w0 2019/040417 A1 | HIUNY 000 00000 T 0O 0

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property '

Organization
=

International Bureau

(43) International Publication Date
28 February 2019 (28.02.2019)

(10) International Publication Number

WO 2019/040417 Al

WIPO I PCT

(51) International Patent Classification:
GO6F 13/00 (2006.01)

(21) International Application Number:

PCT/US2018/047201  (74)
(22) International Filing Date:
21 August 2018 (21.08.2018)
(25) Filing Language: English ®1)
(26) Publication Language: English

(30) Priority Data:
15/682,437 21 August 2017 (21.08.2017) UsS
(71) Applicant: ALIBABA GROUP HOLDING LIMITED

[—/US]; Fourth Floor, One Capital Place, P.O. Box 847,
George Town, Grand Cayman (KY).

(72) Inventors: JIANG, Xiaowei, Alibaba Group Legal Depart-
ment, 400 S. El Camino Real, Suite 400, San Mateo, CA

94402 (US). LI, Shu; Alibaba Group Legal Department,
400 S. El Camino Real, Suite 400, San Maleo, CA 94402
(US).

Agent: CAPRON, Aaron, J.; Finnegan, Henderson,
Farabow, Garrett & Dunner LLP, 901 New York Avenue,
NW, Washington, DC 20001-4413 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CZ,DE, DJ, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP,
KR,KW,KZ,LA,LC,LK,LR,LS,LU,LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(54) Title: METHODS AND SYSTEMS FOR MEMORY MANAGEMENT OF KERNEL AND USER SPACES

et
(el
O

110
Memory

1

Processor

>

122
Control Register

130
Storage

124
Control Register

I

140
I/O Interface

Fig. 1

(57) Abstract: The present application provides methods and systems for memory management of a kernel space and a user space. An
exemplary system for memory management of the kernel space and the user space may include a first storing unit configured to store
a first root page table index corresponding to the kernel space. The system may also include a second storing unit configured to store a
second root page table index corresponding to the user space. The system may further include a control unit communicatively coupled
to the first and second registers and configured to: translate a first virtual address to a first physical address in accordance with the first
root page table index for an operating system kemel, and translate a second virtual address to a second physical address in accordance
with the second root page table index for a user process.

[Continued on next page]



WO 2019/04041°7 A1 [0 )00 000 000 O 0O O

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Published:
—  with international search report (Art. 21(3))



WO 2019/040417 PCT/US2018/047201

METHODS AND SYSTEMS FOR MEMORY MANAGEMENT OF KERNEL AND

USER SPACES

TECHNICAL FIELD

[001] The present application relates to memory management, and more particularly,
to methods and systems for memory management of kernel and user spaces in computers.

BACKGROUND

[002] In a conventional computer, instructions and/or data stored in a memory may
be addressed by using virtual addresses. When a process needs to access the instructions
and/or data, it may be necessary to translate the virtual addresses into physical addresses of
the memory and retrieve the instructions and/or data accordingly. An operating system (OS)
kernel may use one or more page tables for translating virtual addresses into physical
addresses. For example, a Linux kernel may use three-level page tables for translating a 32-
bit virtual address to a 32-bit physical address with a page size of 4 kilobytes (KB).

[003] Currently, an OS kernel may divide virtual addresses into a kernel space and a
user space for the OS kernel (or another OS kernel) and user processes, respectively. The
kernel space is generally processed at a high central processing unit (CPU) privilege level
while the user space may be dealt with a low CPU privilege level. The OS kernel and the user
processes each may have their own root page table indies, but they generally share the same
page tables for virtual-to-physical address mapping. However, such a design may not utilize
the memory space in an efficient way. Furthermore, it may raise security concerns. For
example, an attacker may trick the OS kernel to execute a malicious program in the user
space through those common page tables among the OS kernel and the user processes.
Moreover, in another aspect, a typical page table entry may not have room available for

emerging features, such as a No-eXcute (NX) bit to enhance virus protection in a 32-bit



WO 2019/040417 PCT/US2018/047201

computer system. It would be desirable to have new methods and systems for memory
management of kernel and user spaces to enhance protection against malware, spyware,

and/or viruses.

SUMMARY

[004] Embodiments of the present disclosure provide improved methods and
systems for memory management of kernel and user spaces in computers, apparatuses, or
systems.

[005] These embodiments include a system for memory management of a kernel
space and a user space. The system may include a first storing unit configured to store a first
root page table index corresponding to the kernel space. The system may also include a
second storing unit configured to store a second root page table index corresponding to the
user space. The system may further include a control unit communicatively coupled to the
first and second registers and configured to: translate a first virtual address to a first physical
address in accordance with the first root page table index for an operating system kernel, and
translate a second virtual address to a second physical address in accordance with the second
root page table index for a user process.

[006] These embodiments also include a method for memory management of a
kernel space and a user space. The method may include obtaining a first root page table index
corresponding to the kernel space. The method may also include obtaining a second root page
table index corresponding to the user space. The method may further include translating a
first virtual address to a first physical address in accordance with the first root page table
index for an operating system kernel. In addition, the method may include translating a
second virtual address to a second physical address in accordance with the second root page

table index for a user process.



WO 2019/040417 PCT/US2018/047201

[007] Moreover, these embodiments include a non-transitory computer-readable
medium storing instructions that are executable by one or more processors of an apparatus to
perform a method for memory management of a kernel space and a user space. The method
may include obtaining a first root page table index corresponding to the kernel space. The
method may also include obtaining a second root page table index corresponding to the user
space. The method may further include translating a first virtual address to a first physical
address in accordance with the first root page table index for an operating system kernel. In
addition, the method may include translating a second virtual address to a second physical
address in accordance with the second root page table index for a user process.

[008] Additional objects and advantages of the disclosed embodiments will be set
forth in part in the following description, and in part will be apparent from the description, or
may be learned by practice of the embodiments. The objects and advantages of the disclosed
embodiments may be realized and attained by the elements and combinations set forth in the
claims.

[009] Itis to be understood that the foregoing general description and the following
detailed description are exemplary and explanatory only, and are not restrictive of the

invention, as claimed.

BRIEF DESCRIPTION OF THE DRAWINGS

[010] Reference will now be made to the accompanying drawings showing
exemplary embodiments of this disclosure. In the drawings:

[011] Fig. 1 illustrates a block diagram of an exemplary computer system for
memory management of kernel and user spaces, according to some embodiments of the

present disclosure.



WO 2019/040417 PCT/US2018/047201

[012] Fig. 2A is a schematic diagram of an exemplary method for memory
management of a kernel space, according to some embodiments of the present disclosure.

[013] Fig. 2B is a schematic diagram of an exemplary page mapping for the kernel
space, according to some embodiments of the present disclosure.

[014] Fig. 3A is a schematic diagram of an exemplary method for memory
management of a kernel space, according to some embodiments of the present disclosure.

[015] Fig. 3B is a schematic diagram of an exemplary page mapping for the kernel
space, according to some embodiments of the present disclosure.

[016] Fig. 4A is a schematic diagram of an exemplary method for memory
management of a user space, according to some embodiments of the present disclosure.

[017] Fig. 4B is a schematic diagram of an exemplary page mapping for the user
space, according to some embodiments of the present disclosure.

[018] Fig. 5A is a schematic diagram of an exemplary method for memory
management of a user space, according to some embodiments of the present disclosure.

[019] Fig. 5B is a schematic diagram of an exemplary page mapping for the user
space, according to some embodiments of the present disclosure.

[020] Fig. 6 is a flow chart of an exemplary memory management method,

according to some embodiments of the present disclosure.

DETAILED DESCRIPTION

[021] Reference will now be made in detail to exemplary embodiments, examples of
which are illustrated in the accompanying drawings. The following description refers to the
accompanying drawings in which the same numbers in different drawings represent the same
or similar elements unless otherwise represented. The implementations set forth in the

following description of exemplary embodiments do not represent all implementations



WO 2019/040417 PCT/US2018/047201

consistent with the invention. Instead, they are merely examples of apparatuses and methods
consistent with aspects related to the invention as recited in the appended claims.

[022] Embodiments of the present disclosure provide improved methods and
systems for memory management of kernel and user spaces in computers, apparatuses, or
systems. The embodiments described herein can respectively assign an OS kernel and a user
process dedicated registers to store their root page table indices for memory management of
kernel and user spaces. The OS kernel and the user process are also respectively provided
with their page directories, page tables, and page table entries for virtual-to-physical address
mapping. The virtual-to-physical address mapping of the OS kernel and the user process can
be respectively mapped to an entire physical memory space. For example, the OS kernel and
the user process can respectively have a kernel space and a user space of 4 gigabytes (GB)
corresponding to an entire physical memory space of 4 GB in a 32-bit computer system.
Alternatively, the virtual-to-physical address mapping of the OS kernel and the user process
can also be respectively mapped to a part of an entire physical memory space. For example,
the OS kernel and the user process can respectively have a kernel space and a user space of
32 GB corresponding to a part of an entire physical memory space of 16 exabytes (EB) (i.e.
16 x 10° GB) in a 64-bit computer system. It can thereby improve the memory space usages
and remove relative security vulnerabilities.

[023] Accordingly, the OS kernel may be protected from malware, spyware, and/or
viruses by respectively translating virtual to physical addresses for the OS kernel and the user
process. In addition, while the translations of virtual to physical addresses are performed
separately, a typical page table entry may have room yielded for emerging features, such as a
No-eXecute (NX) bit to enhance virus protection in a 32-bit computer system. Accordingly,

the security of the computer system may be enhanced and improved.



WO 2019/040417 PCT/US2018/047201

[024] According to some embodiments, the operations, techniques, and/or
components described herein can be implemented by an electronic device, which can include
one or more special-purpose computing devices. The special-purpose computing devices can
be hard-wired to perform the operations, techniques, and/or components described herein, or
can include digital electronic devices such as one or more application-specific integrated
circuits (ASICs) or field programmable gate arrays (FPGAs) that are persistently
programmed to perform the operations, techniques and/or components described herein, or
can include one or more hardware processors programmed to perform such features of the
present disclosure pursuant to program instructions in firmware, memory, other storage, or a
combination. Such special-purpose computing devices can also combine custom hard-wired
logic, ASICs, or FPGAs with custom programming to accomplish the technique and other
features of the present disclosure. The special-purpose computing devices can be desktop
computer systems, portable computer systems, handheld devices, networking devices, or any
other device that incorporates hard-wired and/or program logic to implement the techniques
and other features of the present disclosure.

[025] The one or more special-purpose computing devices can be generally
controlled and coordinated by operating system software, such as i0S, Android, Blackberry,
Chrome OS, Windows XP, Windows Vista, Windows 7, Windows 8, Windows Server,
Windows CE, Unix, Linux, SunOS, Solaris, VxWorks, or other compatible operating
systems. In other embodiments, the computing device can be controlled by a proprietary
operating system. Operating systems control and schedule computer processes for execution,
perform memory management, provide file system, networking, I/O services, and provide a
user interface functionality, such as a graphical user interface (“GUI”), among other things.

[026] Fig. 1 illustrates a block diagram of an exemplary computer system 100 for

memory management of kernel and user spaces, according to some embodiments of the



WO 2019/040417 PCT/US2018/047201

present disclosure. In some embodiments, computer system 100 may include a memory 110,
a processor 120, a storage 130, and an input/output (I/0O) interface 140.

[027] Memory 110 may include any appropriate type of mass storage provided to
store any type of information that processor 120 may need to operate. For example, memory
110 may include dynamic random access memory (DRAM) and may be configured to be the
main memory of computer system 100. In some embodiments, memory 110 may be a volatile
or non-volatile, magnetic, semiconductor, tape, optical, removable, non-removable, or other
type of storage device or tangible and/or non-transitory computer-readable medium.
Common forms of non-transitory media include, for example, a floppy disk, a flexible disk,
hard disk, solid state drive, magnetic tape, or any other magnetic data storage medium, a CD-
ROM, any other optical data storage medium, any physical medium with patterns of holes, a
RAM, a PROM, and EPROM, a FLASH-EPROM or any other flash memory, NVRAM, a
cache, any other memory chip or cartridge, and networked versions of the same.

