(12) 特許協力条約に基づいて公開された国際出願

(19) 世界知的所有権機関
国際事務局

(43) 国際公開日
2014年1月30日 (30.01.2014)

WO2014/017363 A1

(51) 国際特許分類 : G02B 5/02 (2006.01)
F21 V 3/04 (2006.01)

(21) 国際出願番号 : PCT/JP20 13/068450

(22) 国際出願日 : 2013年7月17日 (17.07.2013)

(25) 国際出願の言語 : 日本語

(26) 国際公開の言語 : 日本語

(30) 優先権データ:
特願2012-167601 (2012年7月27日) JP

(71) 出願人 : 日本ゼオン株式会社 (EON CORPORA-
TION) (JP/JP); 〒1008264 東京都千代田区丸の内一丁目6番2号 Tokyo (JP).

発明者: 井上 弘康 (INOUE, Hirosaku); 〒1008264 東京都千代田区丸の内一丁目6番2号 日本ゼオン株式会社内 Tokyo (JP).

代理者: 酒井 宏明 (SAKAI, Hiroaki); 〒1006020 東京都千代田区霞が関三丁目2番5号 酒井ビ
ルディング 酒井国際特許事務所 Tokyo (JP).

(54) Title: OPTICAL SHEET AND SURFACE LIGHT SOURCE APPARATUS

(54) 発明の名称 光学シート及び面光源装置

(57) Abstract: An optical sheet comprising; a transparent substrate; a light diffusion layer having a surface roughness structure which is provided on one surface of the transparent substrate; and a light diffusion adhesive layer provided on the other surface of the transparent substrate, wherein the light diffusion layer comprises a resin and first diffusion particles having a number-average particle size of 1.7 μm or above, the light diffusion adhesive layer comprises a binder, highly refractive nanoparticles and second diffusion particles, and the relationship x1 > x2 is satisfied, where the haze of the light diffusion layer is x1 (%) and the haze of the light diffusion adhesive layer is x2 (%); and a surface light source apparatus provided with said optical sheet and an organic electro luminescent light-emitting element.

(57) 要約: 透明基材と、前記透明基材の一方の面側に設けられた表面凹凸構造を有する光学拡散層と、前記透明基材のもう一方の面側に設けられた光拡散粘着層とを有する光学シートである。前記光学拡散層は、樹脂と数平均粒子径が 7 μm 以上の第 1 の拡散粒子を含み、前記光学拡散粘着層が、バイナード高屈折ナノ粒子と第 2 の拡散粒子を含み、前記光学拡散粘着層のヘイズ x1 (%)、及び前記光学拡散粘着層のヘイズ x2 (%) が x1 > x2の関係を満たす光学シートであり、光拡散粒子を有する有機エレクトロレミネッセンス発光素子を用いる面光源装置。
明細書
発明の名称：光学シート及び面光源装置

技術分野
[0001] 本発明は、光学シート、及び有機ELミネッセンス（以下「有機EL」という。）を備える面光源装置に関する。

背景技術
[0002] 複数層の電極間に有機発光層を設け、電気的に発光を得る有機EL素子は、液晶セルに代わる表示素子としての利用が検討されている。他に、その高発光効率、低電圧駆動、軽量、低コスト等の特徴を生かし、平面型照明、液晶表示装置用バックライト等の面光源装置としての有機EL装置の利用も検討されている。

[0003] 有機EL素子を面光源装置の光源として利用する場合、有用な態様の光を高効率で素子から取り出すことが課題となる。例えば、有機EL素子の発光層自体は発光効率が高いものの、素子を構成する層間の屈折率差などの条件によっては、光がかかる層を透過して出光するまでの間の光の損失が大きくなる。したがって、そのような光の損失を可能な限り低減することが求められる。

[0004] 光取り出し効率を高めるための方法として、光源装置よりも光取り出し面側に、所定の光学的特性を有する複数の層を有する光学シートを設けることが知られている（例えば特許文献1）。そのような光学シートを設けることにより、光取り出し効率の向上及び観察角度による色味の変化の低減が期待される。

