4H), 1.53 (m, 2H), 1.55–1.62 (m, 2H), 1.65 (br s, 1H), 1.75–1.71 (m, 1H), 2.14–2.24 (m, 1H), 2.27–2.30 (m, 1H), 3.23–3.29 (m, 1H), 3.47–3.52 (m, 1H), 4.67 (br s, 1H), 5.01–5.09 (m, 1H), 5.12–5.18 (m, 1H), 7.02–7.65 (m, 4H)

Preparation Example 255 : Synthesis of 1-(3-iodophenyl)-(S)-l-hydroxypropyl-(S)-2-carbamate

The substantially same method as described in Preparation Example 103 was conducted, except that 1-(3-iodophenyl)-(S,S)-1,2-butanediol obtained in Preparation Example 87 was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-propanediol, to obtain the title compound (2.04g, yield 30-60%).

1H NMR (400MHz, CDCl$_3$) 60.96 (t, J=7.4Hz, 3H), 1.53–1.73 (m, 2H), 3.09 (br s, 1H), 4.83 (br s, 2H), 5.00–5.10 (m, 2H), 6.96–7.57 (m, 4H)

Preparation Example 256 : Synthesis of 1-(3-iodophenyl)-(S)-l-hydroxybutyl-(S)-2-carbamate

The substantially same method as described in Preparation Example 103 was...
conducted, except that l-(3-iodophenyl)-(S,S)-l,2-butanediol obtained in Preparation Example 89 was used instead of l-(2-chlorophenyl)-(S,S)-l,2-propanediol, to obtain the title compound (1.49g, yield 30-60%).

1H NMR(400MHz, CDCl$_3$) 60.96(t, J=7.4Hz, 3H), 1.53~1.73(m, 2H), 3.09(br s, 1H), 4.83(br s, 2H), 5.00-5.10(m, 2H), 6.92-7.51(m, 4H)

Preparation Example 257 : Synthesis of l-(3-iodophenyl)-(S)-l-hydroxy-3-methyl-butyl-(S)-2-carbamate

![Chemical Structure]

The substantially same method as described in Preparation Example 103 was conducted, except that l-(3-iodophenyl)-3-methyl-(S,S)-l,2-butanediol obtained in Preparation Example 91 was used instead of l-(2-chlorophenyl)-(S,S)-l,2-propanediol, to obtain the title compound (1.82g, yield 30-60%).

1H NMR(400MHz, CDCl$_3$) δ 61.00(t, J = 7.2Hz, 6H), 1.73~1.79(m, 1H), 3.67~3.69(m, 1H), 4.85(br s, 2H), 5.40~5.43(m, 1H), 5.49~5.54(m, 1H), 6.97~7.53(m, 4H)

Preparation Example 258 : Synthesis of l-(3-iodophenyl)-(S)-l-hydroxyhexyl-(S)-2-carbamate

![Chemical Structure]

The substantially same method as described in Preparation Example 103 was conducted, except that l-(3-iodophenyl)-(S,S)-l,2-hexanediol obtained in Preparation Example 93 was used instead of l-(2-chlorophenyl)-(S,S)-l,2-propanediol, to obtain the title compound (1.92g, yield 30-60%).

1H NMR(400MHz, CDCl$_3$) 50.84(t, J = 7.0Hz, 3H), 1.20~1.35(m, 4H), 1.36~1.41(m, 1H), 1.59~1.63(m, 1H), 3.71(d, J = 10.0Hz, 1H), 4.74(br s, 2H), 5.40~5.44(m, 1H), 5.52~5.57(m, 1H), 7.01~7.55(m, 4H)
Preparation Example 259: Synthesis of l-(4-fluorophenyl)-(S)-l-hydroxypropyl-(S)-2-carbamate

The substantially same method as described in Preparation Example 103 was conducted, except that l-(4-fluorophenyl)-(S,S)-l,2-propanediol obtained in Preparation Example 95 was used instead of l-(2-chlorophenyl)-(S,S)-l,2-propanediol, to obtain the title compound (1.61g, yield 30-60%).

1H NMR(400MHz, CDCl$_3$) 6.127(d, J=6.4Hz, 3H), 3.09(br s, 1H), 4.83(br s, 2H), 5.00-5.10(m, 2H), 6.89-7.05(m, 4H)

Preparation Example 260: Synthesis of l-(4-fluorophenyl)-(S)-l-hydroxybutyl-(S)-2-carbamate

The substantially same method as described in Preparation Example 103 was conducted, except that l-(4-fluorophenyl)-(S,S)-l,2-butanediol obtained in Preparation Example 97 was used instead of l-(2-chlorophenyl)-(S,S)-l,2-propanediol, to obtain the title compound (1.55g, yield 30-60%).

1H NMR(400MHz, CDCl$_3$) 5.096(t, J=7.4Hz, 3H), 1.53-1.73(m, 2H), 3.09(br s, 1H), 4.83(br s, 2H), 5.00-5.10(m, 2H), 6.92-7.09(m, 4H)

Preparation Example 261: Synthesis of l-(4-fluorophenyl)-(S)-l-hydroxy-3-methyl-butyl-(S)-2-carbamate
The substantially same method as described in Preparation Example 103 was conducted, except that 1-(4-fluorophenyl)-3-methyl-(S,S)-1,2-butanediol obtained in Preparation Example 99 was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-propanediol, to obtain the title compound (1.97g, yield 30-60%).

\[
{^1}H \text{ NMR (400MHz, CDCl}_3) \delta 5.00(t, \; J = 7.2Hz, \; 6H), \; 1.73-1.79(m, \; 1H), \; 3.67-3.69(m, \; 1H), \; 4.85(br\; s, \; 2H), \; 5.40-5.43(m, \; 1H), \; 5.49-5.54(m, \; 1H), \; 6.94-7.03(m, \; 4H)
\]

Preparation Example 262 : Synthesis of 1-(4-fluorophenyl)-(S)-l-hydroxyhexyl-(S)-2-carbamate

![Chemical Structure](image)

The substantially same method as described in Preparation Example 103 was conducted, except that 1-(4-fluorophenyl)-(S,S)-1,2-hexanediol obtained in Preparation Example 101 was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-propanediol, to obtain the title compound (1.86g, yield 30-60%).

\[
{^1}H \text{ NMR (400MHz, CDCl}_3) \delta 50.84(t, \; J =7.0Hz, \; 3H), \; 1.20-1.35(m, \; 4H), \; 1.36-1.41(m, \; 1H), \; 1.59-1.63(m, \; 1H), \; 3.71(d, \; J =10.0Hz, \; 1H), \; 4.74(br\; s, \; 2H), \; 5.40-5.44(m, \; 1H), \; 5.52-5.57(m, \; 1H), \; 6.95-7.17(m, \; 4H)
\]

Preparation Example 263 : Synthesis of 1-(2-iodophenyl)-(R)-l-hydroxybutyl-(R)-2-carbamate

![Chemical Structure](image)

The substantially same method as described in Preparation Example 103 was conducted, except that 1-(2-iodophenyl)-(R,R)-1,2-butanediol obtained in Preparation Example 69 was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-propanediol, to obtain the title compound (1.98g, yield 30-60%).

\[
{^1}H \text{ NMR (400MHz, CDCl}_3) \delta 61.27(d, \; J=6.4Hz, \; 3H), \; 3.09(br\; s, \; 1H), \; 4.83(br\; s, \; 2H), \; 5.00-5.10(m, \; 2H), \; 7.00-7.76(m, \; 4H)
\]
Preparation Example 264: Synthesis of 1-(2-iodophenyl)-(R)-l-hydroxy-3-methyl-butyl-(R)-2-carbamate

The substantially same method as described in Example 169 was conducted, except that 1-(2-iodophenyl)-3-methyl-(R,R)-l,2-butanediol (Preparation Example 84) was used instead of 1-(2-iodophenyl)-(S,S)-l,2-butanediol (Preparation Example 68), to obtain the title compound (1.88 g, yield 20-50%).

1H NMR (400 MHz, CDCl$_3$) 50.97 (d, J = 6.4 Hz, 6H), 2.36-2.52 (m, 1H), 3.34 (s, 1H), 4.80 (br s, 2H), 5.04 (t, J = 12.5 Hz, 1H), 5.14 (s, 1H), 7.01-7.63 (m, 4H)

Preparation Example 265: Synthesis of 1-(2-iodophenyl)-(R)-l-hydroxyhexyl-(R)-2-carbamate

The substantially same method as described in Preparation Example 103 was conducted, except that 1-(2-iodophenyl)-(R,R)-l,2-hexanediol obtained in Preparation Example 86 was used instead of 1-(2-chlorophenyl)-(S,S)-l,2-propanediol, to obtain the title compound (1.68 g, yield 30-60%).

1H NMR (400 MHz, CDCl$_3$) 50.84 (t, J = 7.0 Hz, 3H), 1.20-1.35 (m, 4H), 1.36-1.41 (m, 1H), 1.59-1.63 (m, 1H), 3.71 (d, J = 10.0 Hz, 1H), 4.74 (br s, 2H), 5.40-5.44 (m, 1H), 5.52-5.57 (m, 1H), 6.99-7.55 (m, 4H)

Preparation Example 266: Synthesis of 1-(4-fluorophenyl)-(R)-l-hydroxypropyl-(R)-2-carbamate
The substantially same method as described in Preparation Example 103 was conducted, except that 1-(4-fluorophenyl)-(R,R)-1,2-propanediol obtained in Preparation Example 96 was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-propanediol, to obtain the title compound (1.49g, yield 30-60%).

\[^1H \text{NMR}(400MHz, \text{CDCl}_3) \delta 51.27(d, J=6.4Hz, 3H), 3.09(br s, 1H), 4.83(br s, 2H), 5.00-5.10(m, 2H), 7.00-7.22(m, 4H) \]

Preparation Example 267 : Synthesis of 1-(4-fluorophenyl)-(R)-l-hydroxybutyl-(R)-2-carbamate

\[
\text{OH} \\
\text{F} \\
\text{O} \quad \text{N} \quad \text{C} \\
\text{O} \\
\]

The substantially same method as described in Preparation Example 103 was conducted, except that 1-(4-fluorophenyl)-(R,R)-1,2-butanediol obtained in Preparation Example 98 was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-propanediol, to obtain the title compound (2.25g, yield 30-60%).

\[^1H \text{NMR}(400MHz, \text{CDCl}_3) \delta 50.96(t, J=7.4Hz, 3H), 1.53-1.73(m, 2H), 3.09(br s, 1H), 4.83(br s, 2H), 5.00-5.10(m, 2H), 6.92-7.20(m, 4H) \]

Preparation Example 268 : Synthesis of 1-(4-fluorophenyl)-(R)-l-hydroxy-3-methyl-butyl-(R)-2-carbamate

\[
\text{OH} \\
\text{F} \\
\text{O} \quad \text{N} \quad \text{C} \\
\text{O} \\
\]

The substantially same method as described in Preparation Example 103 was conducted, except that 1-(4-fluorophenyl)-3-methyl-(R,R)-1,2-butanediol obtained in Preparation Example 100 was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-propanediol, to obtain the title compound (1.74g, yield 30-60%).

\[^1H \text{NMR}(400MHz, \text{CDCl}_3) \delta 51.00(t, J = 7.2Hz, 6H), 1.73-1.79(m, 1H), 3.67-3.69(m, 1H), 4.85(br s, 2H), 5.40-5.43(m, 1H), 5.49-5.54(m, 1H), 6.92-7.20(m, 4H) \]
Preparation Example 269: Synthesis of l-(4-fluorophenyl)-(R)-l-hydroxyhexyl-(R)-2-carbamate

The substantially same method as described in Preparation Example 103 was conducted, except that l-(4-fluorophenyl)-(R,R)-l,2-hexanediol obtained in Preparation Example 102 was used instead of l-(2-chlorophenyl)-(S,S)-l,2-propanediol, to obtain the title compound (1.59g, yield 30-60%).

1H NMR (400MHz, CDCl$_3$) 50.84(t, $J = 7.0$Hz, 3H), 1.20~1.35(m, 4H), 1.36~1.41(m, 1H), 1.59~1.63(m, 1H), 3.71(d, $J = 10.0$Hz, 1H), 4.74(br s, 2H), 5.40~5.44(m, TH), 5.52~5.57(m, 1H), 6.95~7.21(m, 4H)

Preparation Example 270: Synthesis of l-(3-iodophenyl)-(R)-l-hydroxypropyl-(R)-2-carbamate

The substantially same method as described in Preparation Example 103 was conducted, except that l-(3-iodophenyl)-(R,R)-l,2-butanediol obtained in Preparation Example 88 was used instead of l-(2-chlorophenyl)-(S,S)-l,2-propanediol, to obtain the title compound (1.54g, yield 30-60%).

1H NMR (400MHz, CDCl$_3$) 50.96(t, J=7.4Hz, 3H), 1.53~1.73(m, 2H), 3.09(br s, 1H), 4.83(br s, 2H), 5.00-5.10(m, 2H), 6.96~7.57(m, 4H)

Preparation Example 271: Synthesis of l-(3-iodophenyl)-(R)-l-hydroxybutyl-(R)-2-carbamate
The substantially same method as described in Preparation Example 103 was conducted, except that l-(3-iodophenyl)-(R,R)-1,2-butanediol obtained in Preparation Example 90 was used instead of l-(2-chlorophenyl)-(S,S)-1,2-propanediol, to obtain the title compound (1.44g, yield 30-60%).

\[^1H \text{ NMR}(400\text{MHz},\ \text{CDCl}_3) \delta 6.06(t, J=7.4\text{Hz}, 3\text{H}), 1.53-1.73(m, 2\text{H}), 3.09(br s, 1\text{H}), 4.83(br s, 2\text{H}), 5.00-5.10(m, 2\text{H}), 6.92-7.51(m, 4\text{H}) \]

Preparation Example 272 : Synthesis of l-(3-iodophenyl)-(R)-l-hydroxy-3-methyl-butyl-(R)-2-carbamate

\[
\begin{array}{c}
\text{O} \\
\text{NH}_2 \\
\text{O} \\
\text{H} \\
\text{I}
\end{array}
\]

The substantially same method as described in Preparation Example 103 was conducted, except that l-(3-iodophenyl)-3-methyl-(R,R)-1,2-butanediol obtained in Preparation Example 92 was used instead of l-(2-chlorophenyl)-(S,S)-1,2-propanediol, to obtain the title compound (1.65g, yield 30-60%).

\[^1H \text{ NMR}(400\text{MHz},\ \text{CDCl}_3) \delta 6.00(t, J=7.2\text{Hz}, 6\text{H}), 1.73-1.79(m, 1\text{H}), 3.67-3.69(m, 1\text{H}), 4.85(br s, 2\text{H}), 5.40-5.43(m, 1\text{H}), 5.49-5.54(m, 1\text{H}), 6.97-7.53(m, 4\text{H}) \]

Preparation Example 273 : Synthesis of l-(3-iodophenyl)-(R)-l-hydroxyhexyyl-(R)-2-carbamate

\[
\begin{array}{c}
\text{O} \\
\text{NH}_2 \\
\text{O} \\
\text{H} \\
\text{I}
\end{array}
\]

The substantially same method as described in Preparation Example 103 was conducted, except that l-(3-iodophenyl)-(R,R)-1,2-hexanediol obtained in Preparation Example 94 was used instead of l-(2-chlorophenyl)-(S,S)-1,2-propanediol, to obtain the title compound (1.71g, yield 30-60%).

\[^1H \text{ NMR}(400\text{MHz},\ \text{CDCl}_3) \delta 5.08(t, J=7.0\text{Hz}, 3\text{H}), 1.20-1.35(m, 4\text{H}), 1.36-1.41(m, 1\text{H}), 1.59-1.63(m, 1\text{H}), 3.71(d, J=10.0\text{Hz}, 1\text{H}), 4.74(br s, 2\text{H}), 5.40-5.44(m, 1\text{H}), \]
Preparation Example 274: Synthesis of l-(2,6-difluorophenyl)-trans-l-propene

The substantially same method as described in Preparation Example 1 was conducted, except that 2,6-difluorobenzenaldehyde was used instead of 2-chlorobenzenaldehyde, to obtain the title compound (3.4g, yield 52%).

1H NMR(400MHz, CDCl$_3$) 5.95(dd, $J=6.8$Hz, 1.6Hz, 3H), 6.24(m, 1H), 6.72(d, $J=15.6$Hz, 1H), 7.18~7.44(m, 3H)

Preparation Example 275: Synthesis of l-(2,6-difluorophenyl)-(S,S)-l,2-propanediol

The substantially same method as described in Preparation Example 14 was conducted, except that l-(2,6-difluorophenyl)-trans-l-propene(Preparation Example 275) was used instead of l-(2-chlorophenyl)-trans-l-propene(Preparation Example 1), to obtain the title compound (1.5g, yield 60-90%).

1H NMR(400MHz, CDCl$_3$) 0.10(d, $J=6.4$Hz, 3H), 2.72(d, $J=2.4$Hz, 1H), 3.10(d, $J=8.4$Hz, 1H), 4.47~4.54(m, 1H), 5.24(t, $J=8.8$Hz, 1H), 7.18~7.36(m, 3H)

Preparation Example 276: Synthesis of l-(2,6-difluorophenyl)-(S)-l-hydroxypropyl-(S)-2-carbamate

The substantially same method as described in Preparation Example 103 was conducted, except that l-(2,6-difluorophenyl)-l,2-propanediol(Preparation Example 275)
was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-propanediol, to obtain the title compound (2.4g, yield 20-60%).

\[
\text{H NMR (400MHz, CDC}_1\text{)}: 5.15(d, \text{ } J = 6.4\text{Hz, 3H}), 3.66(d, \text{ } J = 9.2\text{Hz, 1H}), 4.73(brs, 2\text{H}), 5.43(t, \text{ } J = 9.0\text{Hz, 1H}), 5.62-5.69(m, 1\text{H}), 7.18-7.22(m, 3\text{H}),
\]

Preparation Example 277: Synthesis of l-(2,5-dichlorophenyl)-trans-l-propene

![Chemical Structure](image)

The substantially same method as described in Preparation Example 1 was conducted, except that 2,5-dichlorobenzenaldehyde was used instead of 2-chlorobenzenaldehyde, to obtain the title compound (3.1g, yield 52%).

\[
\text{H NMR (400MHz, CDC}_1\text{)}: 5.95(dd, \text{ } J = 6.8\text{Hz, 1.6Hz, 3H}), 6.24(m, 1\text{H}), 6.72(d, \text{ } J = 15.6\text{Hz, 1H}), 7.09-7.25(m, 3\text{H})
\]

Preparation Example 278: Synthesis of l-(2,5-dichlorophenyl)-(S,S)-1,2-propanediol

![Chemical Structure](image)

The substantially same method as described in Preparation Example 14 was conducted, except that l-(2,5-dichlorophenyl)-trans-l-propene(Preparation Example 277) was used instead of l-(2-chlorophenyl)-trans-l-propene(Preparation Example 1), to obtain the title compound (1.9g, yield 60-90%).

\[
\text{H NMR (400MHz, CDC}_1\text{)}: 8.10(d, \text{ } J = 6.4\text{Hz, 3H}), 2.72(d, \text{ } J = 2.4\text{Hz, 1H}), 3.10(d, \text{ } J = 8.4\text{Hz, 1H}), 4.47-4.54(m, 1\text{H}), 5.24(t, \text{ } J = 8.8\text{Hz, 1H}), 7.14-7.26(m, 3\text{H})
\]

Preparation Example 279: Synthesis of l-(2,5-dichlorophenyl)-l-hydroxypropyl-2-carbamate
The substantially same method as described in Preparation Example 103 was conducted, except that L-(2,5-dichlorophenyl)-1,2-propanediol (Preparation Example 278) was used instead of L-(2-chlorophenyl)-(S,S)-1,2-propanediol, to obtain the title compound (2.29g, yield 20-60%).

1H NMR (400MHz, CDCl$_3$) 6.15(d, J = 6.4Hz, 3H), 3.66(d, J = 9.2Hz, 1H), 4.73(br s, 2H), 5.43(t, J = 9.0Hz, 1H), 5.62–5.69(m, 1H), 7.18–7.22(m, 3H)

Preparation Example 280: Synthesis of L-(2,5-dichlorophenyl)-(R,R)-1,2-propanediol

The substantially same method as described in Preparation Example 15 was conducted, except that L-(2,5-dichlorophenyl)-trans-l-propene (Preparation Example 277) was used instead of L-(2-chlorophenyl)-trans-l-propene (Preparation Example 1), to obtain the title compound (2.3g, yield 60-90%).

1H NMR (400MHz, CDCl$_3$) 6.10(d, J = 6.4Hz, 3H), 2.72(d, J = 2.4Hz, 1H), 3.10(d, J = 8.4Hz, 1H), 4.47–4.54(m, 1H), 5.24(t, J = 8.8Hz, 1H), 7.14–7.26(m, 3H)

Preparation Example 281: Synthesis of L-(2,5-dichlorophenyl)-(R)-L-hydroxypropyl-(R)-2-carbamate

The substantially same method as described in Preparation Example 103 was conducted, except that L-(2,5-dichlorophenyl)-1,2-propanediol (Preparation Example 278)
was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-propanediol, to obtain the title compound (2.25g, yield 20-60%).

\(^1\)H NMR(400MHz, CDCl\textsubscript{3}) 61.15(d, J = 6.4Hz, 3H), 3.66(d, J=9.2Hz, 1H), 4.73(br s, 2H), 5.43(t, J = 9.0Hz, 1H), 5.62~5.69(m, 1H), 7.13~7.25(m, 3H)

Preparation Example 282 : Synthesis of 1-(2-chlorophenyl)-1-(S)-1,2-ethanediol

![Chemical structure](image)

The substantially same method as described in Preparation Example 14 was conducted, except that 2-chlorostyrene(Aldrich No. 160679) was used instead of 1-(2-chlorophenyl)-trans-1-propene(Preparation Example 1), to obtain the title compound (2.29g, yield 60-90%).

\(^1\)H NMR(400MHz, CDCl\textsubscript{3}) 62.72(d, J=2.4Hz, 1H), 3.10(d, J=8.4Hz, 1H), 4.47~4.54(m, 1H), 4.91(t, J=8.8Hz, 1H), 7.09~7.26(m, 4H)

Preparation Example 283 : Synthesis of 1-(2-chlorophenyl)-(S)-1-hydroxyethyl-2-carbamate

![Chemical structure](image)

The substantially same method as described in Preparation Example 103 was conducted, except that 1-(2-chlorophenyl)-l-(S)-1,2-ethanediol(Preparation Example 282) was used instead of 1-(2-chlorophenyl)-(S,S)-1,2-propanediol, to obtain the title compound (1.92g, yield 20-60%).

\(^1\)H NMR(400MHz, CDCl\textsubscript{3}) 61.72(br s, 1H), 4.26(dd, J=12.0, 7.8Hz, 1H), 4.39(dd, J=12.0, 2.7Hz, 1H), 4.41(dd, J=7.8, 2.7Hz, 1H), 4.77(br 2H), 7.26~7.68(m, 4H)

Preparation Example 284 : Synthesis of 2-iodostyrene

![Chemical structure](image)
The substantially same method as described in Preparation Example 64 was conducted, except that 2-propanone was used instead of 3-pentanone, to obtain the title compound (2.1g, yield 20-40%).

\(^1\)H NMR\((400\text{MHz, }\text{CDCl}_3)\) \(\delta\) 85.34 (dd, \(J=10.8, 0.8\text{Hz}, 1\text{H}\)), 5.65 (dd, \(J=17.2, 0.8\text{Hz}, 1\text{H}\)), 6.89–7.92 (m, 5H)

Preparation Example 285 : Synthesis of L-(2-iodophenyl)-L-(S)-1,2-ethanediol

![Structure](image)

The substantially same method as described in Preparation Example 14 was conducted, except that 2-iodostyrene (Preparation Example 284) was used instead of L-(2-chlorophenyl)-trans-L-propene (Preparation Example 1), to obtain the title compound (2.52g, yield 60-90%).

\(^1\)H NMR\((400\text{MHz, }\text{CDCl}_3)\) \(\delta\) 2.07–2.13 (m, 1H), 3.52–3.58 (m, 1H), 3.89–3.94 (m, 1H), 5.04–5.08 (m, 1H), 7.01–7.85 (m, 4H)

Preparation Example 286 : Synthesis of L-(2-iodopheny)-L-hydroxyethyl-2-carbamate

![Structure](image)

The substantially same method as described in Preparation Example 103 was conducted, except that L-(2-chlorophenyl)-L-(S)-1,2-ethanediol (Preparation Example 282) was used instead of L-(2-chlorophenyl)-(S,S)-1,2-propanediol, to obtain the title compound (1.92g, yield 20-60%).

\(^1\)H NMR\((400\text{MHz, }\text{CDCl}_3)\) \(\delta\) 1.72 (br s, 1H), 4.26 (dd, \(J=12.0, 7.8\text{Hz}, 1\text{H}\)), 4.39 (dd, \(J=12.0, 2.7\text{Hz}, 1\text{H}\)), 4.41 (dd, \(J=7.8, 2.7\text{Hz}, 1\text{H}\)), 4.77 (br 2H), 7.06–7.29 (m, 4H)

Preparation Example 287 : Synthesis of 2-fluorostyrene

![Structure](image)
The substantially same method as described in Preparation Example 284 was conducted, except that 2-fluorobenzaldehyde (Aldrich No. F4807) was used instead of 2-iodobenzaldehyde (Preparation Example 63) to obtain the title compound (1.82g, yield 20-40%).

\[^1H\text{ NMR}(400 MHz, CDCl}_3 55.34(\text{dd, } J=10.8, 0.8 \text{ Hz}, 1\text{H}), 5.65(\text{dd, } J=17.2, 0.8 \text{ Hz}, 1\text{H}), 6.92-7.89(\text{m, 5H}) \]

Preparation Example 285 : Synthesis of l-(2-fluorophenyl)-l-(S)-l,2-ethanediol

The substantially same method as described in Preparation Example 14 was conducted, except that 2-fluorostyrene (Preparation Example 287) was used instead of l-(2-chlorophenyl)-trans-l-propene (Preparation Example 1), to obtain the title compound (2.32g, yield 60-90%).

\[^1H\text{ NMR}(400 MHz, CDCl}_3 5 2.07-2.13(\text{m, 1H}), 3.52-3.58(\text{m, 1H}), 3.89-3.94(\text{m, 1H}), 5.04-5.08(\text{m, 1H}), 6.90-7.17(\text{m, 4H}) \]

Preparation Example 286 : Synthesis of l-(2-fluorophenyl)-(S)-l-hydroxyethyl-2-carbamate

The substantially same method as described in Preparation Example 103 was conducted, except that l-(2-fluorophenyl)-l-(S)-l,2-ethanediol (Preparation Example 285) was used instead of l-(2-chlorophenyl)-(S,S)-l,2-propanediol, to obtain the title compound (1.59g, yield 20-60%).

\[^1H\text{ NMR}(400 MHz, CDCl}_3 5 1.72(\text{br s, 1H}), 4.26(\text{dd, } J=12.0, 7.8 \text{ Hz}, 1\text{H}), 4.39(\text{dd, } J=12.0, 2.7 \text{ Hz}, 1\text{H}), 4.41(\text{dd, } J=7.8, 2.7 \text{ Hz}, 1\text{H}), 4.77(\text{br 2H}, 7.01-7.27(\text{m, 4H}) \]

Preparation Example 287 : Synthesis of l-(2-chloro-6-fluorophenyl)-trans-l-propene
The substantially same method as described in Preparation Example 1 was conducted, except that 2-chloro-6-fluorobenzaldehyde was used instead of 2-chlorobenzaldehyde, to obtain the title compound (2.7g, yield 40-80%).

\[^1H \text{NMR}(400\text{MHz}, \text{CDCl}_3) \delta 1.65(d, J=7.2, 3\text{H}), 6.03-6.11(m, 1\text{H}), 6.24(d, J=11.2, 1\text{H}), 6.97-7.23(m, 3\text{H}) \]

Preparation Example 288 : Synthesis of l-(2-chloro-6-fluorophenyl)-(S,S)-1,2-propanediol

The substantially same method as described in Preparation Example 14 was conducted, except that l-(2-chloro-6-fluorophenyl)-trans-l-propene(Preparation Example 287) was used instead of l-(2-chlorophenyl)-trans-l-propene(Preparation Example 1), to obtain the title compound (1.6g, yield 70-90%).

\[^1H \text{NMR}(400\text{MHz}, \text{CDCl}_3) \delta 1.13(d, J=5.6, 3\text{H}), 2.78(s, 1\text{H}), 2.92(s, 1\text{H}), 4.17(s, 1\text{H}), 5.01(s, 1\text{H}) 6.03-6.11(m, 1\text{H}), 6.24(d, J=11.2, 1\text{H}), 6.97-7.23(m, 3\text{H}) \]

Preparation Example 289 : Synthesis of l-(2-chloro-6-fluorophenyl)-(R,R)-1,2-propanediol

The substantially same method as described in Preparation Example 15 was conducted, except that l-(2-chloro-6-fluorophenyl)-trans-l-propene(Preparation Example 287) was used instead of l-(2-chlorophenyl)-trans-l-propene(Preparation Example 1), to obtain the title compound (1.9g, yield 70-90%).

Preparation Example 290 : Synthesis of l-(2-chloro-6-fluorophenyl)-(S)-l-hydroxypropyl-(S)-2-carbamate
The substantially same method as described in Preparation Example 103 was conducted, except that L-(2-chloro-6-fluorophenyl)-(S,S)-l,2-propanediol (Preparation Example 288) was used instead of L-(2-chlorophenyl)-(S,S)-l,2-propanediol (Preparation Example 14), to obtain the title compound (0.8 g, yield 30-60%).

1H NMR (400 MHz, DMSO) δ 0.99 (d, $J = 6.4$, 3 H), 5.06 (d, $J = 8.8$, 1 H), 5.14-5.18 (m, 1 H), 5.70 (s, 1 H), 6.46 (brs, 2 H), 7.19-7.40 (m, 3 H)

Preparation Example 291: Synthesis of L-(2-chloro-6-fluorophenyl)-(R)-l-hydroxypropyl-(R)-2-carbamate

The substantially same method as described in Preparation Example 103 was conducted, except that L-(2-chloro-6-fluorophenyl)-(R,R)-l,2-propanediol (Preparation Example 289) was used instead of L-(2-chlorophenyl)-(S,S)-l,2-propanediol (Preparation Example 14), to obtain the title compound (0.6 g, yield 30-60%).

Preparation Example 292: Synthesis of L-(2-fluorophenyl)-(S)-2-hydroxypropyl-(S)-l-carbamate

A regioisomer of monocarbamate was separated and purified by conducting the silica gel column chromatography as described in Preparation Example 165, to obtain the title compound (0.25 g, yield 10-30%).

1H NMR (400 MHz, CDCl$_3$) 61.12 (d, $J = 6.8$, 3 H), 2.46 (d, $J = 4.0$, 1 H), 4.61-4.70 (m, 1 H), 4.74 (br s, 2 H), 6.19 (d, $J = 8.8$, 1 H), 7.28-7.49 (m, 4 H).
Preparation Example 293: Synthesis of (S)-(2-iodophenyl)-(S)-2-hydroxypropyl-(S)-l-carbamate

A regioisomer of monocarbamate was separated and purified by conducting the silica gel column chromatography as described in Preparation Example 167, to obtain the title compound (0.17g, yield 10-30%).

1H NMR(400MHz, CDCl$_3$) 61.15(d, J=6.8, 3H), 2.47(d, J=4.0, 1H), 4.76~4.82(m, 1H), 4.76(br s, 2H), 6.23(d, J = 8.8, 1H), 7.31~7.52(m, 4H).

Example scheme I: Synthesis of (n-halophenyl)-l-methoxymethoxyalkyl-2-alkylcarbamate (Examples 1 to 123, 271 to 274, 276 to 278 and 282, 284)

To a stirred solution of (n-halophenyl)-l-hydroxyalkyl-2-alkylcarbamate in MC(Methylenechloride) was added DIPEA(Diisopropylethylamine) at 0°C under N_2.
condition. The mixture was added MOM-Cl (MOMchloride) at 0 °C then slowly warm to R.T. When the reaction was completed, the obtained product was washed with H₂O and MC. The separated organic layer was dehydrated with anhydrous MgSO₄ (MgS0₄) (Magnesium sulfate), filtrated, and concentrated under reduced pressure. The concentrated residue was purified by a silicagel column chromatography, to obtain title compound (Yield 40-60%)

Example scheme II : Synthesis of 1-(n-halophenyl)-l-methoxyalkyl-2-alkylcarbamate (Examples 124 to 246, 275, 279 to 281 and 283, 285)

Example scheme III : Synthesis of 1-(n-halophenyl)-l-carbamoyloxyalkyl-2-alkylcarbamate (Examples 247 to 270 and 286 to 295)
approximately 3 hours, ammonia solution (NH₄OH) was added thereto. When the reaction was completed, the obtained product was washed with IM HCl solution and ethylacetate (EA). The separated organic layer was dehydrated with anhydrous MgSO₄ (Magnesium sulfate), filtrated, and concentrated under reduced pressure. The concentrated residue was purified by a silica gel column chromatography, to obtain the title compound (yield 75~95%).

According to the above described methods, the compounds as defined in following Tables 1 and 2 were prepared.

(Table 1) Carbamate derivatives (B is not a carbamoyl derivative)