[028] In some embodiments, memory 110 may be configured to store one or more
computer programs that may be executed by processor 120 to perform exemplary memory
management method disclosed in this application. For example, memory 110 may be
configured to store program(s) that may be executed by processor 120 to manage kernel and
user spaces of memory, as described in the present disclosure. As another example, memory
110 may be configured to store an OS kernel that may be executed by processor 120 to
operate the whole system of computer system 100, such as memory management, process
management, resource allocation, I/O device management, inter-process communication,
multi-task scheduling, system calls and interrupt handling, and security or protection
management.

[029] In some embodiments, memory 110 may also be configured to store

information and data for processor 120 to access. For example, memory 110 may be



WO 2019/040417 PCT/US2018/047201

configured to store voice, video, or document data that processor 120 may access when
executing a user process. In some embodiments, when memory 110 may not contain data or
programs that processor 120 would like to access, the OS kernel, executed by processor 120,
may move some pages out of memory 110 and move the required data or programs into
memory 110 from storage 130. This procedure may also be called swapping, and may be
used to ensure required data or programs available in memory 110 for processor 120.

[030] A physical address may be a memory address that points to, or addresses, a

‘position of memory 110, and may enable processor 120 to access data or programs at the

position in memory 110 accordingly. For example, a 32-bit OS may include a memory
address of 32 bits. A 32-bit memory address may point up to 4 gigabytes (GB) of memory
110.

[031] A virtual address, on the other hand, may be a memory address that points to,
or addresses, a virtual memory for a process. An OS kernel may create and manage a virtual
memory for each process, such as the OS kernel itself, another OS kernel, or each of user
processes. Through the virtual memory, the process may be free from having to manage a

shared physical memory space, may have increased security due to memory isolation, and
may be able to conceptually use more memory than that may be physically available using a
paging technique. For example, a 32-bit Microsoft Windows may include a virtual memory
of 4 GB. Each process in the 32-bit Windows may use the virtual address space of 4 GB as its
memory. Each process may not need to manage a shared physical memory space, and may
not need to manage translations from virtual addresses to physical addresses.

[032] For some processes, a virtual address may be mapped to a physical address of
memory 110. Alternatively, a virtual address may be mapped to a physical address of
memory 110 and/or storage 130. The OS kernel may manage translations between virtual and

physical addresses for each process through its memory management function. The OS kernel



WO 2019/040417 PCT/US2018/047201

can create one or more page tables to translate a virtual address to a corresponding physical
address for each process. For example, a 32-bit Linux kernel, running on an x86 central
processing unit (CPU) and using a page size of 4 KB, may create and manage a three-level
page table structure in its main memory for each process. The three levels may include a page
directory, a page table, and a page table entry levels. The OS kernel may maintain a root page
table index for each process, and may use such a root page table index and the three-level
page tables to translate virtual addresses to physical addresses of memory 110.

[033] Processor 120 can include a microprocessor, digital signal processor,

controller, or microcontroller. Processor 120 may be configured to manage a kernel space and

‘a user space for an OS kernel and a user process, respectively. Processor 120 may include a
control register 122 and a control register 124, as shown in Fig. 1. Processor 120 can be
configured to store a root page table index corresponding to a kernel space in control register
122. The root page table index corresponding to the kernel space may be used for an OS
kernel to translate a virtual address to a physical address as illustrated in Fig. 2A and further
described below.

[034] Processor 120 may also be configured to store another root page table index
corresponding to a user space in control register 124. The root page table index
corresponding to the user space may be used for a user process to translate a virtual address
to a physical address as illustrated in Fig. 3A and described below. Each user process may
have its root page table index corresponding to the user space. Processor 120 may be
configured to update control register 124 with another root page table index whenever
processor 120 may be configured to execute another user process.

[035] As noted above, control register 122 and control register 124 can be
configured to be storing units to store root page table indexes of an OS kernel and a user

process. When there is a translation of a virtual address to a physical address for an OS



WO 2019/040417 PCT/US2018/047201

kernel, control register 122 may be configured as the storing unit to store the root page table
index of the OS kernel. On the other hand, whenever there is a translation of a virtual address
to a physical address for a user process, control register 124 may be configured as the storing
unit to store the root page table index of the user process. In some embodiments, control
register 122 may not be configured to store a root page table index of a user process. In some
embodiments, control register 124 may not be configured to store a root page table index of
an OS kernel.

[036] For example, an emerging processor according to the present disclosure may
include a control register 3 for an OS kernel (CR3K) and another control register 3 for a user
process (CR3U) to store root page table indices of the OS kernel and the user process,
respectively. CR3K and CR3U are two separate registers. When the kernel OS boots up, the
CPU may initially operate in a paging-disabled mode before enabling virtual-to-physical
mapping for the kernel OS. Because the kernel space can be mapped to the entire space of the
physical memory, the OS kernel may set up a one-to-one mapping from the kernel space to
the physical memory of the system. For example, in a 64-bit system with a 32-GB physical
memory, the OS kernel may map the first 32 GB of its virtual address space to the 32-GB
physical memory. After the initialization, the OS kernel writes the root page table index of
the OS kernel into CR3K, and switches the CPU into a paging-enabled mode. The OS kernel
starts to operate with virtual-to-physical address mapping.

[037] The OS kernel is also responsible for managing and setting up page tables for
each user process. When a user process is launched, the OS kernel sets up page directories,
page tables, and page table entries for the user process. Because the user space can also be
mapped to the entire space of the physical memory, the user process can have flexible and
efficient virtual-to-physical address mapping. After the initialization for the user process, the

OS kernel writes the root page table index of the user process into the CR3U, and also stores

10



WO 2019/040417 PCT/US2018/047201

it in the process’s task space. When a context switch occurs in the OS kernel’s scheduler,
another user process needs to replace the current user process. The CPU may read the root
page table index of the another user process and writes it to the CR3U. The CPU then
switches to execute the another user process
[038] In some embodiments, an x86 CPU may be configured to store a root page
table index of the OS kernel in its control register 3 (CR3). The x86 CPU may also be
configured to store a root page table index of a user process in its control register 4 (CR4).
[039] Alternatively, two storing units (not shown) in computer system 100, but
outside of processor 120, can be configured to store root page table indices of an OS kernel
and a user process for translating virtual addresses to physical addresses for the OS kernel
| and the user process, respectively. For example, two 32-bit spaces of a cache may be
configured to be the two storing units to store root page table indices of a Linux kernel and a
user process. As another example, two 32-bit spaces of memory 110 may be configured to be
the storing units to store root page table indices of a Linux kernel and a user process. In some
embodiments, one of two storing units (not shown) in computer system 100, but outside of
processor 120, may be configured to store a root page table index of an OS kernel or a user
process for translating virtual addresses to physical addresses for the OS kernel or the user
process. The other storing unit may be a control register in processor 120. For example,
control register 122 may be configured to store a root page table index of a Linux kernel
while a 32-bit space of memory 110 may be configured to store a root page table index of a
user process.
[040] Processor 120 may include a memory management unit to perform memory
management throughout the present disclosure for the OS kernel and/or the user process.
[041] Storage 130 may include any appropriate type of mass storage provided to

store any type of information that processor 120 may need to operate. Storage 130 may be a

11



WO 2019/040417 PCT/US2018/047201

volatile or non-volatile, magnetic, semiconductor, tape, optical, removable, non-removable,
or other type of storage device or tangible and/or non-transitory computer-readable medium.
Storage 130 may be configured to store one or more computer programs that may be
executed by processor 120 to perform exemplary memory management methods disclosed in
this application. For example, storage 130 may be configured to store program(s) that may be
executed by processor 120 to translate virtual addresses to physical addresses for the OS
kernel and the user process, as described above.

[042] Storage 130 may further be configured to store information and data used by
processor 120. For example, storage 130 may be configured to store data that memory 110
may not be able to store. When memory 110 may be full, some data in memory 110 may be
swapped out to storage 130.

[043] /O interface 140 may be configured to facilitate the communication between
computer system 100 and other apparatuses. For example, 1/0 interface 140 may be

| configured to receive data or instructions from another apparatus, e.g., another computer. I/0
interface 140 may also be configured to output data or instructions to other apparatuses, ¢.g.,
a laptop computer or a speaker.

[044] Processor 120 may be configured to respectively assign an OS kernel and a
user process dedicated registers CR3K and CR3U to store their root page table indices for
memory management of kernel and user spaces. Processor 120 may also be configured to
respectively build up and retrieve page directories, page tables, and page table entries for the
OS kernel and the user process. With the dedicated CR3K and CR3U, and respective page
tables, processor 120 may be configured to map the kernel space and the user space to an
entire physical memory space. For example, processor 120 may be configured to map both
the kernel space and the user space to the entire physical memory space of 4 GB in a 32-bit

system. In other words, both the kernel space and the user space are 4-GB spaces.

12



WO 2019/040417 PCT/US2018/047201

Alternatively, processor 120 may be configured to map the kernel space and the user space to
a part of the entire physical memory space. For example, processor 120 may be configured to
map the kernel space and the user space of 32 GB corresponding to a part of an entire
physical memory space of 16 exabytes (EB) (i.e. 16 x 10° GB) in a 64-bit computer system.

[045] Processor 120 may be configured to obtain a virtual address from an OS
kernel or a user process for virtual-to-physical address mapping. After obtaining a virtual
address from an OS kernel, processor 120 may be configured to determine to access the
kernel space as a default result. After obtaining a virtual address from a user process,
processor 120 may be configured to determine to access the user space as a default result. In
some embodiments, processor 120 may be configured to obtain an access-user-space
indication for the OS kernel. After obtaining the access-user-space indication from the OS
kernel, processor 120 may be configured to determine to access the user space.

[046] Figs. 2A and 2B are a schematic diagram of an exemplary method for memory
management of a kernel space and an exemplary corresponding page mapping, according to
some embodiments of the present disclosure. A virtual address for an OS kernel may include
a page directory index , a page table index, and a page offset. For example, as illustrated in
Fig. 2A, a virtual address 270 for a 32-bit OS kernel may include a page directory index 271,
a page table index 272 and a page offset 273.

[047] Page directory index 271 may be an index of page directories, and may be
used with a root address to point to a page directory that may include a base address of page
tables. In Fig. 2A, control register 122 may store, for example, a root page table index for an
OS kernel as a root address 210. Page directory index 271 may be used with root address 210
to point to a page directory (PD) 223 that includes a base address 230 of page tables 240.

[048] Page table index 272 may be an index of page tables, and may be used with a

base address 230 to point to a page table (PT) that may include an entry address of page table

13



WO 2019/040417 PCT/US2018/047201

entries. For example, page table index 272 may be used with base address 230 to point to a
page table 242 that may include an entry address 250 of page table entries 260, as illustrated
-in Fig. 2A.

[049] Page offset 273 may be an offset of pages, and may be used as a page offset in
a translated physical address. For example, page offset 273 of virtual address 270 may be
used as a page offset 293 of a physical address 290 directly, as illustrated in Fig. 2A.

[050] To translate a virtual address to a physical address for an OS kernel, processor
120 may be configured to store a root page table index of an OS kernel in a storing unit. For
example, processor 120 may be configured to store a root page table index for a Linux kernel
in control register 122, Processor 120 may be configured to use the stored root page table
index as root address 210 pointing to a position, e.g., page directory 221, in page directories
220, as shown in Fig. 2A. Processor 120 may also be configured to combine the root page
table index stored in control register 122 with page directory index 271 to find a page
directory that may include a base address of page tables. For example, processor 120 may be
configured to combine root address 210 with page directory index 271 of virtual address 270
to find page directory 223, as shown in Fig. 2B. In other words, processor 120 is configured
to use page directory 221 as a starting position in page directories 220, and use page directory
index 271 as an offset to find page directory 223, as shown in Figs. 2A and 2B.