先行技術文献

特許文献

[0005] 特許文献1：国際公開第2011/078092号

発明の概要

発明が解決しようとする課題
発光素子からの光取り出し効率を高めるために、高屈折ガラスを基板とし
て用いることが考えられる。高屈折ガラスを基板として用いることにより、
1. 8程度といった高い屈折率を有する発光層から基板への光取り出し効率
が高まることが期待される。しかしながら、高屈折ガラス基板を用いると、
そこからさらに他の層又は装置外へ光を出光することが困難となる。

高屈折ガラス基板からさらに光を取り出す際の効率を高めるために、ガラ
ス基板に直接接する層が光拡散性を有する光学シートを用いることが考えら
れる。例えば、透明基材と、粘着層を有する光学シートであって、当該粘
着層が、屈折率が高く且つ光拡散性を有するものを用いることにより、光取
り出し効率を高めることができ考えられる。

しかしながら、そのような屈折率の高い光拡散粘着層を形成する場合、か
かる層を形成する材料の粘度が塗布のための適切な粘度から外れ、その結果
、粘着層のムラが発生しやすい。そのようなムラは、面光源装置の出光面を
観察した際に、面状ムラとして認識され、面光源装置の品質を損ねる。

したがって、本発明の目的は、面光源装置の光取り出し効率を高めること
ができ、観察角度による色味の変化を低減でき、且つ面状ムラの発生を低減
しようる光学シート、並びに光取り出し効率が高く、観察角度による色味の変
化が低く、且つ面状ムラの少ない面光源装置を提供することにある。

課題を解決するための手段

上記課題を解決すべく、本発明者は検討を行った結果、光学シートとして
、光拡散粘着層に加えて、所定の特徴を有する光拡散層を有するものを用い
ることを想到した。即ち、透明基材の一方の面側に光拡散層を設け、もう一
方の面側に光拡散粘着層を設けた光学シートであって、光拡散層が所定のヘ
イズを有する等の特徴を有するものを用いることにより、光拡散粘着層によ
る光取り出し効率を高めながら、光拡散粘着層のムラに起因する面状ムラの
視認を低減し得ることを見出し、本発明を完成した。

即ち、本発明によれば、下記（1）～（7）が提供される。

（1） 透明基材と、前記透明基材の一方の面側に設けられた表面凹凸構造
を有する光拡散層と、前記透明基材のもう一方の面側に設けられた光拡散粘着層とを有する光学シートであって、
前記光拡散層が、樹脂と数平均粒子径 1.7 μm 以上の第 1 の拡散粒子と
を含み、
前記光拡散粘着層が、バインダと高屈折ナノ粒子と第 2 の拡散粒子とを含
み、
前記光拡散層のヘイズ x 1 (%)、及び前記光拡散粘着層のヘイズ x 2 (%)
が x 1 > x 2 の関係を満たす光学シート。
2) 前記ヘイズ x 1 が 98.5 % 以上である、(1) に記載の光学シート。
3) 前記第 2 の拡散粒子の数平均粒子径が 0.3 ～ 1.7 μm である、
(1) 又は (2) に記載の光学シート。
4) 前記高屈折ナノ粒子が、無機材料からなる粒子又は無機材料からな
る芯とその外表面を覆う有機皮膜からなる粒子であり、前記第 2 の拡散粒
子が、有機材料からなる粒子である、(1) ～ (3) のいずれか 1 項に記載
の光学シート。
5) 前記高屈折ナノ粒子が、屈折率 1.68 以上の粒子であり、前記第
2 の拡散粒子が、屈折率 1.55 未満の粒子である、(1) ～ (4) のいず
れか 1 項に記載の光学シート。
6) 前記光拡散粘着層において、前記第 2 の拡散粒子の屈折率 n 2 と、
前記光拡散粘着層の残余の成分の屈折率 n 1 とが、n 1 > n 2 の関係を満た
す、(1) ～ (6) のいずれか 1 項に記載の光学シート。
7) (1) ～ (6) のいずれか 1 項に記載の光学シートと、有機エレク
トロルミネッセンス発光素子を備える面光源装置。
発明の効果
[0012] 本発明の光学シートは、面光源装置の光取り出し効率を高めることができ、
観察角度による色味の変化を低減でき、且つ面状ムラの発生を低減しうる。
本発明の面光源装置は、光取り出し効率が高く、観察角度による色味の変
化が低く、且つ面状ムラが少ない。