<table>
<thead>
<tr>
<th>Example</th>
<th>X</th>
<th>Position</th>
<th>A</th>
<th>B</th>
<th>R¹</th>
<th>R²</th>
<th>Chiral-1</th>
<th>Chiral-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cl</td>
<td>2</td>
<td>Carbamoyl</td>
<td>MOM</td>
<td>Me</td>
<td>H</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>2</td>
<td>Cl</td>
<td>2</td>
<td>Carbamoyl</td>
<td>MOM</td>
<td>Me</td>
<td>Me</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>3</td>
<td>Cl</td>
<td>2</td>
<td>Carbamoyl</td>
<td>MOM</td>
<td>Me</td>
<td>Propyl</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>4</td>
<td>Cl</td>
<td>2</td>
<td>Carbamoyl</td>
<td>MOM</td>
<td>Me</td>
<td>Isopropyl</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>5</td>
<td>Cl</td>
<td>2</td>
<td>Carbamoyl</td>
<td>MOM</td>
<td>Me</td>
<td>Cyclopropyl</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>6</td>
<td>Cl</td>
<td>2</td>
<td>Carbamoyl</td>
<td>MOM</td>
<td>Me</td>
<td>Cyclohexyl</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>7</td>
<td>Cl</td>
<td>2</td>
<td>Carbamoyl</td>
<td>MOM</td>
<td>Me</td>
<td>Benzyl</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>8</td>
<td>Cl</td>
<td>2</td>
<td>Carbamoyl</td>
<td>MOM</td>
<td>Me</td>
<td>Bicycloheptyl</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>9</td>
<td>Cl</td>
<td>2</td>
<td>Carbamoyl</td>
<td>MOM</td>
<td>Et</td>
<td>H</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>10</td>
<td>Cl</td>
<td>2</td>
<td>Carbamoyl</td>
<td>MOM</td>
<td>Isopropyl</td>
<td>H</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>11</td>
<td>Cl</td>
<td>2</td>
<td>Carbamoyl</td>
<td>MOM</td>
<td>Butyl</td>
<td>H</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>12</td>
<td>F</td>
<td>2</td>
<td>Carbamoyl</td>
<td>MOM</td>
<td>Me</td>
<td>H</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>13</td>
<td>F</td>
<td>2</td>
<td>Carbamoyl</td>
<td>MOM</td>
<td>Me</td>
<td>Me</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>14</td>
<td>F</td>
<td>2</td>
<td>Carbamoyl</td>
<td>MOM</td>
<td>Me</td>
<td>Propyl</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>15</td>
<td>F</td>
<td>2</td>
<td>Carbamoyl</td>
<td>MOM</td>
<td>Me</td>
<td>Isopropyl</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>16</td>
<td>F</td>
<td>2</td>
<td>Carbamoyl</td>
<td>MOM</td>
<td>Me</td>
<td>Cyclopropyl</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>17</td>
<td>F</td>
<td>2</td>
<td>Carbamoyl</td>
<td>MOM</td>
<td>Me</td>
<td>Cyclohexyl</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>18</td>
<td>F</td>
<td>2</td>
<td>Carbamoyl</td>
<td>MOM</td>
<td>Me</td>
<td>Benzyl</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>19</td>
<td>F</td>
<td>2</td>
<td>Carbamoyl</td>
<td>MOM</td>
<td>Me</td>
<td>Bicycloheptyl</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>20</td>
<td>I</td>
<td>2</td>
<td>Carbamoyl</td>
<td>MOM</td>
<td>Me</td>
<td>H</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>21</td>
<td>I</td>
<td>2</td>
<td>Carbamoyl</td>
<td>MOM</td>
<td>Me</td>
<td>Me</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>22</td>
<td>I</td>
<td>2</td>
<td>Carbamoyl</td>
<td>MOM</td>
<td>Me</td>
<td>Propyl</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>23</td>
<td>I</td>
<td>2</td>
<td>Carbamoyl</td>
<td>MOM</td>
<td>Me</td>
<td>Isopropyl</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>24</td>
<td>I</td>
<td>2</td>
<td>Carbamoyl</td>
<td>MOM</td>
<td>Me</td>
<td>Cyclopropyl</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>25</td>
<td>I</td>
<td>2</td>
<td>Carbamoyl</td>
<td>MOM</td>
<td>Me</td>
<td>Cyclohexyl</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>26</td>
<td>I</td>
<td>2</td>
<td>Carbamoyl</td>
<td>MOM</td>
<td>Me</td>
<td>Benzyl</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>27</td>
<td>I</td>
<td>2</td>
<td>Carbamoyl</td>
<td>MOM</td>
<td>Me</td>
<td>Bicycloheptyl</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>28</td>
<td>I</td>
<td>2</td>
<td>Carbamoyl</td>
<td>MOM</td>
<td>Et</td>
<td>H</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Carbamoyl</td>
<td>MOM</td>
<td>Et</td>
<td>Me</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>-----------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>29</td>
<td>1</td>
<td>2</td>
<td>Carbamoyl</td>
<td>MOM</td>
<td>Et</td>
<td>Me</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>30</td>
<td>1</td>
<td>2</td>
<td>Carbamoyl</td>
<td>MOM</td>
<td>Et</td>
<td>Propyl</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>31</td>
<td>1</td>
<td>2</td>
<td>Carbamoyl</td>
<td>MOM</td>
<td>Et</td>
<td>Isopropyl</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>32</td>
<td>1</td>
<td>2</td>
<td>Carbamoyl</td>
<td>MOM</td>
<td>Et</td>
<td>Cyclopropyl</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>33</td>
<td>1</td>
<td>2</td>
<td>Carbamoyl</td>
<td>MOM</td>
<td>Et</td>
<td>Cyclohexyl</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>34</td>
<td>1</td>
<td>2</td>
<td>Carbamoyl</td>
<td>MOM</td>
<td>Et</td>
<td>Benzyl</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>35</td>
<td>1</td>
<td>2</td>
<td>Carbamoyl</td>
<td>MOM</td>
<td>Et</td>
<td>Bicycloheptyl</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>36</td>
<td>1</td>
<td>2</td>
<td>Carbamoyl</td>
<td>MOM</td>
<td>Isopropyl</td>
<td>H</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>37</td>
<td>1</td>
<td>2</td>
<td>Carbamoyl</td>
<td>MOM</td>
<td>Isopropyl</td>
<td>Me</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>38</td>
<td>1</td>
<td>2</td>
<td>Carbamoyl</td>
<td>MOM</td>
<td>Isopropyl</td>
<td>Propyl</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>39</td>
<td>1</td>
<td>2</td>
<td>Carbamoyl</td>
<td>MOM</td>
<td>Isopropyl</td>
<td>Isopropyl</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>40</td>
<td>1</td>
<td>2</td>
<td>Carbamoyl</td>
<td>MOM</td>
<td>Isopropyl</td>
<td>Cyclopropyl</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>41</td>
<td>1</td>
<td>2</td>
<td>Carbamoyl</td>
<td>MOM</td>
<td>Isopropyl</td>
<td>Cyclohexyl</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>42</td>
<td>1</td>
<td>2</td>
<td>Carbamoyl</td>
<td>MOM</td>
<td>Isopropyl</td>
<td>Benzyl</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>43</td>
<td>1</td>
<td>2</td>
<td>Carbamoyl</td>
<td>MOM</td>
<td>Isopropyl</td>
<td>Bicycloheptyl</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>44</td>
<td>1</td>
<td>2</td>
<td>Carbamoyl</td>
<td>MOM</td>
<td>Butyl</td>
<td>H</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>45</td>
<td>1</td>
<td>2</td>
<td>Carbamoyl</td>
<td>MOM</td>
<td>Butyl</td>
<td>Me</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>46</td>
<td>1</td>
<td>2</td>
<td>Carbamoyl</td>
<td>MOM</td>
<td>Butyl</td>
<td>Propyl</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>47</td>
<td>1</td>
<td>2</td>
<td>Carbamoyl</td>
<td>MOM</td>
<td>Butyl</td>
<td>Isopropyl</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>48</td>
<td>1</td>
<td>2</td>
<td>Carbamoyl</td>
<td>MOM</td>
<td>Butyl</td>
<td>Cuclopropyl</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>49</td>
<td>1</td>
<td>2</td>
<td>Carbamoyl</td>
<td>MOM</td>
<td>Butyl</td>
<td>Cyclohexyl</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>50</td>
<td>1</td>
<td>2</td>
<td>Carbamoyl</td>
<td>MOM</td>
<td>Butyl</td>
<td>Benzyl</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>51</td>
<td>1</td>
<td>2</td>
<td>Carbamoyl</td>
<td>MOM</td>
<td>Butyl</td>
<td>Bicycloheptyl</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>52</td>
<td>1</td>
<td>3</td>
<td>Carbamoyl</td>
<td>MOM</td>
<td>Me</td>
<td>H</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>53</td>
<td>1</td>
<td>3</td>
<td>Carbamoyl</td>
<td>MOM</td>
<td>Et</td>
<td>H</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>54</td>
<td>1</td>
<td>3</td>
<td>Carbamoyl</td>
<td>MOM</td>
<td>Isopropyl</td>
<td>H</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>55</td>
<td>1</td>
<td>3</td>
<td>Carbamoyl</td>
<td>MOM</td>
<td>Butyl</td>
<td>H</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>56</td>
<td>F</td>
<td>4</td>
<td>Carbamoyl</td>
<td>MOM</td>
<td>Me</td>
<td>H</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>57</td>
<td>F</td>
<td>4</td>
<td>Carbamoyl</td>
<td>MOM</td>
<td>Et</td>
<td>H</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>58</td>
<td>F</td>
<td>4</td>
<td>Carbamoyl</td>
<td>MOM</td>
<td>Isopropyl</td>
<td>H</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>59</td>
<td>F</td>
<td>4</td>
<td>Carbamoyl</td>
<td>MOM</td>
<td>Butyl</td>
<td>H</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>60</td>
<td>Cl</td>
<td>2,4</td>
<td>Carbamoyl</td>
<td>MOM</td>
<td>Me</td>
<td>H</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>61</td>
<td>Cl</td>
<td>2,4</td>
<td>Carbamoyl</td>
<td>MOM</td>
<td>Et</td>
<td>H</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>62</td>
<td>Cl</td>
<td>2,4</td>
<td>Carbamoyl</td>
<td>MOM</td>
<td>Isopropyl</td>
<td>H</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>63</td>
<td>Cl</td>
<td>2,4</td>
<td>Carbamoyl</td>
<td>MOM</td>
<td>Butyl</td>
<td>H</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>64</td>
<td>Cl</td>
<td>2,6</td>
<td>Carbamoyl</td>
<td>MOM</td>
<td>Me</td>
<td>H</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>65</td>
<td>Cl</td>
<td>2,6</td>
<td>Carbamoyl</td>
<td>MOM</td>
<td>Et</td>
<td>H</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>66</td>
<td>Cl</td>
<td>2,6</td>
<td>Carbamoyl</td>
<td>MOM</td>
<td>Isopropyl</td>
<td>H</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>67</td>
<td>Cl</td>
<td>2,6</td>
<td>Carbamoyl</td>
<td>MOM</td>
<td>Butyl</td>
<td>H</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>68</td>
<td>Cl</td>
<td>2,3</td>
<td>Carbamoyl</td>
<td>MOM</td>
<td>Me</td>
<td>H</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>----</td>
<td>---</td>
<td>-----</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>69</td>
<td>Cl</td>
<td>2</td>
<td>Carbamoyl</td>
<td>MOM</td>
<td>Me</td>
<td>H</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>70</td>
<td>Cl</td>
<td>2</td>
<td>Carbamoyl</td>
<td>MOM</td>
<td>Me</td>
<td>H</td>
<td>rac</td>
<td>rac</td>
</tr>
<tr>
<td>71</td>
<td>Cl</td>
<td>2</td>
<td>Carbamoyl</td>
<td>MOM</td>
<td>Me</td>
<td>H</td>
<td>R</td>
<td>S</td>
</tr>
<tr>
<td>72</td>
<td>Cl</td>
<td>2</td>
<td>Carbamoyl</td>
<td>MOM</td>
<td>Me</td>
<td>H</td>
<td>S</td>
<td>R</td>
</tr>
<tr>
<td>73</td>
<td>Cl</td>
<td>2</td>
<td>Carbamoyl</td>
<td>MOM</td>
<td>Et</td>
<td>H</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>74</td>
<td>Cl</td>
<td>2</td>
<td>Carbamoyl</td>
<td>MOM</td>
<td>Et</td>
<td>H</td>
<td>rac</td>
<td>rac</td>
</tr>
<tr>
<td>75</td>
<td>Cl</td>
<td>2</td>
<td>Carbamoyl</td>
<td>MOM</td>
<td>Isopropyl</td>
<td>H</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>76</td>
<td>Cl</td>
<td>2</td>
<td>Carbamoyl</td>
<td>MOM</td>
<td>Isopropyl</td>
<td>H</td>
<td>rac</td>
<td>rac</td>
</tr>
<tr>
<td>77</td>
<td>Cl</td>
<td>2</td>
<td>Carbamoyl</td>
<td>MOM</td>
<td>Isopropyl</td>
<td>H</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>78</td>
<td>Cl</td>
<td>2</td>
<td>Carbamoyl</td>
<td>MOM</td>
<td>Me</td>
<td>Me</td>
<td>rac</td>
<td>rac</td>
</tr>
<tr>
<td>79</td>
<td>Cl</td>
<td>2</td>
<td>Carbamoyl</td>
<td>MOM</td>
<td>Me</td>
<td>Propyl</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>80</td>
<td>Cl</td>
<td>2</td>
<td>Carbamoyl</td>
<td>MOM</td>
<td>Me</td>
<td>Isopropyl</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>81</td>
<td>Cl</td>
<td>2</td>
<td>Carbamoyl</td>
<td>MOM</td>
<td>Me</td>
<td>Cyclopropyl</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>82</td>
<td>Cl</td>
<td>2</td>
<td>Carbamoyl</td>
<td>MOM</td>
<td>Me</td>
<td>Cyclohexyl</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>83</td>
<td>Cl</td>
<td>2</td>
<td>Carbamoyl</td>
<td>MOM</td>
<td>Me</td>
<td>Benzyl</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>84</td>
<td>Cl</td>
<td>2</td>
<td>Carbamoyl</td>
<td>MOM</td>
<td>Me</td>
<td>Bicycloheptyl</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>85</td>
<td>Cl</td>
<td>2</td>
<td>Carbamoyl</td>
<td>MOM</td>
<td>Me</td>
<td>H</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>86</td>
<td>F</td>
<td>2</td>
<td>Carbamoyl</td>
<td>MOM</td>
<td>Me</td>
<td>H</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>87</td>
<td>F</td>
<td>4</td>
<td>Carbamoyl</td>
<td>MOM</td>
<td>Me</td>
<td>H</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>88</td>
<td>F</td>
<td>4</td>
<td>Carbamoyl</td>
<td>MOM</td>
<td>Et</td>
<td>H</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>89</td>
<td>F</td>
<td>4</td>
<td>Carbamoyl</td>
<td>MOM</td>
<td>Isopropyl</td>
<td>H</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>90</td>
<td>F</td>
<td>4</td>
<td>Carbamoyl</td>
<td>MOM</td>
<td>Butyl</td>
<td>H</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>91</td>
<td>I</td>
<td>2</td>
<td>Carbamoyl</td>
<td>MOM</td>
<td>Me</td>
<td>H</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>92</td>
<td>I</td>
<td>2</td>
<td>Carbamoyl</td>
<td>MOM</td>
<td>Et</td>
<td>H</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>93</td>
<td>I</td>
<td>2</td>
<td>Carbamoyl</td>
<td>MOM</td>
<td>Isopropyl</td>
<td>H</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>94</td>
<td>I</td>
<td>2</td>
<td>Carbamoyl</td>
<td>MOM</td>
<td>Butyl</td>
<td>H</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>95</td>
<td>I</td>
<td>3</td>
<td>Carbamoyl</td>
<td>MOM</td>
<td>Me</td>
<td>H</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>96</td>
<td>I</td>
<td>3</td>
<td>Carbamoyl</td>
<td>MOM</td>
<td>Et</td>
<td>H</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>97</td>
<td>I</td>
<td>3</td>
<td>Carbamoyl</td>
<td>MOM</td>
<td>Isopropyl</td>
<td>H</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>98</td>
<td>I</td>
<td>3</td>
<td>Carbamoyl</td>
<td>MOM</td>
<td>Butyl</td>
<td>H</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>99</td>
<td>Cl</td>
<td>2</td>
<td>Carbamoyl</td>
<td>MOM</td>
<td>Me</td>
<td>Me</td>
<td>rac</td>
<td>rac</td>
</tr>
<tr>
<td>100</td>
<td>Cl</td>
<td>2</td>
<td>Carbamoyl</td>
<td>MOM</td>
<td>Me</td>
<td>Propyl</td>
<td>rac</td>
<td>rac</td>
</tr>
<tr>
<td>101</td>
<td>Cl</td>
<td>2</td>
<td>Carbamoyl</td>
<td>MOM</td>
<td>Me</td>
<td>Isopropyl</td>
<td>rac</td>
<td>rac</td>
</tr>
<tr>
<td>102</td>
<td>Cl</td>
<td>2</td>
<td>Carbamoyl</td>
<td>MOM</td>
<td>Me</td>
<td>Cyclopropyl</td>
<td>rac</td>
<td>rac</td>
</tr>
<tr>
<td>103</td>
<td>Cl</td>
<td>2</td>
<td>Carbamoyl</td>
<td>MOM</td>
<td>Me</td>
<td>Cyclohexyl</td>
<td>rac</td>
<td>rac</td>
</tr>
<tr>
<td>104</td>
<td>Cl</td>
<td>2</td>
<td>Carbamoyl</td>
<td>MOM</td>
<td>Me</td>
<td>Benzyl</td>
<td>rac</td>
<td>rac</td>
</tr>
<tr>
<td>105</td>
<td>Cl</td>
<td>2</td>
<td>Carbamoyl</td>
<td>MOM</td>
<td>Me</td>
<td>Bicycloheptyl</td>
<td>rac</td>
<td>rac</td>
</tr>
<tr>
<td>106</td>
<td>Cl</td>
<td>2.4</td>
<td>Carbamoyl</td>
<td>MOM</td>
<td>Me</td>
<td>H</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>107</td>
<td>Cl</td>
<td>2.6</td>
<td>Carbamoyl</td>
<td>MOM</td>
<td>Me</td>
<td>H</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>108</td>
<td>Cl</td>
<td>2.3</td>
<td>Carbamoyl</td>
<td>MOM</td>
<td>Me</td>
<td>H</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>---</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td></td>
<td></td>
</tr>
<tr>
<td>109</td>
<td>Cl</td>
<td>2,4</td>
<td>Carbamoyl</td>
<td>MOM</td>
<td>Et</td>
<td>H</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>110</td>
<td>Cl</td>
<td>2,6</td>
<td>Carbamoyl</td>
<td>MOM</td>
<td>Et</td>
<td>H</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>111</td>
<td>Cl</td>
<td>2,4</td>
<td>Carbamoyl</td>
<td>MOM</td>
<td>Isopropyl</td>
<td>H</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>112</td>
<td>Cl</td>
<td>2,6</td>
<td>Carbamoyl</td>
<td>MOM</td>
<td>Isopropyl</td>
<td>H</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>113</td>
<td>Cl</td>
<td>2,4</td>
<td>Carbamoyl</td>
<td>MOM</td>
<td>Butyl</td>
<td>H</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>114</td>
<td>Cl</td>
<td>2,6</td>
<td>Carbamoyl</td>
<td>MOM</td>
<td>Butyl</td>
<td>H</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>115</td>
<td>Cl</td>
<td>2,4</td>
<td>Carbamoyl</td>
<td>MOM</td>
<td>Me</td>
<td>H</td>
<td>rac</td>
<td>rac</td>
</tr>
<tr>
<td>116</td>
<td>Cl</td>
<td>2,6</td>
<td>Carbamoyl</td>
<td>MOM</td>
<td>Me</td>
<td>H</td>
<td>rac</td>
<td>rac</td>
</tr>
<tr>
<td>117</td>
<td>Cl</td>
<td>2,3</td>
<td>Carbamoyl</td>
<td>MOM</td>
<td>Me</td>
<td>H</td>
<td>rac</td>
<td>rac</td>
</tr>
<tr>
<td>118</td>
<td>Cl</td>
<td>2,4</td>
<td>Carbamoyl</td>
<td>MOM</td>
<td>Et</td>
<td>H</td>
<td>rac</td>
<td>rac</td>
</tr>
<tr>
<td>119</td>
<td>Cl</td>
<td>2,6</td>
<td>Carbamoyl</td>
<td>MOM</td>
<td>Isopropyl</td>
<td>H</td>
<td>rac</td>
<td>rac</td>
</tr>
<tr>
<td>120</td>
<td>Cl</td>
<td>2,6</td>
<td>Carbamoyl</td>
<td>MOM</td>
<td>Isopropyl</td>
<td>H</td>
<td>rac</td>
<td>rac</td>
</tr>
<tr>
<td>121</td>
<td>Cl</td>
<td>2,6</td>
<td>Carbamoyl</td>
<td>MOM</td>
<td>Butyl</td>
<td>H</td>
<td>rac</td>
<td>rac</td>
</tr>
<tr>
<td>122</td>
<td>Cl</td>
<td>2,4</td>
<td>Carbamoyl</td>
<td>MOM</td>
<td>Butyl</td>
<td>H</td>
<td>rac</td>
<td>rac</td>
</tr>
<tr>
<td>123</td>
<td>Cl</td>
<td>2,6</td>
<td>Carbamoyl</td>
<td>MOM</td>
<td>Butyl</td>
<td>H</td>
<td>rac</td>
<td>rac</td>
</tr>
<tr>
<td>124</td>
<td>Cl</td>
<td>2</td>
<td>Carbamoyl</td>
<td>Methyl</td>
<td>Me</td>
<td>H</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>125</td>
<td>Cl</td>
<td>2</td>
<td>Carbamoyl</td>
<td>Methyl</td>
<td>Me</td>
<td>Me</td>
<td>s</td>
<td>S</td>
</tr>
<tr>
<td>126</td>
<td>Cl</td>
<td>2</td>
<td>Carbamoyl</td>
<td>Methyl</td>
<td>Me</td>
<td>Propyl</td>
<td>s</td>
<td>S</td>
</tr>
<tr>
<td>127</td>
<td>Cl</td>
<td>2</td>
<td>Carbamoyl</td>
<td>Methyl</td>
<td>Me</td>
<td>Isopropyl</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>128</td>
<td>Cl</td>
<td>2</td>
<td>Carbamoyl</td>
<td>Methyl</td>
<td>Me</td>
<td>Cyclopropyl</td>
<td>s</td>
<td>s</td>
</tr>
<tr>
<td>129</td>
<td>Cl</td>
<td>2</td>
<td>Carbamoyl</td>
<td>Methyl</td>
<td>Me</td>
<td>Cyclohexyl</td>
<td>s</td>
<td>s</td>
</tr>
<tr>
<td>130</td>
<td>Cl</td>
<td>2</td>
<td>Carbamoyl</td>
<td>Methyl</td>
<td>Me</td>
<td>Benzyl</td>
<td>s</td>
<td>s</td>
</tr>
<tr>
<td>131</td>
<td>Cl</td>
<td>2</td>
<td>Carbamoyl</td>
<td>Methyl</td>
<td>Me</td>
<td>Bicycloheptyl</td>
<td>s</td>
<td>s</td>
</tr>
<tr>
<td>132</td>
<td>Cl</td>
<td>2</td>
<td>Carbamoyl</td>
<td>Methyl</td>
<td>Et</td>
<td>H</td>
<td>s</td>
<td>s</td>
</tr>
<tr>
<td>133</td>
<td>Cl</td>
<td>2</td>
<td>Carbamoyl</td>
<td>Methyl</td>
<td>Isopropyl</td>
<td>H</td>
<td>s</td>
<td>S</td>
</tr>
<tr>
<td>134</td>
<td>Cl</td>
<td>2</td>
<td>Carbamoyl</td>
<td>Methyl</td>
<td>Butyl</td>
<td>H</td>
<td>s</td>
<td>s</td>
</tr>
<tr>
<td>135</td>
<td>F</td>
<td>2</td>
<td>Carbamoyl</td>
<td>Methyl</td>
<td>Me</td>
<td>H</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>136</td>
<td>F</td>
<td>2</td>
<td>Carbamoyl</td>
<td>Methyl</td>
<td>Me</td>
<td>Me</td>
<td>s</td>
<td>S</td>
</tr>
<tr>
<td>137</td>
<td>F</td>
<td>2</td>
<td>Carbamoyl</td>
<td>Methyl</td>
<td>Me</td>
<td>Propyl</td>
<td>s</td>
<td>s</td>
</tr>
<tr>
<td>138</td>
<td>F</td>
<td>2</td>
<td>Carbamoyl</td>
<td>Methyl</td>
<td>Me</td>
<td>Isopropyl</td>
<td>s</td>
<td>s</td>
</tr>
<tr>
<td>139</td>
<td>F</td>
<td>2</td>
<td>Carbamoyl</td>
<td>Methyl</td>
<td>Me</td>
<td>Cyclopropyl</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>140</td>
<td>F</td>
<td>2</td>
<td>Carbamoyl</td>
<td>Methyl</td>
<td>Me</td>
<td>Cyclohexyl</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>141</td>
<td>F</td>
<td>2</td>
<td>Carbamoyl</td>
<td>Methyl</td>
<td>Me</td>
<td>Benzyl</td>
<td>s</td>
<td>s</td>
</tr>
<tr>
<td>142</td>
<td>F</td>
<td>2</td>
<td>Carbamoyl</td>
<td>Methyl</td>
<td>Me</td>
<td>Bicycloheptyl</td>
<td>s</td>
<td>s</td>
</tr>
<tr>
<td>143</td>
<td>I</td>
<td>2</td>
<td>Carbamoyl</td>
<td>Methyl</td>
<td>Me</td>
<td>H</td>
<td>s</td>
<td>s</td>
</tr>
<tr>
<td>144</td>
<td>I</td>
<td>2</td>
<td>Carbamoyl</td>
<td>Methyl</td>
<td>Me</td>
<td>Me</td>
<td>s</td>
<td>s</td>
</tr>
<tr>
<td>145</td>
<td>I</td>
<td>2</td>
<td>Carbamoyl</td>
<td>Methyl</td>
<td>Me</td>
<td>Propyl</td>
<td>s</td>
<td>s</td>
</tr>
<tr>
<td>146</td>
<td>I</td>
<td>2</td>
<td>Carbamoyl</td>
<td>Methyl</td>
<td>Me</td>
<td>Isopropyl</td>
<td>s</td>
<td>s</td>
</tr>
<tr>
<td>147</td>
<td>I</td>
<td>2</td>
<td>Carbamoyl</td>
<td>Methyl</td>
<td>Me</td>
<td>Cyclopropyl</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>148</td>
<td>I</td>
<td>2</td>
<td>Carbamoyl</td>
<td>Methyl</td>
<td>Me</td>
<td>Cyclohexyl</td>
<td>s</td>
<td>s</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Carbamoyl</td>
<td>Methyl</td>
<td>Me</td>
<td>Benzyl</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>-----------</td>
<td>--------</td>
<td>----</td>
<td>-------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>149</td>
<td>I</td>
<td>2</td>
<td>Carbamoyl</td>
<td>Methyl</td>
<td>Me</td>
<td>Benzyl</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>150</td>
<td>I</td>
<td>2</td>
<td>Carbamoyl</td>
<td>Methyl</td>
<td>Me</td>
<td>Bicycloheptyl</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>151</td>
<td>I</td>
<td>2</td>
<td>Carbamoyl</td>
<td>Methyl</td>
<td>Et</td>
<td>H</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>152</td>
<td>I</td>
<td>2</td>
<td>Carbamoyl</td>
<td>Methyl</td>
<td>Et</td>
<td>Me</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>153</td>
<td>I</td>
<td>2</td>
<td>Carbamoyl</td>
<td>Methyl</td>
<td>Et</td>
<td>Propyl</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>154</td>
<td>I</td>
<td>2</td>
<td>Carbamoyl</td>
<td>Methyl</td>
<td>Et</td>
<td>Isopropyl</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>155</td>
<td>I</td>
<td>2</td>
<td>Carbamoyl</td>
<td>Methyl</td>
<td>Et</td>
<td>Cyclopropyl</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>156</td>
<td>I</td>
<td>2</td>
<td>Carbamoyl</td>
<td>Methyl</td>
<td>Et</td>
<td>Cyclohexyl</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>157</td>
<td>I</td>
<td>2</td>
<td>Carbamoyl</td>
<td>Methyl</td>
<td>Et</td>
<td>Benzyl</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>158</td>
<td>I</td>
<td>2</td>
<td>Carbamoyl</td>
<td>Methyl</td>
<td>Et</td>
<td>Bicycloheptyl</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>159</td>
<td>I</td>
<td>2</td>
<td>Carbamoyl</td>
<td>Methyl</td>
<td>Isopropyl</td>
<td>H</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>160</td>
<td>I</td>
<td>2</td>
<td>Carbamoyl</td>
<td>Methyl</td>
<td>Isopropyl</td>
<td>Me</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>161</td>
<td>I</td>
<td>2</td>
<td>Carbamoyl</td>
<td>Methyl</td>
<td>Isopropyl</td>
<td>Propyl</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>162</td>
<td>I</td>
<td>2</td>
<td>Carbamoyl</td>
<td>Methyl</td>
<td>Isopropyl</td>
<td>Isopropyl</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>163</td>
<td>I</td>
<td>2</td>
<td>Carbamoyl</td>
<td>Methyl</td>
<td>Isopropyl</td>
<td>Cyclopropyl</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>164</td>
<td>I</td>
<td>2</td>
<td>Carbamoyl</td>
<td>Methyl</td>
<td>Isopropyl</td>
<td>Cyclohexyl</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>165</td>
<td>I</td>
<td>2</td>
<td>Carbamoyl</td>
<td>Methyl</td>
<td>Isopropyl</td>
<td>Benzyl</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>166</td>
<td>I</td>
<td>2</td>
<td>Carbamoyl</td>
<td>Methyl</td>
<td>Isopropyl</td>
<td>Bicycloheptyl</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>167</td>
<td>I</td>
<td>2</td>
<td>Carbamoyl</td>
<td>Methyl</td>
<td>Butyl</td>
<td>H</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>168</td>
<td>I</td>
<td>2</td>
<td>Carbamoyl</td>
<td>Methyl</td>
<td>Butyl</td>
<td>Me</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>169</td>
<td>I</td>
<td>2</td>
<td>Carbamoyl</td>
<td>Methyl</td>
<td>Butyl</td>
<td>Propyl</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>170</td>
<td>I</td>
<td>2</td>
<td>Carbamoyl</td>
<td>Methyl</td>
<td>Butyl</td>
<td>Isopropyl</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>171</td>
<td>I</td>
<td>2</td>
<td>Carbamoyl</td>
<td>Methyl</td>
<td>Butyl</td>
<td>Cyclopropyl</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>172</td>
<td>I</td>
<td>2</td>
<td>Carbamoyl</td>
<td>Methyl</td>
<td>Butyl</td>
<td>Cyclohexyl</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>173</td>
<td>I</td>
<td>2</td>
<td>Carbamoyl</td>
<td>Methyl</td>
<td>Butyl</td>
<td>Benzyl</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>174</td>
<td>I</td>
<td>2</td>
<td>Carbamoyl</td>
<td>Methyl</td>
<td>Butyl</td>
<td>Bicycloheptyl</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>175</td>
<td>I</td>
<td>3</td>
<td>Carbamoyl</td>
<td>Methyl</td>
<td>Me</td>
<td>H</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>176</td>
<td>I</td>
<td>3</td>
<td>Carbamoyl</td>
<td>Methyl</td>
<td>Et</td>
<td>H</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>177</td>
<td>I</td>
<td>3</td>
<td>Carbamoyl</td>
<td>Methyl</td>
<td>Isopropyl</td>
<td>H</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>178</td>
<td>I</td>
<td>3</td>
<td>Carbamoyl</td>
<td>Methyl</td>
<td>Butyl</td>
<td>H</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>179</td>
<td>F</td>
<td>4</td>
<td>Carbamoyl</td>
<td>Methyl</td>
<td>Me</td>
<td>H</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>180</td>
<td>F</td>
<td>4</td>
<td>Carbamoyl</td>
<td>Methyl</td>
<td>Et</td>
<td>H</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>181</td>
<td>F</td>
<td>4</td>
<td>Carbamoyl</td>
<td>Methyl</td>
<td>Isopropyl</td>
<td>H</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>182</td>
<td>F</td>
<td>4</td>
<td>Carbamoyl</td>
<td>Methyl</td>
<td>Butyl</td>
<td>H</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>183</td>
<td>CI</td>
<td>2,4</td>
<td>Carbamoyl</td>
<td>Methyl</td>
<td>Me</td>
<td>H</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>184</td>
<td>CI</td>
<td>2,4</td>
<td>Carbamoyl</td>
<td>Methyl</td>
<td>Et</td>
<td>H</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>185</td>
<td>CI</td>
<td>2,4</td>
<td>Carbamoyl</td>
<td>Methyl</td>
<td>Isopropyl</td>
<td>H</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>186</td>
<td>CI</td>
<td>2,4</td>
<td>Carbamoyl</td>
<td>Methyl</td>
<td>Butyl</td>
<td>H</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>187</td>
<td>CI</td>
<td>2,6</td>
<td>Carbamoyl</td>
<td>Methyl</td>
<td>Me</td>
<td>H</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>188</td>
<td>CI</td>
<td>2,6</td>
<td>Carbamoyl</td>
<td>Methyl</td>
<td>Et</td>
<td>H</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>189</td>
<td>CI</td>
<td>2.6</td>
<td>Carbamoyl</td>
<td>Methyl</td>
<td>Isopropyl</td>
<td>H</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>190</td>
<td>CI</td>
<td>2.6</td>
<td>Carbamoyl</td>
<td>Methyl</td>
<td>Butyl</td>
<td>H</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>191</td>
<td>CI</td>
<td>2.3</td>
<td>Carbamoyl</td>
<td>Methyl</td>
<td>Me</td>
<td>H</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>192</td>
<td>CI</td>
<td>2</td>
<td>Carbamoyl</td>
<td>Methyl</td>
<td>Me</td>
<td>H</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>193</td>
<td>CI</td>
<td>2</td>
<td>Carbamoyl</td>
<td>Methyl</td>
<td>Me</td>
<td>H</td>
<td>rac</td>
<td>rac</td>
</tr>
<tr>
<td>194</td>
<td>CI</td>
<td>2</td>
<td>Carbamoyl</td>
<td>Methyl</td>
<td>Me</td>
<td>H</td>
<td>R</td>
<td>S</td>
</tr>
<tr>
<td>195</td>
<td>CI</td>
<td>2</td>
<td>Carbamoyl</td>
<td>Methyl</td>
<td>Me</td>
<td>H</td>
<td>S</td>
<td>R</td>
</tr>
<tr>
<td>196</td>
<td>CI</td>
<td>2</td>
<td>Carbamoyl</td>
<td>Methyl</td>
<td>Et</td>
<td>H</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>197</td>
<td>CI</td>
<td>2</td>
<td>Carbamoyl</td>
<td>Methyl</td>
<td>Et</td>
<td>H</td>
<td>rac</td>
<td>rac</td>
</tr>
<tr>
<td>198</td>
<td>CI</td>
<td>2</td>
<td>Carbamoyl</td>
<td>Methyl</td>
<td>Isopropyl</td>
<td>H</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>199</td>
<td>CI</td>
<td>2</td>
<td>Carbamoyl</td>
<td>Methyl</td>
<td>Isopropyl</td>
<td>H</td>
<td>rac</td>
<td>rac</td>
</tr>
<tr>
<td>200</td>
<td>CI</td>
<td>2</td>
<td>Carbamoyl</td>
<td>Methyl</td>
<td>Butyl</td>
<td>H</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>201</td>
<td>CI</td>
<td>2</td>
<td>Carbamoyl</td>
<td>Methyl</td>
<td>Butyl</td>
<td>H</td>
<td>rac</td>
<td>rac</td>
</tr>
<tr>
<td>202</td>
<td>CI</td>
<td>2</td>
<td>Carbamoyl</td>
<td>Methyl</td>
<td>Me</td>
<td>Me</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>203</td>
<td>CI</td>
<td>2</td>
<td>Carbamoyl</td>
<td>Methyl</td>
<td>Me</td>
<td>Propyl</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>204</td>
<td>CI</td>
<td>2</td>
<td>Carbamoyl</td>
<td>Methyl</td>
<td>Me</td>
<td>Isopropyl</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>205</td>
<td>CI</td>
<td>2</td>
<td>Carbamoyl</td>
<td>Methyl</td>
<td>Me</td>
<td>Cyclopropyl</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>206</td>
<td>CI</td>
<td>2</td>
<td>Carbamoyl</td>
<td>Methyl</td>
<td>Me</td>
<td>Cyclohexyl</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>207</td>
<td>CI</td>
<td>2</td>
<td>Carbamoyl</td>
<td>Methyl</td>
<td>Me</td>
<td>Benzyl</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>208</td>
<td>CI</td>
<td>2</td>
<td>Carbamoyl</td>
<td>Methyl</td>
<td>Me</td>
<td>Bicycloheptyl</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>209</td>
<td>F</td>
<td>2</td>
<td>Carbamoyl</td>
<td>Methyl</td>
<td>Me</td>
<td>H</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>210</td>
<td>F</td>
<td>4</td>
<td>Carbamoyl</td>
<td>Methyl</td>
<td>Me</td>
<td>H</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>211</td>
<td>F</td>
<td>4</td>
<td>Carbamoyl</td>
<td>Methyl</td>
<td>Et</td>
<td>H</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>212</td>
<td>F</td>
<td>4</td>
<td>Carbamoyl</td>
<td>Methyl</td>
<td>Isopropyl</td>
<td>H</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>213</td>
<td>F</td>
<td>4</td>
<td>Carbamoyl</td>
<td>Methyl</td>
<td>Butyl</td>
<td>H</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>214</td>
<td>I</td>
<td>2</td>
<td>Carbamoyl</td>
<td>Methyl</td>
<td>Me</td>
<td>H</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>215</td>
<td>I</td>
<td>2</td>
<td>Carbamoyl</td>
<td>Methyl</td>
<td>Et</td>
<td>H</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>216</td>
<td>I</td>
<td>2</td>
<td>Carbamoyl</td>
<td>Methyl</td>
<td>Isopropyl</td>
<td>H</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>217</td>
<td>I</td>
<td>2</td>
<td>Carbamoyl</td>
<td>Methyl</td>
<td>Butyl</td>
<td>H</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>218</td>
<td>I</td>
<td>3</td>
<td>Carbamoyl</td>
<td>Methyl</td>
<td>Me</td>
<td>H</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>219</td>
<td>I</td>
<td>3</td>
<td>Carbamoyl</td>
<td>Methyl</td>
<td>Et</td>
<td>H</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>220</td>
<td>I</td>
<td>3</td>
<td>Carbamoyl</td>
<td>Methyl</td>
<td>Isopropyl</td>
<td>H</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>221</td>
<td>I</td>
<td>3</td>
<td>Carbamoyl</td>
<td>Methyl</td>
<td>Butyl</td>
<td>H</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>222</td>
<td>CI</td>
<td>2</td>
<td>Carbamoyl</td>
<td>Methyl</td>
<td>Me</td>
<td>Me</td>
<td>rac</td>
<td>rac</td>
</tr>
<tr>
<td>223</td>
<td>CI</td>
<td>2</td>
<td>Carbamoyl</td>
<td>Methyl</td>
<td>Me</td>
<td>Propyl</td>
<td>rac</td>
<td>rac</td>
</tr>
<tr>
<td>224</td>
<td>CI</td>
<td>2</td>
<td>Carbamoyl</td>
<td>Methyl</td>
<td>Me</td>
<td>Isopropyl</td>
<td>rac</td>
<td>rac</td>
</tr>
<tr>
<td>225</td>
<td>CI</td>
<td>2</td>
<td>Carbamoyl</td>
<td>Methyl</td>
<td>Me</td>
<td>Cyclopropyl</td>
<td>rac</td>
<td>rac</td>
</tr>
<tr>
<td>226</td>
<td>CI</td>
<td>2</td>
<td>Carbamoyl</td>
<td>Methyl</td>
<td>Me</td>
<td>Cyclohexyl</td>
<td>rac</td>
<td>rac</td>
</tr>
<tr>
<td>227</td>
<td>CI</td>
<td>2</td>
<td>Carbamoyl</td>
<td>Methyl</td>
<td>Me</td>
<td>Benzyl</td>
<td>rac</td>
<td>rac</td>
</tr>
<tr>
<td>228</td>
<td>CI</td>
<td>2</td>
<td>Carbamoyl</td>
<td>Methyl</td>
<td>Me</td>
<td>Bicycloheptyl</td>
<td>rac</td>
<td>rac</td>
</tr>
<tr>
<td>Example</td>
<td>X</td>
<td>Position</td>
<td>A</td>
<td>B</td>
<td>R</td>
<td>R'</td>
<td>R''</td>
<td>Chiral-1</td>
</tr>
<tr>
<td>---------</td>
<td>----</td>
<td>----------</td>
<td>-----------</td>
<td>----------</td>
<td>----</td>
<td>-----</td>
<td>-----</td>
<td>----------</td>
</tr>
<tr>
<td>247</td>
<td>Cl</td>
<td>2</td>
<td>Carbamoyl</td>
<td>Carbamoyl</td>
<td>H</td>
<td>Me</td>
<td>H</td>
<td>S</td>
</tr>
<tr>
<td>248</td>
<td>Cl</td>
<td>2</td>
<td>Carbamoyl</td>
<td>Carbamoyl</td>
<td>H</td>
<td>Me</td>
<td>Me</td>
<td>S</td>
</tr>
<tr>
<td>249</td>
<td>Cl</td>
<td>2</td>
<td>Carbamoyl</td>
<td>Carbamoyl</td>
<td>H</td>
<td>Me</td>
<td>Propyl</td>
<td>S</td>
</tr>
<tr>
<td>250</td>
<td>Cl</td>
<td>2</td>
<td>Carbamoyl</td>
<td>Carbamoyl</td>
<td>H</td>
<td>Me</td>
<td>H</td>
<td>R</td>
</tr>
<tr>
<td>251</td>
<td>Cl</td>
<td>2</td>
<td>Carbamoyl</td>
<td>Carbamoyl</td>
<td>H</td>
<td>Me</td>
<td>H</td>
<td>rac</td>
</tr>
<tr>
<td>252</td>
<td>Cl</td>
<td>2</td>
<td>Carbamoyl</td>
<td>Carbamoyl</td>
<td>H</td>
<td>Et</td>
<td>H</td>
<td>S</td>
</tr>
<tr>
<td>253</td>
<td>Cl</td>
<td>2</td>
<td>Carbamoyl</td>
<td>Carbamoyl</td>
<td>H</td>
<td>Isopropyl</td>
<td>H</td>
<td>S</td>
</tr>
<tr>
<td>254</td>
<td>Cl</td>
<td>2</td>
<td>Carbamoyl</td>
<td>Carbamoyl</td>
<td>H</td>
<td>Butyl</td>
<td>H</td>
<td>S</td>
</tr>
<tr>
<td>255</td>
<td>F</td>
<td>2</td>
<td>Carbamoyl</td>
<td>Carbamoyl</td>
<td>H</td>
<td>Me</td>
<td>H</td>
<td>S</td>
</tr>
</tbody>
</table>

(Table 2) Carbamate denvertives (B is a carbamoyl derivative)
<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>256</td>
<td>F</td>
<td>2</td>
<td>Carbamoyl</td>
<td>Carbamoyl</td>
<td>H</td>
<td>Et</td>
<td>H</td>
</tr>
<tr>
<td>257</td>
<td>F</td>
<td>2</td>
<td>Carbamoyl</td>
<td>Carbamoyl</td>
<td>H</td>
<td>Isopropyl</td>
<td>H</td>
</tr>
<tr>
<td>258</td>
<td>F</td>
<td>2</td>
<td>Carbamoyl</td>
<td>Carbamoyl</td>
<td>H</td>
<td>Butyl</td>
<td>H</td>
</tr>
<tr>
<td>259</td>
<td>I</td>
<td>2</td>
<td>Carbamoyl</td>
<td>Carbamoyl</td>
<td>H</td>
<td>Me</td>
<td>H</td>
</tr>
<tr>
<td>260</td>
<td>I</td>
<td>2</td>
<td>Carbamoyl</td>
<td>Carbamoyl</td>
<td>H</td>
<td>Et</td>
<td>H</td>
</tr>
<tr>
<td>261</td>
<td>I</td>
<td>2</td>
<td>Carbamoyl</td>
<td>Carbamoyl</td>
<td>H</td>
<td>Isopropyl</td>
<td>H</td>
</tr>
<tr>
<td>262</td>
<td>I</td>
<td>2</td>
<td>Carbamoyl</td>
<td>Carbamoyl</td>
<td>H</td>
<td>Butyl</td>
<td>H</td>
</tr>
<tr>
<td>263</td>
<td>Cl</td>
<td>2,4</td>
<td>Carbamoyl</td>
<td>Carbamoyl</td>
<td>H</td>
<td>Me</td>
<td>H</td>
</tr>
<tr>
<td>264</td>
<td>Cl</td>
<td>2,4</td>
<td>Carbamoyl</td>
<td>Carbamoyl</td>
<td>H</td>
<td>Et</td>
<td>H</td>
</tr>
<tr>
<td>265</td>
<td>Cl</td>
<td>2,4</td>
<td>Carbamoyl</td>
<td>Carbamoyl</td>
<td>H</td>
<td>Isopropyl</td>
<td>H</td>
</tr>
<tr>
<td>266</td>
<td>Cl</td>
<td>2,4</td>
<td>Carbamoyl</td>
<td>Carbamoyl</td>
<td>H</td>
<td>Butyl</td>
<td>H</td>
</tr>
<tr>
<td>267</td>
<td>Cl</td>
<td>2,6</td>
<td>Carbamoyl</td>
<td>Carbamoyl</td>
<td>H</td>
<td>Me</td>
<td>H</td>
</tr>
<tr>
<td>268</td>
<td>Cl</td>
<td>2,6</td>
<td>Carbamoyl</td>
<td>Carbamoyl</td>
<td>H</td>
<td>Et</td>
<td>H</td>
</tr>
<tr>
<td>269</td>
<td>Cl</td>
<td>2,6</td>
<td>Carbamoyl</td>
<td>Carbamoyl</td>
<td>H</td>
<td>Isopropyl</td>
<td>H</td>
</tr>
<tr>
<td>270</td>
<td>Cl</td>
<td>2,6</td>
<td>Carbamoyl</td>
<td>Carbamoyl</td>
<td>H</td>
<td>Butyl</td>
<td>H</td>
</tr>
<tr>
<td>271</td>
<td>Cl</td>
<td>2</td>
<td>MOM</td>
<td>Carbamoyl</td>
<td>H</td>
<td>Me</td>
<td>H</td>
</tr>
<tr>
<td>272</td>
<td>Cl</td>
<td>2</td>
<td>Methyl</td>
<td>Carbamoyl</td>
<td>H</td>
<td>Me</td>
<td>H</td>
</tr>
<tr>
<td>273</td>
<td>Cl</td>
<td>2</td>
<td>MOM</td>
<td>Carbamoyl</td>
<td>H</td>
<td>Me</td>
<td>H</td>
</tr>
<tr>
<td>274</td>
<td>Cl</td>
<td>2</td>
<td>Methyl</td>
<td>Carbamoyl</td>
<td>H</td>
<td>Me</td>
<td>H</td>
</tr>
<tr>
<td>275</td>
<td>F</td>
<td>2</td>
<td>Carbamoyl</td>
<td>Carbamoyl</td>
<td>H</td>
<td>Me</td>
<td>H</td>
</tr>
<tr>
<td>276</td>
<td>F</td>
<td>2</td>
<td>Carbamoyl</td>
<td>Carbamoyl</td>
<td>H</td>
<td>Me</td>
<td>H</td>
</tr>
<tr>
<td>277</td>
<td>F</td>
<td>2</td>
<td>Carbamoyl</td>
<td>Carbamoyl</td>
<td>H</td>
<td>Me</td>
<td>H</td>
</tr>
<tr>
<td>278</td>
<td>F</td>
<td>2</td>
<td>Carbamoyl</td>
<td>Carbamoyl</td>
<td>H</td>
<td>Me</td>
<td>H</td>
</tr>
<tr>
<td>279</td>
<td>F</td>
<td>2</td>
<td>Carbamoyl</td>
<td>Carbamoyl</td>
<td>H</td>
<td>Me</td>
<td>H</td>
</tr>
<tr>
<td>280</td>
<td>F</td>
<td>2</td>
<td>Carbamoyl</td>
<td>Carbamoyl</td>
<td>H</td>
<td>Me</td>
<td>H</td>
</tr>
<tr>
<td>281</td>
<td>F</td>
<td>2</td>
<td>Carbamoyl</td>
<td>Carbamoyl</td>
<td>H</td>
<td>Me</td>
<td>H</td>
</tr>
</tbody>
</table>

Example 1: Synthesis of l-(2-chlorophenyl)-(S)-l-methoxymethoxypropyl-(S)-2-carbamate

![Chemical Structure]

To a stirred solution of l-(2-chlorophenyl)-l-hydroxyalkyl-2-carbamate(Preparation...
Example 103, 1.7g) in MC (Methylenechloride) was added DIPEA (Diisopropylethylamine, 5eq, 5.1ml) at 0°C under N₂ condition. The mixture was added MOM-Cl (MOMchloride, 5eq, 2.3ml) at 0°C then slowly warm to R.T. When the reaction was completed, the obtained product was washed with H₂O and MC. The separated organic layer was dehydrated with anhydrous MgSO₄ (Magnesium sulfate), filtrated, and concentrated under reduced pressure. The concentrated residue was purified by a silicagel aolumn chromatography, to obtain title compound.

\[^1H\text{ NMR} (400MHz, CDCl}_3 \] \(\delta 1.37 (d, J=6.8\ Hz, 3H), 3.30 (s, 3H), 4.71 (d, J=6.8, 1H), 4.82–4.88 (m, 1H), 5.45 (s, 2H), 7.26–7.70 (m, 4H) \)

According to the method described in Example 1, the following compounds of Examples 2 to 123 were prepared:

Example 2: Synthesis of 1-(2-chlorophenyl)-(S)-l-methoxymethoxypropyl-(S)-2-methylcarbamate

![Chemical Structure](image)

The substantially same method as described in Example 1 was conducted, except that 1-(2-chlorophenyl)-(S)-1-hydroxypropyl-(S)-2-methylcarbamate (Preparation example 117) was used instead of 1-(2-chlorophenyl)-(S)-1-hydroxypropyl-(S)-2-carbamate (Preparation example 103), to obtain the title compound (0.86g, yield 20-50%).

\[^1H\text{ NMR} (400MHz, CDCl}_3 \] \(\delta 2.58 (s, 3H), 3.30 (s, 3H), 4.71 (d, J=6.8, 1H), 4.82–4.88 (m, 1H), 5.45 (s, 2H), 7.26–7.70 (m, 4H) \)

Example 3: Synthesis of 1-(2-chlorophenyl)-(S)-l-methoxymethoxypropyl-(S)-2-propylcarbamate

![Chemical Structure](image)

\[^1H\text{ NMR} (400MHz, CDCl}_3 \] \(\delta 1.37 (d, J=6.8\ Hz, 3H), 1.60 (m, 2H), \)

152
3.18(t, $J=7.1$ Hz, 2H), 3.30(s, 3H), 4.71(d, $J=6.8$, 1H), 4.82~4.88(m, 1H), 5.45(s, 2H), 7.26~7.70(m, 4H)

Example 4: Synthesis of l-(2-chlorophenyl)-(S)-l-methoxymethoxypropyl-(S)-2-isopropylcarbamate

![Structure](image1)

1H NMR(400MHz, CDCl$_3$) δ. 1.27(d, $J=6.8$ Hz, 6H), 1.37(d, $J=6.8$ Hz, 3H), 3.30(s, 3H), 4.17(m, 1H), 4.71(d, $J=6.8$, 1H), 4.82~4.88(m, 1H), 5.45(s, 2H), 7.26~7.70(m, 4H)