[051] Page directory 223 may include a base address pointing to a base address of
page tables, the next level in the three-level page table structure. As shown in Fig. 2B, page
directory 223 includes a 4-KB base address 223-1 that points to a page table in the next level
of the three-level page tables. Processor 120 may further be configured to read the contents of
page directory 223 to obtain base address 230 pointing to page table 241 in page tables 240,

as shown in Fig. 2A.

14



WO 2019/040417 PCT/US2018/047201

[052] Processor 120 may also be configured to combine a base address stored in
found page directory 223 with page table index 272 to find a page table that includes an entry
address of page table entries. For example, processor 120 may be configured to combine base
address 230 (i.e. 4-KB base address 223-1) with page table index 272 of virtual address 270
to find page table 242, as shown in Fig. 2B. In other words, processor 120 is configured to
use page table 241 as a starting position in page tables 240, and use page table index 272 as
an offset to find page table 242, as shown in Figs. 2A and 2B.

[053] Page table 242 may include an entry address pointing to a position among
page table entries, the next level in the three-level page table structure . As shown in Fig. 2B,
page table 242 includes a 4-KB entry address 242-1 pointing to a page table entry in the next
level of the three-level page tables. Processor 120 may be configured to read the contents of
page table 242 to obtain entry address 250 pointing to page table entry 262 in page table
entries 260, as shown in Fig. 2A.

[054] Processor 120 may further be configured to read contents of page table entry
262 to obtain a physical page index. As shown in Fig. 2B, page table entry 262 includes a 4-
KB physical page index 262-1 and a page attributes 262-2. According to entry address 250,
processor 120 may be configured to read 4-KB physical page index 262-1 of page table entry
262 to be physical page index 291, as shown in Figs. 2A and 2B.

[055] Processor 120 may further be configured to combine the physical page index
and the page offset to be the physical address for the OS kernel. For example, processor 120
may be configured to combine obtained physical page index 291 (i.e., 4-KB physical page
index 262-1) and page offset 293 (i.e., page offset 273) to be physical address 290 for the OS
kernel. Accordingly, processor 120 may be configured to access memory 110 at translated

physical address 290 to obtain required data or instructions for the OS kernel.

15



WO 2019/040417 PCT/US2018/047201

[056] In some embodiments, processor 120 may be configured to obtain a page-size
indicator indicating a page size of the kernel space, or a kernel-space page size. As shown in
Fig. 2B, page table entry 262 includes page attributes 262-2. Processor 120 may be
configured to read page attributes 262-2 in page table entry 262. Page attributes 262-2 may
include a bit, e.g., bit-7, indicating a page size of the kernel space. For example, if the bit-7 of
page attributes 262-2 is “1,” the page size of the kernel space may be 4 KB. If the bit-7 of
page attributes 262-2 is “0,” the page size of the kernel space may be 4 megabytes (MB).

[057] When the page-size indicator indicates that the kernel space includes a first
page size, processor 120 can be configured to translate the virtual address to the physical
address as described above. For example, when the bit-7 of page attributes 262-2 is “1”
indicating a 4-KB page size of the kernel space, processor 120 may be configured to translate
virtual address 270 to physical address 290 as described above and shown in Figs. 2A and 2B.
When the bit-7 of page attributes 262-2 is “0” indicating a 4-MB page size of the kernel
space, processor 120 may be configured to translate a virtual address 370 to a physical
address 390 as described below and shown in Figs. 3A and 3B.

[058] The bit indicating the page size of the kernel space can also be included in one
of page directories or page tables. For example, a page-size bit may be included in a reserved
field 223-2 of page directory 223 or a reserved field 242-2 of page table 242 in Fig. 2B. For
example, bit-7 of reserved field 242-2 may be used as the page-size bit. Processor 120 may be
configured to read the bit-7 of reserved field 242-2 and obtain the page size of the kernel
space accordingly.

[059] Referring to Fig, 2B, page table entry 262 includes physical page index 262-1
and page attributes 262-2. Processor 120 may be configured to use physical page index 262-1

for translating the virtual address into the physical address as described above. Physical page

16



WO 2019/040417 PCT/US2018/047201

index 262-1 may include, for example, the most significant bit (MSB) 20 bits of page table
entry 262 for addressing 4-KB pages in the kernel space of a 32-bit computer system.

[060] Page attributes 262-2 may include, for example, the least significant bit (LSB)
12 bits of page table entry 262 in the 32-bit computer system. These 12 bits of page attributes
262-2 may be configured to indicate attributes of the page at the translated physical address.
For example, a bit-7 of page attributes 262-2 may be configured to indicate a page size of the
kernel space. For example, as described above, if the bit-7 of page attributes 262-2 is “1,” the
page size of the kernel space may be configured to be 4 KB. If the bit-7 of page attributes
262-2 is “0,” the page size of the kernel space may be configured to be 4 MB. Processor 120
may be configured to translate the virtual address to the physical address in accordance with
the bit-7 of page attributes 262-2 as described above.

[061] When more than two kinds of page sizes are needed, page attributes 262-2
may include two bits, e.g., bit-9 and bit-7, indicating a page size of the kernel space. The bit-
9 of page attributes 262-2 may further be configured for such usage although it is shown as
unused in the figure. For example, if the bit-9 and bit-7 of page attributes 262-2 are “11,” the
page size of the kernel space may be 4 KB. If the bit-9 and bit-7 of page attributes 262-2 are
“10,” the page size of the kernel space may be 4 MB. If the bit-9 and bit-7 of page attributes
262-2 are “01,” the page size of the kernel space may be 16 MB. If the bit-9 and bit-7 of page
attributes 262-2 are “00,” the page size of the kernel space may be 64 MB. Processor 120
may be configured to translate the virtual address to the physical address in accordance with
the bit-9 and bit-7 of page attributes 262-2 similar to those described above.

[062] Moreover, page attributes 262-2 may include an NX indicator, e.g., bit-2,
indicating a page at the translated physical address is not executable. For example, if the bit-2

of page attributes 262-2 is “1,” the page at translated physical address 290 may not be

17



WO 2019/040417 PCT/US2018/047201

executable. Processor 120 may be configured not to execute or access the page at translated
physical address 290 in accordance with the bit-2 of page attributes 262-2 as described above.

[063] The bit indicating the page size of the kernel space can also be included in one
of page directories or page tables. For example, a page-size bit may be included in a reserved
field 223-2 of page directory 223 or a reserved field 242-2 of page table 242 in Fig. 2B. For
example, bit-7 of reserved field 242-2 may be used as the page-size bit. Processor 120 may be
configured to read the bit-7 of reserved field 242-2 and obtain the page size of the kernel
space accordingly.

[064] Similar to the bit indicating the page size, the NX indicator can also be
included in one of page directories or page tables. For example, an NX bit may be included in
areserved field 223-2 of page directory 223 or a reserved field 242-2 of page table 242 in
Fig. 2B. Processor 120 may be configured to read the NX bit for the page at the translated
physical address accordingly.

[065] In some embodiments, processor 120 may be configured to translate a virtual
address to a physical address directly. In other words, the virtual address is identical to the
physical address. For example, virtual address 270 in Fig. 2A may be translated to be
physical address 290 directly without being translated through page directories 220, page
tables 240, and page table entries 260 as shown in the figure. The direct translation from the
virtual address to the physical address may be helpful for the OS kernel to access memory
110 quickly and efficiently.

[066] When the page-size indicator indicates that the kernel space includes a second
page size, processor 120 may be configured to translate the virtual address to the physical
address as illustrated in Figs. 3A and 3B. For example, when the bit-7 of page attributes 362-

2 in Fig. 3B is “0” indicating a 4-MB page size of the kernel space, processor 120 may be

18



WO 2019/040417 PCT/US2018/047201

configured to translate a virtual address 370 to a physical address 390 through a two-level
page tables, including page directories 320 and page table entries 360, as shown in Fig. 3A.

[067] Figs.3A and 3B are a schematic diagram of an exemplary method for memory
management of a kernel space and an exemplary corresponding page mapping, according to
some embodiments of the present disclosure. A virtual address for an OS kernel may include
a page directory index and a page offset. For example, as illustrated in Fig. 3A, virtual
address 370 for a 32-bit OS kernel may include a page directory index 371 and a page offset
373.

[068] Page directory index 371 may be an index of page directories, and may be
used with a root address to point to a page directory that may include an entry address of page
table entry. In Fig. 3A, control register 122 may be configured to store, for example, a root
page table index for an OS kernel as a root address 310. Page directory index 371 may be
used with root address 310 to point to a page directory (PD) 323 that includes an entry
address 350 of page table entries 360.

[069] Page offset 373 may be an offset of pages, and may be used as a page offset in
a translated physical address. For example, page offset 373 of virtual address 370 may be
used as a page offset 393 of a physical address 390 directly, as illustrated in Fig. 3A.

[070] To translate a virtual address to a physical address for an OS kernel, processor
120 may be configured to store a root page table index of an OS kernel in a storing unit. For
example, processor 120 may be configured to store a root page table index for a Linux kernel
in control register 122 in Fig. 3A. Processor 120 may be configured to use the stored root
page table index as root address 310 pointing to a position, e.g., page directory 321, in page

“directories 320, as shown in Fig. 3A. Processor 120 may also be configured to combine the
root page table index stored in control register 122 with page directory index 371 to find a

page directory that includes an entry address of page tables. For example, processor 120 may

19



WO 2019/040417 PCT/US2018/047201

be configured to combine root address 310 with page directory index 371 of virtual address
1370 to find page directory 323, as shown in Fig. 3B. In other words, processor 120 is
configured to use page directory 321 as a starting position in page directories 320, and use
page directory index 371 as an offset to find page directory 323, as shown in Fig. 3A and 3B.

[071] Page directory 323 may include an entry address pointing to a position among
page table entries, the next level in the two-level page table structure. As shown in Fig. 3B,
page directory 323 includes a 4-MB entry address 323-1 that points to a page table entry in
the next level of the two-level page tables. Processor 120 may be configured to read the
contents of page directory 323 to obtain entry address 350 pointing to page table entry 362 in
page table entries 360, as shown in Fig. 3A.

[072] Processor 120 may also be configured to read contents of page table entry 362
to obtain a physical page index. As shown in Fig. 3B, page table entry 362 includes a 4-MB
physical page index 362-1, a page attributes 362-2, and a reserved field 362-3. According to
entry address 350, processor 120 may be configured to read 4-MB physical page index 362-1
of page table entry 362 to be physical page index 391, as shown in Figs. 3A and 3B.

[073] Processor 120 may further be configured to combine the physical page index
and the page offset to be the physical address for the OS kernel. For example, processor 120
may be configured to combine obtained physical page index 391 (i.e., 4-MB physical page
index 362-1) and page offset 393 (i.e., page offset 373) to be physical address 390 for the OS
kernel. Accordingly, processor 120 may be configured to access memory 110 at translated
physical address 390 to obtain required data or instructions for the OS kernel.

[074] Referring to Fig. 3B, page table entry 362 includes physical page index 362-1
and page attributes 362-2. Processor 120 may be configured to use physical page index 362-1

for translating the virtual address into the physical address as described above. Physical page

20



WO 2019/040417 PCT/US2018/047201

index 362-1 may include, for example, the most significant bit (MSB) 10 bits of page table
entry 362 for addressing 4-MB pages in the kernel space of a 32-bit computer system.

[075] Page attributes 362-2 may include, for example, the least significant bit (LSB)
12 bits of page table entry 362 in the 32-bit computer system. These 12 bits of page attributes
362-2 may be configured to indicate attributes of the page at the translated physical address.
For example, a bit-7 of page attributes 362-2 may be configured to indicate a page size of the
kernel space. For example, as described above, if the bit-7 of page attributes 362-2 is “0,” the
page size of the kernel space may be configured to be 4 MB. If the bit-7 of page attributes
362-2 is “0,” the page size of the kernel space may be configured to be 4 KB. Processor 120
may be configured to translate the virtual address to the physical address in accordance with
the bit-7 of page attributes 362-2 as described above.