図面の簡単な説明

[図1] 図1は、本発明の光学シートの一例を模式的に示す断面図である。

[図2] 図2は、本発明の光学シートの別の一例を模式的に示す斜視図である。

[図3] 図3は、図2に示す光学シートを、図2中の線1a～1bを通り、透明基材の面方向と垂直な面で切断した断面を示す断面図である。

[図4] 図4は、本発明の面光源装置の一例を模式的に示す断面図である。

発明を実施するための形態

以下、実施形態及び例示物等を示して本発明について詳細に説明するが、
本発明は以下に説明する実施形態及び例示物等に限定されるものではなく、
本発明の特許請求の範囲及びその均等の範囲を逸脱しない範囲において任意
に変更して実施しようとする。

<光学シート>

本発明の光学シートは、透明基材と、前記透明基材の一方側の面に設けら
れた光拡散層と、前記透明基材のもう一方側の面に設けられた光拡散粘着層
とを有する。

図1は、本発明の光学シートの一例を模式的に示す断面図である。図1に
おいて、光学シート100は、透明基材121と、透明基材121の一方側
の面に直接接して設けられた光拡散層110と、透明基材121のもう一方
側の面に直接接して設けられた光拡散粘着層130とを有する。本実施形態
では、透明基材の面上に光拡散層及び光拡散粘着層が直接設けられているが
、本発明の光学シートはこのような態様に限られず、透明基材と光拡散層又
は光拡散粘着層との間には、他の層が介在していてもよい。

光拡散層110は、樹脂112と第1の拡散粒子113とを含み、その表
面101は、第1の拡散粒子113の存在により凹凸構造を有する。一方、
光拡散粘着層は、バインダー132と、第2の拡散粒子133と、高屈折ナ
ノ粒子134とを含む。光拡散粘着層130の表面は、粘着性を有する面で
あるので、必要に応じてセパレーター141を貼付した状態で保存し、セパ
レーテー141を剥離してから使用に供することができる。

[001 6] 透明基材

本発明において、透明基材が「透明」であるとは、光学シートの材料に用いるのに適した程度の光線透過率を有する意味である。本発明においては、光学シートを構成する各層が、光学部材に用いるのに適した光線透過率を有するものとすることが、光学シート全体として50%以上の全光線透過率を有するものとすることが可能である。

[001 7] 透明基材の材料の例としては、ガラス、又は透明な層を形成することができる各種の樹脂を用いることができる。透明基材の材料の例としては、熱可塑性樹脂、熱硬化性樹脂、紫外線硬化性樹脂、および電子線硬化性樹脂を挙げることができる。この中でも加工が容易である点で熱可塑性樹脂が好ましい。熱可塑性樹脂の例としては、ポリエチレン、ポリエチレーテル系、およびシクロオレフィンポリマー系の樹脂を挙げることができる。ここで、透明基材としては、単層のものに限らず、複数の透明基材を積層したものでもよい。

[001 8] 透明基材の屈折率は、高いほうが、光拡散粘着層から透明基材への光取り出し効率が高くなるため好ましいが、本発明においては、光拡散粘着層として、特定のものを用いることにより、透明基材の屈折率が光拡散粘着層に比べて低くても、良好な光取り出し効率を得ることができる。したがって、透明基材の材料は高屈折率のものに限定されず、屈折率以外の性質及びコスト等の観点から、材料を適宜選択しうる。透明基材の屈折率は、具体的には、1.4以上であることが好ましく、1.5以上であることがより好ましく、一方1.9以下であることが好ましく、1.7以下であることがより好ましい。

本発明において、各層の屈折率は、シート状に層単体あるいは複層体を形成したものをサンプルとして、分光エリプソメーター（M-2000ウーラム社製）により測定することができる。