Example 5: Synthesis of l-(2-chlorophenyl)-(S)-l-methoxymethoxypropyl-(S)-2-cyclopropylcarbamate

![Structure](image2)

1H NMR(400MHz, CDCl$_3$) 50.57(m, 2H), 0.82(m, 2H), 1.37(d, $J=6.8$ Hz, 3H), 2.75(m, 1H), 3.30(s, 3H), 4.71(d, $J=6.8$, 1H), 4.82~4.88(m, 1H), 5.45(s, 2H), 7.26~7.70(m, 4H)

Example 6: Synthesis of l-(2-chlorophenyl)-(S)-l-methoxymethoxypropyl-(S)-2-cyclohexylcarbamate

![Structure](image3)

1H NMR(400MHz, CDCl$_3$) 51.11-1.21 (m, 4H), 1.37(d, $J=6.8$ Hz, 3H), 1.47~1.49(m, 4H), 1.74(m, 2H), 3.30(s, 3H), 3.54(m, 1H), 4.71(d, $J=6.8$, 1H), 4.82~4.88(m, 1H), 5.45(s, 2H), 7.26~7.70(m, 4H)

Example 7: Synthesis of l-(2-chlorophenyl)-(S)-l-methoxymethoxypropyl-(S)-2-cyclohexylcarbamate
Example 8: Synthesis of l-(2-chlorophenyl)-(S)-l-methoxymethoxypropyl-(S)-2-
bicyclo[2,2,1]heptanescarbamate

\[
\begin{align*}
\text{H NMR}(400\text{MHz, } \text{CDCl}_3) & \quad 61.33\text{~s}\,(9\text{H}),
1.75\text{~s}\,(2\text{H}), \quad 2.06\text{~s}\,(2\text{H}), \quad 3.30\text{~s}\,(3\text{H}),
3.53\text{~m}\,(1\text{H}), \quad 4.71\text{~d}\,(J=6.8,\;1\text{H}), \quad 4.82\text{~s}\,(1\text{H}),
5.45\text{~s}\,(2\text{H}), \quad 7.13\text{~s}\,(4\text{H}), \quad 7.37\text{~s}\,(5\text{H})
\end{align*}
\]

Example 9: Synthesis of l-(2-chlorophenyl)-(S)-l-methoxymethoxybutyl-(S)-2-
carbamate

\[
\begin{align*}
\text{H NMR}(400\text{MHz, } \text{CDCl}_3) & \quad 81.04\text{~t}\,(J=7.6\text{Hz},\;3\text{H}), \quad 1.60\text{~s}\,(1\text{H}), \quad 1.83\text{~s}\,(1\text{H}),
3.30\text{~s}\,(3\text{H}), \quad 4.71\text{~d}\,(J=6.8,\;1\text{H}), \quad 4.73\text{~br s}\,(2\text{H}), \quad 4.82\text{~s}\,(1\text{H}),
5.45\text{~s}\,(2\text{H}), \quad 7.26\text{~s}\,(4\text{H})
\end{align*}
\]

Example 10: Synthesis of l-(2-chlorophenyl)-(S)-l-methoxymethoxy-3-methyl-
butylicarbamate

\[
\begin{align*}
\text{H NMR}(400\text{MHz, } \text{CDCl}_3) & \quad 51.07\text{~t}\,(J=7.6\text{Hz},\;6\text{H}), \quad 1.83\text{~s}\,(1\text{H}), \quad 3.30\text{~s}\,(3\text{H}), \quad 4.71\text{~d}\,(J=6.8,\;1\text{H}), \quad 4.73\text{~br s}\,(2\text{H}), \quad 4.82\text{~s}\,(1\text{H}),
5.45\text{~s}\,(2\text{H}), \quad 7.26\text{~s}\,(4\text{H})
\end{align*}
\]

\[\text{H NMR}(400\text{MHz, } \text{CDCl}_3) 51.37\text{~d}\,(J=6.8\text{ Hz},\;3\text{H}), \quad 3.30\text{~s}\,(3\text{H}), \quad 4.20\text{~m}\,(2\text{H}), \quad 4.71\text{~d}\,(J=6.8,
1\text{H}), \quad 4.82\text{~s}\,(1\text{H}), \quad 5.45\text{~s}\,(2\text{H}), \quad 7.13\text{~s}\,(4\text{H}), \quad 7.37\text{~s}\,(5\text{H})\]

\[\text{H NMR}(400\text{MHz, } \text{CDCl}_3) 81.04\text{~t}\,(J=7.6\text{Hz},\;3\text{H}), \quad 1.60\text{~s}\,(1\text{H}), \quad 1.83\text{~s}\,(1\text{H}),
3.30\text{~s}\,(3\text{H}), \quad 4.71\text{~d}\,(J=6.8,\;1\text{H}), \quad 4.73\text{~br s}\,(2\text{H}), \quad 4.82\text{~s}\,(1\text{H}),
5.45\text{~s}\,(2\text{H}), \quad 7.26\text{~s}\,(4\text{H})\]

\[\text{H NMR}(400\text{MHz, } \text{CDCl}_3) 51.07\text{~t}\,(J=7.6\text{Hz},\;6\text{H}), \quad 1.83\text{~s}\,(1\text{H}), \quad 3.30\text{~s}\,(3\text{H}), \quad 4.71\text{~d}\,(J=6.8,\;1\text{H}), \quad 4.73\text{~br s}\,(2\text{H}), \quad 4.82\text{~s}\,(1\text{H}),
5.45\text{~s}\,(2\text{H}), \quad 7.26\text{~s}\,(4\text{H})\]
Example 11: Synthesis of l-(2-chlorophenyl)-(S)-l-methoxymethoxyhexyl-(S)-2-carbamate

\[
\begin{align*}
\text{Cl} & \quad \text{O} \quad \text{O} \\
& \quad \text{O} \quad \text{NH}_2 \\
& \quad \text{O}
\end{align*}
\]

\[\text{H} \text{ NMR}(400\text{MHz}, \text{CDCl}_3) 50.90(t, J=7.6\text{Hz}, 3\text{H}), \ 1.35-1.65 (m, 6\text{H}), \ 3.30(s, 3\text{H}), \ 4.71(d, J=6.8, 1\text{H}), \ 4.73(br s, 2\text{H}), \ 4.82-4.88 (m, \text{IH}), \ 5.45(s, 2\text{H}), \ 7.26-7.70 (m, 4\text{H})\]

Example 12: Synthesis of l-(2-fluorophenyl)-(S)-l-methoxymethoxypropyl-(S)-2-carbamate

\[
\begin{align*}
\text{F} & \quad \text{O} \quad \text{O} \\
& \quad \text{O} \quad \text{NH}_2 \\
& \quad \text{O}
\end{align*}
\]

\[\text{H} \text{ NMR}(400\text{MHz}, \text{CDCl}_3) 61.37(d, J=6.8\text{ Hz}, 3\text{H}), \ 3.30(s, 3\text{H}), \ 4.71(d, J=6.8, \text{IH}), \ 4.82-4.88 (m, \text{IH}), \ 5.45(s, 2\text{H}), \ 7.15-7.68 (m, 4\text{H})\]

Example 13: Synthesis of l-(2-fluorophenyl)-(S)-l-methoxymethoxypropyl-(S)-2-methylcarbamate

\[
\begin{align*}
\text{F} & \quad \text{O} \quad \text{O} \\
& \quad \text{O} \quad \text{NH}_2 \\
& \quad \text{O}
\end{align*}
\]

\[\text{H} \text{ NMR}(400\text{MHz}, \text{CDCl}_3) 51.37(d, J=6.8\text{ Hz}, 3\text{H}), \ 2.58(s, 3\text{H}), \ 3.30(s, 3\text{H}), \ 4.71(d, J=6.8, \text{IH}), \ 4.82-4.88 (m, \text{IH}), \ 5.45(s, 2\text{H}), \ 7.15-7.68 (m, 4\text{H})\]

Example 14: Synthesis of l-(2-fluorophenyl)-(S)-l-methoxymethoxypropyl-(S)-2-propylcarbamate

\[
\begin{align*}
\text{F} & \quad \text{O} \quad \text{O} \\
& \quad \text{O} \quad \text{NH}_2 \\
& \quad \text{O}
\end{align*}
\]
Example 15: Synthesis of 1-(2-fluorophenyl)-(S)-l-methoxymethoxypropyl-(S)-2-isopropylcarbamate

Example 16: Synthesis of 1-(2-fluorophenyl)-(S)-l-methoxymethoxypropyl-(S)-2-cyclopropylcarbamate

Example 17: Synthesis of 1-(2-fluorophenyl)-(S)-l-methoxymethoxypropyl-(S)-2-cyclohexylcarbamate

Example 18: Synthesis of 1-(2-fluorophenyl)-(S)-l-methoxymethoxypropyl-(S)-2-cyclohexylcarbamate

Example 20: Synthesis of 1-(2-iodophenyl)-(S)-l-methoxymethoxypropyl-(S)-2-carbamate

Example 21: Synthesis of 1-(2-iodophenyl)-(S)-l-methoxymethoxypropyl-(S)-2-methylcarbamate

1H NMR (400 MHz, CDCl$_3$) 51.37 (d, $J=6.8$ Hz, 3H), 3.30 (s, 3H), 4.20 (m, 2H), 4.71 (d, $J=6.8$, 1H), 4.82-4.88 (m, 1H), 5.45 (s, 2H), 7.13-7.89 (m, 4H)
Example 22: Synthesis of l-(2-iodophenyl)-(S)-l-methoxymethoxypropyl-(S)-2-propylcarbamate

\[
\text{NMR}(400\text{MHz, } \text{CDCl}_3) \delta 50.90 (t, J=6.8 \text{ Hz, 3H}), 1.37 (d, J=6.8 \text{ Hz, 3H}), 1.60 (m, 2H),
3.18 (t, J=7.1 \text{ Hz, 2H}), 3.30 (s, 3H), 4.71 (d, J=6.8, \text{ IH}), 4.82-4.88 (m, \text{ IH}), 5.45 (s, 2H),
7.14-7.87 (m, 4H)
\]

Example 23: Synthesis of l-(2-iodophenyl)-(S)-l-methoxymethoxypropyl-(S)-2-isopropylcarbamate

\[
\text{NMR}(400\text{MHz, } \text{CDCl}_3) \delta 1.27 (d, J=6.8 \text{ Hz, 6H}), 1.37 (d, J=6.8 \text{ Hz, 3H}), 3.30 (s, 3H),
4.17 (m, \text{ IH}), 4.71 (d, J=6.8, \text{ IH}), 4.82-4.88 (m, \text{ IH}), 5.45 (s, 2H), 7.15-7.89 (m, 4H)
\]

Example 24: Synthesis of l-(2-iodophenyl)-(S)-l-methoxymethoxypropyl-(S)-2-cyclopropylcarbamate

\[
\text{NMR}(400\text{MHz, } \text{CDCl}_3) \delta 50.57 (m, 2H), 0.82 (m, 2H), 1.37 (d, J=6.8 \text{ Hz, 3H}), 2.75 (m, 1H),
3.30 (s, 3H), 4.71 (d, J=6.8, \text{ IH}), 4.82-4.88 (m, \text{ IH}), 5.45 (s, 2H), 7.16-7.87 (m, 4H)
\]

Example 25: Synthesis of l-(2-iodophenyl)-(S)-l-methoxymethoxypropyl-(S)-2-cyclohexylcarbamate
Example 26: Synthesis of 1-(2-iodophenyl)-(S)-l-methoxymethoxypropyl-(S)-2-cyclohexylcarbamate

\[
\text{1H NMR (400 MHz, CDCl}_3\text{) } \delta 1.11-1.21 (m, 4H), 1.37 (d, J=6.8 Hz, 3H), 1.47-1.49 (m, 4H), 1.74 (m, 2H), 3.30 (s, 3H), 3.54 (m, 1H), 4.71 (d, J=6.8, 1H), 4.82-4.88 (m, 1H), 5.45 (s, 2H), 7.18-7.91 (m, 4H)
\]

\[
\text{1H NMR (400 MHz, CDCl}_3\text{) } \delta 1.33-1.58 (m, 9H), 1.75-1.88 (m, 2H), 2.06-2.13 (m, 2H), 3.30 (s, 3H), 3.53 (m, 1H), 4.71 (d, J=6.8, 1H), 4.82-4.88 (m, 1H), 5.45 (s, 2H), 7.15-7.68 (m, 4H), 7.72-7.88 (m, 5H)
\]

Example 28: Synthesis of 1-(2-iodophenyl)-(S)-l-methoxymethoxybutyl-(S)-2-carbamate

\[
\text{1H NMR (400 MHz, CDCl}_3\text{) } \delta 1.11-1.21 (m, 4H), 1.37 (d, J=6.8 Hz, 3H), 1.47-1.49 (m, 4H), 1.74 (m, 2H), 3.30 (s, 3H), 3.54 (m, 1H), 4.71 (d, J=6.8, 1H), 4.82-4.88 (m, 1H), 5.45 (s, 2H), 7.18-7.91 (m, 4H)
\]
Example 29: Synthesis of \(l-(2\text{-iodophenyl})-(S)-l\text{-methoxymethoxybutyl}-(S)-2\)-methylcarbamate

\[
\begin{align*}
^1H \text{ NMR(}400\text{MHz, } CDCl}_3 & \quad 51.04(t, J=7.6\text{Hz, } 3H), \quad 1.60-1.71(m, \ 2H), \quad 3.30(s, \ 3H), \quad 4.71(d, \ J=6.8, \ 1H), \quad 4.82-4.88(m, \ 1H), \quad 5.45(s, \ 2H), \quad 7.26-7.70(m, \ 4H)
\end{align*}
\]

Example 30: Synthesis of \(l-(2\text{-iodophenyl})-(S)-l\text{-methoxymethoxybutyl}-(S)-2\)-propylcarbamate

\[
\begin{align*}
^1H \text{ NMR(}400\text{MHz, } CDCl}_3 & \quad 60.90(t, J=6.8\text{ Hz, } 3H), \quad 1.04(t, J=7-6\text{Hz, } 3H), \quad 1.58-1.71(m, \ 4H), \quad 3.18(t, J=7.1\text{Hz, } 2H), \quad 3.30(s, \ 3H), \quad 4.71(d, J=6.8, \ 1H), \quad 4.82-4.88(m, \ 1H), \quad 5.45(s, \ 2H), \quad 7.14-7.89(m, \ 4H)
\end{align*}
\]

Example 31: Synthesis of \(l-(2\text{-iodophenyl})-(S)-l\text{-methoxymethoxybutyl}-(S)-2\)-isopropylcarbamate

\[
\begin{align*}
^1H \text{ NMR(}400\text{MHz, } CDCl}_3 & \quad 51.04(t, J=7.6\text{Hz, } 3H), \quad 1.27(d, J=6.8\text{ Hz, } 6H), \quad 1.60-1.71(m, \ 2H), \quad 3.30(s, \ 3H), \quad 4.17(m, \ 1H), \quad 4.71(d, J=6.8, \ 1H), \quad 4.82-4.88(m, \ 1H), \quad 5.45(s, \ 2H), \quad 7.15-7.90(m, \ 4H)
\end{align*}
\]

Example 32: Synthesis of \(l-(2\text{-iodophenyl})-(S)-l\text{-methoxymethoxybutyl}-(S)-2\)-cyclopropylcarbamate

\[
\begin{align*}
^1H \text{ NMR(}400\text{MHz, } CDCl}_3 & \quad 51.04(t, J=7.6\text{Hz, } 3H), \quad 1.27(d, J=6.8\text{ Hz, } 6H), \quad 1.60-1.71(m, \ 2H), \quad 3.30(s, \ 3H), \quad 4.17(m, \ 1H), \quad 4.71(d, J=6.8, \ 1H), \quad 4.82-4.88(m, \ 1H), \quad 5.45(s, \ 2H), \quad 7.15-7.90(m, \ 4H)
\end{align*}
\]

160
Example 33: Synthesis of l-(2-iodophenyl)-(S)-l-methoxymethoxybutyl-(S)-2-cyclohexylcarbamate

Example 34: Synthesis of l-(2-iodophenyl)-(S)-l-methoxymethoxybutyl-(S)-2-cyclohexylcarbamate

Example 36: Synthesis of \(l-(2\text{-iodophenyl})-(S)-l\text{-methoxymethoxy-3-methylbutyl-(S)-2-carbamate} \)

\[\text{H NMR}(400\text{MHz, CDCl}_3) \]

\[81.04(t, J=7.6\text{Hz, 3H), 1.33~1.58(m, 6H), 1.60~1.71(m, 2H),} \]

\[1.75-1.88(m, 2H), 2.06-2.13(m, 2H), 3.30(s, 3H), 3.53(m, IH), 4.71(d, J=6.8, IH), \]

\[4.82-4.88(m, IH), 5.45(s, 2H), 7.15-7.19(m, 4H), 7.37-7.88(m, 5H) \]

Example 37: Synthesis of \(l-(2\text{-iodophenyl})-(S)-l\text{-methoxymethoxy-3-methylbutyl-(S)-2-methylcarbamate} \)

\[\text{H NMR}(400\text{MHz, CDCl}_3) \]

\[51.07(d, J=7.6\text{Hz, 3H), 1.83~1.89(m, IH), 3.30(s, 3H), 4.71(d,} \]

\[J=6.8, \text{IH), 4.82~4.88(m, IH), 5.45(s, 2H), 7.26~7.70(m, 4H) \]

Example 38: Synthesis of \(l-(2\text{-iodophenyl})-(S)-l\text{-methoxymethoxy-3-methylbutyl-(S)-2-propylcarbamate} \)

\[\text{H NMR}(400\text{MHz, CDCl}_3) \]

\[50.90(t, J=6.8\text{Hz, 3H), 1.04(d, J=7.6\text{Hz, 6H), 1.58~1.71(m, 5H),} \]

\[3.18(t, J=7.1\text{Hz, 2H), 3.30(s, 3H), 4.71(d, J=6.8, IH), 4.82~4.88(m, IH), 5.45(s, 2H),} \]

\[7.14~7.89(m, 4H) \]

Example 39: Synthesis of \(l-(2\text{-iodophenyl})-(S)-l\text{-methoxymethoxy-3-methylbutyl-(S)-2-isopropylcarbamate} \)
Example 40: Synthesis of l-(2-iodophenyl)-(S)-l-methoxymethoxy-3-methylbutyl-(S)-2-cyclopropylcarbamate

Example 41: Synthesis of l-(2-iodophenyl)-(S)-l-methoxymethoxy-3-methylbutyl-(S)-2-cyclohexylcarbamate

Example 42: Synthesis of l-(2-iodophenyl)-(S)-l-methoxymethoxy-3-methylbutyl-(S)-2-cyclohexylcarbamate
Example 43: Synthesis of (S)-l-methoxymethoxy-3-methylbutyl-(S)-2-bicyclo[2,2,1]heptanescarbamate

\[
\text{H} \quad \text{NMR(400MHz, CDCI}_3) \quad 51.04(d, J=7.6Hz, 6H), 1.87-1.90(m, IH), 3.30(s, 3H), 4.20(m, 2H), 4.71(d, J=6.8, IH), 4.82-4.88(m, IH), 5.45(s, 2H), 7.14-7.19(m, 4H), 7.37-7.88(m, 5H)
\]

Example 44: Synthesis of (S)-l-methoxymethoxyhexyl-(S)-2-carbamate

\[
\text{H} \quad \text{NMR(400MHz, CDCI}_3) \quad 60.84(t, J=7.0Hz, 3H), 1.20-1.35(m, 4H), 1.36-1.41(m, IH), 1.59-1.63(m, IH), 3.30(s, 3H), 4.47(br s, 2H), 4.71(d, J=6.8, IH), 4.82-4.88(m, IH), 5.45(s, 2H), 7.26-7.70(m, 4H)
\]

Example 45: Synthesis of (S)-l-methoxymethoxyhexyl-(S)-2-methylcarbamate

\[
\text{H} \quad \text{NMR(400MHz, CDCI}_3) \quad 50.89(t, J=7.2Hz, 3H), 1.20-1.35(m, 4H), 1.36-1.41(m, IH), 1.59-1.63(m, IH), 2.58(s, 3H), 3.30(s, 3H), 4.71(d, J=6.8, IH), 4.82-4.88(m, IH), 5.45(s, 2H), 7.13-7.88(m, 4H)
\]

Example 46: Synthesis of (S)-l-methoxymethoxyhexyl-(S)-2-
propylcarbamate

\[\text{H NMR(400MHz, } \text{CDCl}_3 \text{) 50.87(t, } J=6.8\text{Hz, 3H), 0.90(t, } J=6.8\text{Hz, 3H), 1.21~1.35(m, 4H), 1.36~1.40(m, } \text{IH), 1.58~1.62(m, } \text{IH), 3.18(t, } J=7.1\text{Hz, 2H), 3.30(s, 3H), 4.71(d, } J=6.8\text{, } \text{IH), 4.82~4.88(m, } \text{IH), 5.45(s, 2H), 7.14~7.89(m, 4H) } \]

Example 47: Synthesis of L-(2-iodophenyl)-(S)-L-methoxymethoxyhexyl-(S)-2-isopropylcarbamate

\[\text{H NMR(400MHz, } \text{CDCl}_3 \text{) 60.84(t, } J=7.6\text{Hz, 3H), 1.22~1.35(m, 4H), 1.27(d, } J=6.8\text{ Hz, 6H), 1.36~1.40(m, } \text{IH), 1.58~1.62(m, } \text{IH), 3.30(s, 3H), 4.17(m, } \text{IH), 4.71(d, } J=6.8\text{, } \text{IH), 4.82~4.88(m, } \text{IH), 5.45(s, 2H), 7.15~7.90(m, 4H) } \]

Example 48: Synthesis of L-(2-iodophenyl)-(S)-L-methoxymethoxyhexyl-(S)-2-cyclopropylcarbamate

\[\text{H NMR(400MHz, } \text{CDCl}_3 \text{) 60.57(m, 2H), 0.82(m, 2H), 0.88(t, } J=7.6\text{Hz, 3H), 1.22~1.35(m, 4H), 1.36~1.40(m, } \text{IH), 1.58~1.62(m, } \text{IH), 2.75(m, } \text{IH), 3.30(s, 3H), 4.71(d, } J=6.8\text{, } \text{IH), 4.82~4.88(m, } \text{IH), 5.45(s, 2H), 7.16~7.90(m, 4H) } \]

Example 49: Synthesis of L-(2-iodophenyl)-(S)-L-methoxymethoxyhexyl-(S)-2-cyclohexylcarbamate
Example 50: Synthesis of l-(2-iodophenyl)-(S)-l-methoxymethoxyhexyl-(S)-2-cyclohexylcarbamate

\[
\begin{align*}
\text{H NMR(400MHz, CDCl}_3\text{) } & 60.98\text{(t, } J=7.6\text{Hz, 3H), 1.11-1.21}\text{ (m, 4H), 1.26-1.33}\text{(m, 4H),} \\
& 1.47-1.49\text{(m, 2H), 1.52-1.54}\text{(m, 2H), 1.74(m, 2H), 1.84-1.90}\text{(m, 1H), 3.30(s, 3H), 3.54(m,} \\
& \text{IH), 4.71(d, } J=6.8\text{, 1H), 4.82-4.88}\text{(m, 1H), 5.45(s, 2H), 7.14-7.87}\text{(m, 4H) }
\end{align*}
\]

\[
\begin{align*}
\text{H NMR(400MHz, CDCl}_3\text{) } & 80.94\text{(t, } J=7.6\text{Hz, 3H), 1.26-1.33}\text{(m, 4H), 1.51-1.55}\text{(m, 2H),} \\
& 3.30(s, 3H), 4.20(m, 2H), 4.71(d, } J=6.8\text{, 1H), 4.82-4.88}\text{(m, 1H), 5.45(s, 2H), 7.14-7.19}\text{(m,} \\
& 4H), 7.37-7.88}\text{(m, 5H) }
\end{align*}
\]

Example 52: Synthesis of l-(3-iodophenyl)-(S)-l-methoxymethoxypropyl-(S)-2-carbamate

\[
\begin{align*}
\text{H NMR(400MHz, CDCl}_3\text{) } & 60.97\text{(t, } J=7.6\text{Hz, 3H), 1.25-1.32}\text{(m, 4H), 1.33-1.58}\text{(m, 8H),} \\
& 1.60-1.71\text{(m, 2H), 1.75-1.88}\text{(m, 2H), 2.06-2.13}\text{(m, 2H), 3.30(s, 3H), 3.53(m, 1H), 4.71(d,} \\
& \text{J}=6.8\text{, 1H), 4.82-4.88}\text{(m, 1H), 5.45(s, 2H), 7.15-7.19}\text{(m, 4H), 7.37-7.88}\text{(m, 5H) }
\end{align*}
\]
NMR(400MHz, CDC\textsubscript{3}) 51.16(d, $J=6.4$Hz, 3H), 3.39(s, 3H), 4.54–4.63(m, 6H), 5.04–5.10(m, IH), 7.09–7.73(m, 4H)

Example 53: Synthesis of l-(3-iodophenyl)-(S)-l-methoxymethoxybutyl-(S)-2-carbamate

![Chemical structure](image)

1H NMR(400MHz, CDC\textsubscript{3}) 51.04(t, $J=7.6$Hz, 3H), 1.60–1.71(m, 2H), 3.30(s, 3H), 4.71(d, $J=6.8$, IH), 4.73(br s, 2H), 4.82–4.88(m, IH), 5.45(s, 2H), 6.96–7.57(m, 4H)

Example 54: Synthesis of l-(3-iodophenyl)-(S)-l-methoxymethoxy-3-methylbutyl-(S)-2-carbamate

![Chemical structure](image)

1H NMR(400MHz, CDC\textsubscript{3}) 61.07(t, $J=7.6$Hz, 6H), 1.83–1.89(m, IH), 3.30(s, 3H), 4.71(d, $J=6.8$, IH), 4.73(br s, 2H), 4.82–4.88(m, IH), 5.45(s, 2H), 7.00–7.58(m, 4H)

Example 55: Synthesis of l-(3-iodophenyl)-(S)-l-methoxymethoxyhexyl-(S)-2-carbamate

![Chemical structure](image)

1H NMR(400MHz, CDC\textsubscript{3}) 50.90(t, $J=7.6$Hz, 3H), 1.35–1.65(m, 6H), 3.30(s, 3H), 4.71(d, $J=6.8$, IH), 4.73(br s, 2H), 4.82–4.88(m, IH), 5.45(s, 2H), 7.01–7.59(m, 4H)
Example 56: Synthesis of 1-(4-fluorophenyl)-(S)-l-methoxymethoxypropyl-(S)-2-carbamate

\[
\text{O} \quad \text{O} \\
\text{F} \quad \text{O} \quad \text{NH}_2 \\
\text{O}
\]

\(^1\text{H} \text{ NMR}(400\text{MHz, CDC}_1\text{)} \) 51.37(d, \(J=6.8 \text{ Hz, } 3\text{H} \)), 3.30(s, 3H), 4.71(d, \(J=6.8 \text{, } 1\text{H} \)), 4.82-4.88(m, 1H), 5.45(s, 2H), 6.96-7.17(m, 4H)

Example 57: Synthesis of 1-(4-fluorophenyl)-(S)-l-methoxymethoxybutyl-(S)-2-carbamate

\[
\text{O} \quad \text{O} \\
\text{F} \quad \text{O} \quad \text{NH}_2 \\
\text{O}
\]

\(^1\text{H} \text{ NMR}(400\text{MHz, CDC}_1\text{)} \) 51.37(d, \(J=6.6 \text{ Hz, } 3\text{H} \)), 1.60-1.71(m, 2H), 3.30(s, 3H), 4.71(d, \(J=6.8 \text{, } 1\text{H} \)), 4.73(br s, 2H), 4.82-4.88(m, 1H), 5.45(s, 2H), 6.90-7.20(m, 4H)

Example 58: Synthesis of 1-(4-fluorophenyl)-(S)-l-methoxymethoxy-3-methylbutyl-(S)-2-carbamate

\[
\text{O} \quad \text{O} \\
\text{F} \quad \text{O} \quad \text{NH}_2 \\
\text{O}
\]

\(^1\text{H} \text{ NMR}(400\text{MHz, CDC}_1\text{)} \) 51.07(t, \(J=7.6 \text{Hz, } 6\text{H} \)), 1.83-1.89(m, 1H), 3.30(s, 3H), 4.71(d, \(J=6.8 \text{, } 1\text{H} \)), 4.73(br s, 2H), 4.82-4.88(m, 1H), 5.45(s, 2H), 6.92-7.17(m, 4H)

Example 59: Synthesis of 1-(4-fluorophenyl)-(S)-l-methoxymethoxyhexyl-(S)-2-carbamate

\[
\text{O} \quad \text{O} \\
\text{F} \quad \text{O} \quad \text{NH}_2 \\
\text{O}
\]

\(^1\text{H} \text{ NMR}(400\text{MHz, CDC}_1\text{)} \) 60.90(t, \(J=7.6 \text{Hz, } 3\text{H} \)), 1.35-1.65(m, 6H), 3.30(s, 3H), 4.71(d,
Example 60: Synthesis of L-(2,4-dichlorophenyl)-(S)-l-methoxymethoxypropyl-(S)-2-carbamate

\[
\begin{align*}
&\text{\text{\text{\text{\text{H}} \text{ NMR(400MHz, CDC}_1\text{)} \ 51.37(d, J=6.8Hz, 3H), 3.30(s, 3H), 4.71(d, J=6.8, IH),}}}
&\text{4.82\text{-}4.88(m, IH), 5.45(s, 2H), 7.24\text{-}7.30(m, 2H), 7.73(d, J=1.5Hz, IH)}}
\end{align*}
\]

Example 61: Synthesis of L-(2,4-dichlorophenyl)-(S)-l-methoxymethoxybutyl-(S)-2-carbamate

\[
\begin{align*}
&\text{\text{\text{\text{\text{H}} \text{ NMR(400MHz, CDC}_1\text{)} \ 61.04(t, J=7.6Hz, 3H), 1.60\text{-}1.71(m, 2H), 3.30(s, 3H), 4.71(d, J=6.8, IH), 4.73(br s, 2H), 4.82\text{-}4.88(m, IH), 5.45(s, 2H), 7.24\text{-}7.30(m, 2H), 7.73(d, J=1.5Hz, IH)}}
\end{align*}
\]

Example 62: Synthesis of L-(2,4-dichlorophenyl)-(S)-l-methoxymethoxy-3-methyl-butyl-(S)-2-carbamate

\[
\begin{align*}
&\text{\text{\text{\text{\text{H}} \text{ NMR(400MHz, CDC}_1\text{)} \ 51.07(t, J=7.6Hz, 6H), 1.83\text{-}1.89(m, IH), 3.30(s, 3H), 4.71(d, J=6.8, IH), 4.73(br s, 2H), 4.82\text{-}4.88(m, IH), 5.45(s, 2H), 7.24\text{-}7.30(m, 2H), 7.73(d, J=1.5Hz, IH)}}
\end{align*}
\]

Example 63: Synthesis of L-(2,4-dichlorophenyl)-(S)-l-methoxymethoxyhexyl-(S)-2-carbamate
Example 64: Synthesis of l-(2,6-dichlorophenyl)-(S)-l-methoxymethoxypropyl-(S)-2-carbamate

1H NMR(400MHz, CDC$_1$$_3$) 61.37(d, $J = 6.8$Hz, 3H), 3.30(s, 3H), 4.71(d, $J = 6.8$, IH), 4.82~4.88(m, IH), 7.57~7.58(m, 3H)

Example 65: Synthesis of l-(2,6-dichlorophenyl)-(S)-l-methoxymethoxybutyl-(S)-2-carbamate

1H NMR(400MHz, CDC$_1$$_3$) 61.04(t, $J = 7.6$Hz, 3H), 1.60~1.71(m, 2H), 3.30(s, 3H), 4.71(d, $J = 6.8$, IH), 4.73(br s, 2H), 4.82~4.88(m, IH), 7.54~7.57(m, 3H)

Example 66: Synthesis of l-(2,6-dichlorophenyl)-(S)-l-methoxymethoxy-3-methyl-butyl-(S)-2-carbamate

1H NMR(400MHz, CDC$_1$$_3$) 61.07(t, $J = 7.6$Hz, 6H), 1.83~1.89(m, IH), 3.30(s, 3H), 4.71(d, $J = 6.8$, IH), 4.73(br s, 2H), 4.82~4.88(m, IH), 7.55~7.57(m, 3H)
Example 67: Synthesis of 1-(2,4-dichlorophenyl)-(S)-l-methoxymethoxyhexyl-(S)-2-carbamate

\[\begin{align*}
\text{Cl} & \quad \text{O} \quad \text{O} \\
\text{Cl} & \quad \text{O} \quad \text{NH}_2
\end{align*} \]

\(^1\text{H} \text{ NMR}(400\text{MHz}, \text{CDCl}_3) 50.90(\text{t, } J=7.6\text{Hz, } 3\text{H}), 1.35-1.65(\text{m, } 6\text{H}), 3.30(\text{s, } 3\text{H}), 4.71(\text{d, } J=6.8, \text{IH}), 4.73(\text{br s, } 2\text{H}), 4.82-4.88(\text{ra, } \text{IH}), 5.45(\text{s, } 2\text{H}), 7.54-7.59(\text{m, } 3\text{H}) \]

Example 68: Synthesis of 1-(2,3-dichlorophenyl)-(S)-l-methoxymethoxypropyl-(S)-2-carbamate

\[\begin{align*}
\text{Cl} & \quad \text{Cl} & \quad \text{O} \quad \text{O} \\
\text{O} & \quad \text{NH}_2
\end{align*} \]

\(^1\text{H} \text{ NMR}(400\text{MHz}, \text{CDCl}_3) 51.37(\text{d, } J=6.8\text{Hz, } 3\text{H}), 3.30(\text{s, } 3\text{H}), 4.71(\text{d, } J=6.8, \text{IH}), 4.82-4.88(\text{m, } \text{IH}), 5.45(\text{s, } 2\text{H}), 7.01-7.14(\text{m, } 3\text{H}) \]

Example 69: Synthesis of 1-(2-chlorophenyl)-(R)-l-methoxymethoxypropyl-(R)-2-carbamate

\[\begin{align*}
\text{Cl} & \quad \text{O} \quad \text{O} \\
\text{O} & \quad \text{NH}_2
\end{align*} \]

\(^1\text{H} \text{ NMR}(400\text{MHz}, \text{CDCl}_3) 61.37(\text{d, } J=6.8\text{ Hz, } 3\text{H}), 3.30(\text{s, } 3\text{H}), 4.71(\text{d, } J=6.8, \text{IH}), 4.82-4.88(\text{m, } \text{IH}), 5.45(\text{s, } 2\text{H}), 7.26-7.70(\text{m, } 4\text{H}) \]

Example 70: Synthesis of 1-(2-chlorophenyl)-l-methoxymethoxypropyl-2-carbamate

\[\begin{align*}
\text{Cl} & \quad \text{O} \quad \text{O} \\
\text{O} & \quad \text{NH}_2
\end{align*} \]
\[^1H \text{NMR}(400\text{MHz}, \text{CDCl}_3) \delta 1.37(d, J=6.8 \text{ Hz}, 3H), 3.30(s, 3H), 4.71(d, J=6.8, 1H), 4.82-4.88(m, 1H), 5.45(s, 2H), 7.26-7.70(m, 4H) \]

Example 71: Synthesis of 1-(2-chlorophenyl)-(R)-l-methoxymethoxypropyl-(S)-

2-carbamate

\[
\begin{array}{c}
\text{Cl} \\
\text{O} \\
\text{O} \\
\text{NH}_2 \\
\end{array}
\]

\[^1H \text{NMR}(400\text{MHz}, \text{CDCl}_3) \delta 1.37(d, J=6.8 \text{ Hz}, 3H), 3.30(s, 3H), 4.71(d, J=6.8, 1H), 4.82-4.88(m, 1H), 5.45(s, 2H), 7.26-7.70(m, 4H) \]

Example 72: Synthesis of 1-(2-chlorophenyl)-(S)-l-methoxymethoxypropyl-(R)-

2-carbamate

\[
\begin{array}{c}
\text{Cl} \\
\text{O} \\
\text{O} \\
\text{NH}_2 \\
\end{array}
\]

\[^1H \text{NMR}(400\text{MHz}, \text{CDCl}_3) \delta 1.37(d, J=6.8 \text{ Hz}, 3H), 3.30(s, 3H), 4.71(d, J=6.8, 1H), 4.82-4.88(m, 1H), 5.45(s, 2H), 7.26-7.70(m, 4H) \]

Example 73: Synthesis of 1-(2-chlorophenyl)-(R)-l-methoxymethoxybutyl-(R)-

2-carbamate

\[
\begin{array}{c}
\text{Cl} \\
\text{O} \\
\text{O} \\
\text{NH}_2 \\
\end{array}
\]

\[^1H \text{NMR}(400\text{MHz}, \text{CDCl}_3) \delta 1.04(t, J=7.6 \text{Hz}, 3H), 1.60-1.71(m, 2H), 3.30(s, 3H), 4.71(d, J=6.8, 1H), 4.73(br s, 2H), 4.82-4.88(m, 1H), 5.45(s, 2H), 7.26-7.70(m, 4H) \]

Example 74: Synthesis of 1-(2-chlorophenyl)-l-methoxymethoxybutyl-2-
carbamate
Example 75: Synthesis of 1-(2-chlorophenyl)-(R)-1-methoxymethoxy-3-methylbutyl-(R)-2-carbamate

\[
\text{1H NMR (400 MHz, CDCl\textsubscript{3})} \quad 51.04 (t, J=7.6 \text{ Hz}, 3 \text{H}), 1.60-1.71 (m, 2 \text{H}), 3.30 (s, 3 \text{H}), 4.71 (d, J=6.8, 1 \text{H}), 4.73 (br s, 2 \text{H}), 4.82-4.88 (m, 1 \text{H}), 5.45 (s, 2 \text{H}), 7.26-7.70 (m, 4 \text{H})
\]

Example 76: Synthesis of 1-(2-chlorophenyl)-1-methoxymethoxy-3-methylbutyl-2-carbamate

\[
\text{1H NMR (400 MHz, CDCl\textsubscript{3})} \quad 51.07 (t, J=7.6 \text{ Hz}, 6 \text{H}), 1.83-1.89 (m, 1 \text{H}), 3.30 (s, 3 \text{H}), 4.71 (d, J=6.8, 1 \text{H}), 4.73 (br s, 2 \text{H}), 4.82-4.88 (m, 1 \text{H}), 5.45 (s, 2 \text{H}), 7.26-7.70 (m, 4 \text{H})
\]

Example 77: Synthesis of 1-(2-chlorophenyl)-(R)-1-methoxymethoxyhexyl-(R)-2-carbamate

\[
\text{1H NMR (400 MHz, CDCl\textsubscript{3})} \quad 50.90 (t, J=7.6 \text{ Hz}, 3 \text{H}), 1.35-1.65 (m, 6 \text{H}), 3.30 (s, 3 \text{H}), 4.71 (d, J=6.8, 1 \text{H}), 4.73 (br s, 2 \text{H}), 4.82-4.88 (m, 1 \text{H}), 5.45 (s, 2 \text{H}), 7.26-7.70 (m, 4 \text{H})
\]
Example 78: Synthesis of 1-(2-chlorophenyl)-1-methoxymethoxyhexyl-2-carbamate

\[
\text{Cl} \quad \text{O} \quad \text{O} \\
\text{O} \quad \text{NH} \quad \text{NH}_2
\]

\(^1\text{H}\) NMR(400MHz, CDCl\(_3\)) 60.90(t, \(J=7.6\) Hz, 3H), 1.35~1.65(m, 6H), 3.30(s, 3H), 4.71(d, \(J=6.8\) Hz, 1H), 4.82~4.88(m, 2H), 4.73(br s, 2H), 5.45(s, 2H), 7.26~7.70(m, 8H)

Example 79: Synthesis of 1-(2-chlorophenyl)-(R)-1-methoxymethoxypropyl-(R)-2-methylcarbamate

\[
\text{Cl} \quad \text{O} \quad \text{O} \\
\text{O} \quad \text{N} \quad \text{H}
\]

\(^1\text{H}\) NMR(400MHz, CDCl\(_3\)) 51.37(d, \(J=6.8\) Hz, 3H), 2.58(s, 3H), 3.30(s, 3H), 4.71(d, \(J=6.8\) Hz, 2H), 4.82~4.88(m, 2H), 5.45(s, 2H), 7.26~7.70(m, 8H)

Example 80: Synthesis of 1-(2-chlorophenyl)-(R)-1-methoxymethoxypropyl-(R)-2-propylcarbamate

\[
\text{Cl} \quad \text{O} \quad \text{O} \\
\text{O} \quad \text{N} \quad \text{NH}_2
\]

\(^1\text{H}\) NMR(400MHz, CDCl\(_3\)) 50.90(t, \(J=6.8\) Hz, 3H), 1.37(d, \(J=6.8\) Hz, 3H), 1.60(m, 2H), 3.18(t, \(J=7.1\) Hz, 2H), 3.30(s, 3H), 4.71(d, \(J=6.8\) Hz, 2H), 4.82~4.88(m, 2H), 5.45(s, 2H), 7.26~7.70(m, 8H)

Example 81: Synthesis of 1-(2-chlorophenyl)-(R)-1-methoxymethoxypropyl-(R)-2-isopropylcarbamate

\[
\text{Cl} \quad \text{O} \quad \text{O} \\
\text{O} \quad \text{N} \quad \text{NH}_2
\]

\(^1\text{H}\) NMR(400MHz, CDCl\(_3\)) 60.90(t, \(J=6.8\) Hz, 3H), 1.35~1.65(m, 6H), 3.30(s, 3H), 4.71(d, \(J=6.8\) Hz, 2H), 4.82~4.88(m, 2H), 7.26~7.70(m, 8H)
H NMR(400MHz, CDCl₃) δ, 1.27(d, J=6.8 Hz, 6H), 1.37(d, J=6.8 Hz, 3H), 3.30(s, 3H),
4.17(m, 1H), 4.71(d, J=6.8, 1H), 4.82~4.88(m, 1H), 5.45(s, 2H), 7.26~7.70(m, 4H)

Example 82: Synthesis of l-(2-chlorophenyl)-(R)-l-methoxymethoxypropyl-(R)-
2-cyclopropylcarbamate

\[
\text{Cl} \quad \text{O} \quad \text{O} \\
\text{O} \quad \text{N} \quad \text{O} \\
\text{O} \quad \text{H} \\
\text{Cl}
\]

H NMR(400MHz, CDCl₃) δ0.57(η, 2H), 0.82(m, 2H), 1.37(d, J=6.8 Hz, 3H), 2.75(m, 1H),
3.30(s, 3H), 4.71(d, J=6.8, 1H), 4.82~4.88(m, 1H), 5.45(s, 2H), 7.26~7.70(m, 4H)