[076] When more than two kinds of page sizes are needed, page attributes 362-2
may include two bits, e.g., bit-9 and bit-7, indicating a page size of the kernel space. The bit-
9 of page attributes 362-2 may further be configured for such usage although it is shown as
unused in the figure. For example, if the bit-9 and bit-7 of page attributes 362-2 are “11,” the
page size of the kernel space may be 4 KB. If the bit-9 and bit-7 of page attributes 362-2 are
“10,” the page size of the kernel space may be 4 MB. If the bit-9 and bit-7 of page attributes
362-2 are “01,” the page size of the kernel space may be 16 MB. If the bit-9 and bit-7 of page
attributes 362-2 are “00,” the page size of the kernel space may be 64 MB. Processor 120

| may be configured to translate the virtual address to the physical address in accordance with
the bit-9 and bit-7 of page attributes 362-2 similar to those described above.

[077] Moreover, page attributes 362-2 may include an NX indicator, e.g., bit-2,
indicating a page at the translated physical address is not executable. For example, if the bit-2

of page attributes 362-2 is “1,” the page at translated physical address 390 may not be

21



WO 2019/040417 PCT/US2018/047201

executable. Processor 120 may be configured not to execute or access the page at translated
physical address 390 in accordance with the bit-2 of page attributes 362-2 as described above.

[078] Alternatively, the bit indicating the page size of the kernel space can also be
included in one of page directories or page table entries. For example, a page-size bit may be
included in a reserved field 323-2 of page directory 323 or a reserved field 362-2 of page
table entry 362 in Fig. 3B. For example, bit-7 of reserved field 323-2 may be used as the
page-size bit. Processor 120 may be configured to read the bit-7 of reserved field 323-2 and
obtain the page size of the kernel space accordingly.

[079] Similar to the bit indicating the page size, the NX indicator can also be
included in one of page directories or page table entries. For example, an NX bit may be
included in reserved field 323-2 of page directory 323 or reserved field 362-2 of page table
entry 362 in Fig. 3B. Processor 120 may be configured to read the NX bit for the page at the
translated physical address accordingly. The non-executable indicator may be helpful to
prevent the OS kernel from executing any malicious code or virus in the page at the translated
physical address.

[080] In some embodiments, processor 120 may be configured to translate a virtual
address to a physical address directly. In other words, the virtual address is identical to the
physical address. For example, virtual address 370 in Fig. 3A may be translated to be
physical address 390 directly without being translated through page directories 320 and page
table entries 360 as shown in the figure. The direct translation from the virtual address to the
physical address may be helpful for the OS kernel to access memory 110 quickly and
efficiently.

[081] For a user process, processor 120 may be configured to translate a virtual
address to a physical address in accordance with the root page table index stored in control

register 124. For example, processor 120 may be configured to translate a 32-bit virtual

22



WO 2019/040417 PCT/US2018/047201

address into a 32-bit physical address of memory 110 for an application program in
accordance with the stored root page table index in control register 124,

[082] Figs. 4A and 4B are a schematic diagram of an exemplary method for memory
management of a user space and an exemplary corresponding page mapping, according to
some embodiments of the present disclosure. A virtual address for a user process may include
a page directory index, a page table index, and a page offset. For example, as illustrated in
Fig. 4A, a virtual address 470 for a 32-bit user process may include a page directory index
471, a page table index 472 and a page offset 473.

[083] Page directory index 471 may be an index of page directories, and may be
used with a root address to point to a page directory that may include a base address of page
tables. In Fig. 4A, control register 124 may store, for example, a root page table index for a
user process as a root address 410. Page directory index 471 may be used with root address
410 to point to a page directory (PD) 423 that includes a base address 430 of page tables 440.

[084] Page table index 472 may be an index of page tables, and may be used with a
base address 430 to point to a page table (PT) that may include an entry address of page table
entries. For example, page table index 472 may be used with base address 430 to point to a

‘page table 442 that may include an entry address 450 of page table entries 460, as illustrated
in Fig. 4A.

[085] Page offset 473 may be an offset of pages, and may be used as a page offset in
a translated physical address. For example, page offset 473 of virtual address 470 may be
used as a page offset 493 of a physical address 490 directly, as illustrated in Fig. 4A.

[086] To translate a virtual address to a physical address for a user process,
processor 120 may be configured to store a root page table index of the user process in a
storing unit. For example, processor 120 may be configured to store a root page table index

for a Linux kernel in control register 124. Processor 120 may be configured to use the stored

23



WO 2019/040417 PCT/US2018/047201

root page table index as root address 410 pointing to a position, e.g., page directory 421, in
page directories 420, as shown in Fig. 4A. Processor 120 may also be configured to combine
the root page table index stored in control register 124 with page directory index 471 to find a
page directory that may include a base address of page tables. For example, processor 120
may be configured to combine root address 410 with page directory index 471 of virtual
address 470 to find page directory 423, as shown in Fig. 4B. In other words, processor 120 is
configured to use page directory 421 as a starting position in page directories 420, and use
page directory index 471 as an offset to find page directory 423, as shown in Figs. 4A and 4B.

[087] Page directory 423 may include a base address pointing to a base address of
page tables, the next level in the three-level page table structure. As shown in Fig. 4B, page
directory 423 includes a 4-KB base address 423-1 that points to a page table in the next level
of the three-level page tables, Processor 120 may further be configured to read the contents of
page directory 423 to obtain base address 430 pointing to page table 441 in page tables 440,
as shown in Fig. 4A.

[088] Processor 120 may also be configured to combine a base address stored in
found page directory 423 with page table index 472 to find a page table that includes an entry
address of page table entries. For example, processor 120 may be configured to combine base
address 430 (i.e. 4-KB base address 423-1) with page table index 472 of virtual address 470
to find page table 442, as shown in Fig. 4B. In other words, processor 120 is configured to
use page table 441 as a starting position in page tables 440, and use page table index 472 as
an offset to find page table 442, as shown in Figs. 4A and 4B.

[089] Page table 442 may include an entry address pointing to a position among
page table entries, the next level in the three-level page table structure . As shown in Fig. 4B,
page table 442 includes a 4-KB entry address 442-1 pointing to a page table entry in the next

level of the three-level page tables. Processor 120 may be configured to read the contents of

24



WO 2019/040417 PCT/US2018/047201

page table 442 to obtain entry address 450 pointing to page table entry 462 in page table
entries 460, as shown in Fig. 4A.

[090] Processor 120 may further be configured to read contents of page table entry
462 to obtain a physical page index. As shown in Fig. 4B, page table entry 462 includes a 4-
KB physical page index 462-1 and a page attributes 462-2. According to entry address 450,
processor 120 may be configured to read 4-KB physical page index 462-1 of page table entry
462 to be physical page index 491, as shown in Figs. 4A and 4B.

[091] Processor 120 may further be configured to combine the physical page index
and the page offset to be the physical address for the user process. For example, processor
120 may be configured to combine obtained physical page index 491 (i.¢., 4-KB physical
page index 462-1) and page offset 493 (i.e., page offset 473) to be physical address 490 for
the user process. Accordingly, processor 120 may be configured to access memory 110 at
translated physical address 490 to obtain required data or instructions for the user process.

[092] In some embodiments, processor 120 may be configured to obtain a page-size
indicator indicating a page size of the user space, or a user-space page size. As shown in Fig.
4B, page table entry 462 includes page attributes 462-2. Processor 120 may be configured to
read page attributes 462-2 in page table entry 462. Page attributes 462-2 may include a bit,
e.g., bit-7, indicating a page size of the user space. For example, if the bit-7 of page attributes
462-2 is “1,” the page size of the user space may be 4 KB. If the bit-7 of page attributes 462-2
is “0,” the page size of the user space may be 4 MB.

[093] When the page-size indicator indicates that the user space includes a first page
size, processor 120 can be configured to translate the virtual address to the physical address
as described above. For example, when the bit-7 of page attributes 462-2 is “1” indicating a
4-KB page size of the user space, processor 120 may be configured to translate virtual

address 470 to physical address 490 as described above and shown in Figs. 4A and 4B. When

25



WO 2019/040417 PCT/US2018/047201

the bit-7 of page attributes 462-2 is “0” indicating a 4-MB page size of the user space,
processor 120 may be configured to translate a virtual address 570 to a physical address 590
as described below and shown in Figs. SA and SB.

[094] The bit indicating the page size of the kernel space can also be included in one
of page directories or page tables. For example, a page-size bit may be included in a reserved
field 423-2 of page directory 423 or a reserved ficld 442-2 of page table 442 in Fig. 4B. For
example, bit-7 of reserved field 442-2 may be used as the page-size bit. Processor 120 may be

“configured to read the bit-7 of reserved field 442-2 and obtain the page size of the user space
accordingly.

[095] Referring to Fig. 4B, page table entry 462 includes physical page index 462-1
and page attributes 462-2. Processor 120 may be configured to use physical page index 462-1

for translating the virtual address into the physical address as described above. Physical page
index 462-1 may include, for example, the most significant bit (MSB) 20 bits of page table
entry 462 for addressing 4-KB pages in the user space of a 32-bit computer system.

[096] Page attributes 462-2 may include, for example, the least significant bit (LSB)
12 bits of page table entry 462 in the 32-bit computer system. These 12 bits of page attributes
462-2 may be configured to indicate attributes of the page at the translated physical address.
For example, a bit-7 of page attributes 462-2 may be configured to indicate a page size of the
user space. For example, as described above, if the bit-7 of page attributes 462-2 is “1,” the
page size of the user space may be configured to be 4 KB. If the bit-7 of page attributes 462-2
is “0,” the page size of the user space may be configured to be 4 MB. Processor 120 may be
configured to translate the virtual address to the physical address in accordance with the bit-7
of page attributes 462-2 as described above.

[097] When more than two kinds of page sizes are needed, page attributes 462-2

may include two bits, e.g., bit-9 and bit-7, indicating a page size of the user space. The bit-9

26



WO 2019/040417 PCT/US2018/047201

of page attributes 462-2 may further be configured for such usage although it is shown as
unused in the figure. For example, if the bit-9 and bit-7 of page attributes 462-2 are “11,” the
page size of the user space may be 4 KB. If the bit-9 and bit-7 of page attributes 462-2 are
“10,” the page size of the user space may be 4 MB. If the bit-9 and bit-7 of page attributes
462-2 are “01,” the page size of the user space may be 16 MB. If the bit-9 and bit-7 of page
attributes 462-2 are “00,” the page size of the user space may be 64 MB. Processor 120 may
be configured to translate the virtual address to the physical address in accordance with the
bit-9 and bit-7 of page attributes 462-2 similar to those described above.

[098] Moreover, page attributes 462-2 may include an NX indicator, €.g., bit-2,
indicating a page at the translated physical address is not executable. For example, if the bit-2
of page attributes 462-2 is “1,” the page at translated physical address 490 may not be
executable. Processor 120 may be configured not to execute or access the page at translated
physical address 490 in accordance with the bit-2 of page attributes 462-2 as described above.

[099] The bit indicating the page size of the user space can also be included in one

“of page directories or page tables. For example, a page-size bit may be included in a reserved
field 423-2 of page directory 423 or a reserved field 442-2 of page table 442 in Fig. 4B. For
example, bit-7 of reserved field 442-2 may be used as the page-size bit. Processor 120 may be
configured to read the bit-7 of reserved field 442-2 and obtain the page size of the user space
accordingly.

[0100] Similar to the bit indicating the page size, the NX indicator can also be
included in one of page directories or page tables. For example, an NX bit may be included in
a reserved field 423-2 of page directory 423 or a reserved ficld 442-2 of page table 442 in
Fig. 4B. Processor 120 may be configured to read the NX bit for the page from the NX bit for

the translated physical address accordingly.