[001 9] 本発明の光学シートにおいて、透明基材の厚さは、例えば樹脂からなるも
のであれば20〜300μmであることが好ましい。透明基材がガラスの場合、その厚さは10〜1100μmであることが好ましい。なお、本発明の光学シートは、薄い平板状の構造であることから「シート」と称するが、これは必ずしも可撓性を必須の要件とするものではない。したがって、例えば透明基材として700μm厚のガラスを採用し、可撓性が無い複層体としたものも、本発明の光学シートに含まれる。

[0020]（光拡散層）

光拡散層は、透明基材の一方の面側に設けられる層である。光拡散層は、面光源装置に本発明の光学シートが設けられる場合において、通常、出光面側（即ち、光学シートにおいて、光拡散粘着層及び透明基材よりも発光層から遠い側）に位置する層である。光拡散層は、透明基材の面上に直接設けられているものでもよいが、任意の層を介して設けられてもよい。直接設けられていることが、製造の容易さ等の観点から好ましい。

[0021]光拡散層は、樹脂と、所定の数平均粒子径を有する第1の拡散粒子とを含む。

[0022]光拡散層が含む樹脂の例としては、熱可塑性樹脂、熱硬化性樹脂、並びに紫外線硬化性樹脂及び電子線硬化性樹脂等のエネルギー線硬化性樹脂を挙げることができる。なかでも、熱硬化性樹脂及びエネルギー線硬化性樹脂が、高い硬度及び製造効率の観点から好ましい。熱可塑性樹脂の例としては、ポリエチレン系、ポリアクリレート系、シクロオレフィンポリマー系の樹脂を挙げることができる。また紫外線硬化性樹脂の例としては、エポキシ系、アクリル系、ウレタン系、エンチオール系、イソシアネート系の樹脂を挙げることができる。これらの樹脂としては、複数個の重合性官能基を有するもののを好ましく用いることができる。

[0023]光拡散層が含む第1の拡散粒子は、透明であっても、不透明であってもよい。第1の拡散粒子の材料の例としては、金属及び金属化合物、並びに樹脂を挙げることができる。金属化合物の例としては、金属の酸化物及び窒化物を挙げることができる。金属及び金属化合物の例としては、具体的には銀、
アルミのような反射率が高い金属、酸化ケイ素、酸化アルミ、酸化ジルコニウム、窒化珪素、錫添加酸化インジウム、酸化チタンなどの金属化合物を挙げることができる。一方樹脂の例としては、メタクリル樹脂、ポリウレタン樹脂、シリコーン樹脂、及びメラミン樹脂などを挙げることができる。

第1の拡散粒子の形状は、特に限定されず、球状、円柱状、立方体状、直方体状、角錐状、円錐状、星型状等の形状とすることができる。

第1の拡散粒子は、数平均粒子径１．７μm以上である。ここで数平均粒子径とは、各種粒度分布計（例えば、遠心沈降式粒度分布計 ＣＡＰＡ—7000 堀場製作所）により測定し得る。数平均粒子径をかかかる下限以上とすることにより、光拡散層の表面に凹凸構造を設けることができる。光拡散層が凹凸構造を有することにより、光取り出し効率を向上させることができる。なお、粒子径は、粒子の形状が球状以外である場合には、その同等体積の球の直径を粒子径とする。第1の拡散粒子の数平均粒子径の上限は、特に限定されないが30μm以下とすることができる。

第1の拡散粒子が透明な粒子である場合において、第1の拡散粒子の屈折率と、光拡散層を構成する樹脂の屈折率との差は0.05～0.5であることが好ましく、0.07～0.5であることがより好ましい。ここで、第1の拡散粒子及び樹脂の屈折率は、どちらがより大きくてても良い。第1の拡散粒子と樹脂の屈折率が近すぎると拡散効果が得られず色味ムラは抑制されず、逆に差が大きすぎると拡散が大きくなり色味ムラは抑制されるが光取り出し効果が低減することになる。

光拡散層における樹脂と第1の拡散粒子との配合割合は、これらの合計に対する第1の拡散粒子の割合として、3～50重量％であることが好ましい。

（任意成分）

光拡散層は、樹脂及び第1の拡散粒子に加えて、必要に応じて任意の成分を含むことができる。当該任意の成分としては、帯電防止剤、架橋剤、UV吸収剤、蛍光剤、蓄光剤等が挙げられる。
（光拡散層の特性及び形状）
光拡散層の屈折率は、透明基材の屈折率より高い屈折率であることが好ましい。