Example 83: Synthesis of l-(2-chlorophenyl)-(R)-l-methoxymethoxypropyl-(R)-
2-cyclohexylcarbamate

\[
\text{Cl} \quad \text{O} \quad \text{O} \\
\text{O} \quad \text{N} \quad \text{O} \\
\text{O} \quad \text{H} \\
\text{Cl}
\]

H NMR(400MHz, CDCl₃) δ1.11-1.21 (m, 4H), 1.37(d, J=6.8 Hz, 3H), 1.47~1.49(m, 4H),
1.74(m, 2H), 3.30(s, 3H), 3.54(m, 1H), 4.71(d, J=6.8, 1H), 4.82~4.88(m, 1H), 5.45(s, 2H),
7.26~7.70(m, 4H)

Example 84: Synthesis of l-(2-chlorophenyl)-(R)-l-methoxymethoxypropyl-(R)-
2-cyclohexylcarbamate

\[
\text{Cl} \quad \text{O} \quad \text{O} \\
\text{O} \quad \text{N} \quad \text{O} \\
\text{O} \quad \text{H} \\
\text{Cl}
\]

H NMR(400MHz, CDCl₃) δ1.37(d, J=6.8 Hz, 3H), 3.30(s, 3H), 4.20(m, 2H), 4.71(d, J=6.8,
1H), 4.82~4.88(m, 1H), 5.45(s, 2H), 7.13~7.19(m, 4H), 7.37~7.88(m, 5H)

Example 85: Synthesis of l-(2-chlorophenyl)-(R)-l-methoxymethoxypropyl-(R)-
2-bicyclo[2,2,1]heptanescarbamate
Example 86: Synthesis of l-(2-fluorophenyl)-(R)-l-methoxymethoxypropyl-(R)-2-carbamate

\[
\begin{align*}
\text{H NMR(400MHz, CDC\textsubscript{13})} & \text{ 51.33~1.58(m, 9H), 1.75~1.88(m, 2H), 2.06~2.13(m, 2H), 3.30(s, 3H), 3.53(m, 1H), 4.71(d, J=6.8, 1H), 4.82~4.88(m, 1H), 5.45(s, 2H), 7.13~7.19(m, 4H), 7.37~7.88(m, 5H)} \\
\end{align*}
\]

Example 87: Synthesis of l-(4-fluorophenyl)-(R)-l-methoxymethoxypropyl-(R)-2-carbamate

\[
\begin{align*}
\text{H NMR(400MHz, CDC\textsubscript{13})} & \text{ 61.37(d, J=6.8 Hz, 3H), 3.30(s, 3H), 4.71(d, J=6.8, 1H), 4.82~4.88(m, 1H), 5.45(s, 2H), 7.15~7.68(m, 4H)} \\
\end{align*}
\]

Example 88: Synthesis of l-(4-fluorophenyl)-(R)-l-methoxymethoxybutyl-(R)-2-carbamate

\[
\begin{align*}
\text{H NMR(400MHz, CDC\textsubscript{13})} & \text{ 61.04(t, J=7.6Hz, 3H), 1.60~1.71(m, 2H), 3.30(s, 3H), 4.71(d, J=6.8, 1H), 4.73(br s, 2H), 4.82~4.88(m, 1H), 5.45(s, 2H), 6.96~7.20(m, 4H)} \\
\end{align*}
\]
Example 89: Synthesis of l-(4-fluorophenyl)-(R)-l-methoxymethoxy-3-methyl-
butyl-(R)-2-carbamate

\[
\text{\begin{center}
\includegraphics[width=0.2\textwidth]{example89.png}
\end{center}}
\]

\[\text{^1H NMR(400MHz, CDC}_2\text{H}_3\text{)} 51.07(t, J=7.6\text{Hz, 6H)}, 1.83-1.89(m, 1H), 3.30(s, 3H), 4.71(d, J=6.8, 1H), 4.73(br s, 2H), 4.82-4.88(m, 1H), 5.45(s, 2H), 6.92-7.17(m, 4H)\]

Example 90: Synthesis of l-(4-fluorophenyl)-(R)-l-methoxymethoxyhexyl-(R)-
2-carbamate

\[
\text{\begin{center}
\includegraphics[width=0.2\textwidth]{example90.png}
\end{center}}
\]

\[\text{\^1H NMR(400MHz, CDC}_2\text{H}_3\text{)} 50.90(t, J=7.6\text{Hz, 3H)}, 1.35-1.65(m, 6H), 3.30(s, 3H), 4.71(d, J=6.8, 1H), 4.73(br s, 2H), 4.82-4.88(m, 1H), 5.45(s, 2H), 6.96-7.19(m, 4H)\]

Example 91: Synthesis of l-(2-iodophenyl)-(R)-l-methoxymethoxypropyl-(R)-2-
carbamate

\[
\text{\begin{center}
\includegraphics[width=0.2\textwidth]{example91.png}
\end{center}}
\]

\[\text{\^1H NMR(400MHz, CDC}_2\text{H}_3\text{)} 51.37(d, J=6.8\text{ Hz, 3H)}, 3.30(s, 3H), 4.71(d, J=6.8, 1H), 4.82-4.88(m, 1H), \text{5.45(s, 2H), 7.13-7.88(m, 4H)}\]

Example 92: Synthesis of l-(2-iodophenyl)-(R)-l-methoxymethoxybutyl-(R)-2-
carbamate

\[
\text{\begin{center}
\includegraphics[width=0.2\textwidth]{example92.png}
\end{center}}
\]
Example 93: Synthesis of l-(2-iodophenyl)-(R)-l-methoxymethoxy-3-methylbutyl-(R)-2-carbamate

\[\text{H NMR}(400\text{MHz}, \text{CDCl}_3) 61.04(t, J=7.6\text{Hz}, 3\text{H}), 1.60-1.71(m, 2\text{H}), 3.30(s, 3\text{H}), 4.71(d, J=6.8, 1\text{H}), 4.82-4.88(m, 1\text{H}), 5.45(s, 2\text{H}), 7.26-7.70(m, 4\text{H})\]

Example 94: Synthesis of l-(2-iodophenyl)-(R)-l-methoxymethoxyhexyl-(R)-2-carbamate

\[\text{H NMR}(400\text{MHz}, \text{CDCl}_3) 51.07(d, J=7.6\text{Hz}, 3\text{H}), 1.83-1.89(m, 1\text{H}), 3.30(s, 3\text{H}), 4.71(d, J=6.8, 1\text{H}), 4.82-4.88(m, 1\text{H}), 5.45(s, 2\text{H}), 7.26-7.70(m, 4\text{H})\]

Example 95: Synthesis of l-(3-iodophenyl)-(R)-l-methoxymethoxypropyl-(R)-2-carbamate

\[\text{H NMR}(400\text{MHz}, \text{CDCl}_3) 51.16(d, J=6.4\text{Hz}, 3\text{H}), 3.39(s, 3\text{H}), 4.54-4.63(m, 6\text{H}), 5.04-5.10(m, 1\text{H}), 7.09-7.73(m, 4\text{H})\]

Example 96: Synthesis of l-(3-iodophenyl)-(R)-l-methoxymethoxybutyl-(R)-2-carbamate
Example 97: Synthesis of 1-(3-iodophenyl)-(R)-l-methoxymethoxy-3-methylbutyl-(R)-2-carbamate

\(^1H \text{NMR}(400\text{MHz}, \text{CDCl}_3) \) 61.04(t, \(J=7.6\text{Hz} \), 3H), 1.60~1.71(m, 2H), 3.30(s, 3H), 4.71(d, \(J=6.8 \), 1H), 4.82~4.88(m, 1H), 5.45(s, 2H), 7.26~7.70(m, 4H)

Example 98: Synthesis of 1-(3-iodophenyl)-(R)-l-methoxymethoxyhexyl-(R)-2-carbamate

\(^1H \text{NMR}(400\text{MHz}, \text{CDCl}_3) \) 61.07(d, \(J=7.6\text{Hz} \), 3H), 1.83~1.89(m, 1H), 3.30(s, 3H), 4.71(d, \(J=6.8 \), 1H), 4.82~4.88(m, 1H), 5.45(s, 2H), 7.26~7.70(m, 4H)

Example 99: Synthesis of 1-(2-chlorophenyl)-(R)-l-methoxymethoxypropyl-(R)-2-methylcarbamate

\(^1H \text{NMR}(400\text{MHz}, \text{CDCl}_3) \) 61.37(d, \(J=6.8\text{ Hz} \), 3H), 2.58(s, 3H), 3.30(s, 3H), 4.71(d, \(J=6.8 \), 1H), 4.82~4.88(m, 1H), 5.45(s, 2H), 7.26~7.70(m, 4H)
Example 100: Synthesis of l-(2-chlorophenyl)-(R)-l-methoxymethoxypropyl-(R)-2-propylcarbamate

\[
\text{\begin{center}
\begin{tikzpicture}
\draw (0,0) -- (1,0) -- (1,1) -- (0,1) -- cycle;
\end{tikzpicture}
\end{center}
}\]

\^H NMR(400MHz, CDCl\textsubscript{3}) 60.90(t, J=6.8 Hz, 3H), 1.37(d, J=6.8 Hz, 3H), 1.60(m, 2H), 3.18(t, J=7.1Hz, 2H), 3.30(s, 3H), 4.71(d, J=6.8, 1H), 4.82~4.88(m, 1H), 5.45(s, 2H), 7.26~7.70(m, 4H)

Example 101: Synthesis of l-(2-chlorophenyl)-(R)-l-methoxymethoxypropyl-(R)-2-isopropylcarbamate

\[
\text{\begin{center}
\begin{tikzpicture}
\draw (0,0) -- (1,0) -- (1,1) -- (0,1) -- cycle;
\end{tikzpicture}
\end{center}
]\]

\^H NMR(400MHz, CDCl\textsubscript{3}) \^, 1.27(d, J=6.8 Hz, 6H), 1.37(d, J=6.8 Hz, 3H), 3.30(s, 3H), 4.17(m, 1H), 4.71(d, J=6.8, 1H), 4.82~4.88(m, 1H), 5.45(s, 2H), 7.26~7.70(m, 4H)

Example 102: Synthesis of l-(2-chlorophenyl)-(R)-l-methoxymethoxypropyl-(R)-2-cyclopropylcarbamate

\[
\text{\begin{center}
\begin{tikzpicture}
\draw (0,0) -- (1,0) -- (1,1) -- (0,1) -- cycle;
\end{tikzpicture}
\end{center}
]\]

\^H NMR(400MHz, CDCl\textsubscript{3}) 60.57(m, 2H), 0.82(m, 2H), 1.37(d, J=6.8 Hz, 3H), 2.75(m, 1H), 3.30(s, 3H), 4.71(d, J=6.8, 1H), 4.82~4.88(m, 1H), 5.45(s, 2H), 7.26~7.70(m, 4H)

Example 103: Synthesis of l-(2-chlorophenyl)-(R)-l-methoxymethoxypropyl-(R)-2-cyclohexylcarbamate
Example 104: Synthesis of 1-(2-chlorophenyl)-(R)-l-methoxymethoxypropyl-(R)-2-cyclohexylcarbamate

Example 105: Synthesis of 1-(2-chlorophenyl)-(R)-l-methoxymethoxypropyl-(R)-2-bicyclo[2,2,1]heptanescarbamate

Example 106: Synthesis of 1-(2,4-dichlorophenyl)-(R)-l-methoxymethoxypropyl-(R)-2-carbamate
Example 107: Synthesis of 1-(2,6-dichlorophenyl)-(R)-1-methoxymethoxypropyl-(R)-2-carbamate

\[
\begin{align*}
\text{H NMR(400MHz, CDC}_1\text{)} & \quad 61.37(d, J=6.8Hz, 3H), 3.30(s, 3H), 4.71(d, J=6.8, IH), \\
& \quad 4.82\text{~}4.88(m, IH), 5.45(s, 2H), 7.24\text{~}7.30(m, 2H), 7.73(d, J=1.5Hz, IH)
\end{align*}
\]

Example 108: Synthesis of 1-(2,3-dichlorophenyl)-(R)-1-methoxymethoxypropyl-(R)-2-carbamate

\[
\begin{align*}
\text{H NMR(400MHz, CDC}_1\text{)} & \quad 51.37(d, J=6.8Hz, 3H), 3.30(s, 3H), 4.71(d, J=6.8, IH), \\
& \quad 4.82\text{~}4.88(m, IH), 5.45(s, 2H), 7.57\text{~}7.58(m, 3H)
\end{align*}
\]

Example 109: Synthesis of 1-(2,4-dichlorophenyl)-(R)-1-methoxymethoxybutyl-(R)-2-carbamate

\[
\begin{align*}
\text{H NMR(400MHz, CDC}_1\text{)} & \quad 51.04(t, J=7.6Hz, 3H), 1.60\text{~}1.71(m, 2H), 3.30(s, 3H), 4.71(d, J=6.8, IH), \\
& \quad 4.73(br s, 2H), 4.82\text{~}4.88(m, IH), 5.45(s, 2H), 7.24\text{~}7.30(m, 2H), 7.73(d, J=1.5Hz, IH)
\end{align*}
\]

Example 110: Synthesis of 1-(2,6-dichlorophenyl)-(R)-1-methoxymethoxybutyl-(R)-2-carbamate
Example 111: Synthesis of 1-(2,4-dichlorophenyl)-(R)-l-methoxymethoxy-3-methyl-butyl-(R)-2-carbamate

\[\text{1H NMR(400MHz, CDC\textsubscript{13})} \text{ 61.04(t, } J = 7.6\text{Hz, 3H), 1.60~1.71(m, 2H), 3.30(s, 3H), 4.71 (d, } J = 6.8, \text{ IH), 4.73(br s, 2H), 4.82~4.88(m, IH), 5.45(s, 2H), 7.54~7.57(m, 3H) } \]

Example 112: Synthesis of 1-(2,6-dichlorophenyl)-(R)-l-methoxyniethoxy-3-methyl-butyl-(R)-2-carbamate

\[\text{1H NMR(400MHz, CDC\textsubscript{13})} \text{ 61.07(t, } J = 7.6\text{Hz, 6H), 1.83~1.89(m, IH), 3.30(s, 3H), 4.71(d, } J = 6.8, \text{ IH), 4.73(br s, 2H), 4.82~4.88(m, IH), 5.45(s, 2H), 7.24~7.30(m, 2H), 7.73(d, } J = 1.5\text{Hz, IH) } \]

Example 113: Synthesis of 1-(2,4-dichlorophenyl)-(R)-l-methoxymethoxyhexyl-(R)-2-carbamate

\[\text{1H NMR(400MHz, CDC\textsubscript{13})} \text{ 60.90(t, } J = 7.6\text{Hz, 3H), 1.35~1.65(m, 6H), 3.30(s, 3H), 4.71(d, } J = 6.8, \text{ IH), 4.73(br s, 2H), 4.82~4.88(m, IH), 5.45(s, 2H), 7.24~7.30(m, 2H), 7.73(d, } \]
Example 114: Synthesis of \(\text{L-(2,4-dichlorophenyl)-(R)-L-methoxymethoxyhexyl-(R)-2-carbamate} \)

\[\text{\(^{1}H \) NMR(400MHz, CDCl\textsubscript{3}) 50.90(t, J=7.6Hz, 3H), 1.35-1.65(m, 6H), 3.30(s, 3H), 4.71(d, J=6.8, IH), 4.73(br s, 2H), 4.82-4.88(m, IH), 5.45(s, 2H), 7.54-7.59(m, 3H)} \]

Example 115: Synthesis of \(\text{L-(2,4-dichlorophenyl)-L-methoxymethoxypropyl-2-carbamate} \)

\[\text{\(^{1}H \) NMR(400MHz, CDCl\textsubscript{3}) 51.37(d, J=6.8Hz, 3H), 3.30(s, 3H), 4.71(d, J=6.8, IH), 4.82-4.88(m, IH), 5.45(s, 2H), 7.24-7.30(m, 2H), 7.73(d, J=1.5Hz, IH)} \]

Example 116: Synthesis of \(\text{L-(2,6-dichlorophenyl)-L-methoxymethoxypropyl-2-carbamate} \)

\[\text{\(^{1}H \) NMR(400MHz, CDCl\textsubscript{3}) 51.37(d, J=6.8Hz, 3H), 3.30(s, 3H), 4.71(d, J=6.8, IH), 4.82-4.88(m, IH), 5.45(s, 2H), 7.57-7.58(m, 3H)} \]

Example 117: Synthesis of \(\text{L-(2,3-dichlorophenyl)-L-methoxymethoxypropyl-2-carbamate} \)
Example 118: Synthesis of l-(2,4-dichlorophenyl)-l-methoxymethoxybutyl-2-carbamate

![Chemical structure of l-(2,4-dichlorophenyl)-l-methoxymethoxybutyl-2-carbamate](image)

NMR (400 MHz, CDCl₃): 61.37 (d, J = 6.8 Hz, 3H), 3.30 (s, 3H), 4.71 (d, J = 6.8, 1H), 4.82–4.88 (m, 1H), 5.45 (s, 2H), 7.01–7.14 (m, 3H)

Example 119: Synthesis of l-(2,6-dichlorophenyl)-l-methoxymethoxybutyl-2-carbamate

![Chemical structure of l-(2,6-dichlorophenyl)-l-methoxymethoxybutyl-2-carbamate](image)

NMR (400 MHz, CDCl₃): 61.04 (t, J = 7.6 Hz, 3H), 1.60–1.71 (m, 2H), 3.30 (s, 3H), 4.71 (d, J = 6.8, 1H), 4.73 (br s, 2H), 4.82–4.88 (m, 1H), 5.45 (s, 2H), 7.24–7.30 (m, 2H), 7.73 (d, J = 1.5 Hz, 1H)

Example 120: Synthesis of l-(2,4-dichlorophenyl)-l-methoxymethoxy-3-methylbutyl-2-carbamate

![Chemical structure of l-(2,4-dichlorophenyl)-l-methoxymethoxy-3-methylbutyl-2-carbamate](image)

NMR (400 MHz, CDCl₃): 51.07 (t, J = 7.6 Hz, 6H), 1.83–1.89 (m, 1H), 3.30 (s, 3H), 4.71 (d, J = 6.8, 1H), 4.73 (br s, 2H), 4.82–4.88 (m, 1H), 5.45 (s, 2H), 7.24–7.30 (m, 2H), 7.73 (d, J = 1.5 Hz, 1H)

Example 121: Synthesis of l-(2,6-dichlorophenyl)-l-methoxymethoxy-3-methylbutyl-2-carbamate
Example 122: Synthesis of l-(2,4-dichlorophenyl)-l-methoxymethoxyhexyl-2-carbamate

\[
{^1}H\text{ NMR(400MHz, CDC}1_3\text{) }\delta 1.07(\text{t}, J=7.6\text{Hz, 6H}), 1.83\text{~}1.89(\text{m, IH), 3.30(s, 3H), 4.71(d, J=6.8, IH), 4.73(br s, 2H), 4.82~4.88(m, IH), 5.45(s, 2H), 7.55~7.57(m, 3H)}
\]

Example 123: Synthesis of l-(2,4-dichlorophenyl)-l-methoxymethoxyhexyl-2-carbamate

\[
{^1}H\text{ NMR(400MHz, CDC}1_3\text{) }80.90(\text{t}, J=7.6\text{Hz, 3H), 1.35~1.65(m, 6H), 3.30(s, 3H), 4.71(d, J=6.8, IH), 4.73(br s, 2H), 4.82~4.88(m, IH), 5.45(s, 2H), 7.24~7.30(m, 2H), 7.73(d, J=1.5\text{Hz, IH)}}
\]

Example 124: Synthesis of l-(2-chlorophenyl)-(S)-l-methoxypropyl-(S)-2-carbamate

\[
{^1}H\text{ NMR(400MHz, CDC}1_3\text{) 80.90(t, J=7.6\text{Hz, 3H), 1.35~1.65(m, 6H), 3.30(s, 3H), 4.71(d, J=6.8, IH), 4.73(br s, 2H), 4.82~4.88(m, IH), 5.45(s, 2H), 7.54~7.59(m, 3H)}
\]

1-(2-chlorophenyl)-1-hydroxyalkyl-2-alkylcarbamate(Preparation Example 103,
0.5g), THF(Tetrahydrofuran), MeI(Methyliodide, 5eq, 0.5ml) and i-BuOH(Potassium tert-butoxide, 1.5eq, 0.26g) were put into a flask and stirred at the 0°C. When the reaction was completed, the obtained product was washed with 1M HCl solution and EA(Ethylacetate). The separated organic layer was dehydrated with anhydrous MgSO₄(Magnesium sulfate), filtrated, and concentrated under reduced pressure. The concentrated residue was purified by a silicagel aolumn chromatography, to obtain title compound.

**H NMR(400MHz, CDC1₃) 51.40(d, J=6.0Hz, 3H), 3.24(s, 3H), 4.71(d, J=6.4Hz, 1H), 4.80~4.85(m, 1H), 7.01(br s, 1H), 7.07~7.20(m, 4H)

According to the method described in Example 124, the following compounds of Examples 124 to 12346 were prepared:

Example 125 : Synthesis of l-(2-chlorophenyl)-(S)-l-methoxypropyl-(S)-2-methylcarbamate

\[
\begin{array}{c}
\text{[Chemical structure]} \\
\end{array}
\]

**H NMR(400MHz, CDC1₃) 61.40(d, J=6.0Hz, 3H), 2.74(s, 3H), 3.24(s, 3H), 4.71(d, J=6.4Hz, 1H), 4.80~4.85(m, 1H), 7.01(br s, 1H), 7.07~7.20(m, 4H)

Example 126 : Synthesis of l-(2-chlorophenyl)-(S)-l-methoxypropyl-(S)-2-propylcarbamate

\[
\begin{array}{c}
\text{[Chemical structure]} \\
\end{array}
\]

**H NMR(400MHz, CDC1₃) 80.96(t, J=6.4Hz, 3H), 1.40(d, J=6.0Hz, 3H), 1.55~1.60(m, 2H), 2.96(t, J=6.0Hz, 2H), 3.24(s, 3H), 4.71(d, J=6.0Hz, 1H), 4.82~4.88(m, 1H), 6.76(br s, 2H), 7.07-7.2 l(m, 4H)

Example 127 : Synthesis of l-(2-chlorophenyl)-(S)-l-methoxypropyl-(S)-2-isopropylcarbamate

\[
\begin{array}{c}
\text{[Chemical structure]} \\
\end{array}
\]

**H NMR(400MHz, CDC1₃) 80.96(t, J=6.4Hz, 3H), 1.40(d, J=6.0Hz, 3H), 1.55~1.60(m, 2H), 2.96(t, J=6.0Hz, 2H), 3.24(s, 3H), 4.71(d, J=6.0Hz, 1H), 4.82~4.88(m, 1H), 6.76(br s, 2H), 7.07-7.2 l(m, 4H)
H NMR(400MHz, CDCl₃) δ, 1.15(d, J=6.0Hz, 3H), 1.35(d, J=6.4Hz, 3H), 1.50(d, J=6.8Hz, 3H), 3.24(s, 3H), 3.75(br s, IH), 4.48(br s, IH), 4.50(d, J=4.8Hz, IH), 5.09~5.20(m, IH), 7.07~7.20(m, 4H)

Example 128: Synthesis of l-(2-chlorophenyl)-(S)-l-methoxypropyl-(S)-2-cyclopropylcarbamate

H NMR(400MHz, CDCl₃) 80.30~0.34(m, 2H), 0.54~0.58(m, 2H), 1.30(d, J=6.8Hz, 3H), 2.55(m, IH), 3.24(s, 3H), 4.55(d, J=4.8Hz, IH), 4.90(br m, IH), 5.09~5.15(br s, IH), 7.06~7.20(l(m, 4H)

Example 129: Synthesis of l-(2-chlorophenyl)-(S)-l-methoxypropyl-(S)-2-cyclohexylcarbamate

H NMR(400MHz, CDCl₃) 51.11~1.21 (m, 4H), 1.37(d, J=6.8 Hz, 3H), 1.47~1.49(m, 4H), 1.74(m, 2H), 3.30(s, 3H), 3.54(m, IH), 4.71(d, J=6.8, IH), 4.82~4.88(m, IH), 5.45(s, 2H), 7.26~7.70(m, 4H)

Example 130: Synthesis of l-(2-chlorophenyl)-(S)-l-methoxypropyl-(S)-2-cyclohexylcarbamate
Example 131: Synthesis of 1-(2-chlorophenyl)-(S)-l-methoxypropyl-(S)-2-bicyclo[2,2,1]heptanes carbamate

\[
\text{H} \text{ NMR}(400\text{MHz}, \text{CDCl}_3) 51.40(\text{d}, J=6.8\text{ Hz}, 3\text{H}), 3.24(\text{s}, 3\text{H}), 4.20(\text{m}, 2\text{H}), 4.71(\text{d}, J=6.8, 1\text{H}), 4.82-4.88(\text{m}, 1\text{H}), 7.13-7.19(\text{m}, 4\text{H}), 7.32-7.46(\text{m}, 5\text{H})
\]

Example 132: Synthesis of 1-(2-chlorophenyl)-(S)-l-methoxybutyl-(S)-2-carbamate

\[
\text{H} \text{ NMR}(400\text{MHz}, \text{CDCl}_3) 61.04(\text{t}, J=7.6\text{ Hz}, 3\text{H}), 1.44-1.50(\text{m}, 7\text{H}), 1.70-1.73(\text{m}, 1\text{H}), 2.03-2.07(\text{m}, 1\text{H}), 3.24(\text{s}, 3\text{H}), 3.50-3.55(\text{m}, 2\text{H}), 4.71(\text{d}, J=6.4\text{ Hz}, 1\text{H}), 4.80-4.87(\text{m}, 1\text{H}), 7.07-7.19(\text{m}, 4\text{H})
\]

Example 133: Synthesis of 1-(2-chlorophenyl)-(S)-l-methoxy-3-methyl-butyl-(S)-2-carbamate

\[
\text{H} \text{ NMR}(400\text{MHz}, \text{CDCl}_3) 51.07(\text{t}, J=7.6\text{ Hz}, 6\text{H}), 1.83-1.89(\text{m}, 1\text{H}), 3.26(\text{s}, 3\text{H}), 4.71(\text{d}, J=6.8, 1\text{H}), 4.73(\text{br s}, 2\text{H}), 4.82-4.88(\text{m}, 1\text{H}), 7.26-7.70(\text{m}, 4\text{H})
\]

Example 134: Synthesis of 1-(2-chlorophenyl)-(S)-l-methoxyhexyl-(S)-2-carbamate
Example 135: Synthesis of l-(2-fluorophenyl)-(S)-l-methoxypropyl-(S)-2-carbamate

Example 136: Synthesis of l-(2-fluorophenyl)-(S)-l-methoxypropyl-(S)-2-methylcarbamate

Example 137: Synthesis of l-(2-fluorophenyl)-(S)-l-methoxypropyl-(S)-2-propylcarbamate
Example 138: Synthesis of 1-(2-fluorophenyl)-(S)-l-methoxypropyl-(S)-2-isopropylcarbamate

1H NMR (400 MHz, CDCl₃) δ, 1.27(d, J=6.8 Hz, 6H), 1.37(d, J=6.8 Hz, 3H), 3.25(s, 3H), 4.17(m, 1H), 4.71(d, J=6.8, 1H), 4.82~4.88(m, 1H), 7.15~7.69(m, 4H)

Example 139: Synthesis of 1-(2-fluorophenyl)-(S)-l-methoxypropyl-(S)-2-cyclopropylcarbamate

1H NMR (400 MHz, CDCl₃) 50.57(m, 2H), 0.82(m, 2H), 1.37(d, J=6.8 Hz, 3H), 2.75(m, 1H), 3.24(s, 3H), 4.71(d, J=6.8, 1H), 4.82~4.88(m, 1H), 7.16~7.70(m, 4H)

Example 140: Synthesis of 1-(2-fluorophenyl)-(S)-l-methoxypropyl-(S)-2-cyclohexylcarbamate

1H NMR (400 MHz, CDCl₃) 61.11-1.21 (m, 4H), 1.37(d, J=6.8 Hz, 3H), 1.47~1.49(m, 4H), 1.74(m, 2H), 3.26(s, 3H), 3.54(m, 1H), 4.71(d, J=6.8, 1H), 4.82~4.88(m, 1H), 7.15~7.66(m, 4H)

Example 141: Synthesis of 1-(2-fluorophenyl)-(S)-l-methoxymethoxypropyl-(S)-2-cyclohexylcarbamate
Example 142: Synthesis of l-(2-fluorophenyl)-(S)-l-methoxypropyl-(S)-2-
bicyclo[2,2,1]heptanescarbamate

Example 143: Synthesis of l-(2-iodophenyl)-(S)-l-methoxypropyl-(S)-2-
carbamate

Example 144: Synthesis of l-(2-iodophenyl)-(S)-l-methoxypropyl-(S)-2-
methylcarbamate

Example 145: Synthesis of l-(2-iodophenyl)-(S)-l-methoxypropyl-(S)-2-
propylcarbamate
Example 146: Synthesis of l-(2-iodophenyl)-(S)-l-methoxypropyl-(S)-2-isopropylcarbamate

Example 147: Synthesis of l-(2-iodophenyl)-(S)-l-methoxypropyl-(S)-2-cyclopropylcarbamate

Example 148: Synthesis of l-(2-iodophenyl)-(S)-l-methoxypropyl-(S)-2-cyclohexylcarbamate
Example 149: Synthesis of L-(2-iodophenyl)-(S)-L-methoxypropyl-(S)-2-cyclohexylcarbamate

\[
\text{\begin{center}
\includegraphics[width=0.2\textwidth]{example149.png}
\end{center}}
\]

\[
^1\text{H NMR}(400\text{MHz, } \text{CDCl}_3) \delta 1.37 (d, J=6.8 \text{ Hz, } 3\text{H}), 3.24 (s, 3\text{H}), 4.20 (m, 2\text{H}), 4.71 (d, J=6.8, 1\text{H}), 4.82-4.88 (m, 1\text{H}), 7.15-7.68 (m, 4\text{H}), 7.72-7.88 (m, 5\text{H})
\]

Example 150: Synthesis of L-(2-iodophenyl)-(S)-L-methoxypropyl-(S)-2-bicyclo[2.2.1]heptanescarbamate

\[
\text{\begin{center}
\includegraphics[width=0.2\textwidth]{example150.png}
\end{center}}
\]

\[
^1\text{H NMR}(400\text{MHz, } \text{CDCl}_3) \delta 1.33-1.58(m, 9\text{H}), 1.75-1.88(m, 2\text{H}), 2.06-2.13(m, 2\text{H}), 3.22(s, 3\text{H}), 3.53(m, 1\text{H}), 4.71(d, J=6.8, 1\text{H}), 4.82-4.88(m, 1\text{H}), 7.15-7.68(m, 4\text{H}), 7.37-7.88(m, 5\text{H})
\]

Example 151: Synthesis of L-(2-iodophenyl)-(S)-L-methoxybutyl-(S)-2-carbamate

\[
\text{\begin{center}
\includegraphics[width=0.2\textwidth]{example151.png}
\end{center}}
\]

\[
^1\text{H NMR}(400\text{MHz, } \text{CDCl}_3) \delta 1.04(t, J=7.6\text{Hz, } 3\text{H}), 1.60-1.71(m, 2\text{H}), 3.24(s, 3\text{H}), 4.71(d, J=6.8, 1\text{H}), 4.82-4.88(m, 1\text{H}), 7.26-7.70(m, 4\text{H})
\]

Example 152: Synthesis of L-(2-iodophenyl)-(S)-L-methoxybutyl-(S)-2-methylcarbamate
Example 153: Synthesis of l-(2-iodophenyl)-(S)-l-methoxybutyl-(S)-2-propylcarbamate

\[
\begin{array}{c}
\text{H NMR}(400MHz, \text{CDCl}_3) 61.04(t, J=7.6Hz, 3H), 1.60-1.71(m, 2H), 2.58(s, 3H), 3.23(s, 3H), 4.71(d, J=6.8, IH), 4.82-4.88(m, IH), 7.13-7.88(m, 4H)
\end{array}
\]

Example 154: Synthesis of l-(2-iodophenyl)-(S)-l-methoxybutyl-(S)-2-isopropylcarbamate

\[
\begin{array}{c}
\text{H NMR}(400MHz, \text{CDCl}_3) 61.04(t, J=7.6Hz, 3H), 1.27(d, J=6.8Hz, 6H), 1.60-1.71(m, 2H), 3.23(s, 3H), 4.17(m, IH), 4.71(d, J=6.8, IH), 4.82-4.88(m, IH), 7.15-7.90(m, 4H)
\end{array}
\]

Example 155: Synthesis of l-(2-iodophenyl)-(S)-l-methoxybutyl-(S)-2-cyclopropylcarbamate

\[
\begin{array}{c}
\text{H NMR}(400MHz, \text{CDCl}_3) 50.57(m, 2H), 0.82(m, 2H), 1.04(t, J=7.6Hz, 3H), 1.60-1.71(m, 2H), 2.75(m, IH), 3.24(s, 3H), 4.71(d, J=6.8, IH), 4.82-4.88(m, IH), 7.16-7.90(m, 4H)
\end{array}
\]
Example 156: Synthesis of l-(2-iodophenyl)-(S)-l-methoxybutyl-(S)-2-cyclohexylcarbamate

\[
\begin{align*}
\text{I} \quad \text{O}^+ \quad \text{N} \quad \text{O} \\
\text{O}^+ \quad \text{N} \quad \text{O} \\
\end{align*}
\]

\[^1H\text{ NMR}(400\text{MHz, }\text{CDCl}_3) \quad 61.04(t, \ J=7.6\text{Hz}, 3\text{H}), \quad 1.11-1.21 \ (m, 4\text{H}), \quad 1.47-1.49(m, 4\text{H}), \quad 1.60-1.71(m, 2\text{H}), \quad 1.74(m, 2\text{H}), \quad 3.23(s, 3\text{H}), \quad 3.54(m, 1\text{H}), \quad 4.71(d, \ J=6.8, 1\text{H}), \quad 4.82-4.88(m, 1\text{H}), \quad 7.14-7.87(m, 4\text{H})
\]

Example 157: Synthesis of l-(2-iodophenyl)-(S)-l-methoxybutyl-(S)-2-cyclohexylcarbamate

\[
\begin{align*}
\text{I} \quad \text{O}^+ \quad \text{N} \quad \text{O} \\
\text{O}^+ \quad \text{N} \quad \text{O} \\
\end{align*}
\]

\[^1H\text{ NMR}(400\text{MHz, }\text{CDCl}_3) \quad 51.04(t, \ J=7.6\text{Hz}, 3\text{H}), \quad 1.60-1.71(m, 2\text{H}), \quad 3.23(s, 3\text{H}), \quad 4.20(m, 2\text{H}), \quad 4.71(d, \ J=6.8, 1\text{H}), \quad 4.82-4.88(m, 1\text{H}), \quad 7.14-7.19(m, 4\text{H}), \quad 7.37-7.88(m, 5\text{H})
\]

\[
\begin{align*}
\text{I} \quad \text{O}^+ \quad \text{N} \quad \text{O} \\
\text{O}^+ \quad \text{N} \quad \text{O} \\
\end{align*}
\]

\[^1H\text{ NMR}(400\text{MHz, }\text{CDCl}_3) \quad 81.04(t, \ J=7.6\text{Hz}, 3\text{H}), \quad 1.33-1.58(m, 6\text{H}), \quad 1.60-1.71(m, 2\text{H}), \quad 1.75-1.88(m, 2\text{H}), \quad 2.06-2.13(m, 2\text{H}), \quad 3.24(s, 3\text{H}), \quad 3.53(m, 1\text{H}), \quad 4.71(d, \ J=6.8, 1\text{H}), \quad 4.82-4.88(m, 1\text{H}), \quad 7.15-7.19(m, 4\text{H}), \quad 7.37-7.88(m, 5\text{H})
\]

Example 159: Synthesis of l-(2-iodophenyl)-(S)-l-methoxy-3-methyl-butyl-(S)-2-carbamate
Example 160: Synthesis of l-(2-iodophenyl)-(S)-l-methoxy-3-methyl-butyI-(S)-2-methylcarbamate

Example 161: Synthesis of l-(2-iodophenyl)-(S)-l-methoxy-3-methyl-butyl-(S)-2-propylcarbamate

Example 162: Synthesis of l-(2-iodophenyl)-(S)-l-methoxy-3-methyl-butyl-(S)-2-isopropylcarbamate
Example 163: Synthesis of l-(2-iodophenyl)-(S)-l-methoxy-3-methyl-butyl-(S)-
2-cyclopropylcarbamate

\[
\text{1H NMR}(400\text{MHz, } \text{CDCl}_3) \]
60.57(m, 2H), 0.82(m, 2H), 1.04(d, \(J=7.6\text{Hz}, 6\text{H}\)), 1.60-1.71(m, 1H), 2.75(m, 1H), 3.24(s, 3H), 4.71(d, \(J=6.8\text{, IH}\)), 4.82-4.88(m, 4H), 7.16-7.90(m, 4H)

Example 164: Synthesis of l-(2-iodophenyl)-(S)-l-methoxy-3-methyl-butyl-(S)-
2-cyclohexylcarbamate

\[
\text{1H NMR}(400\text{MHz, } \text{CDCl}_3) \]
61.04(d, \(J=7.6\text{Hz}, 6\text{H}\)), 1.11-1.21 (m, 4H), 1.47-1.49(m, 4H), 1.74(m, 2H), 1.84-1.90(m, 1H), 3.23(s, 3H), 3.54(m, 1H), 4.71(d, \(J=6.8\text{, IH}\)), 4.82-4.88(m, 4H), 7.14-7.87(m, 4H)

Example 165: Synthesis of l-(2-iodophenyl)-(S)-l-methoxy-3-methyl-butyl-(S)-
2-cyclohexylcarbamate

\[
\text{1H NMR}(400\text{MHz, } \text{CDCl}_3) \]
51.04(d, \(J=7.6\text{Hz}, 6\text{H}\)), 1.87-1.90(m, 1H), 3.24(s, 3H), 4.20(m, 2H), 4.71(d, \(J=6.8\text{, IH}\)), 4.82-4.88(m, 1H), 7.14-7.19(m, 4H), 7.37-7.88(m, 5H)

Example 166: Synthesis of l-(2-iodophenyl)-(S)-l-methoxy-3-methyl-butyl-(S)-
2-bicyclo[2,2,1]heptanescarbamate
Example 167: Synthesis of 1-(2-iodophenyl)-(S)-l-methoxyhexyl-(S)-2-carbamate

\[\text{H NMR(400MHz, CDC}_1\text{)} 51.04(d, J \text{=7.6Hz, 6H), 1.33~1.58(m, 6H), 1.75~1.88(m, 2H), 1.88~1.93(m, 1H), 2.06~2.13(m, 2H), 3.22(s, 3H), 3.53(m, 1H), 4.71(d, J \text{=6.8, 1H), 4.82~4.88(m, 1H), 7.15~7.19(m, 4H), 7.37~7.88(m, 5H) } \]

Example 168: Synthesis of 1-(2-iodophenyl)-(S)-l-methoxyhexyl-(S)-2-methylcarbamate

\[\text{H NMR(400MHz, CDC}_1\text{)} 80.89(t, J \text{=7.0Hz, 3H), 1.20~1.35(m, 4H), 1.36~1.41(m, 1H), 1.59~1.63(m, 1H), 2.58(s, 3H), 3.23(s, 3H), 4.71(d, J \text{=6.8, 1H), 4.82~4.88(m, 1H), 7.13~7.88(m, 4H) } \]

Example 169: Synthesis of 1-(2-iodophenyl)-(S)-l-methoxyhexyl-(S)-2-propylcarbamate
Example 170: Synthesis of L-(2-iodophenyl)-(S)-l-methoxyhexyl-(S)-2-isopropylcarbamate

![Chemical Structure]

1H NMR(400MHz, CDCl$_3$) 60.84(t, $J=7.6$Hz, 3H), 1.22-1.35(m, 4H), 1.36-1.40(m, IH), 1.58-1.62(m, IH), 2.75(m, IH), 3.23(s, 3H), 4.71(d, $J=6.8$, IH), 4.82-4.88(m, IH), 7.16-7.90(m, 4H)

Example 171: Synthesis of L-(2-iodophenyl)-(S)-l-methoxyhexyl-(S)-2-cyclopropylcarbamate

![Chemical Structure]

1H NMR(400MHz, CDCl$_3$) 50.57(m, 2H), 0.82(m, 2H), 0.88(t, $J=7.6$Hz, 3H), 1.22-1.35(m, 4H), 1.36-1.40(m, IH), 1.58-1.62(m, IH), 2.75(m, IH), 3.23(s, 3H), 4.71(d, $J=6.8$, IH), 4.82-4.88(m, IH), 7.16-7.90(m, 4H)

Example 172: Synthesis of L-(2-iodophenyl)-(S)-l-methoxyhexyl-(S)-2-cyclohexylcarbamate

![Chemical Structure]

1H NMR(400MHz, CDCl$_3$) 50.98(t, $J=7.6$Hz, 3H), 1.11-1.21(m, 4H), 1.26-1.33(m, 4H), 1.47-1.49(m, 2H), 1.52-1.54(m, 2H), 1.74(m, 2H), 1.84-1.90(m, IH), 3.23(s, 3H), 3.54(m, IH), 4.71(d, $J=6.8$, IH), 4.82-4.88(m, IH), 7.14-7.87(m, 4H)
Example 173: Synthesis of \(l-(2\text{-iodophenyl})-(S)-l\text{-methoxyhexyl}-(S)-2\text{-cyclohexylcarbamate} \)

![Chemical structure](image)

\(^1H\) NMR(400MHz, CDCl\(_3\)) 60.94(t, \(J = 7.6 \text{Hz} \), 3H), 1.26~1.33(m, 4H), 1.51~1.55(m, 2H), 3.23(s, 3H), 4.20(m, 2H), 4.71(d, \(J = 6.8 \), 1H), 4.82~4.88(m, 1H), 7.14~7.19(m, 4H), 7.37~7.88(m, 5H)

Example 174: Synthesis of \(l-(2\text{-iodophenyl})-(S)-l\text{-methoxyhexyl}-(S)-2\text{-bicyclo[2,2,1]heptanescarbamate} \)

![Chemical structure](image)

\(^1H\) NMR(400MHz, CDCl\(_3\)) 50.97(t, \(J = 7.0 \text{Hz} \), 3H), 1.25~1.32(m, 4H), 1.33~1.58(m, 8H), 1.60~1.71(m, 2H), 1.75~1.88(m, 2H), 2.06~2.13(m, 2H), 3.24(s, 3H), 3.53(m, 1H), 4.71(d, \(J = 6.8 \), 1H), 4.82~4.88(m, 1H), 7.15~7.19(m, 4H), 7.37~7.88(m, 5H)

Example 175: Synthesis of \(l-(3\text{-iodophenyl})-(S)-l\text{-methoxypropyl}-(S)-2\text{-carbamate} \)

![Chemical structure](image)