27



WO 2019/040417 PCT/US2018/047201

[0101] In some embodiments, processor 120 may be configured to translate a virtual
address to a physical address directly. In other words, the virtual address is identical to the
physical address. For example, virtual address 470 in Fig. 4A may be translated to be
physical address 490 directly without being translated through page directories 420, page
tables 440, and page table entries 460 as shown in the figure. The direct translation from the
virtual address to the physical address may be helpful for the user process to access memory
110 quickly and efficiently.

[0102] When the page-size indicator indicates that the user space includes a second
page size, processor 120 may be configured to translate the virtual address to the physical
address as illustrated in Figs. SA and 5B. For example, when the bit-7 of page atfributes 562-
2 in Fig. 5B is “0” indicating a 4-MB page size of the kernel space, processor 120 may be
configured to translate a virtual address 570 to a physical address 590 through a two-level
page tables, including page directories 520 and page table entries 560, as shown in Fig, SA.

[0103] Figs. SA and 5B are a schematic diagram of an exemplary method for memory
management of a user space and an exemplary corresponding page mapping, according to
some embodiments of the present disclosure. A virtual address for a user process may include
a page directory index and a page offset. For example, as illustrated in Fig. SA, virtual
address 570 for a 32-bit user process may include a page directory index 571 and a page
offset 573.

[0104] Page directory index 571 may be an index of page directories, and may be
used with a root address to point to a page directory that may include an entry address of page
table entry. In Fig. 5A, control register 124 may be configured to store, for example, a root
page table index for a user process as a root address 510. Page directory index 571 may be
used with root address 510 to point to a page directory (PD) 523 that includes an entry

address 550 of page table entries 560.

28



WO 2019/040417 PCT/US2018/047201

[0105] Page offset 573 may be an offsct of pages, and may be used as a page offset in
a translated physical address. For example, page offset 573 of virtual address 570 may be
used as a page offset 593 of a physical address 590 directly, as illustrated in Fig. SA.

[0106] To translate a virtual address to a physical address for a user process,
processor 120 may be configured to store a root page table index of the user process in a
storing unit. For example, processor 120 may be configured to store a root page table index
for a Linux kernel in control register 124 in Fig. SA. Processor 120 may be configured to use
the stored root page table index as root address 510 pointing to a position, e.g., page directory
521, in page directories 520, as shown in Fig. SA. Processor 120 may also be configured to
combine the root page table index stored in control register 124 with page directory index
571 to find a page directory that includes an entry address of page tables. For example,
processor 120 may be configured to combine root address 510 with page directory index 571
of virtual address 570 to find page directory 523, as shown in Fig. 5B. In other words,
processor 120 is configured to use page directory 521 as a starting position in page directories
520, and use page directory index 571 as an offset to find page directory 523, as shown in Fig.
5A and 5B.

[0107] Page directory 523 may include an entry address pointing to a position among
page table entries, the next level in the two-level page table structure. As shown in Fig. 5B,
page directory 523 includes a 4-MB entry address 523-1 that points to a page table entry in
the next level of the two-level page tables. Processor 120 may be configured to read the
contents of page directory 523 to obtain entry address 550 pointing to page table entry 562 in
page table entries 560, as shown in Fig. SA.

[0108] Processor 120 may also be configured to read contents of page table entry 562
{o obtain a physical page index. As shown in Fig. 5B, page table entry 562 includes a 4-MB

physical page index 562-1, a page attributes 562-2, and a reserved field 562-3. According to

29



WO 2019/040417 PCT/US2018/047201

entry address 550, processor 120 may be configured to read 4-MB physical page index 562-1
of page table entry 562 to be physical page index 591, as shown in Figs. SA and §B.

[0109] Processor 120 may further be configured to combine the physical page index
and the page offset to be the physical address for the user process. For example, processor
120 may be configured to combine obtained physical page index 591 (i.e., 4-MB physical
page index 562-1) and page offset 593 (i.e., page offset 573) to be physical address 590 for
the user process. Accordingly, processor 120 may be configured to access memory 110 at
translated physical address 590 to obtain required data or instructions for the user process.

[0110] Referring to Fig. 5B, page table entry 562 includes physical page index 562-1
and page attributes 562-2. Processor 120 may be configured to use physical page index 562-1
for translating the virtual address into the physical address as described above. Physical page
index 562-1 may include, for example, the most significant bit (MSB) 10 bits of page table
entry 562 for addressing 4-MB pages in the user space of a 32-bit computer system.

[0111] Page attributes 562-2 may include, for example, the least significant bit (LSB)
12 bits of page table entry 562 in the 32-bit computer system. These 12 bits of page attributes
562-2 may be configured to indicate attributes of the page at the translated physical address.
For example, a bit-7 of page attributes 562-2 may be configured to indicate a page size of the
user space. For example, as described above, if the bit-7 of page attributes 562-2 is “0,” the
page size of the user space may be configured to be 4 MB. If the bit-7 of page atiributes 562-
2 is “0,” the page size of the user space may be configured to be 4 KB. Processor 120 may be
configured to translate the virtual address to the physical address in accordance with the bit-7
of page attributes 562-2 as described above.

[0112] When more than two kinds of page sizes are needed, page attributes 562-2
may include two bits, e.g., bit-9 and bit-7, indicating a page size of the user space. The bit-9

of page attributes 562-2 may further be configured for such usage although it is shown as

30



WO 2019/040417 PCT/US2018/047201

unused in the figure. For example, if the bit-9 and bit-7 of page attributes 562-2 are “11,” the
page size of the user space may be 4 KB. If the bit-9 and bit-7 of page attributes 562-2 are
“10,” the page size of the user space may be 4 MB. If the bit-9 and bit-7 of page attributes
562-2 are “01,” the page size of the user space may be 16 MB. If the bit-9 and bit-7 of page
attributes 562-2 are “00,” the page size of the user space may be 64 MB. Processor 120 may
be configured to translate the virtual address to the physical address in accordance with the
bit-9 and bit-7 of page attributes 562-2 similar to those described above.

[0113] Moreover, page attributes 562-2 may include an NX indicator, e.g., bit-2,
indicating a page at the translated physical address is not executable. For example, if the bit-2
of page attributes 562-2 is “1,” the page at translated physical address 590 may not be
executable. Processor 120 may be configured not to execute or access the page at translated
physical address 590 in accordance with the bit-2 of page attributes 562-2 as described above.

[0114] Alternatively, the bit indicating the page size of the user space can also be
included in one of page directories or page table entries. For example, a page-size bit may be
included in a reserved field 523-2 of page directory 523 or a reserved field 562-2 of page
table entry 562 in Fig. 5B. For example, bit-7 of reserved field 523-2 may be configured as
the page-size bit. Processor 120 may be configured to read the bit-7 of reserved field 523-2
and obtain the page size of the user space accordingly.

[0115] Similar to the bit indicating the page size, the NX indicator can also be
included in one of page directories or page table entries. For example, an NX bit may be
included in reserved field 523-2 of page directory 523 or reserved ficld 562-2 of page table
entry 562 in Fig. 5B. Processor 120 may be configured to read the NX indicator of the page
at the translated physical address accordingly. The non-executable indicator may be helpful
to prevent the OS kernel from executing any malicious code or virus in the page at the

translated physical address.

31



WO 2019/040417 PCT/US2018/047201

[0116] In some embodiments, processor 120 may be configured to translate a virtual
address to a physical address directly. In other words, the virtual address is identical to the
physical address. For example, virtual address 570 in Fig. SA may be translated to be
physical address 590 directly without being translated through page directories 520 and page
table entries 560 as shown in the figure. The direct translation from the virtual address to the
physical address may be helpful for the user process to access memory 110 quickly and
efficiently.

[0117] In some embodiments, processor 120 may be configured to obtain an access-
user-space indicator indicating an allowance for the OS kernel to access the user space. For
example, processor 120 may include one or more instructions including a prefix “US” used to
access the user space in its instruction set. The instruction including the prefix “US” may be
used as the access-user-space indicator. When an instruction with the “US” prefix may be
executed, processor 120 may be configured as obtaining an access-user-space indication.
Referring to Figs. 2A, processor 120 may be configured to access the user space using virtual

-address 270.

[0118] Process 120 may be configured to obtain a base address for the user space in
accordance with a root page table index for the user space and a page directory index of the
virtual address. For example, referring to Figs. 2A and 4A, processor 120 may be configured
to combine the root page table index stored in control register 124 with page directory index
271 to find a page directory that may include a base address of page tables. Processor 120
may be configured to combine root address 410 with page directory index 271 of virtual
address 270 to find page directory 423. In other words, processor 120 is configured to use
page directory 421 as a starting position in page directories 420, and use page directory index

271 as an offset to find page directory 423. Processor 120 may further be configured to read

32



WO 2019/040417 PCT/US2018/047201

the contents of page directory 423 to obtain base address 430 pointing to page table 441 in
page tables 440.

[0119] Processor 120 may also be configured to combine a base address stored in
found page directory 423 with page table index 272 to find a page table that includes an entry
address of page table entries. For example, processor 120 may be configured to combine base
address 430 (i.e. 4-KB base address 423-1) with page table index 272 of virtual address 270
to find page table 442. In other words, processor 120 is configured to use page table 441 as a
starting position in page tables 440, and use page table index 272 as an offSet to find page
table 442. Processor 120 may further be configured to read the contents of page table 442 to
obtain entry address 450 pointing to page table entry 462 in page table entries 460.

[0120] Processor 120 may also be configured to read contents of page table entry 462
to obtain a physical page index. According to entry address 450, processor 120 may be
configured to read 4-KB physical page index 462-1 of page table entry 462 to be physical
page index 491.

[0121] Processor 120 may further be configured to combine the physical page index
and the page offset to be the physical address for the user process. For example, processor
120 may be configured to combine obtained physical page index 491 (i.e., 4-KB physical

| page index 462-1) and page offset 273 to be a physical address for the OS kernel to access the
user space. Accordingly, processor 120 may be configured to access memory 110 at the
translated physical address to obtain required data or instructions for the OS kernel from the
user space.

[0122] In some embodiments, processor 120 may be configured to obtain an access-
user-space indicator indicating an allowance for the user process to access the user space. For
example, processor 120 may include one or more instructions including a prefix “US” used to

access the user space in its instruction set. The instruction including the prefix “US” may be

33



WO 2019/040417 PCT/US2018/047201

used as the access-user-space indicator. When an instruction with the “US” prefix is
executed, processor 120 may be configured to set a general protection fault because the
instruction with the “US” prefix is reserved for the OS kernel only. For example, processor
120 can set a warning message or flag, and not execute the instruction with the “US” prefix
for the user process.

[0123] Fig. 6 is a flow chart of an exemplary memory management method 600,
according to some embodiments of the present disclosure. Method 600 includes acquiring a
virtual address (step 610), determining to access the kernel space or the user space (step 620),
obtaining a first root page table index corresponding to the kernel space (step 631), obtaining
a second root page table index corresponding to the user space (step 641), translating a first
virtual address to a first physical address in accordance with the first root page table index for
an operating system kernel (step 632), and translating a second virtual address to a second
physical address in accordance with the second root page table index for a user process (step
642). Method 600 can also include obtaining a page-size indicator indicating a page size of
the kernel space or the user space. Method 600 may also include obtaining a non-executable

‘indicator for a page at the translated physical address. Method 600 may further include
obtaining an access-user-space indication for the OS kernel or the user process.

[0124] Step 610 includes acquiring a virtual address. For example, acquiring the
virtual address in step 610 may include obtaining a virtual address after decoding an
instruction. As another example, acquiring the virtual address in step 610 may include
obtaining the virtual address from an OS kernel or a user process for virtual-to-physical
address mapping.

[0125] Step 620 includes determining to access the kernel space or the user space. For

‘example, after obtaining a virtual address from an OS kernel in step 610, determining to

access the kernel space or the user space in step 620 may include determining to access the

34



WO 2019/040417 PCT/US2018/047201

kernel space as a default result. As another example, after obtaining a virtual address from a
user process in step 610, determining to access the kernel space or the user space in step 620
may include determining to access the user space as a default result.

[0126] In some embodiments, method 600 may include obtaining an access-user-
space indication for the OS kernel. After obtaining the access-user-space indication from the
OS kernel, determining to access the kernel space or the user space in step 620 may include
determining to access the user space.

[0127] Step 631 includes obtaining a root page table index corresponding to the
kernel space. For example, obtaining the root page table index corresponding to the kernel
space in step 631 may include obtaining a root page table index from a storing unit, such as a
control register 3 (CR3), a control register 3 for an OS kernel (CR3K), or a storing space in a
cache, main memory, or storage device, as illustrated in above.

[0128] In some embodiments, obtaining the root page table index corresponding to
the kernel space in step 631 may also include reading a root page table index corresponding
to the OS kernel from a storing unit, and storing it in a dedicated control register in a
processor. For example, obtaining the root page table index corresponding to the kernel space
in step 631 may include popping out the root page table index corresponding to the OS kernel
from a stack for the OS kernel, and storing it in the CR3K. As another example, obtaining the

‘root page table index corresponding to the kernel space in step 631 may include swapping in
data that may include the root page table index of the OS kernel from storage 130, and storing
it in control register 122 of processor 120.

[0129] Step 632 includes translating a virtual address to a physical address in
accordance with the root page table index for an OS kernel. For example, translating the
virtual address to the physical address for the OS kernel in step 632 may include translating

virtual address 270 to physical address 290 for the OS kernel in accordance with the root

35



WO 2019/040417 PCT/US2018/047201

page table index in control register 122 as illustrated in Figs. 2A and 2B, and described above.
As another example, translating the virtual address to the physical address for the OS kernel
in step 632 may include translating virtual address 370 to physical address 390 in accordance
with the root page table index stored in control register 122 for the OS kernel, as illustrated in
Figs. 3A and 3B, and described above.

[0130] In some embodiments, translating the virtual address to the physical address
for the OS kernel in step 632 may include obtaining a base address in accordance with the
root page table index of the OS kernel and the page directory index of the virtual address. For
example, obtaining the base address in step 632 may include combining root address 210
with page directory index 271 of virtual address 270 to find page directory 223, as shown in
Figs. 2A and 2B. Page directory 223 may include a base address of page tables 240.

[0131] Translating the virtual address to the physical address for the OS kernel in step
632 can also include obtaining an entry address in accordance with the base address and the
page table index. For example, obtaining the entry address in step 632 may include
combining base address 230 with page table index 272 of virtual address 270 to find page
table 242, as shown in Figs. 2A and 2B. Page table 242 may include the entry address
pointing to a position among page table entries. Obtaining the entry address in step 632 may
also include reading contents of page table 242 to obtain entry address 250 pointing to page
table entry 262 in page table entries 260.

[0132] Translating the virtual address to the physical address for the OS kernel in step
632 can further include obtaining a physical page index in accordance with the entry address.
For example, obtaining the physical page index in step 632 may include reading the contents
of page table entry 262 to obtain physical page index 291.

[0133] Translating the virtual address to the physical address for the OS kernel in step

632 may further include combining the physical page index and the page offset to be the

36



WO 2019/040417 PCT/US2018/047201

physical address. For example, combining the physical page index and the page offset in step
632 may include combining physical page index 291 and page offset 293 to be physical
address 290, as shown in Fig, 2A. Page offset 293 may be identical to page offset 273 of
virtual address 270.

[0134] Translating the virtual address to the physical address for the OS kernel in step
632 can also include translating the virtual address to the physical address directly. In other
words, the virtual address is identical to the physical address. For example, virtual address
270 in Fig. 2A may be translated to be physical address 290 directly without being translated
through page directories 220, page tables 240, and page table entries 260 as shown in the
figure.

[0135] As another example, translating the virtual address to the physical address for
the OS kernel in step 632 can include translating virtual address 370 to physical address 390
as illustrated in Figs. 3A and 3B, and described above.

[0136] Step 641 includes obtaining a root page table index corresponding to the user
space. For example, obtaining the root page table index corresponding to the user space in
step 641 may include obtaining a root page table index from a storing unit, such as a control
register 4 (CR4), a control register 3 for a user process (CR3U), or a storing space in a cache,
main memory, or storage device, as illustrated in above.

[0137] In some embodiments, obtaining the root page table index corresponding to
the user space in step 641 may also include reading a root page table index corresponding to
the user process from a storing unit, and storing it in a dedicated control register in a
processor. For example, obtaining the root page table index corresponding to the user space
in step 641 may include popping out the root page table index corresponding to the user
process from a stack for the user process, and storing it in the CR3U. As another example,

obtaining the root page table index corresponding to the user space in step 641 may include

37



WO 2019/040417 PCT/US2018/047201

swapping in data that may include the root page table index of the user process from storage
130, and storing it in control register 124 of processor 120.

[0138] Step 642 includes translating a virtual address to a physical address in
accordance with the root page table index for a user process. For example, translating the
virtual address to the physical address for the user process in step 641 may include translating
virtual address 470 to physical address 490 in accordance with the root page table index of
the user process stored in control register 124, as illustrated in Figs. 4A and 4B and described
above. As another example, translating the virtual address to the physical address for the user
process in step 642 may include translating virtual address 570 to physical address 590 in
accordance with the root page table index stored in control register 124 for the user process as
illustrated in Figs. 5A and 5B, and described above.

[0139] Translating the virtual address to the physical address for the user process in
step 642 may include obtaining a base address in accordance with the root page table index of
the user process and the page directory index of the virtual address. For example, obtaining
the base address in step 642 may include combining root address 410 with page directory
index 471 of virtual address 470 to find page directory 423, as shown in Figs. 4A and 4B.
Page directory 423 may include a base address of page tables 440.

[0140] Translating the virtual address to the physical address for the user process in
step 642 can also include obtaining an entry address in accordance with the base address and
the page table index. For example, obtaining the entry address in step 642 may include
combining base address 430 with page table index 472 of virtual address 470 to find page

‘table 442, as shown in Figs. 4A and 4B. Page table 442 may include the entry address
pointing to a position among page table entries. Obtaining the entry address in step 642 may
also include reading contents of page table 442 to obtain entry address 450 pointing to page

table entry 462 in page table entries 460.

38



WO 2019/040417 PCT/US2018/047201

[0141] In some embodiments, translating the virtual address to the physical address
for the user process in step 642 may further include obtaining a physical page index in
accordance with the entry address. For example, obtaining the physical page index in step
642 may include reading the contents of page table entry 462 to obtain physical page index
491.

[0142] In some embodiments, translating the virtual address to the physical address
for the user process in step 642 may further include combining the physical page index and

the page offset to be the physical address. For example, combining the physical page index
and the page offset in step 642 may include combining physical page index 491 and page
offset 492 to be physical address 490, as shown in Fig. 4A. Page offset 492 may be identical
to page offset 471 of virtual address 470.

[0143] Alternatively, translating the virtual address to the physical address for the
user process in step 642 may include translating the virtual address to the physical address
directly. In other words, the virtual address is identical to the physical address. For example,
virtual address 470 in Fig. 4A may be translated to be physical address 490 directly without
being translated through page directories 420, page tables 440, and page table entries 460 as
shown in the figure.

[0144] As another example, translating the virtual address to the physical address for
the user process in step 642 can include translating virtual address 570 to physical address
590 as illustrated in Figs. SA and 5B, and described above.

[0145] Method 600 can also include obtaining a page-size indicator indicating a page
size of the kernel space or the user space. For example, obtaining the page-size indicator in
method 600 may include reading a bit-7 of page attributes 262-2 in page table entry 262 as
shown in Fig. 2B and described above. Bit-7 of page attribute 262-2 indicating a page size of

the kernel space. For example, if the bit-7 of page attributes 262-2 is “1,” the page size of the

39



WO 2019/040417 PCT/US2018/047201

kernel space may be 4 KB. If the bit-7 of page attributes 262-2 is “0,” the page size of the
kernel space may be 4 MB.

[0146] When the obtained page-size indicator may indicate that the kernel space may
include a first page size, translating the virtual address to the physical address in step 632
may include translating the virtual address to the physical address as illustrated in Figs. 2A
and 2B, and described above. For example, when the bit-7 of page attributes 262-2 is “1”
indicating a 4-KB page size of the kernel space, translating the virtual address to the physical
address in step 632 may include translating virtual address 270 to physical address 290 as
described above and shown in Fig. 2A.

[0147] When the obtained page-size indicator may indicate that the kernel space may
include a second page size, translating the virtual address to the physical address in step 632
may include translating the virtual address to the physical address as illustrated in Fig. 3A
and described above. For example, when the bit-7 of page attributes 262-2 is “0” indicating a
4-MB page size of the kernel space, translating the virtual address to the physical address in
step 632 may include translating virtual address 370 to physical address 390 through two-
level page tables, page directories 320 and page table entries 360, as shown in Fig. 3A and
3B, and described above.

[0148] As another example, obtaining the page-size indicator in method 600 may
include reading a bit-7 of page attributes 462-2 in page table entry 462 as shown in Fig. 4B
and described above. Bit-7 of page attribute 462-2 indicating a page size of the user space.
For example, if the bit-7 of page attributes 462-2 is ““1,” the page size of the user space may
be 4 KB. If the bit-7 of page attributes 462-2 is “0,” the page size of the user space may be 4

‘MB.
[0149] When the obtained page-size indicator may indicate that the user space may

include a first page size, translating the virtual address to the physical address in step 642

40



WO 2019/040417 PCT/US2018/047201

may include translating the virtual address to the physical address as illustrated in Figs. 4A
and 4B, and described above. For example, when the bit-7 of page attributes 462-2 is “1”
indicating a 4-KB page size of the user space, translating the virtual address to the physical
address in step 642 may include translating virtual address 470 to physical address 490 as
described above and shown in Fig. 4A.

[0150] When the obtained page-size indicator may indicate that the user space may
include a second page size, translating the virtual address to the physical address in step 642
may include translating the virtual address to the physical address as illustrated in Figs. SA
and 5B, and described above. For example, when the bit-7 of page attributes 562-2 is “0”
indicating a 4-MB page size of the user space, translating the virtual address to the physical
address in step 642 may include translating virtual address 570 to physical address 590
through two-level page tables, page directories 520 and page table entries 560, as shown in
Fig. 5A and described above.

[0151] Method 600 may also include obtaining a non-executable indicator for a page
at the translated physical address. For example, obtaining the non-executable indicator in
method 600 may include reading bit-2 of page attributes 262-2 in page table entry 262 as

-shown in Fig. 2B and described above. If the bit-2 of page attributes 262-2 is “1,” the page at
the translated physical address may not be executable. Method 600 may include not accessing
contents of the page, or accessing the contents of the page, but not executing it. If the bit-2 of
page attributes 262-2 is “0,” the page at the translated physical address may be executable.
Method 600 may include accessing the contents of the page in the kernel space and/or
execute it accordingly.

[0152] As another example, obtaining the non-executable indicator in method 600
may include obtaining a non-executable indicator for the user space. For example, obtaining

the non-executable indicator in method 600 may include reading bit-2 of page attributes 462-

41



WO 2019/040417 PCT/US2018/047201

2 in page table entry 462, as described above and shown in Fig. 4B. If the bit-2 of page
attributes 462-2 is “1,” the page at the translated physical address may not be executable.
Method 600 may include not accessing contents of the page, or accessing the contents of the
page, but not executing it. If the bit-2 ‘of page attributes 462-2 is “0,” the page at the
translated physical address may be executable. Method 600 may include accessing the
contents of the page in the user space and/or execute it accordingly.

[0153] Method 600 may further include obtaining an access-user-space indication for
the OS kernel or the user process. For example, processor 120 may include one or more
instructions including a prefix “US” used to access the user space in its instruction set. The
instruction including the prefix “US” may be used as the access-user-space indicator in the
OS kernel. When an instruction with the “US” prefix may be executed, obtaining the root
page table index in step 631 may include reading a root page table index corresponding to the
user space in control register 124 for translating the virtual address to the physical address.
For example, obtaining the root page table index in step 631 may include reading root address
410 corresponding to the user space from control register 124. And, translating the virtual
address to the physical address in step 632 may include translating virtual address 270 to a
physical address by using root address 410 and the three-level page table structure in Fig. 4A,
as described above.