\(^1H\) NMR(400MHz, CDCl\(_3\)) 61.16(d, \(J = 6.4 \text{Hz} \), 3H), 3.24(s, 3H), 4.54~4.63(m, 4H), 5.04~5.10(m, 1H), 7.09~7.73(m, 4H)

Example 176: Synthesis of \(l-(3\text{-iodophenyl})-(S)-l\text{-methoxybutyl}-(S)-2\text{-carbamate} \)
Example 177: Synthesis of l-(3-iodophenyl)-(S)-l-methoxy-3-methyl-butyl-(S)-2-carbamate

Example 178: Synthesis of l-(3-iodophenyl)-(S)-l-methoxyhexyl-(S)-2-carbamate

Example 179: Synthesis of l-(4-fluorophenyl)-(S)-l-methoxypropyl-(S)-2-carbamate
Example 180: Synthesis of l-(4-fluorophenyl)-(S)-l-methoxybutyl-(S)-2-carbamate

\[\text{H NMR}(400\text{MHz, CDC}1_3) \]
\[51.04(t, J=7.6\text{Hz, 3H), 1.60-1.71(m, 2H), 3.24(s, 3H), 4.71(d, J=6.8, 1H), 4.73(br s, 2H), 4.82-4.88(m, 1H), 6.90-7.20(m, 4H) } \]

Example 181: Synthesis of l-(4-fluorophenyl)-(S)-l-methoxy-3-methyl-butyl-(S)-2-carbamate

\[\text{H NMR}(400\text{MHz, CDC}1_3) \]
\[61.07(t, J=7.6\text{Hz, 6H), 1.83-1.89(m, 1H), 3.24(s, 3H), 4.71(d, J=6.8, 1H), 4.73(br s, 2H), 4.82-4.88(m, 1H), 6.92-7.17(m, 4H) } \]

Example 182: Synthesis of l-(4-fluorophenyl)-(S)-l-methoxyhexyl-(S)-2-carbamate

\[\text{H NMR}(400\text{MHz, CDC}1_3) \]
\[60.90(t, J=7.6\text{Hz, 3H), 1.35-1.65(m, 6H), 3.23(s, 3H), 4.71(d, J=6.8, 1H), 4.73(br s, 2H), 4.82-4.88(m, 1H), 6.96-7.19(m, 4H) } \]

Example 183: Synthesis of l-(2,4-dichlorophenyl)-(S)-l-methoxypropyl-(S)-2-carbamate

\[\text{H NMR}(400\text{MHz, CDC}1_3) \]
\[51.37(d, J=6.8\text{Hz, 3H), 3.24(s, 3H), 4.71(d, J=6.8, 1H), } \]
4.82~4.88(m, IH), 7.24~7.30(m, 2H), 7.73(d, J=1.5Hz, IH)

Example 184: Synthesis of l-(2,4-dichlorophenyl)-(S)-l-methoxybutyl-(S)-2-carbamate

\[
\begin{align*}
\text{Cl} & \quad \text{O}^- \\
\text{Cl} & \quad \text{O} \\
\text{NH}_2 & \\
\text{O} & \\
\end{align*}
\]

\(^1\)H NMR(400MHz, CDC\textsubscript{13}) 51.04(t, J=7.6Hz, 3H), 1.60-1.71(m, 2H), 3.24(s, 3H), 4.71(d, J=6.8, IH), 4.73(br s, 2H), 4.82~4.88(m, IH), 7.24~7.30(m, 2H), 7.73(d, J=1.5Hz, IH)

Example 185: Synthesis of l-(2,4-dichlorophenyl)-(S)-l-methoxy-3-methylbutyl-(S)-2-carbamate

\[
\begin{align*}
\text{Cl} & \quad \text{O}^- \\
\text{Cl} & \quad \text{O} \\
\text{NH}_2 & \\
\text{O} & \\
\end{align*}
\]

\(^1\)H NMR(400MHz, CDC\textsubscript{13}) 51.07(t, J=7.6Hz, 6H), 1.83~1.89(m, IH), 3.24(s, 3H), 4.71(d, J=6.8, IH), 4.73(br s, 2H), 4.82~4.88(m, IH), 7.24~7.30(m, 2H), 7.73(d, J=1.5Hz, IH)

Example 186: Synthesis of l-(2,4-dichlorophenyl)-(S)-l-methoxyhexyl-(S)-2-carbamate

\[
\begin{align*}
\text{Cl} & \quad \text{O}^- \\
\text{Cl} & \quad \text{O} \\
\text{NH}_2 & \\
\text{O} & \\
\end{align*}
\]

\(^1\)H NMR(400MHz, CDC\textsubscript{13}) 50.90(t, J=7.6Hz, 3H), 1.35~1.65(m, 6H), 3.24(s, 3H), 4.71(d, J=6.8, IH), 4.73(br s, 2H), 4.82~4.88(m, IH), 7.24~7.30(m, 2H), 7.73(d, J=1.5Hz, IH)

Example 187: Synthesis of l-(2,6-dichlorophenyl)-(S)-l-methoxypropyl-(S)-2-carbamate
\[
\begin{align*}
\text{Example 188: Synthesis of l-(2,6-dichlorophenyl)-(S)-l-methoxybutyl-(S)-2-carbamate} \\
\end{align*}
\]

\[
\begin{align*}
{^1}H \text{ NMR(400MHz, CDCl}_3) & 51.37(d, J=6.8Hz, 3H), 3.24(s, 3H), 4.71(d, J=6.8, 1H), \\
& 4.82-4.88(m, 1H), 7.57-7.58(m, 3H)
\end{align*}
\]

\[
\begin{align*}
\text{Example 189: Synthesis of l-(2,6-dichlorophenyl)-(S)-l-methoxy-3-methylbutyl-(S)-2-carbamate} \\
\end{align*}
\]

\[
\begin{align*}
{^1}H \text{ NMR(400MHz, CDCl}_3) & 51.04(t, J=7.6Hz, 3H), 1.60-1.71(m, 2H), 3.24(s, 3H), 4.71(d, J=6.8, 1H), 4.73(br s, 2H), 4.82-4.88(m, 1H), 7.54-7.57(m, 3H)
\end{align*}
\]

\[
\begin{align*}
\text{Example 190: Synthesis of l-(2,4-dichlorophenyl)-(S)-l-methoxyhexyl-(S)-2-carbamate} \\
\end{align*}
\]

\[
\begin{align*}
{^1}H \text{ NMR(400MHz, CDCl}_3) & 50.90(t, J=7.6Hz, 3H), 1.35-1.65(m, 6H), 3.23(s, 3H), 4.71(d, J=6.8, 1H), 4.73(br s, 2H), 4.82-4.88(m, 1H), 7.54-7.59(m, 3H)
\end{align*}
\]
Example 191: Synthesis of l-(2,3-dichlorophenyl)-(S)-l-methoxypropyl-(S)-2-carbamate

\[
\begin{align*}
\text{Cl} & \quad \text{O} \quad \text{O} \quad \text{NH}_2 \\
\text{Cl} & \quad \text{O} \quad \text{O} \quad \text{NH}_2 \\
\end{align*}
\]

1H NMR(400MHz, CDC$_3$): 51.37(d, $J=6.8$ Hz, 3H), 3.24(s, 3H), 4.71(d, $J=6.8$, 1H), 4.82~4.88(m, 1H), 7.26~7.70(m, 4H)

Example 192: Synthesis of l-(2-chlorophenyl)-(R)-l-methoxypropyl-(R)-2-carbamate

\[
\begin{align*}
\text{Cl} & \quad \text{O} \quad \text{O} \quad \text{NH}_2 \\
\text{Cl} & \quad \text{O} \quad \text{O} \quad \text{NH}_2 \\
\end{align*}
\]

1H NMR(400MHz, CDC$_3$): 51.37(d, $J=6.8$ Hz, 3H), 3.24(s, 3H), 4.71(d, $J=6.8$, 1H), 4.82~4.88(m, 1H), 7.26~7.70(m, 4H)

Example 193: Synthesis of l-(2-chlorophenyl)-l-methoxypropyl-2-carbamate

\[
\begin{align*}
\text{Cl} & \quad \text{O} \quad \text{O} \quad \text{NH}_2 \\
\text{Cl} & \quad \text{O} \quad \text{O} \quad \text{NH}_2 \\
\end{align*}
\]

1H NMR(400MHz, CDC$_3$): 51.37(d, $J=6.8$ Hz, 3H), 3.24(s, 3H), 4.71(d, $J=6.8$, 1H), 4.82~4.88(m, 1H), 7.26~7.70(m, 4H)

Example 194: Synthesis of l-(2-chlorophenyl)-(R)-l-methoxypropyl-(S)-2-carbamate

\[
\begin{align*}
\text{Cl} & \quad \text{O} \quad \text{O} \quad \text{NH}_2 \\
\text{Cl} & \quad \text{O} \quad \text{O} \quad \text{NH}_2 \\
\end{align*}
\]

1H NMR(400MHz, CDC$_3$): 51.37(d, $J=6.8$ Hz, 3H), 3.24(s, 3H), 4.71(d, $J=6.8$, 1H), 4.82~4.88(m, 1H), 7.26~7.70(m, 4H)
Example 195: Synthesis of l-(2-chlorophenyl)-(S)-l-methoxypropyl-(R)-2-carbamate

\[
\text{Cl} \quad \text{O}^- \quad \text{NH}_2 \\
\text{O} \
\]

\(^1H \text{ NMR}(400\text{MHz, CDC}_1\text{)} \) 51.37(d, \(J=6.8\ \text{Hz, 3H} \), 3.24(s, 3H), 4.71(d, \(J=6.8\, 1\text{H} \), 4.82–4.88(m, 1H), 7.26–7.70(m, 4H)

Example 196: Synthesis of l-(2-chlorophenyl)-(R)-l-methoxybutyl-(R)-2-carbamate

\[
\text{Cl} \quad \text{O}^- \quad \text{NH}_2 \\
\text{O} \
\]

\(^1H \text{ NMR}(400\text{MHz, CDC}_1\text{)} \) 51.04(t, \(J=7.6\text{Hz, 3H} \), 1.60–1.71(m, 2H), 3.24(s, 3H), 4.71(d, \(J=6.8\, 1\text{H} \), 4.73(br s, 2H), 4.82–4.88(m, 1H), 7.26–7.70(m, 4H)

Example 197: Synthesis of l-(2-chlorophenyl)-l-methoxybutyl-2-carbamate

\[
\text{Cl} \quad \text{O}^- \quad \text{NH}_2 \\
\text{O} \
\]

\(^1H \text{ NMR}(400\text{MHz, CDC}_1\text{)} \) 51.04(t, \(J=7.6\text{Hz, 3H} \), 1.60–1.71(m, 2H), 3.23(s, 3H), 4.71(d, \(J=6.8\, 1\text{H} \), 4.73(br s, 2H), 4.82–4.88(m, 1H), 7.26–7.70(m, 4H)

Example 198: Synthesis of l-(2-chlorophenyl)-(R)-l-methoxy-3-methyl-butyI-(R)-2-carbamate

\[
\text{Cl} \quad \text{O}^- \quad \text{NH}_2 \\
\text{O} \
\]

\(^1H \text{ NMR}(400\text{MHz, CDC}_1\text{)} \) 51.04(t, \(J=7.6\text{Hz, 3H} \), 1.60–1.71(m, 2H), 3.24(s, 3H), 4.71(d,
$J=6.8, \ 1H), \ 4.73(\text{br s,} \ 2H), \ 4.82\text{~}4.88(\text{m,} \ 1H), \ 7.26\text{~}7.70(\text{m,} \ 4H)$

Example 199: Synthesis of l-(2-chlorophenyl)-l-methoxy-3-methyl-butyl-2-carbamate

![Chemical structure]

$^1H\ \text{NMR(400MHz,} \ \text{CDCl}_3) \ 51.07(t, \ J=7.6Hz, \ 6H), \ 1.83\text{~}1.89(\text{m,} \ 1H), \ 3.24(\text{s,} \ 3H), \ 4.71(\text{d,} \ J=6.8, \ 1H), \ 4.73(\text{br s,} \ 2H), \ 4.82\text{~}4.88(\text{m,} \ 1H), \ 7.26\text{~}7.70(\text{m,} \ 4H)$

Example 200: Synthesis of l-(2-chlorophenyl)-(R)-l-methoxyhexyl-(R)-2-carbamate

![Chemical structure]

$^1H\ \text{NMR(400MHz,} \ \text{CDCl}_3) \ 80.90(t, \ J=7.6Hz, \ 3H), \ 1.35\text{~}1.65(\text{m,} \ 6H), \ 3.24(\text{s,} \ 3H), \ 4.71(\text{d,} \ J=6.8, \ 1H), \ 4.73(\text{br s,} \ 2H), \ 4.82\text{~}4.88(\text{m,} \ 1H), \ 7.26\text{~}7.70(\text{m,} \ 4H)$

Example 201: Synthesis of l-(2-chlorophenyl)-l-methoxyhexyl-2-carbamate

![Chemical structure]

$^1H\ \text{NMR(400MHz,} \ \text{CDCl}_3) \ 60.90(t, \ J=7.6Hz, \ 3H), \ 1.35\text{~}1.65(\text{m,} \ 6H), \ 3.24(\text{s,} \ 3H), \ 4.71(\text{d,} \ J=6.8, \ 1H), \ 4.73(\text{br s,} \ 2H), \ 4.82\text{~}4.88(\text{m,} \ 1H), \ 7.26\text{~}7.70(\text{m,} \ 4H)$

Example 202: Synthesis of l-(2-chlorophenyl)-(R)-l-methoxypropyl-(R)-2-methylcarbamate

![Chemical structure]
\[^1H \text{ NMR}(400\text{MHz, } \text{CDCl}_3) 51.37(d, J=6.8 \text{ Hz, } 3\text{H}), 2.58(s, 3\text{H}), 3.24(s, 3\text{H}), 4.71(d, J=6.8, \text{IH}), 4.82\text{--}4.88(m, \text{IH}), 7.26\text{--}7.70(m, 4\text{H}) \]

Example 203: Synthesis of l-(2-chlorophenyl)-(R)-l-methoxypropyl-(R)-2-propylcarbamate

![Chemical Structure](image)

\[^1H \text{ NMR}(400\text{MHz, } \text{CDCl}_3) 50.90(t, J=6.8 \text{ Hz, } 3\text{H}), 1.37(d, J=6.8 \text{ Hz, } 3\text{H}), 1.60(m, 2\text{H}), 3.18(t, J=7.1 \text{ Hz, } 2\text{H}), 3.23(s, 3\text{H}), 4.71(d, J=6.8, \text{IH}), 4.82\text{--}4.88(m, \text{IH}), 7.26\text{--}7.70(m, 4\text{H}) \]

Example 204: Synthesis of l-(2-chlorophenyl)-(R)-l-thoxypropyl-(R)-2-isopropylcarbamate

![Chemical Structure](image)

\[^1H \text{ NMR}(400\text{MHz, } \text{CDCl}_3) \delta, 1.27(d, J=6.8 \text{ Hz, } 6\text{H}), 1.37(d, J=6.8 \text{ Hz, } 3\text{H}), 3.23(s, 3\text{H}), 4.17(m, \text{IH}), 4.71(d, J=6.8, \text{IH}), 4.82\text{--}4.88(m, \text{IH}), 7.26\text{--}7.70(m, 4\text{H}) \]

Example 205: Synthesis of l-(2-chlorophenyl)-(R)-l-methoxypropyl-(R)-2-cyclopropylcarbamate

![Chemical Structure](image)

\[^1H \text{ NMR}(400\text{MHz, } \text{CDCl}_3) 50.57(m, 2\text{H}), 0.82(m, 2\text{H}), 1.37(d, J=6.8 \text{ Hz, } 3\text{H}), 2.75(m, \text{IH}), 3.24(s, 3\text{H}), 4.71(d, J=6.8, \text{IH}), 4.82\text{--}4.88(m, \text{IH}), 7.26\text{--}7.70(m, 4\text{H}) \]

Example 206: Synthesis of l-(2-chlorophenyl)-(R)-l-methoxypropyl-(R)-2-cyclohexylcarbamate

![Chemical Structure](image)
Example 207: Synthesis of 1-(2-chlorophenyl)-(R)-l-methoxypropyl-(R)-2-cyclohexylcarbamate

Example 208: Synthesis of 1-(2-chlorophenyl)-(R)-l-methoxypropyl-(R)-2-bicyclo[2,2,1]heptanescarbamate

Example 209: Synthesis of 1-(2-fluorophenyl)-(R)-l-methoxypropyl-(R)-2-carbamate
\text{H NMR(400MHz, CDCl}_3\text{)} 51.37(d, J=6.8 \text{ Hz}, 3H), 3.23(s, 3H), 4.71(d, J=6.8, IH), 4.82-4.88(m, IH), 7.15-7.68(m, 4H)

Example 210 : Synthesis of l-(4-fluorophenyl)-(R)-l-methoxypropyl-(R)-2-carbamate

\[
\text{O} \quad \text{O} \quad \text{NH}_2
\]

\text{H NMR(400MHz, CDCl}_3\text{)} 61.37(d, J=6.8 \text{ Hz}, 3H), 3.23(s, 3H), 4.71(d, J=6.8, IH), 4.82-4.88(m, IH), 6.96-7.17(m, 4H)

Example 211 : Synthesis of l-(4-fluorophenyl)-(R)-l-methoxybutyl-(R)-2-carbamate

\[
\text{O} \quad \text{O} \quad \text{NH}_2
\]

\text{H NMR(400MHz, CDCl}_3\text{)} 51.04(t, J=7.6Hz, 3H), 1.60-1.71(m, 2H), 3.24(s, 3H), 4.71(d, J=6.8, IH), 4.73(br s, 2H), 4.82-4.88(m, IH), 6.90-7.20(m, 4H)

Example 212 : Synthesis of l-(4-fluorophenyl)-(R)-l-methoxy-3-methyl-butyl-(R)-2-carbamate

\[
\text{O} \quad \text{O} \quad \text{NH}_2
\]

\text{H NMR(400MHz, CDCl}_3\text{)} 51.07(t, J=7.6Hz, 6H), 1.83-1.89(m, IH), 3.23(s, 3H), 4.71(d, J=6.8, IH), 4.73(br s, 2H), 4.82-4.88(m, IH), 6.92-7.17(m, 4H)

Example 213 : Synthesis of l-(4-fluorophenyl)-(R)-l-methoxyhexyl-(R)-2-carbamate
Example 214: Synthesis of \(\text{(R)}-\text{l-methoxypropyl-} \text{(R)-2-carbamate} \)

\[
\begin{align*}
\text{NMR(400MHz, CDC}_1\text{)} & \delta 51.37(d, J=6.8 \text{ Hz, 3H}), 3.24(s, 3H), 4.71(d, J=6.8, 1H), 4.82-4.88(m, 1H), 7.13-7.88(m, 4H)
\end{align*}
\]

Example 215: Synthesis of \(\text{(R)}-\text{l-methoxybutyl-} \text{(R)-2-carbamate} \)

\[
\begin{align*}
\text{NMR(400MHz, CDC}_1\text{)} & \delta 60.90(t, J=7.6\text{Hz, 3H}), 1.35-1.65(m, 6H), 3.23(s, 3H), 4.71(d, J=6.8, 1H), 4.73(br s, 2H), 4.82-4.88(m, 1H), 6.96-7.19(m, 4H)
\end{align*}
\]

Example 216: Synthesis of \(\text{(R)}-\text{l-methoxy-3-methyl-butyl-} \text{(R)-2-carbamate} \)

\[
\begin{align*}
\text{NMR(400MHz, CDC}_1\text{)} & \delta 81.07(d, J=7.6\text{Hz, 3H}), 1.83-1.89(m, 1H), 3.24(s, 3H), 4.71(d, J=6.8, 1H), 4.82-4.88(m, 1H), 7.26-7.70(m, 4H)
\end{align*}
\]
Example 217: Synthesis of \(l\)-(2-iodophenyl)-(R)-l-methoxyhexyl-(R)-2-carbamate

\[
\begin{align*}
\text{\(1^H\) NMR (400 MHz, CDCl}_3 \)): & \ 50.84 (t, J = 7.0 Hz, 3H), 1.20-1.35 (m, 4H), 1.36-1.41 (m, IH), 1.59-1.63 (m, IH), 3.30 (s, 3H), 4.47 (br s, 2H), 4.71 (d, J = 6.8, IH), 4.82-4.88 (m, IH), 5.45 (s, 2H), 7.26-7.70 (m, 4H) \\
\end{align*}
\]

Example 218: Synthesis of \(l\)-(3-iodophenyl)-(R)-l-methoxypropyl-(R)-2-carbamate

\[
\begin{align*}
\text{\(1^H\) NMR (400 MHz, CDCl}_3 \)): & \ 51.16 (d, J = 6.4 Hz, 3H), 3.23 (s, 3H), 4.54-4.63 (m, 4H), 5.04-5.10 (m, IH), 7.09-7.73 (m, 4H) \\
\end{align*}
\]

Example 219: Synthesis of \(l\)-(3-iodophenyl)-(R)-l-methoxybutyl-(R)-2-carbamate

\[
\begin{align*}
\text{\(1^H\) NMR (400 MHz, CDCl}_3 \)): & \ 51.04 (t, J = 7.6 Hz, 3H), 1.60-1.71 (m, 2H), 3.24 (s, 3H), 4.71 (d, J = 6.5, IH), 4.82-4.88 (m, IH), 7.26-7.70 (m, 4H) \\
\end{align*}
\]

Example 220: Synthesis of \(l\)-(3-iodophenyl)-(R)-l-methoxy-3-methyl-butyl-(R)-2-carbamate

\[
\begin{align*}
\text{\(1^H\) NMR (400 MHz, CDCl}_3 \)): & \
\end{align*}
\]
Example 221: Synthesis of 1-(3-iodophenyl)-(R)-l-methoxyhexyl-(R)-2-carbamate

Example 222: Synthesis of 1-(2-chlorophenyl)-(R)-l-methoxypropyl-(R)-2-methylcarbamate

Example 223: Synthesis of 1-(2-chlorophenyl)-(R)-l-methoxypropyl-(R)-2-propylcarbamate

Example 224: Synthesis of 1-(2-chlorophenyl)-(R)-l-methoxypropyl-(R)-2-isopropylcarbamate
Example 225: Synthesis of l-(2-chlorophenyl)-(R)-l-methoxypropyl-(R)-2-cyclopropylcarbamate

\[\text{NMR(400MHz, CDC\textsubscript{13}) } \delta, 1.27(d, J=6.8 Hz, 6H), 1.37(d, J=6.8 Hz, 3H), 3.24(s, 3H), 4.17(m, IH), 4.71(d, J=6.8, IH), 4.82~4.88(m, IH), 7.26~7.70(m, 4H) \]

Example 226: Synthesis of l-(2-chlorophenyl)-(R)-l-methoxypropyl-(R)-2-cyclohexylcarbamate

\[\text{NMR(400MHz, CDC\textsubscript{13}) } \delta, 60.57(m, 2H), 0.82(m, 2H), 1.37(d, J=6.8 Hz, 3H), 2.75(m, IH), 3.24(s, 3H), 4.71(d, J=6.8, IH), 4.82~4.88(m, IH), 7.26~7.70(m, 4H) \]

Example 227: Synthesis of l-(2-chlorophenyl)-(R)-l-methoxypropyl-(R)-2-cyclohexylcarbamate

\[\text{NMR(400MHz, CDC\textsubscript{13}) } \delta, 61.37(d, J=6.8 Hz, 3H), 3.24(s, 3H), 4.20(m, 2H), 4.71(d, J=6.8, IH), 4.82~4.88(m, IH), 7.13~7.19(m, 4H), 7.37~7.88(m, 5H) \]
Example 228: Synthesis of 1-(2-chlorophenyl)-(R)-l-methoxypropyl-(R)-2-bicyclo[2,2,1]heptanesarbamate

\[
\text{NMR(400MHz, CDCl}_3\text{):} 51.33-1.58(\text{m, 9H}), 1.75-1.88(\text{m, 2H}), 2.06-2.13(\text{m, 2H}), 3.24(\text{s, 3H}), 3.53(\text{m, IH}), 4.71(\text{d, J}=6.8, \text{IH}), 4.82-4.88(\text{m, IH}), 7.13-7.19(\text{m, 4H}), 7.37-7.88(\text{m, 5H})
\]

Example 229: Synthesis of 1-(2,4-dichlorophenyl)-(R)-l-methoxypropyl-(R)-2-carbamate

\[
\text{NMR(400MHz, CDCl}_3\text{):} 61.37(\text{d, J}=6.8Hz, 3H), 3.24(\text{s, 3H}), 4.71(\text{d, J}=6.8, \text{IH}), 4.82-4.88(\text{m, IH}), 7.24-7.30(\text{m, 2H}), 7.73(\text{d, J}=1.5Hz, \text{IH})
\]

Example 230: Synthesis of 1-(2,6-dichlorophenyl)-(R)-l-methoxypropyl-(R)-2-carbamate

\[
\text{NMR (400MHz, CDCl}_3\text{):} 61.37(\text{d, J}=6.8Hz, 3H), 3.24(\text{s, 3H}), 4.71(\text{d, J}=6.8, \text{IH}), 4.82-4.88(\text{m, IH}), 7.57-7.58(\text{m, 3H})
\]

Example 231: Synthesis of 1-(2,3-dichlorophenyl)-(R)-l-methoxypropyl-(R)-2-carbamate
Example 232: Synthesis of l-(2,4-dichlorophenyl)-(R)-l-methoxybutyl-(R)-2-carbamate

\[
\text{Cl} \quad \text{O} \quad \text{Cl} \\
\mid \quad \quad \mid \\
\text{O} \quad \text{NH}_2 \\
\text{O}
\]

\[\text{H} \text{ NMR}(400\text{MHz, } \text{CDCl}_3) 61.37(d, J=6.8\text{Hz, } 3\text{H}), 3.24(s, 3\text{H}), 4.71(d, J=6.8, \text{IH}), 4.82-4.88(\text{m, } \text{IH}), 7.01-7.14(\text{m, } 3\text{H})\]

Example 233: Synthesis of l-(2,6-dichlorophenyl)-(R)-l-methoxybutyl-(R)-2-carbamate

\[
\text{Cl} \quad \text{O} \quad \text{Cl} \\
\mid \quad \quad \mid \\
\text{O} \quad \text{NH}_2 \\
\text{O}
\]

\[\text{H} \text{ NMR}(400\text{MHz, } \text{CDCl}_3) 61.04(t, J=7.6\text{Hz, } 3\text{H}), 1.60-1.71(\text{m, } 2\text{H}), 3.24(s, 3\text{H}), 4.71(d, J=6.8, \text{IH}), 4.73(\text{br s, } 2\text{H}), 4.82-4.88(\text{m, } \text{IH}), 7.24-7.30(\text{m, } 2\text{H}), 7.73(d, J=1.5\text{Hz, } \text{IH})\]

Example 234: Synthesis of l-(2,4-dichlorophenyl)-(R)-l-methoxy-3-methylbutyl-(R)-2-carbamate

\[
\text{Cl} \quad \text{O} \quad \text{Cl} \\
\mid \quad \quad \mid \\
\text{O} \quad \text{NH}_2 \\
\text{O}
\]

\[\text{H} \text{ NMR}(400\text{MHz, } \text{CDCl}_3) 51.07(t, J=7.6\text{Hz, } 6\text{H}), 1.83-1.89(\text{m, } \text{IH}), 3.24(s, 3\text{H}), 4.71(d, J=6.8, \text{IH}), 4.73(\text{br s, } 2\text{H}), 4.82-4.88(\text{m, } \text{IH}), 7.24-7.30(\text{m, } 2\text{H}), 7.73(d, J=1.5\text{Hz, } \text{IH})\]
Example 235: Synthesis of 1-(2,6-dichlorophenyl)-(R)-l-methoxy-3-methylbutyl-(R)-2-carbamate

\[
\begin{align*}
\text{Cl} & \quad \text{O}^- \\
\text{Cl} & \quad \text{O} \\
\text{NH}_2
\end{align*}
\]

\(^1\text{H}\) NMR(400MHz, \(\text{CDCl}_3\)) 51.07(t, \(J=7.6\text{Hz}\), 6H), 1.83–1.89(m, 1H), 3.24(s, 3H), 4.71(d, \(J=6.8\), 1H), 4.73(br s, 2H), 4.82–4.88(m, 1H), 7.55–7.57(m, 3H)

Example 236: Synthesis of 1-(2,4-dichlorophenyl)-(R)-l-methoxyhexyl-(R)-2-carbamate

\[
\begin{align*}
\text{Cl} & \quad \text{O}^- \\
\text{Cl} & \quad \text{O} \\
\text{NH}_2
\end{align*}
\]

\(^1\text{H}\) NMR(400MHz, \(\text{CDCl}_3\)) 50.90(t, \(J=7.6\text{Hz}\), 3H), 1.35–1.65(m, 6H), 3.24(s, 3H), 4.71(d, \(J=6.8\), 1H), 4.73(br s, 2H), 4.82–4.88(m, 1H), 7.24–7.30(m, 2H), 7.73(d, \(J=1.5\text{Hz}\), 1H)

Example 237: Synthesis of 1-(2,4-dichlorophenyl)-(R)-l-methoxyhexyl-(R)-2-carbamate

\[
\begin{align*}
\text{Cl} & \quad \text{O}^- \\
\text{Cl} & \quad \text{O} \\
\text{NH}_2
\end{align*}
\]

\(^1\text{H}\) NMR(400MHz, \(\text{CDCl}_3\)) 50.90(t, \(J=7.6\text{Hz}\), 3H), 1.35–1.65(m, 6H), 3.23(s, 3H), 4.71(d, \(J=6.8\), 1H), 4.73(br s, 2H), 4.82–4.88(m, 1H), 7.54–7.59(m, 3H)

Example 238: Synthesis of 1-(2,4-dichlorophenyl)-l-methoxypropyl-2-carbamate

\[
\begin{align*}
\text{Cl} & \quad \text{O}^- \\
\text{Cl} & \quad \text{O} \\
\text{NH}_2
\end{align*}
\]

\(^1\text{H}\) NMR(400MHz, \(\text{CDCl}_3\)) 61.37(d, \(J=6.8\text{Hz}\), 3H), 3.23(s, 3H), 4.71(d, \(J=6.8\), 1H),
Example 239: Synthesis of \(l\)-(2,6-dichlorophenyl)-l-methoxypropyl-2-carbamate

\[
\begin{align*}
\text{H NMR}(400\text{MHz}, \text{CDCl}_3) & \quad 51.37(\text{d, } J=6.8\text{Hz, } 3\text{H}), \quad 3.24(\text{s, } 3\text{H}), \quad 4.71(\text{d, } J=6.8, \quad 1\text{H}), \\
& \quad 4.82-4.88(\text{m, } 1\text{H}), \quad 7.57-7.58(\text{m, } 3\text{H})
\end{align*}
\]

Example 240: Synthesis of \(l\)-(2,3-dichlorophenyl)-l-methoxypropyl-2-carbamate

\[
\begin{align*}
\text{H NMR}(400\text{MHz}, \text{CDCl}_3) & \quad 51.37(\text{d, } J=6.8\text{Hz, } 3\text{H}), \quad 3.24(\text{s, } 3\text{H}), \quad 4.71(\text{d, } J=6.8, \quad 1\text{H}), \\
& \quad 4.82-4.88(\text{m, } 1\text{H}), \quad 7.01-7.14(\text{m, } 3\text{H})
\end{align*}
\]

Example 241: Synthesis of \(l\)-(2,4-dichlorophenyl)-l-methoxybutyl-2-carbamate

\[
\begin{align*}
\text{H NMR}(400\text{MHz}, \text{CDCl}_3) & \quad 51.04(\text{t, } J=7.6\text{Hz, } 3\text{H}), \quad 1.60-1.71(\text{m, } 2\text{H}), \quad 3.23(\text{s, } 3\text{H}), \quad 4.71(\text{d, } J=6.8, \quad 1\text{H}), \\
& \quad 4.73(\text{br s, } 2\text{H}), \quad 4.82-4.88(\text{m, } 1\text{H}), \quad 7.24-7.30(\text{m, } 2\text{H}), \quad 7.73(\text{d, } J=1.5\text{Hz, } 1\text{H})
\end{align*}
\]

Example 242: Synthesis of \(l\)-(2,6-dichlorophenyl)-l-methoxybutyl-2-carbamate

\[
\begin{align*}
\text{H NMR}(400\text{MHz}, \text{CDCl}_3) & \quad 61.04(\text{t, } J=7.6\text{Hz, } 3\text{H}), \quad 1.60-1.71(\text{m, } 2\text{H}), \quad 3.24(\text{s, } 3\text{H}), \quad 4.71(\text{d,}
\end{align*}
\]
Example 243: Synthesis of 1-(2,4-dichlorophenyl)-1-methoxy-3-methyl-butyl-2-carbamate

\[\text{1H NMR (400 MHz, CDCl}_3\text{)} \quad 51.07(t, J=7.6\text{Hz}, 6\text{H}), 1.83-1.89(m, 1\text{H}), 3.24(s, 3\text{H}), 4.71(d, J=6.8, 1\text{H}), 4.73(br s, 2\text{H}), 4.82-4.88(m, 1\text{H}), 7.24-7.30(m, 2\text{H}), 7.73(d, J=1.5\text{Hz}, 1\text{H})\]

Example 244: Synthesis of 1-(2,6-dichlorophenyl)-1-methoxy-3-methyl-butyl-2-carbamate

\[\text{1H NMR (400 MHz, CDCl}_3\text{)} \quad 51.07(t, J=7.6\text{Hz}, 6\text{H}), 1.83-1.89(m, 1\text{H}), 3.24(s, 3\text{H}), 4.71(d, J=6.8, 1\text{H}), 4.73(br s, 2\text{H}), 4.82-4.88(m, 1\text{H}), 7.55-7.57(m, 3\text{H})\]

Example 245: Synthesis of 1-(2,4-dichlorophenyl)-1-methoxyhexyl-2-carbamate

\[\text{1H NMR (400 MHz, CDCl}_3\text{)} \quad 60.90(t, J=7.6\text{Hz}, 3\text{H}), 1.35-1.65(m, 6\text{H}), 3.24(s, 3\text{H}), 4.71(d, J=6.8, 1\text{H}), 4.73(br s, 2\text{H}), 4.82-4.88(m, 1\text{H}), 7.24-7.30(m, 2\text{H}), 7.73(d, J=1.5\text{Hz}, 1\text{H})\]

Example 246: Synthesis of 1-(2,4-dichlorophenyl)-1-methoxyhexyl-2-carbamate

\[\text{1H NMR (400 MHz, CDCl}_3\text{)} \quad 50.90(t, J=7.6\text{Hz}, 3\text{H}), 1.35-1.65(m, 6\text{H}), 3.24(s, 3\text{H}), 4.71(d, J=6.8, 1\text{H}), 4.73(br s, 2\text{H}), 4.82-4.88(m, 1\text{H}), 7.54-7.57(m, 3\text{H})\]
Example 247: Synthesis of 1-(2-chlorophenyl)-(S)-l-carbamoyloxypropyl-(S)-2-carbamate

\[
\begin{align*}
\text{O} & \quad \text{NH}_2 \\
\text{Cl} & \quad \text{O} \\
\text{O} & \quad \text{NH}_2 \\
\end{align*}
\]

1-(2-chlorophenyl)-l-hydroxypropyl-l-carbamate (Preparation Example 103, 8g), tetrahydrofuran (THF), and carbonyldiimidazole (CDI, 1.5eq, 9.1g) were put into a flask and stirred at the room temperature. After approximately 3 hours, ammonia solution (NH\(_4\)OH, 3eq, 4.4m) was added thereto. When the reaction was completed, the obtained product was washed with 1M HCl solution and ethylacetate (EA). The separated organic layer was dehydrated with anhydrous MgSO\(_4\) (Magnesium sulfate), filtrated, and concentrated under reduced pressure. The concentrated residue was purified by a silica gel column chromatography, to obtain the title compound.

\[
\begin{align*}
\text{H} & \quad \text{NMR}(400MHz, \text{CHCl}_3) 51.40(d, J=6.0Hz, 3H), 2.74(s, 3H), 4.71(d, J=6.4Hz, 1H), 4.80\sim4.85(m, 1H), 6.30\sim6.90(br s, 3H), 7.28\sim7.43(m, 4H)
\end{align*}
\]

According to the method described in Example 247, the following compounds of Examples 248 to 256 were prepared:

Example 248: Synthesis of 1-(2-chlorophenyl)-(S)-l-carbamoyloxypropyl-(S)-2-methylcarbamate

\[
\begin{align*}
\text{O} & \quad \text{NH}_2 \\
\text{Cl} & \quad \text{O} \\
\text{O} & \quad \text{NH}_2 \\
\end{align*}
\]

\[
\begin{align*}
\text{H} & \quad \text{NMR}(400MHz, \text{CDCl}_3) 51.40(d, J=6.0Hz, 3H), 2.74(s, 3H), 4.71(d, J=6.4Hz, 1H), 4.80\sim4.85(m, 1H), 6.30\sim6.90(br s, 3H), 7.28\sim7.43(m, 4H)
\end{align*}
\]

Example 249: Synthesis of 1-(2-chlorophenyl)-(S)-l-carbamoyloxypropyl-(S)-2-
propylcarbamate

\[
\begin{align*}
\text{Cl} & \quad \text{O} \quad \text{NH}_2 \\
\text{O} & \quad \text{NH}_2 \\
\end{align*}
\]

1H NMR(400MHz, CDC$_1$$_3$) 50.96(t, J=6.4Hz, 3H), 1.40(d, J=6.0Hz, 3H), 1.55~1.60(m, 2H), 2.96(t, J=6.0Hz, 2H), 4.71(d, J=6.0Hz, 1H), 4.82~4.88(m, 1H), 6.76(br s, 3H), 7.07~7.2 1(m, 4H)

Example 250: Synthesis of l-(2-chlorophenyl)-(R)-2-carbamoyloxypropyl-(R)-l-carbamate(2)

\[
\begin{align*}
\text{Cl} & \quad \text{O} \quad \text{NH}_2 \\
\text{O} & \quad \text{NH}_2 \\
\end{align*}
\]

1H NMR(400MHz, OMSO-d_6) 61.12(d, J=6.4Hz, 3H), 4.97~5.04(m, 1H), 5.92(d, J=5.2Hz, 1H), 6.25~6.83(m, 4H), 7.30~7.42(m, 4H)

Example 251: Synthesis of l-(2-chlorophenyl)-2-carbamoyloxypropyl-l-carbamate(3)

\[
\begin{align*}
\text{Cl} & \quad \text{O} \quad \text{NH}_2 \\
\text{O} & \quad \text{NH}_2 \\
\end{align*}
\]

1H NMR(400MHz, DMSO-G_l) 51.12(d, J=6.4Hz, 3H), 4.97~5.03(m, 1H), 5.91(d, J=5.2Hz, 1H), 6.31~6.92(m, 4H), 7.30~7.42(m, 4H)

Example 252: Synthesis of l-(2-chlorophenyl)-(S)-l-carbamoyloxybutyl-(S)-2-carbamate
Example 253: Synthesis of 1-(2-chlorophenyl)-(S)-l-carbamoyloxy-3-methylbutyl-(S)-2-carbamate

\[\text{[Chemical Structure]} \]

1H NMR (400MHz, CDCl$_3$) 51.04 (t, $J=7.6$Hz, 3H), 1.60–1.71 (m, 2H), 4.71 (d, $J=6.8$, 1H), 4.73 (br s, 2H), 5.82–5.88 (m, 1H), 7.26–7.70 (m, 4H)

Example 254: Synthesis of 1-(2-chlorophenyl)-(S)-l-carbamoyloxyhexyl-(S)-2-carbamate

\[\text{[Chemical Structure]} \]

1H NMR (400MHz, CDCl$_3$) 51.07 (t, $J=7.6$Hz, 6H), 1.83–1.89 (m, 1H), 4.71 (d, $J=6.8$, 1H), 4.73 (br s, 2H), 5.80–5.88 (m, 1H), 7.26–7.70 (m, 4H)

Example 255: Synthesis of 1-(2-fluorophenyl)-(S)-l-carbamoyloxypropyl-(S)-2-carbamate

\[\text{[Chemical Structure]} \]

1H NMR (400MHz, CDCl$_3$) 50.90 (t, $J=7.6$Hz, 3H), 1.35–1.65 (m, 6H), 4.71 (d, $J=6.8$, 1H), 4.73 (br s, 2H), 5.82–5.88 (m, 1H), 7.26–7.70 (m, 4H)
\[^1\text{H} \text{ NMR}(400\text{MHz, DMSO-d}_6) \quad 51.37(d, J=6.8 \text{ Hz, 3H}), \quad 4.71(d, J=6.8, \text{ IH}), \]
\[5.82-5.88(\text{m, IH}), \quad 7.15-7.68(\text{m, 4H}) \]

Example 256: Synthesis of 1-(2-fluorophenyl)-(S)-l-carbamoyloxybutyI-(S)-2-carbamate

\[
\begin{array}{c}
\text{O} \\
\text{F} \\
\text{O} \\
\text{NH}_2 \\
\text{O} \\
\text{NH}_2 \\
\text{O} \\
\text{O} \\
\text{O} \\
\text{O} \\
\text{O} \\
\end{array}
\]

\[^1\text{H} \text{ NMR}(400\text{MHz, CDCl}_3) \quad 51.02(t, J=7.2\text{Hz, 3H}), \quad 1.60-1.71(\text{m, 2H}), \quad 4.71(d, J=6.8\text{Hz, IH}), \]
\[4.73(\text{br s, 2H}), \quad 5.82-5.88(\text{m, IH}), \quad 6.09-7.17(\text{m, 4H}) \]

Example 257: Synthesis of 1-(2-fluorophenyl)-(S)-l-carbamoyloxy-3-methylbutyl-(S)-2-carbamate

\[
\begin{array}{c}
\text{O} \\
\text{F} \\
\text{O} \\
\text{NH}_2 \\
\text{O} \\
\text{NH}_2 \\
\text{O} \\
\text{O} \\
\text{O} \\
\text{O} \\
\text{O} \\
\end{array}
\]

\[^1\text{H} \text{ NMR}(400\text{MHz, CDCl}_3) \quad 51.07(t, J=7.6\text{Hz, 6H}), \quad 1.83-1.89(\text{m, IH}), \quad 4.71(d, J=6.8\text{Hz, IH}), \]
\[4.73(\text{br s, 2H}), \quad 5.80-5.88(\text{m, IH}), \quad 6.10-7.20(\text{m, 4H}) \]

Example 258: Synthesis of 1-(2-fluorophenyl)-(S)-l-carbamoyloxyhexyl-(S)-2-carbamate

\[
\begin{array}{c}
\text{O} \\
\text{F} \\
\text{O} \\
\text{NH}_2 \\
\text{O} \\
\text{NH}_2 \\
\text{O} \\
\text{O} \\
\text{O} \\
\text{O} \\
\text{O} \\
\end{array}
\]

\[^1\text{H} \text{ NMR}(400\text{MHz, CDCl}_3) \quad 80.90(t, J=7.6\text{Hz, 3H}), \quad 1.35-1.65(\text{m, 6H}), \quad 4.71(d, J=6.8\text{Hz, IH}), \]
\[4.73(\text{br s, 2H}), \quad 5.82-5.88(\text{m, IH}), \quad 7.16-7.69(\text{m, 4H}) \]

Example 259: Synthesis of 1-(2-iodophenyl)-(S)-l-carbamoyloxypropyl-(S)-2-
carbamate

Example 260: Synthesis of l-(2-iodophenyl)-(S)-l-carbamoyloxybutyl-(S)-2-carbamate

Example 261: Synthesis of l-(2-iodophenyl)-(S)-l-carbamoyloxy-3-methylbutyl-(S)-2-carbamate

Example 262: Synthesis of l-(2-iodophenyl)-(S)-l-carbamoyloxyhexyl-(S)-2-carbamate
Example 263: Synthesis of l-(2,4-dichlorophenyl)-(S)-l-carbamoyloxypropyl-(S)-2-carbamate

\[
^1H \text{NMR} (400MHz, \text{CDCl}_3) \ 50.90(t, J=7.6Hz, 3H), \ 1.35-1.65(m, 6H), \ 4.71(d, J=6.8Hz, 1H), \ 4.73(br s, 2H), \ 5.82-5.88(m, 1H), \ 6.95-7.61(m, 4H)
\]

Example 264: Synthesis of l-(2,4-dichlorophenyl)-(S)-l-carbamoyloxybutyl-(S)-2-carbamate

\[
^1H \text{NMR} (400MHz, \text{DMSO-d6}) \ 51.37(d, J=6.8 Hz, 3H), \ 4.71(d, J=6.8Hz, 1H), \ 4.82-4.88(m, 1H), \ 7.07-7.21(m, 3H)
\]

Example 265: Synthesis of l-(2,4-dichlorophenyl)-(S)-l-carbamoyloxy-3-methyl-butyl-(S)-2-carbamate

\[
^1H \text{NMR} (400MHz, \text{CDCl}_3) \ 51.02(t, J=7.2Hz, 3H), \ 1.60-1.71(m, 2H), \ 4.71(d, J=6.8Hz, 1H), \ 4.73(br s, 2H), \ 5.82-5.88(m, 1H), \ 7.05-7.19(m, 3H)
\]
Example 266: Synthesis of \(l-(2,4\text{-dichlorophenyl})-(S)-l\text{-carbamoyloxyhexyl}-(S)-2\text{-carbamate} \)

\[
\text{H NMR(400MHz, CDC}1_3\text{)} 51.07(t, J=7.6Hz, 6H), 1.83-1.89(m, 1H), 4.71(d, J=6.8Hz, 1H), 4.73(br s, 2H), 5.80-5.88(m, 1H), 7.02-7.17(m, 3H)
\]

\[
\begin{array}{c}
\text{Cl} \\
\text{O} \\
\text{NH}_2 \\
\text{Cl}
\end{array}
\]

Example 267: Synthesis of \(l-(2,6\text{-dichlorophenyl})-(S)-l\text{-carbamoyloxypropyl}-(S)-2\text{-carbamate} \)

\[
\text{H NMR(400MHz, DMSO-}d_6\text{)} 61.37(d, J=6.8 Hz, 3H), 4.71(d, J=6.8Hz, 1H), 4.82-4.88(m, 1H), 7.07-7.11(m, 3H)
\]

Example 268: Synthesis of \(l-(2,6\text{-dichlorophenyl})-(S)-l\text{-carbamoyloxybutyl}-(S)-2\text{-carbamate} \)

\[
\text{H NMR(400MHz, CDC}1_3\text{)} 51.02(t, J=7.2Hz, 3H), 1.60-1.71(m, 2H), 4.71(d, J=6.8Hz, 1H), 4.73(br s, 2H), 5.82-5.88(m, 1H), 7.05-7.10(m, 3H)
\]

Example 269: Synthesis of \(l-(2,6\text{-dichlorophenyl})-(S)-l\text{-carbamoyloxy3-methyl-butyl}-(S)-2\text{-carbamate} \)
Example 270: Synthesis of 1-(2,6-dichlorophenyl)-(S)-l-carbamoyloxyhexyl-(S)-2-carbamate

\[\text{H} \text{NMR}(400\text{MHz, } \text{CDCl}_3) \ 61.07(t, \ J=7.6\text{Hz, } 6\text{H}), \ 1.83-1.89(m, \ 1\text{H}), \ 4.71(d, \ J=6.8\text{Hz, } 1\text{H}), \ 4.73(br \ s, \ 2\text{H}), \ 5.80-5.88(m, \ 1\text{H}), \ 7.02-7.08(m, \ 3\text{H}) \]

Example 271: Synthesis of 1-(2,6-difluorophenyl)-(S)-l-methoxymethoxypropyl-(S)-2-carbamate

\[\text{H} \text{NMR}(400\text{MHz, } \text{CDCl}_3) \ 51.37(d, \ J=6.8\text{Hz, } 3\text{H}), \ 3.30(s, \ 3\text{H}), \ 4.71(d, \ J=6.8, \ 1\text{H}), \ 4.82-4.88(m, \ 1\text{H}), \ 5.45(s, \ 2\text{H}), \ 6.67-7.1\ 5(m, \ 3\text{H}) \]

Example 272: Synthesis of 1-(2,5-dichlorophenyl)-(S)-l-methoxymethoxypropyl-(S)-2-carbamate

\[\text{H} \text{NMR}(400\text{MHz, } \text{CDCl}_3) \ 61.37(d, \ J=6.8\text{Hz, } 3\text{H}), \ 3.30(s, \ 3\text{H}), \ 4.71(d, \ J=6.8, \ 1\text{H}), \ 4.82-4.88(m, \ 1\text{H}), \ 5.45(s, \ 2\text{H}), \ 6.67-7.1\ 5(m, \ 3\text{H}) \]
Example 273: Synthesis of l-(2,5-dichlorophenyl)-(R)-l-methoxymethoxypropyl-(R)-2-carbamate

\[
\begin{align*}
\text{Cl} & \quad \text{O} \\
\text{Cl} & \quad \text{O} \\
\text{NH}_2 & \quad \text{O}
\end{align*}
\]

\(^1\text{H} \text{NMR}(400\text{MHz}, \text{CDCl}_3) \ 51.37(d, J=6.8\text{Hz}, 3\text{H}), 3.30(s, 3\text{H}), 4.71(d, J=6.8, 1\text{H}), 4.82-4.88(m, 1\text{H}), 5.45(s, 2\text{H}), 7.13-7.26(m, 3\text{H})

Example 274: Synthesis of l-(2-chlorophenyl)-(S)-2-methoxymethoxypropyl-(S)-l-carbamate

\[
\begin{align*}
\text{Cl} & \quad \text{O} \\
\text{NH}_2 & \quad \text{O}
\end{align*}
\]

\(^1\text{H} \text{NMR}(400\text{MHz}, \text{CDCl}_3) \ 61.21(d, J=6.8\text{Hz}, 3\text{H}), 3.24(s, 3\text{H}), 3.94-4.05(m, 1\text{H}), 5.45(s, 2\text{H}), 5.56(d, J=6.8\text{Hz}, 1\text{H}), 7.07-7.20(m, 4\text{H})

Example 275: Synthesis of l-(2-chlorophenyl)-(S)-2-methoxpropyl-(S)-l-carbamate

\[
\begin{align*}
\text{Cl} & \quad \text{O} \\
\text{NH}_2 & \quad \text{O}
\end{align*}
\]

\(^1\text{H} \text{NMR}(400\text{MHz}, \text{CDCl}_3) \ 51.23(d, J=6.4\text{Hz}, 3\text{H}), 3.22(s, 3\text{H}), 3.99(m, 1\text{H}), 5.52(d, J=6.4\text{Hz}, 1\text{H}), 7.07-7.21(m, 4\text{H})

Example 276: Synthesis of l-(2-chlorophenyl)-(S)-l-methoxymethoxyethyl-2-carbamate

\[
\begin{align*}
\text{Cl} & \quad \text{O} \\
\text{NH}_2 & \quad \text{O}
\end{align*}
\]

\(^1\text{H} \text{NMR}(400\text{MHz}, \text{CDCl}_3) \ 51.23(d, J=6.4\text{Hz}, 3\text{H}), 3.22(s, 3\text{H}), 3.99(m, 1\text{H}), 5.52(d, J=6.4\text{Hz}, 1\text{H}), 7.07-7.21(m, 4\text{H})
Example 277: Synthesis of 1-(2-fluorophenyl)-(S)-l-methoxymethoxyethyl-2-carbamate

\[
\text{F} \quad \text{O} \quad \text{O} \quad \text{NH}_2
\]

\[^1H\ NMR(400MHz, \text{DMSO}-d_6)\ 53.30(s, \ 3H), \ 4.71(d, \ J=6.8, \ IH), \ 4.82-4.88(m, \ IH), \ 5.45(s, \ 2H), \ 7.26-7.70(m, \ 4H)\]

Example 278: Synthesis of 1-(2-iodophenyl)-(S)-l-methoxymethoxyethyl-2-carbamate

\[
\text{I} \quad \text{O} \quad \text{O} \quad \text{NH}_2
\]

\[^1H\ NMR(400MHz, \text{CDCl}_3)\ 53.30(s, \ 3H), \ 4.71(d, \ J=6.8, \ IH), \ 4.82-4.88(m, \ IH), \ 5.45(s, \ 2H), \ 7.26-7.70(m, \ 4H)\]

Example 279: Synthesis of 1-(2-chlorophenyl)-(S)-l-methoxyethyl-2-carbamate

\[
\text{Cl} \quad \text{O} \quad \text{O} \quad \text{NH}_2
\]

\[^1H\ NMR(400MHz, \text{DMSO-}d_6)\ 53.27(s, \ 3H), \ 4.71(d, \ J=6.8, \ IH), \ 4.82-4.88(m, \ IH), \ 6.47-6.63(br \ 2H), \ 7.26-7.70(m, \ 4H)\]

Example 280: Synthesis of 1-(2-fluorophenyl)-(S)-l-methoxyethyl-2-carbamate

\[
\text{F} \quad \text{O} \quad \text{O} \quad \text{NH}_2
\]

\[^1H\ NMR(400MHz, \text{DMSO-}d_6)\ 53.29(s, \ 3H), \ 4.71(d, \ J=6.8, \ IH), \ 4.82-4.88(m, \ IH), \ 7.26-7.70(m, \ 4H)\]
Example 281: Synthesis of l-(2-iodophenyl)-(S)-1-methoxyethyl-2-carbamate

\[
\begin{align*}
\text{H NMR}(400\text{MHz}, \text{DMSO-}d_6) & \quad 53.28(s, 3\text{H}), 3.94-4.09(m, 1\text{H}), 4.97(m, 1\text{H}), 7.07-7.87(m, 4\text{H})
\end{align*}
\]

Example 282: Synthesis of l-(2-iodophenyl)-(S)-2-methoxymethoxypropyl-l-carbamate

\[
\begin{align*}
\text{H NMR}(400\text{MHz}, \text{CDCl}_3) & \quad 61.31(d, J=9.6, 3\text{H}), 3.08(s, 3\text{H}), 4.15-4.20(m, 1\text{H}), 4.33(d, J=6.8, 1\text{H}), 4.56(d, J=7.2, 1\text{H}), 4.79(brs, 2\text{H}), 5.88(d, J=4.0, 1\text{H}), 6.98-7.02(m, 1\text{H}), 7.33-7.42(m, 2\text{H}), 7.85(dd, J=7.80, 0.8, 1\text{H})
\end{align*}
\]

Example 283: Synthesis of l-(2-iodophenyl)-(S)-2-methoxypropyl-l-carbamate

\[
\begin{align*}
\text{H NMR}(400\text{MHz}, \text{CDCl}_3) & \quad 61.29(d, J=6.4, 3\text{H}), 3.29(s, 3\text{H}), 4.56(d, J=5.3, 1\text{H}), 4.55(brs, 2\text{H}), 5.08-5.1(l(m, 1\text{H}), 7.01-7.05(m, 1\text{H}), 7.38-7.86(m, 3\text{H})
\end{align*}
\]

Example 284: Synthesis of l-(2-fluorophenyl)-(S)-2-methoxymethoxypropyl-l-carbamate

\[
\begin{align*}
\text{H NMR}(400\text{MHz}, \text{CDCl}_3) & \quad 51.19(d, J=6.4, 3\text{H}), 3.15(s, 3\text{H}), 4.03-4.18(m, 1\text{H}), 4.49(d, J=6.8, 1\text{H}), 4.61(d, J=7.2, 1\text{H}), 4.81(s, 2\text{H}), 5.95(d, J=5.2, 1\text{H}), 7.00-7.43(m, 4\text{H})
\end{align*}
\]
Example 285: Synthesis of 1-(2-fluorophenyl)-(S)-2-methoxypropyl-(S)-l-carbamate

\[
\begin{align*}
\text{O} & \quad \text{NH}_2 \\
\text{F} & \quad \text{O}\text{H}_2
\end{align*}
\]

\(^1\)H NMR(400MHz, CDCl\(_3\)) 51.18(d, J=6.4, 3H), 3.30(s, 3H), 3.99(d, J=5.3, 1H), 4.65(brs, 2H), 4.89–5.01(m, 1H), 7.01–7.05(m, 1H), 7.38–7.68(m, 3H)

Example 286: Synthesis of 1-(2-chloro-6-fluorophenyl)-(S)-l-carbamoyloxypropyl-(S)-2-carbamate

\[
\begin{align*}
\text{Cl} & \quad \text{O} & \quad \text{NH}_2 \\
\text{F} & \quad \text{O} & \quad \text{NH}_2 \\
\text{O} & \quad \text{O}
\end{align*}
\]

\(^1\)H NMR(400MHz, DMSO) 50.97(d, J=6.4, 3H), 5.28–5.31(m, 1H), 6.48(d, J=8.4, 1H), 6.48–6.77(br 4H), 7.23–7.45(m, 3H).

Example 287: Synthesis of 1-(2-chloro-6-fluorophenyl)-(R)-l-carbamoyloxypropyl-(R)-2-carbamate

\[
\begin{align*}
\text{Cl} & \quad \text{O} & \quad \text{NH}_2 \\
\text{F} & \quad \text{O} & \quad \text{NH}_2 \\
\text{O} & \quad \text{O}
\end{align*}
\]

\(^1\)H NMR(400MHz, CDCl\(_3\)) 51.17(d, J=6.4, 3H), 4.74(br s, 4H), 5.52–5.60(m, 1H), 6.29(d, J=8.4, 1H), 7.00–7.05(m, 1H), 7.22–7.23(m, 2H).

Example 288: Synthesis of 1-(2-iodophenyl)-(R)-l-carbamoyloxypropyl-(R)-2-carbamate

\[
\begin{align*}
\text{Cl} & \quad \text{O} & \quad \text{NH}_2 \\
\text{F} & \quad \text{O} & \quad \text{NH}_2 \\
\text{O} & \quad \text{O}
\end{align*}
\]

\(^1\)H NMR(400MHz, CDCl\(_3\)) 51.17(d, J=6.4, 3H), 4.74(br s, 4H), 5.52–5.60(m, 1H), 6.29(d, J=8.4, 1H), 7.00–7.05(m, 1H), 7.22–7.23(m, 2H).
Example 289: Synthesis of l-(2-fluorophenyl)-(R)-l-carbamoyloxypropyl-(R)-2-carbamate

Example 290: Synthesis of l-(2,6-dichlorophenyl)-(R)-l-carbamoyloxypropyl-(R)-2-carbamate

Example 291: Synthesis of l-(2,4-difluorophenyl)-(R)-l-carbamoyloxypropyl-(R)-2-carbamate
Example 292: Synthesis of l-(2,6-difluorophenyl)-(R)-l-carbamoyloxypropyl-(R)-2-carbamate

δH NMR(400MHz, CDCl₃) 61.16(d, J=6.8, 3H), 4.76(br s, 4H), 5.44~5.48(m, 1H), 6.10(d, J=8.4, 1H), 6.90~6.95(m, 2H), 7.28~7.35(m, 2H).

Example 293: Synthesis of l-(2,5-difluorophenyl)-(R)-l-carbamoyloxypropyl-(R)-2-carbamate

δH NMR(400MHz, CDCl₃) 81.23(d, J=6.8, 3H), 4.64(br s, 2H), 4.77(br s, 2H), 5.15~5.22(m, 1H), 5.97(d, J=6.4, 1H), 6.98~7.07(m, 2H), 7.08~7.13(m, 1H).

Example 294: Synthesis of l-(2-chlorophenyl)-(S)-l-carbamoyloxypropyl-(R)-2-carbamate
Example 295: Synthesis of 1-(2-chlorophenyl)-(R)-l-carbamoyloxypropyl-(S)-2-carbamate

![Chemical Structure]

1H NMR(400MHz, DMSO) δ 1.09(d, J=6.8, 3H), 4.95~5.01(m, 1H), 5.95(d, J=3.6, 1H), 6.35(br s, 2H), 6.86(br s, 2H), 7.32~7.42(m, 2H), 7.44~7.47(m, 2H).

Example 296: Measurement of Anti-epilepsy activity using MES(Maximal ElectroShock)

In the MES test (Ref. G. Villetti et al. Neuropharmacology 40(2001) 866-878), An electrical stimulus (50mA, 60Hz, 0.2s in Mice or Rats) supplied by 11A Shocker (IITC Life Science Company) was delivered through corneal electrodes. All mice (or rats) assigned to any electroshock at peak time were treated with test sample which was dissolved in 30% PEG400 prepared by saline solvent applied to oral before the test. If mice stretching their hind limb in a straight line wasn't observed in the MES test, This results were shown that the test sample had an anti-epilepsy activity. Three doses of test sample were administered orally (p.o.) to over 18 mice (3 mice per dose) for evaluating the respective doses at which 50% of the animals are protected from seizure (ED$_{50}$). The value of ED$_{50}$ is calculated by Litchfield and Wicoxon log-probit method which is a dose-response relationship. Then, the test results are shown as table 3.

[Statistical Analysis]

The obtained results are shown as mean±sem. The difference between the groups was statistically analyzed by ANOVA, and then, further examined by Dunnett's test or Bonferroni test. If p is less than 0.05, it was determined that the difference between the groups had statistical significance.

Table 3: Measurement results of anti-epilepsy activity of compounds in Mice
<table>
<thead>
<tr>
<th>Compound No.</th>
<th>MES test (p.o.)</th>
<th>ED_{50}(mg/kg)</th>
<th>Peak Time(h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>21.6</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>90⁺(100%)</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>90⁺(100%)</td>
<td>-</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>90⁺(100%)</td>
<td>-</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>29.5</td>
<td>0.5</td>
</tr>
<tr>
<td>28</td>
<td></td>
<td>90⁺(33.3%)</td>
<td>-</td>
</tr>
<tr>
<td>36</td>
<td></td>
<td>90⁺(100%)</td>
<td>-</td>
</tr>
<tr>
<td>44</td>
<td></td>
<td>90⁺(100%)</td>
<td>-</td>
</tr>
<tr>
<td>52</td>
<td></td>
<td>24.7</td>
<td>1</td>
</tr>
<tr>
<td>68</td>
<td></td>
<td>90⁺(100%)</td>
<td>-</td>
</tr>
<tr>
<td>69</td>
<td></td>
<td>90⁺(66.6%)</td>
<td>-</td>
</tr>
<tr>
<td>71</td>
<td></td>
<td>90⁺(100%)</td>
<td>-</td>
</tr>
<tr>
<td>72</td>
<td></td>
<td>90⁺(100%)</td>
<td>-</td>
</tr>
<tr>
<td>107</td>
<td></td>
<td>30⁺(33.3%)</td>
<td>-</td>
</tr>
<tr>
<td>124</td>
<td></td>
<td>15.6</td>
<td>1</td>
</tr>
<tr>
<td>135</td>
<td></td>
<td>12.5</td>
<td>0.5</td>
</tr>
<tr>
<td>143</td>
<td></td>
<td>15.7</td>
<td>1</td>
</tr>
<tr>
<td>151</td>
<td></td>
<td>37</td>
<td>1</td>
</tr>
<tr>
<td>167</td>
<td></td>
<td>90⁺(33.3%)</td>
<td>-</td>
</tr>
<tr>
<td>177</td>
<td></td>
<td>90⁺(66.6%)</td>
<td>-</td>
</tr>
<tr>
<td>179</td>
<td></td>
<td>90⁺(33.3%)</td>
<td>-</td>
</tr>
<tr>
<td>183</td>
<td></td>
<td>90⁺(100%)</td>
<td>-</td>
</tr>
<tr>
<td>190</td>
<td></td>
<td>90⁺(66.6%)</td>
<td>-</td>
</tr>
<tr>
<td>191</td>
<td></td>
<td>90⁺(100%)</td>
<td>-</td>
</tr>
<tr>
<td>194</td>
<td></td>
<td>90⁺(100%)</td>
<td>-</td>
</tr>
<tr>
<td>195</td>
<td></td>
<td>90⁺(100%)</td>
<td>-</td>
</tr>
<tr>
<td>213</td>
<td></td>
<td>90⁺(33.3%)</td>
<td>-</td>
</tr>
<tr>
<td>232</td>
<td></td>
<td>90⁺(33.3%)</td>
<td>-</td>
</tr>
<tr>
<td>250</td>
<td></td>
<td>46.3</td>
<td>4</td>
</tr>
<tr>
<td>251</td>
<td></td>
<td>100⁺(33.3%)</td>
<td>-</td>
</tr>
<tr>
<td>259</td>
<td></td>
<td>90⁺(66.6%)</td>
<td>-</td>
</tr>
<tr>
<td>267</td>
<td></td>
<td>50⁺(16.6%)</td>
<td>-</td>
</tr>
<tr>
<td>273</td>
<td></td>
<td>30⁺(33.3%)</td>
<td>-</td>
</tr>
<tr>
<td>274</td>
<td></td>
<td>90⁺(100%)</td>
<td>-</td>
</tr>
<tr>
<td>275</td>
<td></td>
<td>90⁺(100%)</td>
<td>-</td>
</tr>
<tr>
<td>278</td>
<td></td>
<td>30⁺(33.3%)</td>
<td>-</td>
</tr>
<tr>
<td>282</td>
<td></td>
<td>90⁺(33.3%)</td>
<td>-</td>
</tr>
<tr>
<td>283</td>
<td></td>
<td>90⁺(100%)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>284</td>
<td>90^a (33.3%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>286</td>
<td>90^a (33.3%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>289</td>
<td>56.2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>290</td>
<td>30^a (33.3%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>292</td>
<td>56^a (33.3%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>294</td>
<td>90^a (66.6%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>295</td>
<td>90^a (100%)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a: Injection amount (mg/kg)
Protection% = the percentage of effect compared to the vehicle only.

Example 297: Lithium-pilocarpine induced status epilepticus model

Prevention study

Male Sprague-Dawley rats (purchased from Orient Bio Inc. Korea) of body weight 200-230g were used for these studies and housed 4-5 rats per a cage for 4-5 days. On the day prior to status epilepsy (SE), rats received 127 mg/kg lithium chloride (Sigma, St. Louis, MO, U.S.A.) intraperitoneally (i.p.). Approximately 18-20 h following this treatment, the rats were given 43 mg/kg pilocarpine (Sigma) intraperitoneally. An i.p. injection of 2 mg/kg methyl-scopolamine (Sigma) was administered 30 min prior to pilocarpine to block the effects of the muscarinic agonist on peripheral cholinergic receptors. The test drug was administered intraperitoneally (i.p.) in a volume of 2ul/g body weight. Pharmacological effects of all the test materials were evaluated to compare the test groups (n=6) with a control group (n=6). Control group was administrated vehicle, only. The peak time was determined by administration test material's random dose for 0.5, 1, 2, 4 hour. The time that the most protect was defined peak time and ED50 was determined by other dose administration at peak time. The animals were then transferred to observation cages and observed continuously for 90 min. The seizure activity was elicited in approximately 95% of control group. Protection was defined as a complete absence of seizure grade 4-5 based on Racine scale (Racine, 1972) over the 90-min observation period. The effective dose of compound necessary to protect against seizures to 50% of controls (i.e. ED50) was determined by log probit analysis using SPSS software program (SPSS Inc.). The obtained results are shown in following Table 4.

Intervention Study

Male Sprague-Dawley rats (purchased from Orient Bio Inc. Korea) of body weight 200-230g were used for these studies and housed 4-5 rats per a cage for 4-5 days. On the day
prior to SE, rats received 127 mg/kg lithium chloride (Sigma, St. Louis, MO, U.S.A.) intraperitoneally (i.p.). Approximately 18-20 h following this treatment, the rats were given 43 mg/kg pilocarpine (Sigma) intraperitoneally. An i.p. injection of 2 mg/kg methylscopolamine (Sigma) was administered 30 min prior to pilocarpine to block the effects of the muscarinic agonist on peripheral cholinergic receptors. The effects of compounds dissolved in 30% Poly Ethylene Glycol 400 (Acros Organics, Geel, Belgium) 20% Tween80 were studied at various times or 30 min after the occurrence of the first motor seizure or SE onset. The drug was administered intraperitoneally in a volume of 2 ul/g body weight. Pharmacological effects were evaluated to compare the test groups with a control group (n=8). Control group was administrated vehicle, only. The obtained results are shown in following Tables 5 (Reference; Racine R.J. (1972). Modification of seizure activity by electrical stimulation: II Motor seizure. Electroenceph. Clin. Neurophysiol. 32: 281-294.)

(Table 4) Measurement results of Lithium-pilocarpine induced status epilepticus of compounds in the prevention test (Rats)

<table>
<thead>
<tr>
<th>Compound (Example) No.</th>
<th>Therapeutic effect</th>
<th>Prevention(rat, ip)</th>
<th>Protection</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>ED50(mg/kg)</td>
<td>Peak Time(h)</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>26.6</td>
<td>0.5</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>25.9</td>
<td>1</td>
</tr>
<tr>
<td>28</td>
<td>^a50 (100%)</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>52</td>
<td>^a20 (16.7%)</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>135</td>
<td>^a20 (16.7%)</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>143</td>
<td></td>
<td>19.6</td>
<td>1</td>
</tr>
<tr>
<td>151</td>
<td>^a60 (100%)</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>250</td>
<td>^a60 (16.7%)</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>289</td>
<td>^a80 (16.7%)</td>
<td></td>
<td>-</td>
</tr>
</tbody>
</table>

^a: Injection amount (mg/kg).
Protection %= the percentage of prevention activity compared to the vehicle only, respectively.

(Table 5) Measurement results of Lithium-pilocarpine induced status epilepticus of compounds in the intervention test (Rats)

<table>
<thead>
<tr>
<th>Compound (Example) No.</th>
<th>Intervention(rat, iv)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>^aDose(Protection%)</td>
</tr>
<tr>
<td>1</td>
<td>46 (50%)</td>
</tr>
<tr>
<td>9</td>
<td>46 (33.3%)</td>
</tr>
<tr>
<td>Injection amount (mg/kg)</td>
<td>% Injection activity compared to vehicle only</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---</td>
</tr>
<tr>
<td>10</td>
<td>46 (66.7%)</td>
</tr>
<tr>
<td>11</td>
<td>46 (66.7%)</td>
</tr>
<tr>
<td>20</td>
<td>46 (16.7%)</td>
</tr>
<tr>
<td>28</td>
<td>46 (33.3%)</td>
</tr>
<tr>
<td>52</td>
<td>46 (100%)</td>
</tr>
<tr>
<td>68</td>
<td>46 (40%)</td>
</tr>
<tr>
<td>71</td>
<td>46 (100%)</td>
</tr>
<tr>
<td>72</td>
<td>46 (50%)</td>
</tr>
<tr>
<td>135</td>
<td>46 (100%)</td>
</tr>
<tr>
<td>143</td>
<td>23 (66.7%)</td>
</tr>
<tr>
<td>151</td>
<td>46 (100%)</td>
</tr>
<tr>
<td>183</td>
<td>46 (100%)</td>
</tr>
<tr>
<td>191</td>
<td>46 (100%)</td>
</tr>
<tr>
<td>194</td>
<td>46 (83.3%)</td>
</tr>
<tr>
<td>195</td>
<td>46 (50%)</td>
</tr>
<tr>
<td>274</td>
<td>46 (33.3%)</td>
</tr>
</tbody>
</table>

a: Injection amount (mg/kg).

% = the percentage of intervention activity compared to the vehicle only, respectively.
What is claimed is:

1. A pharmaceutical composition for preventing or treating an epilepsy or a epilepsy-related syndrome comprising a phenyl carbamate compound represented by Chemical Formula I or a pharmaceutically acceptable salt thereof, as an active ingredient:

 \[
 \begin{align*}
 \text{[Chemical Formula I]} \\
 \end{align*}
 \]

 wherein,

 X is a halogen,

 n means the number of substituent X and is an integer from 1 to 5, wherein X is the same or different each other, when n is 2 or larger,

 \[R^1\] is a hydrogen or linear or branched \(C_1-C_4\) alkyl group,

 \[A\] is selected from the group consisting of an allyl, a \(C_1-C_{19}\) linear or branched alkyl group, a \(C_2-C_8\) alkoxy alky ether group and a carbamoyl derivative represented by

 \[
 \begin{align*}
 \text{[Chemical Structure]} \\
 \end{align*}
 \]

 \[B\] is selected from the group consisting of an allyl, a \(C_1-C_{19}\) linear or branched alkyl group, a \(C_2-C_8\) alkoxy alky ether group and a carbamoyl derivative represented by

 \[
 \begin{align*}
 \text{[Chemical Structure]} \\
 \end{align*}
 \]

 \[R^2\] and \[R^3\] may be the same as or different from each other, and independently selected from the group consisting of hydrogen, a linear or branched alkyl group of \(C_1-C_4\), a cycloalkyl group of \(C_3-C_8\), and benzyl group.

2. The pharmaceutical composition according to Claim 1, wherein \[A\] is a carbamoyl group, \[B\] is \(C_1-C_{19}\) linear or branched alkyl group or a \(C_2-C_8\) alkoxy alky ether group.

3. The pharmaceutical composition according to Claim 1, wherein \[B\] is a carbamoyl group, \[A\] is \(C_1-C_{19}\) linear or branched alkyl group or a \(C_2-C_8\) alkoxy alky ether group.
4. The pharmaceutical composition according to Claim 1, wherein the substituents of A and B are carbamoyl group at the same time.

5. The pharmaceutical composition according to Claim 1, wherein the C2-C8 alkoxy alky ether group is methoxy methy (MOM), methoxyethoxymethyl (MEM), thertahydropryanyl (THP), benzyloxymethyl (BOM), methylthiomethyl (MTM), trimethylsilylethoxymethyl (SEM) or ethoxyethyl (EE) group.

6. The pharmaceutical composition according to Claim 1, wherein the C1-C19 linear or branched alkyl group in the substituents A and B is a linear or branched C1-C6 lower aliphatic alkyl, a C3-C19 cycloaliphatic ring and a C6-C18 aromatic group which may be substituted with at least one selected from the group consisting of hydrogen, C1-C6 lower alkyl and C1-C6 alkoxy group.

7. The pharmaceutical composition according to Claim 1, wherein X is chlorine, fluorine, iodine, or bromine; n is 1 or 2; and R² and R³ are the same as or different from each other, and independently selected from the group consisting of hydrogen, methyl group, propyl group, isopropyl group, cyclopropyl group, cyclohexyl group, bicycloheptane group, and benzyl group.

8. The pharmaceutical composition according to Claim 1, wherein the phenyl alkyl carbamate compound is selected from the group consisting of:
 1-(2-chlorophenyl)-1-carbamoyloxypropyl-2-carbamate,
 1-(2-chlorophenyl)-1-carbamoyloxypropyl-2-N-methylcarbamate,
 1-(2-chlorophenyl)-1-carbamoyloxypropyl-2-N-propylcarbamate
 1-(2-chlorophenyl)-1-carbamoyloxybutyl-2-carbamate,
 1-(2-chlorophenyl)-1-carbamoyloxy-3-methyl-butyl-2-carbamate,
 1-(2-chlorophenyl)-1-carbamoyloxyhexyl-2-carbamate,
 1-(2-iodophenyl)-1-carbamoyloxypropyl-2-carbamate,
 1-(2-iodophenyl)-1-carbamoyloxybutyl-2-carbamate,
 1-(2-iodophenyl)-1-carbamoyloxy-3-methyl-butyl-2-carbamate,
 1-(2-iodophenyl)-1-carbamoyloxyhexyl-2-carbamate,
1-(2-fluorophenyl)-1-carbamoyloxypropyl-2-carbamate,
1-(2-fluorophenyl)-1-carbamoyloxybutyl-2-carbamate,
1-(2-fluorophenyl)-1-carbamoyloxy-3-methyl-butyl-2-carbamate,
1-(2-fluorophenyl)-1-carbamoyloxyhexyl-2-carbamate,
1-(2,4-dichlorophenyl)-1-carbamoyloxypropyl-2-carbamate,
1-(2,4-dichlorophenyl)-1-carbamoyloxybutyl-2-carbamate,
1-(2,4-dichlorophenyl)-1-carbamoyloxy-3-methyl-butyl-2-carbamate,
1-(2,4-dichlorophenyl)-1-carbamoyloxyhexyl-2-carbamate,
1-(2,4-difluorophenyl)-1-carbamoyloxypropyl-2-carbamate
1-(2,5-difluorophenyl)-1-carbamoyloxypropyl-2-carbamate
1-(2,6-dichlorophenyl)-1-carbamoyloxypropyl-2-carbamate
1-(2,6-dichlorophenyl)-1-carbamoyloxybutyl-2-carbamate,
1-(2,6-dichlorophenyl)-1-carbamoyloxy-3-methyl-butyl-2-carbamate,
1-(2,6-dichlorophenyl)-1-carbamoyloxyhexyl-2-carbamate,
1-(2,5-difluorophenyl)-1-carbamoyloxypropyl-2-carbamate
1-(2,6-difluorophenyl)-1-carbamoyloxypropyl-2-carbamate
1-(2-chloro-6-fluorophenyl)-1-carbamoyloxypropyl-2-carbamate
1-(2-chlorophenyl)-1-(methoxy)-ethyl-2-carbamate,
1-(2-fluorophenyl)-1-(methoxy)-ethyl-2-carbamate,
1-(2-iodophenyl)-1-(methoxy)-ethyl-2-carbamate,
1-(2-iodophenyl)-1-(methoxy)-propyl-2-carbamate,
1-(2-iodophenyl)-1-(methoxy)-propyl-2-N-methylcarbamate,
1-(2-iodophenyl)-1-(methoxy)-propyl-2-N-propylcarbamate,
1-(2-iodophenyl)-1-(methoxy)-propyl-2-N-isopropylcarbamate,
1-(2-iodophenyl)-1-(methoxy)-propyl-2-N-cyclopropylcarbamate,
1-(2-iodophenyl)-1-(methoxy)-propyl-2-N-cyclohexylcarbamate,
1-(2-iodophenyl)-1-(methoxy)-propyl-2-N-benzylcarbamate,
1-(2-iodophenyl)-1-(methoxy)-propyl-2-N-cyclopropylcarbamate,
1-(2-iodophenyl)-1-(methoxy)-propyl-2-N-cyclohexylcarbamate,
1-(2-iodophenyl)-1-(methoxy)-propyl-2-N-benzylcarbamate,
1-(2-iodophenyl)-1-(methoxy)-propyl-2-N-bicyclo[2,2,1]heptanecarbamate
1-(2-iodophenyl)-1-(methoxy)-butyl-2-carbamate,
1-(2-iodophenyl)-1-(methoxy)-butyl-2-N-methylcarbamate,
1-(2-iodophenyl)-1-(methoxy)-butyl-2-N-propylcarbamate,
1-(2-iodophenyl)-1-(methoxy)-butyl-2-N-isopropylcarbamate,
1-(2-iodophenyl)-1-(methoxy)-butyl-2-N-cyclopropylcarbamate,
1-(2-iodophenyl)-1-(methoxy)-butyl-2-N-cyclohexylcarbamate,
1-(2-iodophenyl)-1-(methoxy)-butyl-2-N-benzylcarbamate,
1-(2-iodophenyl)-1-(methoxy)-butyl-2-N-bicyclo[2,2,1]-heptanecarbamate,
1-(2-iodophenyl)-1-(methoxy)-3-methyl-butyl-2-carbamate,
1-(2-iodophenyl)-1-(methoxy)-3-methyl-butyl-2-N-methylcarbamate,
1-(2-iodophenyl)-1-(methoxy)-3-methyl-butyl-2-N-propylcarbamate,
1-(2-iodophenyl)-1-(methoxy)-3-methyl-butyl-2-N-isopropylcarbamate,
1-(2-iodophenyl)-1-(methoxy)-3-methyl-butyl-2-N-cyclopropylcarbamate,
1-(2-iodophenyl)-1-(methoxy)-3-methyl-butyl-2-N-cyclohexylcarbamate,
1-(2-iodophenyl)-1-(methoxy)-3-methyl-butyl-2-N-benzylcarbamate,
1-(2-iodophenyl)-1-(methoxy)-3-methyl-butyl-2-N-bicyclo[2,2,1]-heptanecarbamate,
1-(2-iodophenyl)-1-(methoxy)-hexyl-2-carbamate,
1-(2-iodophenyl)-1-(methoxy)-hexyl-2-N-methylcarbamate,
1-(2-iodophenyl)-1-(methoxy)-hexyl-2-N-propylcarbamate,
1-(2-iodophenyl)-1-(methoxy)-hexyl-2-N-isopropylcarbamate,
1-(2-iodophenyl)-1-(methoxy)-hexyl-2-N-cyclopropylcarbamate,
1-(2-iodophenyl)-1-(methoxy)-hexyl-2-N-cyclohexylcarbamate,
1-(2-iodophenyl)-1-(methoxy)-hexyl-2-N-benzylcarbamate,
1-(2-iodophenyl)-1-(methoxy)-hexyl-2-N-bicyclo[2,2,1]-heptanecarbamate,
1-(3-iodophenyl)-1-(methoxy)-propyl-2-carbamate,
1-(3-iodophenyl)-1-(methoxy)-butyl-2-carbamate,
1-(3-iodophenyl)-1-(methoxy)-3-methyl-butyl-2-carbamate,
1-(3-iodophenyl)-1-(methoxy)-hexyl-2-carbamate,
1-(2-fluorophenyl)-1-(methoxy)-propyl-2-carbamate,
1-(2-fluorophenyl)-1-(methoxy)-propyl-2-N-methylcarbamate,
1-(2-fluorophenyl)-1-(methoxy)-propyl-2-N-propylcarbamate,
1-(2-fluorophenyl)-1-(methoxy)-propyl-2-N-isopropylcarbamate,
1-(4-fluorophenyl)-1-(methoxy)-propyl-2-carbamate,
1-(4-fluorophenyl)-1-(methoxy)-butyl-2-carbamate,
1-(4-fluorophenyl)-1-(methoxy)-3-methyl-butyl-2-carbamate,
1-(4-fluorophenyl)-1-(methoxy)-hexyl-2-carbamate,
1-(2-chlorophenyl)-1-(methoxy)-propyl-2-carbamate,
1-(2-chlorophenyl)-1-(methoxy)-propyl-2-N-methylcarbamate,
1-(2-chlorophenyl)-1-(methoxy)-propyl-2-N-propylcarbamate,
1-(2-chlorophenyl)-1-(methoxy)-propyl-2-N-isopropylcarbamate,
1-(2-chlorophenyl)-1-(methoxy)-propyl-2-N-cyclopropylcarbamate,
1-(2-chlorophenyl)-1-(methoxy)-propyl-2-N-cyclohexylcarbamate,
1-(2-chlorophenyl)-1-(methoxy)-propyl-2-N-benzylcarbamate,
1-(2-chlorophenyl)-1-(methoxy)-propyl-2-N-bicyclo[2,2,1]heptanecarbamate
1-(2-chlorophenyl)-1-(methoxy)-butyl-2-carbamate,
1-(2-chlorophenyl)-1-(methoxy)-3-methyl-butyl-2-carbamate,
1-(2-chlorophenyl)-1-(methoxy)-hexyl-2-carbamate,
1-(2,3-dichlorophenyl)-1-(methoxy)-propyl-2-carbamate,
1-(2,4-dichlorophenyl)-1-(methoxy)-propyl-2-carbamate,
1-(2,4-dichlorophenyl)-1-(methoxy)-butyl-2-carbamate,
1-(2,4-dichlorophenyl)-1-(methoxy)-3-methyl-butyl-2-carbamate,
1-(2,4-dichlorophenyl)-1-(methoxy)-hexyl-2-carbamate,
1-(2,6-dichlorophenyl)-1-(methoxy)-propyl-2-carbamate,
1-(2,6-dichlorophenyl)-1-(methoxy)-butyl-2-carbamate,
1-(2,6-dichlorophenyl)-1-(methoxy)-3-methyl-butyl-2-carbamate,
1-(2,6-dichlorophenyl)-1-(methoxy)-hexyl-2-carbamate,
1-(2-chlorophenyl)-1-(methoxymethoxy)-ethyl-2-carbamate,
1-(2-fluorophenyl)-1-(methoxymethoxy)-ethyl-2-carbamate,
1-(2-iodophenyl)-1-(methoxymethoxy)-ethyl-2-carbamate,
1-(2-chlorophenyl)-1-(methoxymethoxy)-propyl-2-carbamate,
1-(2-chlorophenyl)-1-(methoxymethoxy)-propyl-2-N-methylcarbamate,
1-(2-chlorophenyl)-1-(methoxymethoxy)-propyl-2-N-propylcarbamate,
1-(2-chlorophenyl)-1-(methoxymethoxy)-propyl-2-N-isopropylcarbamate,
1-(2-chlorophenyl)-1-(methoxymethoxy)-propyl-2-N-cyclopropyl carbamate,
1-(2-chlorophenyl)-1-(methoxymethoxy)-propyl-2-N-cyclohexyl carbamate,
1-(2-chlorophenyl)-1-(methoxymethoxy)-propyl-2-N-benzylcarbamate,
1-(2-chlorophenyl)-1-(methoxymethoxy)-propyl-2-N-bicyclo[2,2,1]heptanecarbamate,
1-(2-chlorophenyl)-1-(methoxymethoxy)-butyl-2-carbamate,
1-(2-chlorophenyl)-1-(methoxymethoxy)-3-niethyl-butyl-2-carbamate,
1-(2,3-dichlorophenyl)-1-(methoxymethoxy)-propyl-2-carbamate,
1-(2,4-dichlorophenyl)-1-(methoxymethoxy)-propyl-2-carbamate,
1-(2,4-dichlorophenyl)-1-(methoxymethoxy)-butyl-2-carbamate,
1-(2,4-dichlorophenyl)-1-(methoxymethoxy)-3-methyl-butyl-2-carbamate,
1-(2,4-dichlorophenyl)-1-(methoxymethoxy)-hexyl-2-carbamate,
1-(2,5-dichlorophenyl)-1-(methoxymethoxy)-propyl-2-carbamate,
1-(2,6-dichlorophenyl)-1-(methoxymethoxy)-propyl-2-carbamate,
1-(2,6-dichlorophenyl)-1-(methoxymethoxy)-butyl-2-carbamate,
1-(2,6-dichlorophenyl)-1-(methoxymethoxy)-3-methyl-butyl-2-carbamate,
1-(2,6-dichlorophenyl)-1-(methoxymethoxy)-hexyl-2-carbamate,
1-(2-fluorophenyl)-1-(methoxymethoxy)-propyl-2-carbamate,
1-(2-fluorophenyl)-1-(methoxymethoxy)-propyl-2-N-methylcarbamate,
1-(2-fluorophenyl)-1-(methoxymethoxy)-propyl-2-N-propylcarbamate,
1-(2-fluorophenyl)-1-(methoxymethoxy)-propyl-2-N-isopropylcarbamate,
1-(2-fluorophenyl)-1-(methoxymethoxy)-propyl-2-N-cyclopropylcarbamate,
1-(2-fluorophenyl)-1-(methoxymethoxy)-propyl-2-N-cyclohexylcarbamate,
1-(2-fluorophenyl)-1-(methoxymethoxy)-propyl-2-N-benzylcarbamate,
1-(2-fluorophenyl)-1-(methoxymethoxy)-propyl-2-N-bicyclo[2,2,1]heptanecarbamate,
1-(2-iodophenyl)-1-(methoxymethoxy)-propyl-2-carbamate,
1-(2-iodophenyl)-1-(methoxymethoxy)-propyl-2-N-methylcarbamate,
1-(2-iodophenyl)-1-(methoxymethoxy)-propyl-2-N-propylcarbamate,
1-(2-iodophenyl)-1-(methoxymethoxy)-propyl-2-N-isopropylcarbamate,
1-(2-iodophenyl)-1-(methoxymethoxy)-propyl-2-N-cyclopropylcarbamate,
1-(2-iodophenyl)-1-(methoxymethoxy)-propyl-2-N-cyclohexylcarbamate,
1-(2-iodophenyl)-1-(methoxymethoxy)-propyl-2-N-benzylcarbamate,
1-(2-iodophenyl)-1-(methoxymethoxy)-propyl-2-N-bicyclo[2,2,1]heptanecarbamate.
1-(2-iodophenyl)-1-(methoxymethoxy)-butyl-2-carbamate,
1-(2-iodophenyl)-1-(methoxymethoxy)-butyl-2-N-methylcarbamate,
1-(2-iodophenyl)-1-(methoxymethoxy)-butyl-2-N-propylcarbamate,
1-(2-iodophenyl)-1-(methoxymethoxy)-butyl-2-N-isopropylcarbamate,
1-(2-iodophenyl)-1-(methoxymethoxy)-butyl-2-N-cyclopropylcarbamate,
1-(2-iodophenyl)-1-(methoxymethoxy)-butyl-2-N-cyclohexylcarbamate,
1-(2-iodophenyl)-1-(methoxymethoxy)-butyl-2-N-benzylcarbamate,
1-(2-iodophenyl)-1-(methoxymethoxy)-butyl-2-N-bicyclo[2,2,1]heptanecarbamate,
1-(2-iodophenyl)-1-(methoxymethoxy)-3-methyl-butyl-2-carbamate,
1-(2-iodophenyl)-1-(methoxymethoxy)-3-methyl-butyl-2-N-methylcarbamate,
1-(2-iodophenyl)-1-(methoxymethoxy)-3-methyl-butyl-2-N-propylcarbamate,
1-(2-iodophenyl)-1-(methoxymethoxy)-3-methyl-butyl-2-N-isopropylcarbamate,
1-(2-iodophenyl)-1-(methoxymethoxy)-3-methyl-butyl-2-N-cyclopropylcarbamate,
1-(2-iodophenyl)-1-(methoxymethoxy)-3-methyl-butyl-2-N-cyclohexylcarbamate,
1-(2-iodophenyl)-1-(methoxymethoxy)-3-methyl-butyl-2-N-benzylcarbamate,
1-(2-iodophenyl)-1-(methoxymethoxy)-3-methyl-butyl-2-N-bicyclo[2,2,1]heptanecarbamate,
bicyclo[2,2,1]heptanecarbamate,
9. The pharmaceutical composition according to any one of Claims 1, wherein the phenyl carbamate compound is in the form of racemate, enantiomer, diastereomer, a mixture of enantiomer, or a mixture of diastereomer.