[0154] As another example, processor 120 may include one or more instructions
including a prefix “US” used to access the user space in its instruction set. The instruction
including the prefix “US” may be used as the access-user-space indicator in the user process.
When an instruction with the “US” prefix may be executed for the user process, method 600

‘may further include setting a general protection fault because the instruction with the “US”

prefix may be reserved for an OS kernel only. For example, method 600 may include setting

42



WO 2019/040417 PCT/US2018/047201

a warning message or flag, and not executing the instruction with the “US” prefix for the user
process.

[0155] Another aspect of the disclosure is directed to a non-transitory computer-
readable medium storing a set of instructions that are executable by one or more processors
of an apparatus to cause the apparatus to perform a method for memory management of a
kernel space and a user space, as discussed above. The computer-readable medium may
include volatile or non-volatile, magnetic, semiconductor, tape, optical, removable, non-
removable, or other types of computer-readable medium or computer-readable storage
devices. For example, the computer-readable medium may be the storage device or the
memory module having the computer instructions stored thereon, as disclosed. In some
embodiments, the computer-readable medium may be a disc or a flash drive having the
computer instructions stored thereon.

[0156] It will be appreciated that the present disclosure is not limited to the exact
construction that has been described above and illustrated in the accompanying drawings, and
that various modifications and changes can be made without departing from the scope
thereof. It is intended that the scope of the application should only be limited by the appended

claims.

43



WO 2019/040417 PCT/US2018/047201

WHAT IS CLAIMED IS:

1. A system for memory management of a kernel space and a user space, the
system comprising:
a first storing unit configured to store a first root page table index corresponding to
the kernel space;
a second storing unit configured to store a second root page table index corresponding
to the user space; and
a control unit communicatively coupled to the first and second storing units and
configured to:
translate a first virtual address to a first physical address in accordance with
the first root page table index for an operating system kernel; and
translate a second virtual address to a second physical address in accordance

with the second root page table index for a user process.

2. The system of claim 1, wherein the kernel space and the user space correspond
to a same physical memory space, the same physical memory space being an entire physical

memorty space or a part of the entire physical memory space.

3. The system of any one of claims 1 and 2, wherein:

the first virtual address includes:
a first page directory index, a first page table index, and a first page offset, or
a first page directory index and a first page offset; and

the second virtual address includes:
a second page directory index, a second page table index, and a second page

offset, or

44



WO 2019/040417 PCT/US2018/047201

a second page directory index, a second page table index, and a second page

offset.

4. The system of claim 3, wherein the control unit being configured to translate
the first virtual address to the first physical address includes being configured to:

obtain a first base address in accordance with the first root page table index and the
first page directory index;

obtain a first entry address in accordance with the first base address and the first page
table index;

obtain a first physical page index in accordance with the first entry address; and

combine the first physical page index and the first page offset to be the first physical

address.

5. The system of claim 3, wherein the control unit being configured to translate
the first virtual address to the first physical address includes being configured to:

obtain a first page-size indicator indicating a page size of the kernel space, the page
size of the kernel space including a first or a second kernel-space page size,

wherein responsive to the first page-size indicator indicating the first kernel-space
page size, the control unit being configured to translate the first virtual address to the first
physical address further includes being configured to:

obtain the first base address in accordance with the first root page table index and the
first page directory index;

obtain the first entry address in accordance with the first base address and the first
page table index;

obtain the first physical page index in accordance with the first entry address; and

45



WO 2019/040417 PCT/US2018/047201

combine the first physical page index and the first page offset to be the first physical

“address.

6. The system of claim 5,

wherein responsive to the first page-size indicator indicating the second kernel-space
page size, the control unit being configured to translate the first virtual address to the first
physical address further includes being configured to:

obtain the first entry address in accordance with the first root page table index and the
first page directory index;

obtain the first physical page index in accordance with the first address; and

combine the first physical page index and the first page offset to be the first physical

address.

7. The system of any one of claims 1-6, wherein the control unit being
configured to translate the first virtual address to the first physical address further includes
being configured to:

obtain a first non-executable indicator indicating a page at the first physical address is

not executable.

8. The system of any one of claims 3-7, wherein the control unit being
configured to translate the second virtual address to the second physical address includes
being configured to:

obtain a second base address in accordance with the second root page table index and

the second page directory index;

46



WO 2019/040417 PCT/US2018/047201

obtain a second entry address in accordance with the second base address and the
second page table index;

obtain a second physical page index in accordance with the second entry address; and

combine the second physical page index and the second page offset to be the second

physical address.

9. The system of any one of claims 3-7, wherein the control unit being
configured to translate the second virtual address to the second physical address includes
being configured to:

obtain a second page-size indicator indicating a page size of the user space, the page
size of the user space including a first or a second user-space size,

wherein responsive to the second page-size indicator indicating the first user-space
size, the control unit being configured to translate the second virtual address to the second
physical address further includes being configured to:

obtain the second base address in accordance with the second root page table index
and the second page directory index;

obtain the second entry address in accordance with the second base address and the
second page table index;

obtain the second physical page index in accordance with the second entry address;
and

combine the second physical page index and the second page offset to be the second

physical address.

10. The system of claim 9,

47



WO 2019/040417 PCT/US2018/047201

wherein responsive to the second page-size indicator indicating the second user-space
size, the control unit being configured to translate the second virtual address to the second
physical address further includes being configured to:

obtain the second entry address in accordance with the second root page table index
and the second page directory index;

obtain the second physical page index in accordance with the second entry address;
and

combine the second physical page index and the second page offset to be the second

physical address.

11.  The system of any one of claims 1-8, wherein the control unit being
configured to translate the second virtual address to the second physical address further
includes being configured to:

obtain a second non-executable indicator indicating a page at the second physical

address 1s not executable.

12.  The system of claim 3, wherein the control unit being configured to translate
the first virtual address to the first physical address includes being configured to.

obtain a first access-user-space indication;

obtain the second base address in accordance with the second root page table index
and the first page directory index;

obtain the second entry address in accordance with the second base address and the
first page table index;

obtain the second physical page index in accordance with the second entry address;

and

48



WO 2019/040417 PCT/US2018/047201

combine the second physical page index and the first page offset to be the second

physical address.

13. The system of any one of claims 1-8, wherein the control unit being
configured to translate the second virtual address to the second physical address includes
being configured to:

obtain a second access-user-space indication; and

set a general protection fault.

14.  The system of any one of claims 1-3, wherein the control unit being
configured to translate the first virtual address to the first physical address includes being
configured to:

translate the first virtual address to be the first physical address directly.

15.  The system of any one of claims 1-8, wherein the control unit being
configured to translate the second virtual address to the second physical address includes
being configured to:

translate the second virtual address to be the second physical address directly.

16. A method for memory management of a kernel space and a user space, the
method comprising:

obtaining a first root page table index corresponding to the kernel space, wherein the
first root table index is different from a second root page table index corresponding to the

user space; and

49



WO 2019/040417 PCT/US2018/047201

translating a first virtual address to a first physical address in accordance with the first

root page table index for an operating system kernel.

17.  The method of claim 16, wherein the kernel space and the user space
correspond to a same physical memory space, the same physical memory space being an

entire physical memory space or a part of the entire physical memory space.

18.  The method of any one of claims 16 and 17, wherein:
the first virtual address includes:
a first page directory index, a first page table index, and a first page offset, or

a first page directory index and a first page offset.

19.  The method of claim 18, wherein translating the first virtual address to the first
physical address includes:

obtaining a first base address in accordance with the first root page table index and the
first page directory index;

obtaining a first entry address in accordance with the first base address and the first
page table index;

obtaining a first physical page index in accordance with the first entry; and

combining the first physical page index and the first page offset to be the first

physical address.

20. The method of claim 18, wherein translating the first virtual address to the first

physical address includes:

50



WO 2019/040417 PCT/US2018/047201

obtaining a first page-size indicator indicating a page size of the kernel space, the
page size of the kernel space including a first or a second kernel-space page size,

wherein responsive to the first page-size indicator indicating the first kernel-space
page size, translating the first virtual address to the first physical address further includes:

obtaining the first base address in accordance with the first root page table index and
the first page directory index;

obtaining the first entry address in accordance with the first base address and the first
page table index;

obtaining the first physical page index in accordance with the first entry address; and

combining the first physical page index and the first page offset to be the first

physical address.

21. The method of claim 20,

wherein responsive to the first page-size indicator indicating the second kernel-space
page size, translating the first virtual address to the first physical address includes:

obtaining the first entry address in accordance with the first root page table index and
the first page directory index;

obtaining the first physical page index in accordance with the first address; and

combining the first physical page index and the first page offset to be the first

physical address.

22. The method of any one of claims 16-21, wherein translating the first virtual
address to the first physical address further includes:
obtaining a first non-executable indicator indicating a page at the first physical

address is not executable.

51



WO 2019/040417 PCT/US2018/047201

23. The method of any one of claims 16-22, further comprising:
obtaining the second root page table index corresponding to the user space; and
translating a second virtual address to a second physical address in accordance with

the second root page table index for a user process.

24, The method of any one of claims 16-23, wherein:
the second virtual address includes:
a second page directory index, a second page table index, and a second page
offset, or
a second page directory index, a second page table index, and a second page

offset,

25.  The method of claim 24, wherein translating the second virtual address to the
second physical address includes:

obtaining a second base address in accordance with the second root page table index
and the second page directory index;

obtaining a second entry address in accordance with the second base address and the
second page table index;

obtaining a second physical page index in accordance with the second entry address;
and

combining the second physical page index and the second page offset to be the second

physical address.

52



WO 2019/040417 PCT/US2018/047201

26. The method of claim 24, wherein translating the second virtual address to the
second physical address includes:

obtaining a second page-size indicator indicating a page size of the user space, the
page size of the user space including a first or a second user-space size,

wherein responsive to the second page-size indicator indicating the first user-space
size, translating the second virtual address to the second physical address further includes:

obtaining the second base address in accordance with the second root page table index
and the second page directory index;

obtaining the second entry address in accordance with the second base address and the
second page table index;

obtaining the second physical page index in accordance with the second entry address;
and

combining the second physical page index and the second page offset to be the second

physical address.

27. The method of claim 26,

wherein responsive to the second page-size indicator indicating the second user-space
size, translating the second virtual address to the second physical address includes:

obtaining the second entry address in accordance with the second root page table
index and the second page directory index;

obtaining the second physical page index in accordance with the second entry address;
and

combining the second physical page index and the second page offset to be the second

physical address.

53



WO 2019/040417 PCT/US2018/047201

28. The method of any one of claims 23-27, wherein translating the second virtual
address to the second physical address further includes:
obtaining a second non-executable indicator indicating a page at the second physical

address is not executable.

29. The method of any one of claims 16-18, wherein translating the first virtual
address to the first physical address includes:

translating the first virtual address to be the first physical address directly.

30. The method of any one of claims 23, 24, and 28, wherein translating the
second virtual address to the second physical address includes:

translating the second virtual address to be the second physical address directly.

31. The method of claim 23, wherein:
the first virtual address includes:
the first page directory index, the first page table index, and the first page
offset, or
the first page directory index and the first page offset;
the second virtual address includes:
the second page directory index, the second page table index, and the second
_page offset, or
the second page directory index, the second page table index, and the second
page offset; and
translating the first virtual address to the first physical address includes:

obtaining a first access-user-space indication,

54



WO 2019/040417 PCT/US2018/047201

obtaining the second base address in accordance with the second root page
table index and the first page directory index;

obtaining the second entry address in accordance with the second base address
and the first page table index;

obtaining the second physical page index in accordance with the second entry
address; and

combining the second physical page index and the first page offset to be the

second physical address.