10. The pharmaceutical composition according to any one of Claims 10, wherein the phenyl alkyl carbamate compound is selected from the group consisting of:

1-(2-chlorophenyl)-(S)-l-carbamoyloxypropyl-(S)-2-carbamate,
1-(2-chlorophenyl)-(S)-l-carbamoyloxypropyl-(S)-2-N-methylcarbamate,
1-(2-chlorophenyl)-(S)-l-carbamoyloxypropyl-(S)-2-N-propylcarbamate
1-(2-chlorophenyl)-(S)-l-carbamoyloxypropyl-(S)-2-N-propylcarbamate,
1-(2-chlorophenyl)-(S)-l-carbamoyloxybutyl-(S)-2-carbamate,
1-(2-chlorophenyl)-(S)-l-carbamoyloxybutyl-(S)-2-carbamate,
1-(2-chlorophenyl)-(S)-l-carbamoyloxymethyl-(S)-2-carbamate,
1-(2-chlorophenyl)-(S)-l-carbamoyloxymethyl-(S)-2-carbamate,
1-(2-chlorophenyl)-(S)-l-carbamoyloxymethyl-(S)-2-carbamate,
1-(2-chlorophenyl)-(S)-l-carbamoyloxymethyl-(S)-2-carbamate.
1-(2,4-dichlorophenyl)-(S)-l-carbamoyloxy-3-methyl-butyl-2-carbamate,
1-(2,4-dichlorophenyl)-(S)-l-carbamoyloxyhexyl-(S)-2-carbamate,
1-(2,6-dichlorophenyl)-(S)-l-carbamoyloxypropyl-(S)-2-carbamate,
1-(2,6-dichlorophenyl)-(S)-l-carbamoyloxybutyl-(S)-2-carbamate,
1-(2,6-dichlorophenyl)-(S)-l-carbamoyloxy-3-methyl-butyl-(S)-2-carbamate,
1-(2,6-dichlorophenyl)-(S)-l-carbamoyloxyhexyl-(S)-2-carbamate,
1-(2-chloro-6-fluorophenyl)-(S)-l-carbamoyloxypropyl-(S)-2-carbamate
1-(2-chlorophenyl)-(S)-l-(methoxy)-ethyl-2-carbamate,
1-(2-fluorophenyl)-(S)-l-(methoxy)-ethyl-2-carbamate,
1-(2-iodophenyl)-(S)-l-(methoxy)-ethyl-2-carbamate,
1-(2-iodophenyl)-(S)-l-(methoxy)-propyl-(S)-2-carbamate,
1-(2-iodophenyl)-(S)-l-(methoxy)-propyl-(S)-2-N-methylcarbamate,
1-(2-iodophenyl)-(S)-l-(methoxy)-propyl-(S)-2-N-propylcarbamate,
1-(2-iodophenyl)-(S)-l-(methoxy)-propyl-(S)-2-N-isopropylcarbamate,
1-(2-iodophenyl)-(S)-l-(methoxy)-propyl-(S)-2-N-cyclopropylcarbamate,
1-(2-iodophenyl)-(S)-l-(methoxy)-propyl-(S)-2-N-cyclohexylcarbamate,
1-(2-iodophenyl)-(S)-l-(methoxy)-propyl-(S)-2-N-benzylcarbamate,
1-(2-iodophenyl)-(S)-l-(methoxy)-propyl-(S)-2-N-bicyclo[2,2,1]heptancarbamate,
1-(2-iodophenyl)-(S)-l-(methoxy)-3-methyl-butyl-(S)-2-carbamate,
1-(2-iodophenyl)-(S)-l-(methoxy)-3-methyl-butyl-(S)-2-N-methylcarbamate,
1-(2-iodophenyl)-(S)-l-(methoxy)-3-methyl-butyl-(S)-2-N-propylcarbamate,
1-(2-iodophenyl)-(S)-l-(methoxy)-3-methyl-butyl-(S)-2-N-isopropylcarbamate,
1-(2-iodophenyl)-(S)-l-(methoxy)-3-methyl-butyl-(S)-2-N-cyclopropylcarbamate,
1-(2-iodophenyl)-(S)-l-(methoxy)-3-methyl-butyl-(S)-2-N-cyclohexylcarbamate,
1-(2-iodophenyl)-(S)-l-(methoxy)-3-methyl-butyl-(S)-2-N-benzylcarbamate,
1-(2-iodophenyl)-(S)-l-(methoxy)-3-methyl-butyl-(S)-2-N-bicyclo[2,2,1]heptancarbamate,
1-(2-iodophenyl)-(S)-1-(methoxy)-3-methyl-butyl-(S)-2-N-bicyclo[2,2,1]heptanecarbamate,
1-(2-iodophenyl)-(S)-1-(methoxy)-hexyl-(S)-2-carbamate,
1-(2-iodophenyl)-(S)-1-(methoxy)-hexyl-(S)-2-N-methylcarbamate,
1-(2-iodophenyl)-(S)-1-(methoxy)-hexyl-(S)-2-N-propylcarbamate,
1-(2-iodophenyl)-(S)-1-(methoxy)-hexyl-(S)-2-N-isopropylcarbamate,
1-(2-iodophenyl)-(S)-1-(methoxy)-hexyl-(S)-2-N-cyclopropylcarbamate,
1-(2-iodophenyl)-(S)-1-(methoxy)-hexyl-(S)-2-N-cyclohexylcarbamate,
1-(2-iodophenyl)-(S)-1-(methoxy)-hexyl-(S)-2-N-benzylcarbamate,
1-(2-iodophenyl)-(S)-1-(methoxy)-hexyl-(S)-2-N-bicyclo[2,2,1]heptanecarbamate,
1-(3-iodophenyl)-(S)-1-(methoxy)-propyl-(S)-2-carbamate,
1-(3-iodophenyl)-(S)-1-(methoxy)-propyl-(S)-2-N-methylcarbamate,
1-(3-iodophenyl)-(S)-1-(methoxy)-propyl-(S)-2-N-propylcarbamate,
1-(3-iodophenyl)-(S)-1-(methoxy)-propyl-(S)-2-N-isopropylcarbamate,
1-(3-iodophenyl)-(S)-1-(methoxy)-propyl-(S)-2-N-cyclopropylcarbamate,
1-(3-iodophenyl)-(S)-1-(methoxy)-propyl-(S)-2-N-cyclohexylcarbamate,
1-(3-iodophenyl)-(S)-1-(methoxy)-propyl-(S)-2-N-benzylcarbamate,
1-(2-fluorophenyl)-(S)-1-(methoxy)-propyl-(S)-2-carbamate,
1-(2-fluorophenyl)-(S)-1-(methoxy)-propyl-(S)-2-N-methylcarbamate,
1-(2-fluorophenyl)-(S)-1-(methoxy)-propyl-(S)-2-N-propylcarbamate,
1-(2-fluorophenyl)-(S)-1-(methoxy)-propyl-(S)-2-N-isopropylcarbamate,
1-(2-fluorophenyl)-(S)-1-(methoxy)-propyl-(S)-2-N-cyclopropylcarbamate,
1-(2-fluorophenyl)-(S)-1-(methoxy)-propyl-(S)-2-N-cyclohexylcarbamate,
1-(2-fluorophenyl)-(S)-1-(methoxy)-propyl-(S)-2-N-benzylcarbamate,
1-(2-fluorophenyl)-(S)-1-(methoxy)-propyl-(S)-2-N-bicyclo[2,2,1]heptanecarbamate,
1-(4-fluorophenyl)-(S)-1-(methoxy)-propyl-(S)-2-carbamate,
1-(4-fluorophenyl)-(S)-1-(methoxy)-propyl-(S)-2-N-cyclohexylcarbamate,
1-(4-fluorophenyl)-(S)-1-(methoxy)-propyl-(S)-2-N-cycloproplylcarbamate,
1-(4-fluorophenyl)-(S)-1-(methoxy)-propyl-(S)-2-N-cyclohexylcarbamate,
1-(2-chlorophenyl)-(S)-l-(methoxy)-propyl-(S)-2-N-bicyclo[2,2,1]heptanecarbamate
1-(2-chlorophenyl)-(S)-l-(methoxy)-butyl-(S)-2-carbamate,
1-(2-chlorophenyl)-(S)-l-(methoxy)-3-methyl-butyl-(S)-2-carbamate,
1-(2-chlorophenyl)-(S)-l-(methoxy)-hexyl-(S)-2-carbamate,
1-(2,3-dichlorophenyl)-(S)-l-(methoxy)-propyl-(S)-2-carbamate,
1-(2,4-dichlorophenyl)-(S)-l-(methoxy)-propyl-(S)-2-carbamate,
1-(2,4-dichlorophenyl)-(S)-l-(methoxy)-butyl-(S)-2-carbamate,
1-(2,4-dichlorophenyl)-(S)-l-(methoxy)-3-methyl-butyl-(S)-2-carbamate,
1-(2,4-dichlorophenyl)-(S)-l-(methoxy)-hexyl-(S)-2-carbamate,
1-(2,6-dichlorophenyl)-(S)-l-(methoxy)-propyl-(S)-2-carbamate,
1-(2,6-dichlorophenyl)-(S)-l-(methoxy)-butyl-(S)-2-carbamate,
1-(2,6-dichlorophenyl)-(S)-l-(methoxy)-3-methyl-butyl-(S)-2-carbamate,
1-(2,6-dichlorophenyl)-(S)-l-(methoxy)-hexyl-(S)-2-carbamate,
1-(2-chlorophenyl)-(S)-l-(methoxymethoxy)-ethyl-(S)-2-carbamate,
1-(2-fluorophenyl)-(S)-l-(methoxymethoxy)-ethyl-(S)-2-carbamate,
1-(2-iodophenyl)-(S)-l-(methoxymethoxy)-ethyl-(S)-2-carbamate,
1-(2-chlorophenyl)-(S)-l-(methoxymethoxy)-propyl-(S)-2-carbamate,
1-(2-chlorophenyl)-(S)-l-(methoxymethoxy)-propyl-(S)-2-N-methylcarbamate,
1-(2-chlorophenyl)-(S)-l-(methoxymethoxy)-propyl-(S)-2-N-propylcarbamate,
1-(2-chlorophenyl)-(S)-l-(methoxymethoxy)-propyl-(S)-2-N-isopropylcarbamate,
1-(2-chlorophenyl)-(S)-l-(methoxymethoxy)-propyl-(S)-2-N-bicyclo[2,2,1]heptanecarbamate
1-(2-chlorophenyl)-(S)-l-(methoxymethoxy)-butyl-(S)-2-carbamate,
1-(2-chlorophenyl)-(S)-l-(methoxymethoxy)-3-methyl-butyl-(S)-2-carbamate,
1-(2,3-dichlorophenyl)-(S)-l-(methoxymethoxy)-hexyl-(S)-2-carbamate,
1-(2,4-dichlorophenyl)-(S)-l-(methoxymethoxy)-propyl-(S)-2-carbamate,
1-(2,4-dichlorophenyl)-(S)-l-(methoxymethoxy)-butyl-(S)-2-carbamate,
1-(2,4-dichlorophenyl)-(S)-l-(methoxymethoxy)-3-methyl-butyl-(S)-2-carbamate,
1-(2,4-dichlorophenyl)-(S)-l-(methoxymethoxy)-hexyl-(S)-2-carbamate,
1-(2,5-dichlorophenyl)-(S)-1-(methoxymethoxy)-propyl-(S)-2-carbamate,
1-(2,6-dichlorophenyl)-(S)-1-(methoxymethoxy)-propyl-(S)-2-carbamate,
1-(2,6-dichlorophenyl)-(S)-1-(methoxymethoxy)-butyl-(S)-2-carbamate,
1-(2,6-dichlorophenyl)-(S)-1-(methoxymethoxy)-3-methyl-butyl-(S)-2-carbamate,
1-(2,6-dichlorophenyl)-(S)-1-(methoxymethoxy)-hexyl-(S)-2-carbamate,
1-(2-fluorophenyl)-(S)-1-(methoxymethoxy)-propyl-(S)-2-carbamate,
1-(2-fluorophenyl)-(S)-1-(methoxymethoxy)-butyl-(S)-2-N-methylcarbamate,
1-(2-fluorophenyl)-(S)-1-(methoxymethoxy)-propyl-(S)-2-N-propylcarbamate,
1-(2-fluorophenyl)-(S)-1-(methoxymethoxy)-propyl-(S)-2-N-isopropylcarbamate,
1-(2-fluorophenyl)-(S)-1-(methoxymethoxy)-propyl-(S)-2-N-cyclopropylcarbamate,
1-(2-fluorophenyl)-(S)-1-(methoxymethoxy)-propyl-(S)-2-N-cyclohexylcarbamate,
1-(2-fluorophenyl)-(S)-1-(methoxymethoxy)-propyl-(S)-2-N-benzylcarbamate,
1-(2-fluorophenyl)-(S)-1-(methoxymethoxy)-butyl-(S)-2-carbamate,
1-(2-fluorophenyl)-(S)-1-(methoxymethoxy)-3-methyl-butyl-(S)-2-carbamate,
1-(2-fluorophenyl)-(S)-1-(methoxymethoxy)-hexyl-(S)-2-carbamate,
1-(4-fluorophenyl)-(S)-1-(methoxymethoxy)-propyl-(S)-2-carbamate,
1-(4-fluorophenyl)-(S)-1-(methoxymethoxy)-butyl-(S)-2-carbamate,
1-(4-fluorophenyl)-(S)-1-(methoxymethoxy)-3-methyl-butyl-(S)-2-carbamate,
1-(4-fluorophenyl)-(S)-1-(methoxymethoxy)-hexyl-(S)-2-carbamate,
1-(2,6-difluorophenyl)-(S)-1-(methoxymethoxy)-propyl-(S)-2-carbamate,
1-(2-iodophenyl)-(S)-1-(methoxymethoxy)-propyl-(S)-2-carbamate,
1-(2-iodophenyl)-(S)-1-(methoxymethoxy)-butyl-(S)-2-N-methylcarbamate,
1-(2-iodophenyl)-(S)-1-(methoxymethoxy)-propyl-(S)-2-N-propylcarbamate,
1-(2-iodophenyl)-(S)-1-(methoxymethoxy)-propyl-(S)-2-N-isopropylcarbamate,
1-(2-iodophenyl)-(S)-1-(methoxymethoxy)-propyl-(S)-2-N-cyclopropylcarbamate,
1-(2-iodophenyl)-(S)-1-(methoxymethoxy)-propyl-(S)-2-N-cyclohexylcarbamate,
1-(2-iodophenyl)-(S)-1-(methoxymethoxy)-propyl-(S)-2-N-benzylcarbamate,
1-(2-iodophenyl)-(S)-1-(methoxymethoxy)-butyl-(S)-2-N-propylcarbamate,
1-(2-iodophenyl)-(S)-1-(methoxymethoxy)-butyl-(S)-2-N-isopropylcarbamate,
1-(2-iodophenyl)-(S)-1-(methoxymethoxy)-butyl-(S)-2-N-cyclopropylcarbamate,
1-(2-iodophenyl)-(S)-1-(methoxymethoxy)-butyl-(S)-2-N-cyclohexylcarbamate,
1-(2-iodophenyl)-(S)-1-(methoxymethoxy)-butyl-(S)-2-N-benzylcarbamate,
1-(2-iodophenyl)-(S)-1-(methoxymethoxy)-butyl-(S)-2-N-bicyclo[2,2,1]heptanecarbamate,
1-(2-iodophenyl)-(S)-1-(methoxymethoxy)-3-methyl-butyl-(S)-2-carbamate,
1-(2-iodophenyl)-(S)-1-(methoxymethoxy)-3-methyl-butyl-(S)-2-N-methylcarbamate,
1-(2-iodophenyl)-(S)-1-(methoxymethoxy)-3-methyl-butyl-(S)-2-N-propylcarbamate,
1-(2-iodophenyl)-(S)-1-(methoxymethoxy)-3-methyl-butyl-(S)-2-N-isopropylcarbamate,
1-(2-iodophenyl)-(S)-1-(methoxymethoxy)-3-methyl-butyl-(S)-2-N-cyclopropylcarbamate,
1-(2-iodophenyl)-(S)-1-(methoxymethoxy)-3-methyl-butyl-(S)-2-N-cyclohexylcarbamate,
1-(2-iodophenyl)-(S)-1-(methoxymethoxy)-hexyl-(S)-2-carbamate,
1-(2-iodophenyl)-(S)-1-(methoxymethoxy)-hexyl-(S)-2-N-methylcarbamate,
1-(2-iodophenyl)-(S)-1-(methoxymethoxy)-hexyl-(S)-2-N-propylcarbamate,
1-(2-iodophenyl)-(S)-1-(methoxymethoxy)-hexyl-(S)-2-N-isopropylcarbamate,
1-(2-iodophenyl)-(S)-1-(methoxymethoxy)-hexyl-(S)-2-N-cyclopropylcarbamate,
1-(2-iodophenyl)-(S)-1-(methoxymethoxy)-hexyl-(S)-2-N-cyclohexylcarbamate,
1-(2-iodophenyl)-(S)-1-(methoxymethoxy)-hexyl-(S)-2-N-benzylcarbamate,
1-(2-iodophenyl)-(S)-1-(methoxymethoxy)-hexyl-(S)-2-N-bicyclo[2,2,1]heptanecarbamate,
1-(2-chlorophenyl)-(S)-2-(methoxymethoxy)-propyl-(S)-2-carbamate,
1-(2-chlorophenyl)-(S)-2-(methoxy)-propyl-(S)-1-carbamate,
1-(2-fluorophenyl)-(S)-2-(methoxymethoxy)-propyl-(S)-1-carbamate
1-(2-fluorophenyl)-(S)-2-(methoxy)-propyl-(S)-1-carbamate
1-(2-iodophenyl)-(S)-2-(methoxymethoxy)-propyl-(S)-1-carbamate,
1-(2-iodophenyl)-(S)-2-(methoxy)-propyl-(S)-1-carbamate
1-(2-chlorophenyl)-(R)-1-carbamoyloxypropyl-(R)-2-carbamate,
1-(2-iodophenyl)-(R)-1-carbamoyloxypropyl-(R)-2-carbamate,
1-(2-fluorophenyl)-(R)-1-carbamoyloxypropyl-(R)-2-carbamate,
1-(2-iodophenyl)-(R)-1-carbamoyloxypropyl-(R)-2-carbamate,
1-(2-chlorophenyl)-(R)-1-carbamoyloxypropyl-(R)-2-carbamate,
1-(2-iodophenyl)-(R)-1-carbamoyloxypropyl-(R)-2-carbamate
1-(2,4-dichlorophenyl)-(R)-1-carbamoyloxypropyl-(R)-2-carbamate,
1-(2,6-dichlorophenyl)-(R)-1-carbamoyloxypropyl-(R)-2-carbamate,
1-(2,4-difluorophenyl)-(R)-1-carbamoyloxypropyl(R)-2-carbamate
1-(2,5-difluorophenyl)-(R)-1-carbamoyloxypropyl-(R)-2-carbamate
1-(2,6-difluorophenyl)-(R)-1-carbamoyloxypropyl-(R)-2-carbamate
1-(2-chloro-6-fluorophenyl)-(R)-1-carbamoyloxypropyl-(R)-2-carbamate
1-(2-iodophenyl)-(R)-1-[(methoxy)-propyl-(R)-2-carbamate,
1-(2-chlorophenyl)-(R)-1-(methoxy)-propyl-(R)-2-N-benzylcarbamate,
1-(2-chlorophenyl)-(R)-1-(methoxy)-propyl-(R)-2-N-bicyclo[2,2,1]heptanecarbamate
1-(2-chlorophenyl)-(R)-1-(methoxy)-butyl-(R)-2-carbamate,
1-(2-chlorophenyl)-(R)-1-(methoxy)-3-methyl-butyl-(R)-2-carbamate,
1-(2-chlorophenyl)-(R)-1-(methoxy)-hexyl-(R)-2-carbamate,
1-(2,3-dichlorophenyl)-(R)-1-(methoxy)-propyl-(R)-2-carbamate,
1-(2,4-dichlorophenyl)-(R)-1-(methoxy)-propyl-(R)-2-carbamate,
1-(2,4-dichlorophenyl)-(R)-1-(methoxy)-butyl-(R)-2-carbamate,
1-(2,4-dichlorophenyl)-(R)-1-(methoxy)-3-methyl-butyl-(R)-2-carbamate,
1-(2,4-dichlorophenyl)-(R)-1-(methoxy)-hexyl-(R)-2-carbamate,
1-(2,6-dichlorophenyl)-(R)-1-(methoxy)-propyl-(R)-2-carbamate,
1-(2,6-dichlorophenyl)-(R)-1-(methoxy)-butyl-(R)-2-carbamate,
1-(2,6-dichlorophenyl)-(R)-1-(methoxy)-3-methyl-butyl-(R)-2-carbamate,
1-(2,6-dichlorophenyl)-(R)-1-(methoxy)-hexyl-(R)-2-carbamate,
1-(2-chlorophenyl)-(R)-1-(methoxymethoxy)-ethyl-(R)-2-carbamate,
1-(2-fluorophenyl)-(R)-1-(methoxymethoxy)-ethyl-(R)-2-carbamate,
1-(2-iodophenyl)-(R)-1-(methoxymethoxy)-ethyl-(R)-2-carbamate,
1-(2-chlorophenyl)-(R)-1-(methoxymethoxy)-propyl-(R)-2-carbamate,
1-(2-chlorophenyl)-(R)-1-(methoxymethoxy)-propyl-(R)-2-N-methyl carbamate,
1-(2-chlorophenyl)-(R)-1-(methoxymethoxy)-propyl-(R)-2-N-propylcarbamate,
1-(2-chlorophenyl)-(R)-1-(methoxymethoxy)-propyl-(R)-2-N-isopropylcarbamate,
1-(2-chlorophenyl)-(R)-1-(methoxymethoxy)-propyl-(R)-2-N-cyclopropylcarbamate,
1-(2-chlorophenyl)-(R)-1-(methoxymethoxy)-propyl-(R)-2-N-cyclohexyl carbamate,
1-(2-chlorophenyl)-(R)-1-(methoxymethoxy)-propyl-(R)-2-N-benzylcarbamate,
1-(2-chlorophenyl)-(R)-1-(methoxymethoxy)-propyl-(R)-2-N-bicyclo[2,2,1]heptanecarbamate
1-(2-chlorophenyl)-(R)-1-(methoxymethoxy)-butyl-(R)-2-carbamate,
1-(2-chlorophenyl)-(R)-1-(methoxymethoxy)-3-methyl-butyl-(R)-2-carbamate,
1-(2-chlorophenyl)-(R)-1-(methoxymethoxy)-hexyl-(R)-2-carbamate,
1-(2,3-dichlorophenyl)-(R)-1-(methoxymethoxy)-propyl-(R)-2-carbamate,
1-(2,4-dichlorophenyl)-(R)-1-(methoxymethoxy)-propyl-(R)-2-carbamate,
1-(2,4-dichlorophenyl)-(R)-1-(methoxymethoxy)-butyl-(R)-2-carbamate,
1-(2,4-dichlorophenyl)-(R)-1-(methoxymethoxy)-3-methyl-butyl-(R)-2-carbamate,
1-(2,4-dichlorophenyl)-(R)-(methoxymethoxy)-hexyl-(R)-2-carbamate,
1-(2,5-dichlorophenyl)-(R)-(methoxymethoxy)-propyl-(R)-2-carbamate,
1-(2,6-dichlorophenyl)-(R)-(methoxymethoxy)-propyl-(R)-2-carbamate,
1-(2,6-dichlorophenyl)-(R)-(methoxymethoxy)-butyl-(R)-2-carbamate,
1-(2,6-dichlorophenyl)-(R)-(methoxymethoxy)-3-methyl-butyl-(R)-2-carbamate,
1-(2,6-dichlorophenyl)-(R)-(methoxymethoxy)-hexyl-(R)-2-carbamate,
1-(2-fluorophenyl)-(R)-(methoxymethoxy)-hexyl-(R)-2-carbamate,
1-(4-fluorophenyl)-(R)-(methoxymethoxy)-propyl-(R)-2-carbamate,
1-(4-fluorophenyl)-(R)-(methoxymethoxy)-butyl-(R)-2-carbamate,
1-(4-fluorophenyl)-(R)-(methoxymethoxy)-3-methyl-butyl-(R)-2-carbamate,
1-(2-iodophenyl)-(R)-(methoxymethoxy)-propyl-(R)-2-carbamate,
1-(2-iodophenyl)-(R)-(methoxymethoxy)-butyl-(R)-2-carbamate,
1-(2-iodophenyl)-(R)-(methoxymethoxy)-3-methyl-butyl-(R)-2-carbamate,
1-(2-iodophenyl)-(R)-(methoxymethoxy)-hexyl-(R)-2-carbamate,
1-(3-iodophenyl)-(R)-(methoxymethoxy)-propyl-(R)-2-carbamate,
1-(3-iodophenyl)-(R)-(methoxymethoxy)-butyl-(R)-2-carbamate,
1-(3-iodophenyl)-(R)-(methoxymethoxy)-3-methyl-butyl-(R)-2-carbamate,
1-(3-iodophenyl)-(R)-(methoxymethoxy)-hexyl-(R)-2-carbamate,
1-(2-chlorophenyl)-(S)-1-carbamoyloxypropyl-(R)-2-carbamate,
1-(2-chlorophenyl)-(R)-1-carbamoyloxypropyl-(S)-2-carbamate,
1-(2-chlorophenyl)-(S)-1-(methoxy)-propyl-(R)-2-carbamate,
1-(2-chlorophenyl)-(R)-1-(methoxy)-propyl-(S)-2-carbamate,
1-(2-chlorophenyl)-(S)-1-(methoxymethoxy)-propyl-(R)-2-carbamate, and
1-(2-chlorophenyl)-(R)-1-(methoxymethoxy)-propyl-(S)-2-carbamate.

11. The pharmaceutical composition according to Claim 1, wherein the epilepsy is an intractable epilepsy.

12. The pharmaceutical composition according to Claim 12, wherein the intractable epilepsy is selected from the group consisting of the group consisting of localization-related epilepsy, generalized epilepsy and syndromes thereof.
13. The pharmaceutical composition according to Claim 13, wherein the localization-related epilepsy is cortical epilepsy or temporal lobe epilepsy.

14. The pharmaceutical composition according to Claim 14, wherein the cortical epilepsy is a frontal lobe epilepsy, parietal lobe epilepsy, or occipital lobe epilepsy.

15. The pharmaceutical composition according to Claim 1, wherein the epilepsy-related syndrome is an epileptic seizure.

16. The pharmaceutical composition according to Claim 16, wherein the epileptic seizure is an intractable localization-related epilepsy, an intractable secondary generalized seizure, an intractable complex partial seizure or an intractable status epilepticus.

17. A method of preventing or treating an epilepsy or a epilepsy-related syndrome comprising a phenyl carbamate compound represented by Chemical Formula I or a pharmaceutically acceptable salt thereof, as an active ingredient:

[Chemical Formula I]

\[
\begin{array}{c}
\text{O} \\
\text{X} \\
\text{O} \\
\end{array}
\]

wherein,

X is a halogen,

n means the number of substituent X and is an integer from 1 to 5, wherein X is the same or different each other, when n is 2 or larger,

R\(^1\) is a hydrogen or linear or branched C\(^1\)-C\(^4\) alkyl group,

A is selected from the group consisting of an allyl, a C\(^1\)-C\(^{19}\) linear or branched alkyl group, a C\(^2\)-C\(^8\) alkoxy alkyl ether group and a carbamoyl derivative represented by

\[
\begin{array}{c}
\text{O} \\
\text{N} \\
\text{R}^2 \\
\end{array}
\]

B is selected from the group consisting of an allyl, a C\(^1\)-C\(^{19}\) linear or branched alkyl group, a C\(^2\)-C\(^8\) alkoxy alkyl ether group and a carbamoyl derivative represented by
and

R² and R³ may be the same as or different from each other, and independently selected from the group consisting of hydrogen, a linear or branched alkyl group of C₁-C₄, a cycloalkyl group of C₃-C₈, and benzyl group.

18. The method according to Claim 17, wherein A is a carbamoyl group, B is C₁-C₉ linear or branched alkyl group or a C₂-C₈ alkoxy alkyl ether group.

19. The method according to Claim 17, wherein B is a carbamoyl group, A is C₁-C₁₉ linear or branched alkyl group or a C₂-C₈ alkoxy alkyl ether group.

20. The method according to Claim 17, wherein the substituents of A and B are carbamoyl group at the same time.

21. The method according to Claim 17, wherein the C₂-C₈ alkoxy alkyl ether group is methoxy methyl (MOM), methoxyethoxymethyl (MEM), thertahydropyranyl (THP), benzyloxymethyl (BOM), methylthiomethyl (MTM), trimethylsilylethoxymethyl (SEM) or ethoxyethyl (EE) group.

22. The method according to Claim 17, wherein the C₁-C₁₉ linear or branched alkyl group in the substituents A and B is a linear or branched C₁-C₆ lower aliphatic alkyl, a C₃-C₁₉ cycloaliphatic ring and a C₆-C₁₈ aromatic group which may be substituted with at least one selected from the group consisting of hydrogen, C₁-C₆ lower alkyl and C₁-C₆ alkoxy group.

23. The method according to Claim 17, wherein X is chlorine, fluorine, iodine, or bromine; n is 1 or 2; and R² and R³ are the same as or different from each other, and independently selected from the group consisting of hydrogen, methyl group, propyl group, isopropyl group, cyclopropyl group, cyclohexyl group, bicycloheptane group, and benzyl group.

24. The method according to Claim 17, wherein the phenyl alkyl carbamate compound is
selected from the group consisting of:

1-(2-chlorophenyl)-1-carbamoyloxypropyl-2-carbamate,
1-(2-chlorophenyl)-1-carbamoyloxypropyl-2-N-methylcarbamate,
1-(2-chlorophenyl)-1-carbamoyloxypropyl-2-N-propylcarbamate

1-(2-chlorophenyl)-1-carbamoyloxybutyl-2-carbamate,
1-(2-chlorophenyl)-1-carbamoyloxy-3-methyl-butyl-2-carbamate,
1-(2-chlorophenyl)-1-carbamoyloxyhexyl-2-carbamate,
1-(2-iodophenyl)-1-carbamoyloxypropyl-2-carbamate,
1-(2-iodophenyl)-1-carbamoyloxybutyl-2-carbamate,
1-(2-iodophenyl)-1-carbamoyloxy-3-methyl-butyl-2-carbamate,
1-(2-iodophenyl)-1-carbamoyloxyhexyl-2-carbamate,
1-(2-fluorophenyl)-1-carbamoyloxypropyl-2-carbamate,
1-(2-fluorophenyl)-1-carbamoyloxybutyl-2-carbamate,
1-(2-fluorophenyl)-1-carbamoyloxy-3-methyl-butyl-2-carbamate,
1-(2-fluorophenyl)-1-carbamoyloxyhexyl-2-carbamate,
1-(2,4-dichlorophenyl)-1-carbamoyloxypropyl-2-carbamate,
1-(2,4-dichlorophenyl)-1-carbamoyloxybutyl-2-carbamate,
1-(2,4-dichlorophenyl)-1-carbamoyloxy-3-methyl-butyl-2-carbamate,
1-(2,4-dichlorophenyl)-1-carbamoyloxyhexyl-2-carbamate,
1-(2,6-dichlorophenyl)-1-carbamoyloxypropyl-2-carbamate,
1-(2,6-dichlorophenyl)-1-carbamoyloxybutyl-2-carbamate,
1-(2,6-dichlorophenyl)-1-carbamoyloxy-3-methyl-butyl-2-carbamate,
1-(2,6-dichlorophenyl)-1-carbamoyloxyhexyl-2-carbamate,
1-(2,4-difluorophenyl)-1-carbamoyloxypropyl-2-carbamate

1-(2,5-difluorophenyl)-1-carbamoyloxypropyl-2-carbamate
1-(2,6-difluorophenyl)-1-carbamoyloxypropyl-2-carbamate
1-(2-chloro-6-fluorophenyl)-1-carbamoyloxypropyl-2-carbamate
1-(2-chlorophenyl)-1-(methoxy)-ethyl-2-carbamate,
1-(2-fluorophenyl)-1-(methoxy)-ethyl-2-carbamate,
1-(2-iodophenyl)-1-(methoxy)-ethyl-2-carbamate,
1-(2-iodophenyl)-1-(methoxy)-propyl-2-carbamate,
1-(2-iodophenyl)-1-(methoxy)-propyl-2-N-methyl carbamate,
1-(2-iodophenyl)-1-(methoxy)-propyl-2-N-propylcarbamate,
1-(2-iodophenyl)-1-(methoxy)-propyl-2-N-isopropylcarbamate,
1-(2-iodophenyl)-1-(methoxy)-propyl-2-N-cyclopropylcarbamate,
1-(2-iodophenyl)-1-(methoxy)-propyl-2-N-cyclohexylcarbamate,
1-(2-iodophenyl)-1-(methoxy)-propyl-2-N-benzylcarbamate,
1-(2-iodophenyl)-1-(methoxy)-propyl-2-N-bicyclo[2,2,1]heptanecarbamate
1-(2-iodophenyl)-1-(methoxy)-butyl-2-carbamate,
1-(2-iodophenyl)-1-(methoxy)-butyl-2-N-methylcarbamate,
1-(2-iodophenyl)-1-(methoxy)-butyl-2-N-propylcarbamate,
1-(2-iodophenyl)-1-(methoxy)-butyl-2-N-isopropylcarbamate,
1-(2-iodophenyl)-1-(methoxy)-butyl-2-N-cyclopropylcarbamate,
1-(2-iodophenyl)-1-(methoxy)-butyl-2-N-cyclohexylcarbamate,
1-(2-iodophenyl)-1-(methoxy)-butyl-2-N-benzylcarbamate,
1-(2-iodophenyl)-1-(methoxy)-butyl-2-N-bicyclo[2,2,1]heptanecarbamate,
1-(2-iodophenyl)-1-(methoxy)-3-methyl-butyl-2-carbamate,
1-(2-iodophenyl)-1-(methoxy)-3-methyl-butyl-2-N-methylcarbamate,
1-(2-iodophenyl)-1-(methoxy)-3-methyl-butyl-2-N-propylcarbamate,
1-(2-iodophenyl)-1-(methoxy)-3-methyl-butyl-2-N-isopropylcarbamate,
1-(2-iodophenyl)-1-(methoxy)-3-methyl-butyl-2-N-cyclopropylcarbamate,
1-(2-iodophenyl)-1-(methoxy)-3-methyl-butyl-2-N-cyclohexylcarbamate,
1-(2-iodophenyl)-1-(methoxy)-3-methyl-butyl-2-N-benzylcarbamate,
1-(2-iodophenyl)-1-(methoxy)-3-methyl-butyl-2-N-bicyclo[2,2,1]heptanecarbamate,
1-(3-iodophenyl)-1-(methoxy)-propyl-2-carbamate,
1-(3-iodophenyl)-1-(methoxy)-butyl-2-carbamate,
1-(3-iodophenyl)-1-(methoxy)-3-methyl-butyl-2-carbamate,
1-(3-iodophenyl)-1-(methoxy)-hexyl-2-carbamate,
1-(2-fluorophenyl)-1-(methoxy)-propyl-2-carbamate,
1-(2-fluorophenyl)-1-(methoxy)-propyl-2-N-methylcarbamate,
1-(2-fluorophenyl)-1-(methoxy)-propyl-2-N-propylcarbamate,
1-(2-fluorophenyl)-1-(methoxy)-propyl-2-N-isopropylcarbamate,
1-(2-fluorophenyl)-1-(methoxy)-propyl-2-N-cyclopropylcarbamate,
1-(2-fluorophenyl)-1-(methoxy)-propyl-2-N-cyclohexylcarbamate,
1-(2-fluorophenyl)-1-(methoxy)-propyl-2-N-benzylcarbamate,
1-(2-fluorophenyl)-1-(methoxy)-propyl-2-N-bicyclo[2,2,1]heptanecarbamate,
1-(2-fluorophenyl)-1-(methoxy)-butyl-2-carbamate,
1-(2-fluorophenyl)-1-(methoxy)-3-methyl-butyl-2-carbamate,
1-(2-fluorophenyl)-1-(methoxy)-hexyl-2-carbamate,
1-(4-fluorophenyl)-1-(methoxy)-propyl-2-carbamate,
1-(4-fluorophenyl)-1-(methoxy)-butyl-2-carbamate,
1-(4-fluorophenyl)-1-(methoxy)-3-methyl-butyl-2-carbamate,
1-(4-fluorophenyl)-1-(methoxy)-hexyl-2-carbamate,
1-(2-chlorophenyl)-1-(methoxy)-propyl-2-carbamate,
1-(2-chlorophenyl)-1-(methoxy)-propyl-2-N-methylcarbamate,
1-(2-chlorophenyl)-1-(methoxy)-propyl-2-N-propylcarbamate,
1-(2-chlorophenyl)-1-(methoxy)-propyl-2-N-isopropylcarbamate,
1-(2-chlorophenyl)-1-(methoxy)-propyl-2-N-cyclopropylcarbamate,
1-(2-chlorophenyl)-1-(methoxy)-propyl-2-N-cyclohexylcarbamate,
1-(2-chlorophenyl)-1-(methoxy)-propyl-2-N-benzylcarbamate,
1-(2-chlorophenyl)-1-(methoxy)-propyl-2-N-bicyclo[2,2,1]heptanecarbamate,
1-(2-chlorophenyl)-1-(methoxy)-butyl-2-carbamate,
1-(2-chlorophenyl)-1-(methoxy)-3-methyl-butyl-2-carbamate,
1-(2-chlorophenyl)-1-(methoxy)-hexyl-2-carbamate,
1-(2,3-dichlorophenyl)-1-(methoxy)-propyl-2-carbamate,
1-(2,4-dichlorophenyl)-1-(methoxy)-propyl-2-carbamate,
1-(2,4-dichlorophenyl)-1-(methoxy)-butyl-2-carbamate,
1-(2,4-dichlorophenyl)-1-(methoxy)-3-methyl-butyl-2-carbamate,
1-(2,4-dichlorophenyl)-1-(methoxy)-hexyl-2-carbamate,
1-(2,6-dichlorophenyl)-1-(methoxy)-propyl-2-carbamate,
1-(2,6-dichlorophenyl)-1-(methoxy)-butyl-2-carbamate,
1-(2,6-dichlorophenyl)-1-(methoxy)-3-methyl-butyl-2-carbamate,
1-(2,6-dichlorophenyl)-1-(methoxy)-3-methyl-butyl-2-carbamate,
1-(2,6-dichlorophenyl)-1-(methoxy)-hexyl-2-carbamate,
1-(2-chlorophenyl)-1-(methoxymethoxy)-ethyl-2-carbamate,
1-(2-fluorophenyl)-1-(methoxymethoxy)-ethyl-2-carbamate,
1-(2-iodophenyl)-1-(methoxymethoxy)-ethyl-2-carbamate,
1-(2-chlorophenyl)-1-(methoxymethoxy)-propyl-2-carbamate,
1-(2-chlorophenyl)-1-(methoxymethoxy)-propyl-2-N-methylcarbamate,
1-(2-chlorophenyl)-1-(methoxymethoxy)-propyl-2-N-propylcarbamate,
1-(2-chlorophenyl)-1-(methoxymethoxy)-propyl-2-N-isopropylcarbamate,
1-(2-chlorophenyl)-1-(methoxymethoxy)-propyl-2-N-cyclopropylcarbamate,
1-(2-chlorophenyl)-1-(methoxymethoxy)-propyl-2-N-cyclohexylcarbamate,
l-(2-chlorophenyl)-l-(methoxymethoxy)-propyl-2-N-benzylcarbamate,
l-(2-chlorophenyl)-l-(methoxymethoxy)-propyl-2-N-bicyclo[2,2,1]heptanecarbamate