32.  The method of any one of claims 23 and 24, wherein translating the second
virtual address to the second physical address includes:
obtaining a second access-user-space indication; and

setting a general protection fault.

33. A non-transitory computer-readable medium storing a set of instructions that
are executable by one or more processors of an apparatus to cause the apparatus to perform a
method for memory management of a kernel space and a user space, the method comprising:

obtaining a first root page table index corresponding to the kernel space, wherein the
first root table index is different from a second root page table index corresponding to the
user space; and

translating a first virtual address to a first physical address in accordance with the first

root page table index for an operating system kernel.

55



PCT/US2018/047201

WO 2019/040417

I 814

90BJI0IU] O/]
oyl

I

1015139y [0BU0D)
¥l

03r101g 1218189y [013U0D KI0WON
0tl 44! 011
I0SS2a2014
0T
00T

1/10



PCT/US2018/047201

WO 2019/040417

v 814
e ~ €LT [ax4 1LZ
e / £ s
| wwosdes | xapu] 25ed [eoiskyd < oot " 10sg0%Bed | wpuplgel sfed | xopuy Kioanq ofeq |
\\ \\ Iy ~a
e A 162 =R
- SSIIPPY [BNJHA
SSUPPY [eIISAUJ R4
06T
Y h 4
192 0£T 01T
" sSappy asog $$24ppy 1004 | 1315139y j0RU0))
L (474 [44}
om K s [T | [[ow | [T«
ssaqppy dijug 125139y [0R10)
0S¢ j£4)
BEETEE £# 1d [~ [ erad * [~
ot o ~z
satpus siqe} aSed souoane 98ed
09z Wi Ld 0z
sajqe] 28ed

(174

2/10



PCT/US2018/047201

WO 2019/040417

7# (41d) Agug s1qe] 8eg
79T

7# (1d) 21qe ] 93ed
e

e# (@) Kioyariqg o8eg
(544

d (MY[XNjimdlaoaj VA1 | D pasnif)

6 I 7 ¢

......
e

e

sanquyy 33ed xopuy o8 [eoIsAyd €3 T; 5
0 5 1z 5 i€ !
79T 129 |
“
"
“
Sd ssaIppy Agug gy-v ~
5 7 Il 7 e 1
T 1-T¥T o > -}
| i
i xapuy 2]qu ] 230
W 7Le
paAIRsay $SIppY oseq -7 -
m-m\m\N e _-m\mm o “
T TTTT T >
“ !
SSaUppY 100Y xapuf £10122.41(] 230
14 1744

3/10



PCT/US2018/047201

WO 2019/040417

Ve 81
H _ ELE 1L
* 1350 98eg _ Xapu] a8e ] jeoIsAyd <7 \uﬂ%ﬂuu TS 135p O 988 _ Xapuj Ar0j0aa(] 98ed _
7 73 T
£6£ \\ 16€ /
$52UPPY [edISAYd mmukvv%mm:ttr
06t
X 1183
19¢
\ﬂ\ SS2pPY 100y uuum—wuﬂm joR00)
75¢ (44!
] 2
HEld e #ad Tee
I | ssaappy Ayuy 1WISIS5Y J0[u0)
0st
ot =
souuy sjqey afeq ssuopan(] 9884

09¢

=

4/10



PCT/US2018/047201

WO 2019/040417

Z# (A1) Anug o[qe], o8ed
79¢

c# (ad) £1039011(] 2Fe]
[543

q¢ 'S
d [ MI|IXNjmdjaxd| Vv Iiadlo|D pasnuf)
o I ¢ £ v S 9 L &8 6 O0L-AT
saInquyy a38ed . paAIesay Xopu] 28ed [esAYd GNP e —,
0 7 17 ¢1 5 17 7z 5 “
9€ £-79¢ 1-29¢ "
................ “
I
]
: ]
POAIRSSY iSd SSoIpPVY Anuyg gIN- <
gNm\N\m LI :.\mm I€ "
FTTTT T T T >
i 1
~ |
SS24ppy 100y xapuj £4070241(] 230
1743 1943

5/10



PCT/US2018/047201

WO 2019/040417

I31S133Y joRUo)
(44!

Vi "S1q
h _ Ly iy 1y
_ 19580 o8ed _ xapuj 958 eoIsAydq <7 \Mn_muwwu T4 _ 18550 984 * xopyj ajqe]. o9ed _ xopuy K101093(] 9984 _
\\ \\ X ~a
£6F \,\ 16V Jﬂ/
ssaIppy [eoisAyd mmuuvvdw.mmmstt/
1152
A
19% (64 [1)84
A\ Ssadppy asog S524ppy 00y
e v >
[ w51d |« . w w#1d _ 1 4 ad Iy
ssaippy Kuyuzy
134
s T aa | |
ﬂ £9% ﬂ 9 ﬂ.m.mﬂ

L === |

| Al |

[ _oraut |
A

sawmuy 2iqe] 23eg
05%

W# 1d

~

sojqe] 98ed
o

N# ad

sauopoan( 93eg

(1743

1513y [05U0)
¥l

6/10



PCT/US2018/047201

WO 2019/040417

7# (41d) Anug a(qe] s3ed
57

Z# (Ld) 2191 28eg
wr

¢# (ad) Aoys11(q 982g
[X473

dy 81
d [MA|XN|[Imdiad| VI | 1T | D pasnuf]
0 1 ¢z £ F § 9 L & 6 0L
:\\..\\\ .......
Sanquy o8ed | xepu] 28ed [eorsAyd g3-v -~
0 5 Izl 5 I !
7-79¥ o !
“
i
i
{
H
Sd SSOIppY Anud EI-v .-
o 5 1 17zl S I ,
Ty I-Thy "1 nnnnn — +ﬁ
" _
f xapuy 2]quJ 330
i
“ Y4 4
paAlasay ssaIppy aseq €3+ -
0 5 eI s e
€Ty 1-£7¥
e [+
i
! !
$S24ppPY J00Y xapu] A40302.41(] 2304
1)84 IL¥

7/10



PCT/US2018/047201

WO 2019/040417

VS 814
,@ _ €LS 148
_ 15O 98eg _ xopuj 98eg jeoisAyd <7 \uﬁwﬁuﬂl -7 135y0 98eg ~ xopu] A103001(] 98eg ;
/ s ; -
6 165 R
SSIIPPY [BIMIA
SSaIpPY [eaisAyd = BEBay P1uoy
06% (44
[9¢ (1159
- ssappy 1004 | 131s139y joQuo)
9% Tl
A\ ﬂ
m 74 41d nﬁ ad 1es
E p £# ad ~ [£43
ssasppy dguy
. |~ cos oss [~z

(o ]
A

sarnuy 3ge] 9984
09¢%

N# Qd

SOLI0153H(] 95ed

[iras

8/10



PCT/US2018/047201

WO 2019/040417

Z# (A1d) Anug s[qe], 23ed
79¢

¢4 (dd) Aro10011( 9Feq
(49

g6 "31q
d |[MI|XN|md|la@d| V |d ] 0 |D| pasmu
o I ¢ ¢ ¥ § 9 L 8§ 6 O0LAT
sonqupy 98ed PaAILsoy Xapuj o8e  [IASAYJ GIN-V | —,
0 S5 I1zZI S 1z 7z s I€ “
T-T98 €795 1-29¢ !
|
[ e I
i
!
: . |
paARssy Sd SSRIPPY Anuy gIN-¥ - —
0o £ L Il s I
(4 X4 [-¢£¢s

SS24ppY 100y xapu] £40302.41(] 230 J
0I¢ IS

9/10



PCT/US2018/047201

WO 2019/040417

xapui o[qel 28ed 1001 1511]
91 Y3 M 20UBPIOIOR Ul SS3Ippe [BoIsAyd
1SI1] B O} SS2IPPE [BNIA JSHJ B JR[SUBIY,

A

9 814
xaput a1qe} o5ed J001 puodss
311 Y)M SDUBPIOIDE Ul SSIPPE [oisAyd
\\ puOOSS B 0] SSAIPPE [BNHIA PUOJSS B JjB[SURL], \
wI * ze9
aoeds Jasn a3 03 Surpuodss1iod
\_\ xoput 9]qe] 23ed 3001 puo2as B umLIqQ \

sords [awiay ay3 03 utpuodsalios
Xepur o]qe} 98ed joo1 1817 B UTRIqO

I¥9

¢2ords 19sn 2y3 1o

200dg 42s)) 2oeds [ouIaY oY) SS90V

029

200dy (Ul

ssaippe jemaiA annboy

i

019

|

[
o
\O

10/10



INTERNATIONAL SEARCH REPORT

International application No.
PCT/US 18/47201

A. CLASSIFICATION OF SUBJECT MATTER
IPC(8) - GO6F 13/00 (2018.01)
CPC

- GO6F 3/0601, GO6F 3/0659, G11B 27/034, GO6F 21/79, GO6F 12/0866

According to International Patent Classification (IPC) or to both national classification and IPC

B.  FIELDS SEARCHED

See Search History Document

Minimuim documentation searched (classification system followed by classification symbols)

See Search History Document

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

See Search History Document

Electronic data base consuited during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

X

US 2012/0246381 A1 (KEGEL et al.), 27 September 2012 (27.09.2012), entire document,
especially Abstract; para [0015], {0043), {0086], [0094]-[0097], [0099], [0102]-{0103]), [0106]

1-6, 12, 16-21, 33

D Further documents are listed in the continuation of Box C.

D See patent family annex.

* Special categories of cited documents:

“A” document defining the general state of the art which is not considered
to be of particular relevance

“E” earlier application or patent but published on or after the international
filing date

“L” document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

“O” document referring to an oral disclosure, use, exhibition or other
means

“P”  document published prior to the international filing date but later than

the priority date claimed

o

“wy”

wyn

g

later document published afler the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

document member of the same patent family

Date of the actual completion of the international search

24 October 2018

Date of mailing of the international search report

07 NOV 2018

Name and mailing address of the ISA/US

Mail Stop PCT, Attn: ISA/US, Commissioner for Patents
P.O. Box 1450, Alexandria, Virginia 22313-1450

Facsimile No. 5§71-273-8300

Authorized officer:

Lee W. Young

PCT Helpdesk: 571-272-4300
PCT OSP: 571-272-7774

Form PCT/ISA/210 (second sheet) (January 2015)




INTERNATIONAL SEARCH REPORT International application No.
PCT/US 18/47201

Box No. I Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. E] Claims Nos.:

because they relate to subject matter not required to be searched by this Authority, namely:

2. D Claims Nos.:

because they relate to parts of the international application that do not comply with the prescribed requirements to such an
extent that no meaningful international search can be carried out, specifically:

AW
3. X Claims Nos.: 7-11, 13-15, 22:32
because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box No. II1  Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1. D As all required additional search fees were timely paid by the applicant, this international search report covers all searchable
claims.

2. D As all searchable claims could be searched without effort justifying additional fees, this Authority did not invite payment of
additional fees.

3. D As only some of the required additional search fees were timely paid by the applicant, this international search report covers
only those claims for which fees were paid, specifically claims Nos.:

14 D No required additional search fees were timely paid by the applicant. Consequently, this international search report is
restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest E] The additional search fees were accompanied by the applicant’s protest and, where applicable, the
payment of a protest fee.

D The additional search fees were accompanied by the applicant’s protest but the applicable protest
fee was not paid within the time limit specified in the invitation.

l:] No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet (2)) (January 2015)



	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - claims
	Page 47 - claims
	Page 48 - claims
	Page 49 - claims
	Page 50 - claims
	Page 51 - claims
	Page 52 - claims
	Page 53 - claims
	Page 54 - claims
	Page 55 - claims
	Page 56 - claims
	Page 57 - claims
	Page 58 - drawings
	Page 59 - drawings
	Page 60 - drawings
	Page 61 - drawings
	Page 62 - drawings
	Page 63 - drawings
	Page 64 - drawings
	Page 65 - drawings
	Page 66 - drawings
	Page 67 - drawings
	Page 68 - wo-search-report
	Page 69 - wo-search-report