1-(2-chlorophenyl)-1-(methoxynethoxy)-3-methyl-butyl-2-carbamate,
1-(2-chlorophenyl)-1-(methoxynethoxy)-3-methyl-butyl-2-carbamate,
1-(2-chlorophenyl)-1-(methoxynethoxy)-hexyl-2-carbamate,
1-(2,3-dichlorophenyl)-1-(methoxynethoxy)-propyl-2-carbamate,
1-(2,4-dichlorophenyl)-1-(methoxynethoxy)-propyl-2-carbamate,
1-(2,4-dichlorophenyl)-1-(methoxynethoxy)-propyl-2-carbamate,
1-(2,4-dichlorophenyl)-1-(methoxynethoxy)-propyl-2-carbamate,
1-(2,4-dichlorophenyl)-1-(methoxynethoxy)-propyl-2-carbamate,
1-(2,5-dichlorophenyl)-1-(methoxynethoxy)-propyl-2-carbamate,
1-(2,6-dichlorophenyl)-1-(methoxynethoxy)-propyl-2-carbamate,
1-(2,6-dichlorophenyl)-1-(methoxynethoxy)-propyl-2-carbamate,
1-(2,6-dichlorophenyl)-1-(methoxynethoxy)-propyl-2-carbamate,
1-(2-fluorophenyl)-1-(methoxymethoxy)-propyl-2-N-benzylcarbamate,
1-(2-fluorophenyl)-1-(methoxymethoxy)-propyl-2-N-bicyclo[2,2,1]heptanecarbamate
1-(2-fluorophenyl)-1-(methoxymethoxy)-butyl-2-carbamate,
1-(2-fluorophenyl)-1-(methoxymethoxy)-3-methyl-butyl-2-carbamate,
1-(2-fluorophenyl)-1-(methoxymethoxy)-hexyl-2-carbamate,
1-(4-fluorophenyl)-1-(methoxymethoxy)-propyl-2-carbamate,
1-(4-fluorophenyl)-1-(methoxymethoxy)-butyl-2-carbamate,
1-(4-fluorophenyl)-1-(methoxymethoxy)-3-methyl-butyl-2-carbamate,
1-(4-fluorophenyl)-1-(methoxymethoxy)-hexyl-2-carbamate,
1-(2,6-difluorophenyl)-1-(methoxymethoxy)-propyl-2-carbamate,
1-(2-iodophenyl)-1-(methoxymethoxy)-propyl-2-carbamate,
1-(2-iodophenyl)-1-(methoxymethoxy)-propyl-2-N-methylcarbamate,
1-(2-iodophenyl)-1-(methoxymethoxy)-propyl-2-N-propylcarbamate,
1-(2-iodophenyl)-1-(methoxymethoxy)-propyl-2-N-isopropylcarbamate,
1-(2-iodophenyl)-1-(methoxymethoxy)-propyl-2-N-cyclopropylcarbamate,
1-(2-iodophenyl)-1-(methoxymethoxy)-propyl-2-N-cyclohexylcarbamate,
1-(2-iodophenyl)-1-(methoxymethoxy)-propyl-2-N-benzylcarbamate,
1-(2-iodophenyl)-1-(methoxymethoxy)-propyl-2-N-bicyclo[2,2,1]heptanecarbamate
1-(2-iodophenyl)-1-(methoxymethoxy)-butyl-2-carbamate,
1-(2-iodophenyl)-1-(methoxymethoxy)-butyl-2-N-methylcarbamate,
1-(2-iodophenyl)-1-(methoxymethoxy)-butyl-2-N-propylcarbamate,
1-(2-iodophenyl)-1-(methoxymethoxy)-butyl-2-N-isopropylcarbamate,
1-(2-iodophenyl)-1-(methoxymethoxy)-butyl-2-N-cyclopropylcarbamate,
1-(2-iodophenyl)-1-(methoxymethoxy)-butyl-2-N-cyclohexylcarbamate,
1-(2-iodophenyl)-1-(methoxymethoxy)-butyl-2-N-benzylcarbamate,
1-(2-iodophenyl)-1-(methoxymethoxy)-butyl-2-N-bicycle[2,2,1]heptanecarbamate
1-(2-iodophenyl)-1-(methoxymethoxy)-butyl-2-N-cyclopropylcarbamate,
1-(2-iodophenyl)-1-(methoxymethoxy)-3-methyl-butyl-2-N-benzyl carbamate,
1-(2-iodophenyl)-1-(methoxymethoxy)-3-methyl-butyl-2-N-bicyclo[2,2,1]heptanecarbamate,
1-(2-iodophenyl)-1-(methoxymethoxy)-hexyl-2-carbamate,
1-(2-iodophenyl)-1-(methoxymethoxy)-hexyl-2-N-methylcarbamate,
1-(2-iodophenyl)-1-(methoxymethoxy)-hexyl-2-N-propylcarbamate,
1-(2-iodophenyl)-1-(methoxymethoxy)-hexyl-2-N-isopropylcarbamate,
1-(2-iodophenyl)-1-(methoxymethoxy)-hexyl-2-N-cyclopropylcarbamate,
1-(2-iodophenyl)-1-(methoxymethoxy)-hexyl-2-N-cyclohexyl carbamate,
1-(2-iodophenyl)-1-(methoxymethoxy)-hexyl-2-N-benzylcarbamate,
1-(2-iodophenyl)-1-(methoxymethoxy)-hexyl-2-N-bicyclo[2,2,1]heptanecarbamate
1-(3-iodophenyl)-1-(methoxymethoxy)-propyl-2-carbamate,
1-(3-iodophenyl)-1-(methoxymethoxy)-butyl-2-carbamate,
1-(3-iodophenyl)-1-(methoxymethoxy)-3-methyl-butyl-2-carbamate,
1-(3-iodophenyl)-1-(methoxymethoxy)-hexyl-2-carbamate,
1-(2-chlorophenyl)-2-(methoxymethoxy)-propyl-1-carbamate,
1-(2-chlorophenyl)-2-(methoxy)-propyl-1-carbamate,
1-(2-fluorophenyl)-2-(methoxymethoxy)-propyl-1-carbamate,
1-(2-fluorophenyl)-2-(methoxy)-propyl-1-carbamate
1-(2-iodophenyl)-2-(methoxymethoxy)-propyl-1-carbamate, and
1-(2-iodophenyl)-2-(methoxy)-propyl-1-carbamate.

25. The method according to Claim 17, wherein the phenyl carbamate compound is in the form of racemate, enantiomer, diastereomer, a mixture of enantiomer, or a mixture of diastereomer.

26. The method according to 25, wherein the phenyl alkyl carbamate compound is selected from the group consisting of:
1-(2-chlorophenyl)-(S)-1-carbamoyloxypropyl-(S)-2-carbamate,
1-(2-chlorophenyl)-(S)-1-carbamoyloxypropyl-(S)-2-N-methylcarbamate,
1-(2-chlorophenyl)-(S)-1-carbamoyloxypropyl-(S)-2-N-propylcarbamate,
1-(2-chlorophenyl)-(S)-1-carbamoyloxybutyl-(S)-2-carbamate,
1-(2-chlorophenyl)-(S)-1-carbamoyloxy-3-methyl-butyl-(S)-2-carbamate,
1-(2-chlorophenyl)-(S)-1-carbamoyloxyhexyl-(S)-2-carbamate,
1-(2-iodophenyl)-(S)-1-carbamoyloxypropyl-(S)-2-carbamate,
1-(2-iodophenyl)-(S)-1-carbamoyloxybutyl-(S)-2-carbamate,
1-(2-iodophenyl)-(S)-1-carbamoyloxy-3-methyl-butyl-(S)-2-carbamate,
1-(2-iodophenyl)-(S)-1-carbamoyloxyhexyl-(S)-2-carbamate,
1-(2-fluorophenyl)-(S)-1-carbamoyloxypropyl-(S)-2-carbamate,
1-(2-fluorophenyl)-(S)-1-carbamoyloxybutyl-(S)-2-carbamate,
1-(2-fluorophenyl)-(S)-1-carbamoyloxy-3-methyl-butyl-(S)-2-carbamate,
1-(2-fluorophenyl)-(S)-1-carbamoyloxyhexyl-(S)-2-carbamate,
1-(2,4-dichlorophenyl)-(S)-1-carbamoyloxypropyl-(S)-2-carbamate,
1-(2,4-dichlorophenyl)-(S)-1-carbamoyloxybutyl-(S)-2-carbamate,
1-(2,4-dichlorophenyl)-(S)-1-carbamoyloxy-3-methyl-butyl-2-carbamate,
1-(2,4-dichlorophenyl)-(S)-1-carbamoyloxyhexyl-(S)-2-carbamate,
1-(2,6-dichlorophenyl)-(S)-1-carbamoyloxypropyl-(S)-2-carbamate,
1-(2,6-dichlorophenyl)-(S)-1-carbamoyloxybutyl-(S)-2-carbamate,
1-(2,6-dichlorophenyl)-(S)-1-carbamoyloxy-3-methyl-butyl-(S)-2-carbamate,
1-(2,6-dichlorophenyl)-(S)-1-carbamoyloxyhexyl-(S)-2-carbamate,
1-(2-chloro-6-fluorophenyl)-(S)-1-carbamoyloxypropyl-(S)-2-carbamate
1-(2-chlorophenyl)-(S)-1-(methoxy)-ethyl-2-carbamate,
1-(2-fluorophenyl)-(S)-1-(methoxy)-ethyl-2-carbamate,
1-(2-iodophenyl)-(S)-1-(methoxy)-ethyl-2-carbamate,
1-(2-iodophenyl)-(S)-1-(methoxy)-propyl-(S)-2-carbamate,
1-(2-iodophenyl)-(S)-1-(methoxy)-propyl-(S)-2-N-methylcarbamate,
1-(2-iodophenyl)-(S)-1-(methoxy)-propyl-(S)-2-N-propylcarbamate,
1-(2-iodophenyl)-(S)-1-(methoxy)-propyl-(S)-2-N-isopropylcarbamate,
1-(2-iodophenyl)-(S)-1-(methoxy)-propyl-(S)-2-N-cyclopropylcarbamate,
1-(2-iodophenyl)-(S)-1-(methoxy)-propyl-(S)-2-N-cyclohexylcarbamate,
1-(2-iodophenyl)-(S)-1-(methoxy)-propyl-(S)-2-N-benzylcarbamate,
1-(2-iodophenyl)-(S)-1-(methoxy)-propyl-(S)-2-N-bicyclo[2,2,1]heptane-carbamate
1-(2-iodophenyl)-(S)-1-(methoxy)-butyl-(S)-2-carbamate,
1-(2-iodophenyl)-(S)-1-(methoxy)-butyl-(S)-2-N-methylcarbamate,
1-(2-iodophenyl)-(S)-1-(methoxy)-butyl-(S)-2-N-propylcarbamate,
1-(2-iodophenyl)-(S)-1-(methoxy)-butyl-(S)-2-N-isopropylcarbamate,
1-(2-iodophenyl)-(S)-1-(methoxy)-butyl-(S)-2-N-cyclopropylcarbamate,
1-(2-iodophenyl)-(S)-1-(methoxy)-butyl-(S)-2-N-cyclohexylcarbamate,
1-(2-iodophenyl)-(S)-1-(methoxy)-butyl-(S)-2-N-benzylcarbamate,
1-(2-iodophenyl)-(S)-1-(methoxy)-butyl-(S)-2-N-bicyclo[2,2,1]heptanecarbamate,
1-(2-iodophenyl)-(S)-1-(methoxy)-3-methyl-butyl-(S)-2-N-methylcarbamate,
1-(2-iodophenyl)-(S)-1-(methoxy)-3-methyl-butyl-(S)-2-N-propylcarbamate,
1-(2-iodophenyl)-(S)-1-(methoxy)-3-methyl-butyl-(S)-2-N-isopropylcarbamate,
1-(2-iodophenyl)-(S)-1-(methoxy)-3-methyl-butyl-(S)-2-N-cyclopropylcarbamate,
1-(2-iodophenyl)-(S)-1-(methoxy)-3-methyl-butyl-(S)-2-N-cyclohexylcarbamate,
1-(2-iodophenyl)-(S)-1-(methoxy)-3-methyl-butyl-(S)-2-N-benzylcarbamate,
1-(2-iodophenyl)-(S)-1-(methoxy)-3-methyl-butyl-(S)-2-N-bicyclo[2,2,1]heptanecarbamate,
1-(2-fluorophenyl)-(S)-1-(methoxy)-propyl-(S)-2-carbamate,
1-(2-fluorophenyl)-(S)-1-(methoxy)-propyl-(S)-2-N-methylcarbamate,
1-(2-fluorophenyl)-(S)-1-(methoxy)-propyl-(S)-2-N-propylcarbamate,
1-(2-fluorophenyl)-(S)-1-(methoxy)-propyl-(S)-2-N-isopropylcarbamate,
1-(2-fluorophenyl)-(S)-1-(methoxy)-propyl-(S)-2-N-cyclopropylcarbamate,
1-(2-fluorophenyl)-(S)-1-(methoxy)-propyl-(S)-2-N-cyclohexylcarbamate,
1-(2-fluorophenyl)-(S)-1-(methoxy)-propyl-(S)-2-N-benzylcarbamate,
1-(2-fluorophenyl)-(S)-1-(methoxy)-propyl-(S)-2-N-bicyclo[2,2,1]heptanecarbamate,
1-(3-iodophenyl)-(S)-1-(methoxy)-propyl-(S)-2-carbamate,
1-(3-iodophenyl)-(S)-1-(methoxy)-propyl-(S)-2-N-methylcarbamate,
1-(3-iodophenyl)-(S)-1-(methoxy)-propyl-(S)-2-N-propylcarbamate,
1-(3-iodophenyl)-(S)-1-(methoxy)-propyl-(S)-2-N-isopropylcarbamate,
1-(3-iodophenyl)-(S)-1-(methoxy)-propyl-(S)-2-N-cyclopropylcarbamate,
1-(3-iodophenyl)-(S)-1-(methoxy)-propyl-(S)-2-N-cyclohexylcarbamate,
1-(3-iodophenyl)-(S)-1-(methoxy)-propyl-(S)-2-N-benzylcarbamate,
1-(3-iodophenyl)-(S)-1-(methoxy)-propyl-(S)-2-N-bicyclo[2,2,1]heptanecarbamate,
1-(4-fluorophenyl)-(S)-1-(methoxy)-proyl-(S)-2-carbamate,
1-(4-fluorophenyl)-(S)-1-(methoxy)-butyl-(S)-2-carbamate,
1-(4-fluorophenyl)-(S)-1-(methoxy)-3-methyl-butyl-(S)-2-carbamate,
1-(4-fluorophenyl)-(S)-1-(methoxy)-hexyl-(S)-2-carbamate,
1-(2-chlorophenyl)-(S)-1-(methoxy)-propyl-(S)-2-carbamate,
1-(2-chlorophenyl)-(S)-1-(methoxy)-propyl-(S)-2-N-methylcarbamate,
1-(2-chlorophenyl)-(S)-1-(methoxy)-propyl-(S)-2-N-propylcarbamate,
1-(2-chlorophenyl)-(S)-1-(methoxy)-propyl-(S)-2-N-isopropylcarbamate,
1-(2-chlorophenyl)-(S)-1-(methoxy)-propyl-(S)-2-N-cyclopropylcarbamate,
1-(2-chlorophenyl)-(S)-1-(methoxy)-propyl-(S)-2-N-cyclohexylcarbamate,
1-(2-chlorophenyl)-(S)-1-(methoxy)-propyl-(S)-2-N-benzylcarbamate,
1-(2-chlorophenyl)-(S)-1-(methoxy)-propyl-(S)-2-N-bicyclo[2,2,1]heptanecarbamate,
1-(2-chlorophenyl)-(S)-1-(methoxy)-butyl-(S)-2-carbamate,
1-(2-chlorophenyl)-(S)-1-(methoxy)-3-methyl-butyl-(S)-2-carbamate,
1-(2-chlorophenyl)-(S)-1-(methoxy)-hexyl-(S)-2-carbamate,
1-(2,3-dichlorophenyl)-(S)-1-(methoxy)-propyl-(S)-2-carbamate,
1-(2,4-dichlorophenyl)-(S)-1-(methoxy)-propyl-(S)-2-carbamate,
1-(2,4-dichlorophenyl)-(S)-1-(methoxy)-butyl-(S)-2-carbamate,
1-(2,4-dichlorophenyl)-(S)-1-(methoxy)-3-methyl-butyl-(S)-2-carbamate,
1-(2,4-dichlorophenyl)-(S)-1-(methoxy)-hexyl-(S)-2-carbamate,
1-(2,6-dichlorophenyl)-(S)-1-(methoxy)-propyl-(S)-2-carbamate,
1-(2,6-dichlorophenyl)-(S)-1-(methoxy)-butyl-(S)-2-carbamate,
1-(2,6-dichlorophenyl)-(S)-1-(methoxy)-3-methyl-butyl-(S)-2-carbamate,
1-(2,6-dichlorophenyl)-(S)-1-(methoxy)-hexyl-(S)-2-carbamate,
1-(2-chlorophenyl)-(S)-1-(methoxymethoxy)-ethyl-(S)-2-carbamate,
1-(2-fluorophenyl)-(S)-1-(methoxymethoxy)-ethyl-(S)-2-carbamate,
1-(2-iodophenyl)-(S)-1-(methoxymethoxy)-ethyl-(S)-2-carbamate,
1-(2-chlorophenyl)-(S)-1-(methoxymethoxy)-propyl-(S)-2-carbamate,
1-(2-chlorophenyl)-(S)-1-(methoxymethoxy)-propyl-(S)-2-N-methylcarbamate,
1-(2-chlorophenyl)-(S)-1-(methoxymethoxy)-propyl-(S)-2-N-propylcarbamate,
1-(2-chlorophenyl)-(S)-1-(methoxymethoxy)-propyl-(S)-2-N-isopropylcarbamate,
1-(2-chlorophenyl)-(S)-1-(methoxymethoxy)-propyl-(S)-2-N-cyclopropylcarbamate,
1-(2-chlorophenyl)-(S)-1-(methoxymethoxy)-propyl-(S)-2-N-cyclohexylcarbamate,
1-(2-chlorophenyl)-(S)-1-(methoxymethoxy)-propyl-2-N-benzylcarbamate,
1-(2-chlorophenyl)-(S)-1-(methoxymethoxy)-propyl-2-N-bicyclo[2,2,1]heptanecarbamate
1-(2-chlorophenyl)-(S)-1-(methoxymethoxy)-butyl-(S)-2-carbamate,
1-(2-chlorophenyl)-(S)-1-(methoxymethoxy)-3-methyl-butyl-(S)-2-carbamate,
1-(2-chlorophenyl)-(S)-1-(methoxymethoxy)-hexyl-(S)-2-carbamate,
1-(2,3-dichlorophenyl)-(S)-1-(methoxymethoxy)-propyl-(S)-2-carbamate,
1-(2,4-dichlorophenyl)-(S)-1-(methoxymethoxy)-propyl-(S)-2-carbamate,
1-(2,4-dichlorophenyl)-(S)-1-(methoxymethoxy)-butyl-(S)-2-carbamate,
1-(2,4-dichlorophenyl)-(S)-1-(methoxymethoxy)-3-methyl-butyl-(S)-2-carbamate,
1-(2,4-dichlorophenyl)-(S)-1-(methoxymethoxy)-hexyl-(S)-2-carbamate,
1-(2,5-dichlorophenyl)-(S)-1-(methoxymethoxy)-propyl-(S)-2-carbamate,
1-(2,6-dichlorophenyl)-(S)-1-(methoxymethoxy)-propyl-(S)-2-carbamate,
1-(2,6-dichlorophenyl)-(S)-1-(methoxymethoxy)-butyl-(S)-2-carbamate,
1-(2,6-dichlorophenyl)-(S)-1-(methoxymethoxy)-3-methyl-butyl-(S)-2-carbamate,
1-(2,6-dichlorophenyl)-(S)-1-(methoxymethoxy)-hexyl-(S)-2-carbamate,
1-(2-fluorophenyl)-(S)-1-(methoxymethoxy)-propyl-(S)-2-N-methylcarbamate,
1-(2-fluorophenyl)-(S)-1-(methoxymethoxy)-propyl-(S)-2-N-propylcarbamate,
1-(2-fluorophenyl)-(S)-1-(methoxymethoxy)-propyl-(S)-2-N-isopropylcarbamate,
1-(2-fluorophenyl)-(S)-1-(methoxymethoxy)-propyl-(S)-2-N-cyclopropylcarbamate,
1-(2-fluorophenyl)-(S)-1-(methoxymethoxy)-propyl-(S)-2-N-cyclohexylcarbamate,
1-(2-fluorophenyl)-(S)-1-(methoxymethoxy)-propyl-(S)-2-N-benzylcarbamate,
bicyclo[2,2,1]heptanecarbamate
1-(2-fluorophenyl)-(S)-1-(methoxymethoxy)-butyl-(S)-2-carbamate,
1-(2-fluorophenyl)-(S)-1-(methoxymethoxy)-3-methyl-butyl-(S)-2-carbamate,
1-(2-fluorophenyl)-(S)-1-(methoxymethoxy)-hexyl-(S)-2-carbamate,
1-(4-fluorophenyl)-(S)-1-(methoxymethoxy)-propyl-(S)-2-carbamate,
1-(4-fluorophenyl)-(S)-1-(methoxymethoxy)-butyl-(S)-2-carbamate,
1-(4-fluorophenyl)-(S)-1-(methoxymethoxy)-3-methyl-butyl-(S)-2-carbamate,
1-(4-fluorophenyl)-(S)-1-(methoxymethoxy)-hexyl-(S)-2-carbamate,
1-(2,6-difluorophenyl)-(S)-1-(methoxymethoxy)-propyl-(S)-2-carbamate,
l-(2-iodophenyl)-(S)-1-(methoxymethoxy)-propyl-(S)-2-carbamate,
l-(2-iodophenyl)-(S)-1-(methoxymethoxy)-propyl-(S)-2-N-methylcarbamate,
l-(2-iodophenyl)-(S)-1-(methoxymethoxy)-propyl-(S)-2-N-propylcarbamate,
l-(2-iodophenyl)-(S)-1-(methoxymethoxy)-propyl-(S)-2-N-isopropylcarbamate,
l-(2-iodophenyl)-(S)-1-(methoxymethoxy)-propyl-(S)-2-N-cyclopropylcarbamate,
l-(2-iodophenyl)-(S)-1-(methoxymethoxy)-propyl-(S)-2-N-cyclohexylcarbamate,
l-(2-iodophenyl)-(S)-1-(methoxymethoxy)-propyl-(S)-2-N-benzylcarbamate,

bicyclo[2,2,1]heptanecarbamate

l-(2-iodophenyl)-(S)-1-(methoxymethoxy)-butyl-(S)-2-carbamate,
l-(2-iodophenyl)-(S)-1-(methoxymethoxy)-butyl-(S)-2-N-methylcarbamate,
l-(2-iodophenyl)-(S)-1-(methoxymethoxy)-butyl-(S)-2-N-propylcarbamate,
l-(2-iodophenyl)-(S)-1-(methoxymethoxy)-butyl-(S)-2-N-isopropylcarbamate,
l-(2-iodophenyl)-(S)-1-(methoxymethoxy)-butyl-(S)-2-N-cyclopropylcarbamate,
l-(2-iodophenyl)-(S)-1-(methoxymethoxy)-butyl-(S)-2-N-cyclohexylcarbamate,
l-(2-iodophenyl)-(S)-1-(methoxymethoxy)-butyl-(S)-2-N-benzylcarbamate,

bicyclo[2,2,1]heptanecarbamate

l-(2-iodophenyl)-(S)-1-(methoxymethoxy)-3-methyl-butyl-(S)-2-carbamate,
l-(2-iodophenyl)-(S)-1-(methoxymethoxy)-3-methyl-butyl-(S)-2-N-methylcarbamate,
l-(2-iodophenyl)-(S)-1-(methoxymethoxy)-3-methyl-butyl-(S)-2-N-propylcarbamate,
l-(2-iodophenyl)-(S)-1-(methoxymethoxy)-3-methyl-butyl-(S)-2-N-isopropylcarbamate,
l-(2-iodophenyl)-(S)-1-(methoxymethoxy)-3-methyl-butyl-(S)-2-N-cyclopropylcarbamate,
l-(2-iodophenyl)-(S)-1-(methoxymethoxy)-3-methyl-butyl-(S)-2-N-cyclohexylcarbamate,
l-(2-iodophenyl)-(S)-1-(methoxymethoxy)-3-methyl-butyl-(S)-2-N-benzylcarbamate,

bicyclo[2,2,1]heptanecarbamate

l-(2-iodophenyl)-(S)-1-(methoxymethoxy)-hexyl-2-carbamate,
1-(2-iodophenyl)-(S)-1-(methoxymethoxy)-hexyl-(S)-2-N-isopropylcarbamate,
1-(2-iodophenyl)-(S)-1-(methoxymethoxy)-hexyl-(S)-2-N-cyclopropylcarbamate,
1-(2-iodophenyl)-(S)-1-(methoxymethoxy)-hexyl-(S)-2-N-cyclohexyl carbamate,
1-(2-iodophenyl)-(S)-1-(methoxymethoxy)-hexyl-(S)-2-N-benzylcarbamate,
1-(2-iodophenyl)-(S)-1-(methoxymethoxy)-hexyl-(S)-2-N-bicyclo[2,2,1]heptanecarbamate
1-(3-iodophenyl)-(S)-1-(methoxymethoxy)-propyl-(S)-2-carbamate,
1-(3-iodophenyl)-(S)-1-(methoxymethoxy)-butyl-(S)-2-carbamate,
1-(3-iodophenyl)-(S)-1-(methoxymethoxy)-3-methyl-butyl-(S)-2-carbamate,
1-(3-iodophenyl)-(S)-1-(methoxymethoxy)-hexyl-(S)-2-carbamate,
1-(2-chlorophenyl)-(S)-2-(methoxymethoxy)-propyl-(S)-1-carbamate,
1-(2-chlorophenyl)-(S)-2-(methoxy)-propyl-(S)-1-carbamate,
1-(2-fluorophenyl)-(S)-2-(methoxymethoxy)-propyl-(S)-1-carbamate,
1-(2-fluorophenyl)-(S)-2-(methoxy)-propyl-(S)-1-carbamate
1-(2-iodophenyl)-(R)-1-(methoxymethoxy)-propyl-(R)-2-carbamate,
1-(2-iodophenyl)-(R)-1-(methoxymethoxy)-butyl-(R)-2-carbamate,
1-(2-iodophenyl)-(R)-1-(methoxymethoxy)-3-methyl-butyl-(R)-2-carbamate,
1-(2-iodophenyl)-(R)-1-(methoxymethoxy)-hexyl-(R)-2-carbamate,
1-(3-iodophenyl)-(R)-1-(methoxymethoxy)-propyl-(R)-2-carbamate,
1-(3-iodophenyl)-(R)-1-(methoxymethoxy)-butyl-(R)-2-carbamate,
1-(3-iodophenyl)-(R)-1-(methoxymethoxy)-3-methyl-butyl-(R)-2-carbamate,
1-(3-iodophenyl)-(R)-1-(methoxymethoxy)-hexyl-(R)-2-carbamate,
1-(2-fluorophenyl)-(R)-1-(methoxy)-propyl-(R)-2-carbamate,
1-(4-fluorophenyl)-(R)-1-(methoxy)-propyl-(R)-2-carbamate,
1-(4-fluorophenyl)-(R)-1-(methoxy)-butyl-(R)-2-carbamate,
1-(4-fluorophenyl)-(R)-1-(methoxy)-3-methyl-butyl-(R)-2-carbamate,
1-(4-fluorophenyl)-(R)-1-(methoxy)-hexyl-(R)-2-carbamate,
1-(2-chlorophenyl)-(R)-1-(methoxy)-propyl-(R)-2-carbamate,
1-(2-chlorophenyl)-(R)-1-(methoxy)-propyl-(R)-2-N-methylcarbamate,
1-(2-chlorophenyl)-(R)-1-(methoxy)-propyl-(R)-2-N-propylcarbamate,
1-(2-chlorophenyl)-(R)-1-(methoxy)-propyl-(R)-2-N-isopropylcarbamate,
1-(2-chlorophenyl)-(R)-1-(methoxy)-propyl-(R)-2-N-cyclopropylcarbamate,
1-(2-chlorophenyl)-(R)-1-(methoxy)-propyl-(R)-2-N-cyclohexylcarbamate,
1-(2-chlorophenyl)-(R)-1-(methoxy)-propyl-(R)-2-N-benzylcarbamate,
1-(2-chlorophenyl)-(R)-1-(methoxy)-propyl-(R)-2-N-bicyclo[2,2,1]heptanecarbamate,
1-(2-chlorophenyl)-(R)-1-(methoxy)-butyl-(R)-2-carbamate,
1-(2-chlorophenyl)-(R)-1-(methoxy)-3-methyl-butyl-(R)-2-carbamate,
1-(2,3-dichlorophenyl)-(R)-1-(methoxy)-propyl-(R)-2-carbamate,
1-(2,4-dichlorophenyl)-(R)-1-(methoxy)-propyl-(R)-2-carbamate,
1-(2,4-dichlorophenyl)-(R)-1-(methoxy)-propyl-(R)-2-cyclohexylcarbamate,
1-(2,4-dichlorophenyl)-(R)-1-(methoxy)-butyl-(R)-2-carbamate,
1-(2,6-dichlorophenyl)-(R)-1-(methoxy)-propyl-(R)-2-carbamate,
1-(2,6-dichlorophenyl)-(R)-1-(methoxy)-3-methyl-butyl-(R)-2-carbamate,
1-(2,6-dichlorophenyl)-(R)-1-(methoxy)-3-methyl-butyl-(R)-2-carbamate,
1-(2-chlorophenyl)-(R)-1-(methoxymethoxy)-propyl-(R)-2-N-cyclohexyl carbamate,
1-(2-chlorophenyl)-(R)-1-(methoxymethoxy)-propyl-(R)-2-N-benzylcarbamate,
1-(2-chlorophenyl)-(R)-1-(methoxymethoxy)-propyl-(R)-2-N-bicyclo[2,2,1]heptanecarbamate
5
1-(2-chlorophenyl)-(R)-1-(methoxymethoxy)-butyl-(R)-2-carbamate,
1-(2-chlorophenyl)-(R)-1-(methoxymethoxy)-3-methyl-butyl-(R)-2-carbamate,
1-(2-chlorophenyl)-(R)-1-(methoxymethoxy)-hexyl-(R)-2-carbamate,
1-(2,3-dichlorophenyl)-(R)-1-(methoxymethoxy)-propyl-(R)-2-carbamate,
1-(2,4-dichlorophenyl)-(R)-1-(methoxymethoxy)-propyl-(R)-2-carbamate,
1-(2,4-dichlorophenyl)-(R)-1-(methoxymethoxy)-butyl-(R)-2-carbamate,
10
1-(2,4-dichlorophenyl)-(R)-1-(methoxymethoxy)-3-methyl-butyl-(R)-2-carbamate,
1-(2,4-dichlorophenyl)-(R)-1-(methoxymethoxy)-hexyl-(R)-2-carbamate,
1-(2,5-dichlorophenyl)-(R)-1-(methoxymethoxy)-propyl-(R)-2-carbamate,
1-(2,6-dichlorophenyl)-(R)-1-(methoxymethoxy)-propyl-(R)-2-carbamate,
15
1-(2,6-dichlorophenyl)-(R)-1-(methoxymethoxy)-butyl-(R)-2-carbamate,
1-(2,6-dichlorophenyl)-(R)-1-(methoxymethoxy)-3-methyl-butyl-(R)-2-carbamate,
1-(2,6-dichlorophenyl)-(R)-1-(methoxymethoxy)-hexyl-(R)-2-carbamate,
1-(4-fluorophenyl)-(R)-1-(methoxymethoxy)-propyl-(R)-2-carbamate,
1-(4-fluorophenyl)-(R)-1-(methoxymethoxy)-butyl-(R)-2-carbamate,
20
1-(4-fluorophenyl)-(R)-1-(methoxymethoxy)-3-methyl-butyl-(R)-2-carbamate,
1-(4-fluorophenyl)-(R)-1-(methoxymethoxy)-hexyl-(R)-2-carbamate,
1-(2-iodophenyl)-(R)-1-(methoxymethoxy)-propyl-(R)-2-carbamate,
1-(2-iodophenyl)-(R)-1-(methoxymethoxy)-butyl-(R)-2-carbamate,
25
1-(2-iodophenyl)-(R)-1-(methoxymethoxy)-3-methyl-butyl-(R)-2-carbamate,
1-(2-iodophenyl)-(R)-1-(methoxymethoxy)-hexyl-(R)-2-carbamate,
1-(3-iodophenyl)-(R)-1-(methoxymethoxy)-propyl-(R)-2-carbamate,
1-(3-iodophenyl)-(R)-1-(methoxymethoxy)-butyl-(R)-2-carbamate,
30
1-(3-iodophenyl)-(R)-1-(methoxymethoxy)-3-methyl-butyl-(R)-2-carbamate,
1-(2-chlorophenyl)-(R)-1-(methoxy)-propyl-(S)-2-carbamate,
1-(2-chlorophenyl)-(S)-1-(methoxymethoxy)-propyl-(R)-2-carbamate, and
1-(2-chlorophenyl)-(R)-1-(methoxymethoxy)-propyl-(S)-2-carbamate.

27. The method according to Claim 17, wherein the epilepsy is an intractable epilepsy.

28. The method according to Claim 27, wherein the intractable epilepsy is selected from the group consisting of the group consisting of localization-related epilepsy, generalized epilepsy and syndromes thereof.

29. The method according to Claim 28, wherein the localization-related epilepsy is cortical epilepsy or temporal lobe epilepsy.

30. The method according to Claim 29, wherein the cortical epilepsy is a frontal lobe epilepsy, parietal lobe epilepsy, or occipital lobe epilepsy.

31. The method according to Claim 17, wherein the epilepsy-related syndrome is an epileptic seizure.

32. The method according to Claim 31, wherein the epileptic seizure is an intractable localization-related epilepsy, an intractable secondary generalized seizure, an intractable complex partial seizure or an intractable status epilepticus.
INTERNATIONAL SEARCH REPORT

PCT

INTERNATIONAL SEARCH REPORT

(PCT Article 18 and Rules 43 and 44)

<table>
<thead>
<tr>
<th>Applicant's or agent's file reference</th>
<th>FOR FURTHER ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPP134284KR</td>
<td>see Form PCT/ISA/220</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>International application No.</th>
<th>International filing date (day/month/year)</th>
<th>(Earliest) Priority Date (day/month/year)</th>
</tr>
</thead>
</table>

Applicant

BIO-PHARM SOLUTIONS CO., LTD.

This International search report has been prepared by this International Searching Authority and is transmitted to the applicant according to Article 18. A copy is being transmitted to the International Bureau.

This international search report consists of a total of 4 sheets.

- It is also accompanied by a copy of each prior art document cited in this report.

1. **Basis of the report**
 - a. With regard to the language, the international search was carried out on the basis of:
 - the international application in the language in which it was filed
 - a translation of the international application into [language], which is the language of a translation furnished for the purposes of international search (Rules 12.3(a) and 23.1(b))
 - b. [] This international search report has been established taking into account the rectification of an obvious mistake authorized by or notified to this Authority under Rule 91 (Rule 43.6bis(a)).
 - c. [] With regard to any nucleotide and/or amino acid sequence disclosed in the international application, see Box No. 1.

2. **[] Certain claims were found unsearchable** (See Box No. II)

3. **[] Unity of invention is lacking** (See Box No. III)

4. With regard to the title,
 - [] the text is approved as submitted by the applicant.
 - [] the text has been established by this Authority to read as follows:

5. With regard to the abstract,
 - [] the text is approved as submitted by the applicant.
 - [] the text has been established, according to Rule 38.2, by this Authority as it appears in Box No. IV. The applicant may, within one month from the date of mailing of this international search report, submit comments to this Authority.

6. With regard to the drawings,
 - a. the figure of the drawings to be published with the abstract is Figure No. []
 - as suggested by the applicant.
 - as selected by this Authority, because the applicant failed to suggest a figure.
 - as selected by this Authority, because this figure better characterizes the invention.
 - b. [] none of the figures is to be published with the abstract.

Form PCT/ISA/220 (first sheet) (July 2009)
INTERNATIONAL SEARCH REPORT

Box No. II Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. ☒ Claims Nos.: 17-32
 because they relate to subject matter not required to be searched by this Authority, namely:
 Claims 17-32 pertain to a method for treatment of the human body by therapy and thus relate to a subject matter which this International Searching Authority is not required, under Article 17(2)(a)(i) of the PCT and Rule 39.1(iv) of the Regulations under the PCT, to search.

2. ☒ Claims Nos.: 10, 12-14, 16
 because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
 Dependent claims 10, 12-14 and 16 are not clear because they respectively refer to themselves as the claims (PCT Article 6).

3. ☐ Claims Nos:.
 because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box No. III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1. ☒ As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.

2. ☒ As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.

3. ☒ As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:

4. ☒ No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

☐ The additional search fees were accompanied by the applicant's protest and, where applicable, the payment of a protest fee.

☐ The additional search fees were accompanied by the applicant's protest but the applicable protest fee was not paid within the time limit specified in the invitation.

☒ No protest accompanied the payment of additional search fees.
A. CLASSIFICATION OF SUBJECT MATTER
A61K 31/055(2006.01)i, A61K 31/047(2006.01)i, A61K 31/045(2006.01)i, A61K 31/135(2006.01)i, A61P 25/00(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED
Minimum documentation searched (classification system followed by classification symbols)
A61K 31/055; C07C 271/14; A61K 31/27; C07C 271/08; C07C 269/06; A61K 31/42; C07D 261/14; C07C 31/42; C07C 271/12; A61K 31/047; A61K 31/045; A61K 31/135; A61P 25/00

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Korean utility models and applications for utility models
Japanese utility models and applications for utility models

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
eKOMPASS(KIPO internal) & Keywords: henyl carbamate compound, epilepsy, epilepsy-related syndrome

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>See abst ract; paragraph [0025]; claims 11-19; and table 1.</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>WO 2012-002773 A2 (BIO-PHARM SOLUTIONS CO., LTD.) 05 January 2012</td>
<td>1-9, 11.15</td>
</tr>
<tr>
<td></td>
<td>See abst ract; pages 1 and 2; and claims 9-17.</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>US 2012-0184762 Al (CHOI, Y. M.) 19 July 2012</td>
<td>1-9, 11.15</td>
</tr>
<tr>
<td></td>
<td>See abst ract; paragraph [0413]; and claims 1-14.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>See abst ract; page 505; and table 3.</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>US 5258397 A (LEPAGE F. et al.) 02 November 1993</td>
<td>1-9, 11.15</td>
</tr>
<tr>
<td></td>
<td>See abst ract; and claims 1-4.</td>
<td></td>
</tr>
</tbody>
</table>

See patent family annex.

Further documents are listed in the continuation of Box C.

* Special categories of cited documents:
 "A" document defining the general state of the art which is not considered to be of particular relevance
 "E" earlier application or patent but published on or after the international filing date
 "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as established)
 "O" document referring to an oral disclosure, use, exhibition or other means
 "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
"K" document member of the same patent family

Date of the actual completion of the international search
26 June 2014 (26.06.2014)

Date of mailing of the international search report
27 June 2014 (27.06.2014)

Name and mailing address of the ISA/KR
International Application Division
Korean Intellectual Property Office
189 Cheongna-ro, Seo-gu, Daejeon Metropolitan City, 302-701, Republic of Korea
Facsimile No. +82-42-472-7140

Authorized officer
SIHN, Young Sihn
Telephone No. +82-42-481-8270

Form PCT/ISA/210 (second sheet) (July 2009)
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CA 2242865 Al</td>
<td>24/07/1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2242865 C</td>
<td>28/03/2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1208402 A</td>
<td>17/02/1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2002-515029 A</td>
<td>21/05/2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 4023825 B2</td>
<td>19/12/2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 4740202 B2</td>
<td>03/08/2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 10-0467760 Bl</td>
<td>19/04/2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5698588 A</td>
<td>16/12/1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5854283 A</td>
<td>29/12/1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 6103759 A</td>
<td>15/08/2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 6127412 A</td>
<td>03/10/2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 97-26241 Al</td>
<td>24/07/1997</td>
</tr>
<tr>
<td>WO 2012-002773 A2</td>
<td>05/01/2012</td>
<td>CA 2803825 Al</td>
<td>05/01/2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 103080079 A</td>
<td>01/05/2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2590936 A2</td>
<td>15/05/2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2013-535418 A</td>
<td>12/09/2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 10-2013-0044240 A</td>
<td>02/05/2013</td>
</tr>
<tr>
<td>US 2012-0184762 Al</td>
<td>19/07/2012</td>
<td>CA 2815460 Al</td>
<td>19/07/2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 103282346 A</td>
<td>04/09/2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2527314 Al</td>
<td>28/11/2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2012-096458 A2</td>
<td>19/07/2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2012-096458 A3</td>
<td>04/10/2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0371876 Bl</td>
<td>24/11/1993</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0459887 Al</td>
<td>04/12/1991</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5059614 A</td>
<td>22/10/1991</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5464860 A</td>
<td>07/11/1995</td>
</tr>
</tbody>
</table>

Form PCT/ISA/210 (patent family annex) (July 2009)