光拡散層の表面凹凸構造の大きさは、特に限定されないが、算術平均粗さ
R_a が 0.15 μm 以上であることが好ましい。

本発明の光学シートにおいて、光拡散層の厚さは、その下限が 1 μm 以上
であることが好ましく、3 μm 以上であることがより好ましく、一方、その
上限が 50 μm 以下であることが好ましく、20 μm 以下であることがより
好ましい。特に、前記上限以下の厚さであることにより、第1の拡散粒子に
基づく表面の凹凸を良好に形成することができる。

（光拡散粘着層）
光拡散粘着層は、透明基材の、光拡散層が設けられた面と反対の面側に設
けられる層である。光拡散粘着層は、面光源装置に本発明の光学シートが設
けられる場合において、通常、入光面側（即ち光拡散層及び透明基材より発
光層に近い側）位置する層である。光拡散粘着層は、透明基材の面上に直接
設けられていてもよいが、さらに他の層を介して設けられていてもよい。直
接設けられていることが、製造の容易さ等の観点から好ましい。

光拡散粘着層は、光拡散性のある粘着層である。即ち、光拡散粘着層は、
光学シートを透過する光を拡散させる機能に加え、光学シートを、有機EL
素子の他の層に粘着させる機能を有する層である。光拡散粘着層を粘着層と
することにより、本発明の光学シートを容易に有機EL素子に設けることがで
き、且つ有機EL素子の層構成を単純化させることにより光取り出し効率
を向上させることができる。

光拡散粘着層は、バインダと高屈折ナノ粒子と第2の拡散粒子とを含む。
本発明の光学シートを面光源装置の構成要素として用いる際に、光拡散粘着
層は、通常、有機EL素子の基板に直接接する層となる。有機EL素子の基
板は、発光素子からの光取り出し効率を高めるために、高屈折ガラスからな
るものが用いられる。その場合において、光拡散粘着層が高屈折ナノ粒子を含
み、その結果高い屈折率を有する層であることにより、基板から光拡散粘着層への光取り出し効率を向上させることができる。さらに、光拡散粘着層が第2の拡散粒子をさらに含むことにより、光拡散粘着層に入った光が拡散され、その結果、透明基材の屈折率があまり高くなくても、光拡散粘着層から透明基材への光取り出し効率を向上させることができる。

[0035] 光拡散粘着層が含むバインダの材料の例としては、エポキシ樹脂、（メタ）アクリル樹脂、シリコン樹脂、ウレタン樹脂、ポリイミド樹脂、酸変性ポリオレフィン、脂肪族系炭化水素樹脂あるいはこれらの混合物を挙げることができる。これらの樹脂を用いることにより、光拡散粘着層の形成が容易になり、かつ光拡散粘着層に上記粘着層としての機能をも付与することがで

[0036] 光拡散粘着層が含む高屈折ナノ粒子の例としては、無機材料からなる粒子及び屈折率が1.68以上の有機材料からなる粒子を挙げることができる。無機材料の例としては、シルコニア、チタニア、酸化スズ、酸化亜鉛などの酸化物ナノ粒子、チタン酸バリウム、チタン酸ストロンチウムなどのチタン酸塩類；CdS、CdSe、ZnSe、CdTe、ZnS、HgS、HgSe、PdS、SbSe等の硫化物、セレン化物、テルル化物ナノ粒子等を挙げることができる。屈折率が1.68以上の有機材料の例としては、ステレン系樹脂なども挙げることができる。これらのナノ粒子の表面は、分散性を上げるための各種官能基や、シランカップリング剤などにより表面修飾されていてもよい。高屈折ナノ粒子の屈折率の上限は、特に限定されないが、3.0以下としろう。

[0037] 高屈折ナノ粒子の形状は、特に限定されず、球状、円柱状、立方体状、直方体状、丸錐状、円錐状、星型状等の形状とすることができる。

高屈折ナノ粒子の数平均粒子径は、1nm以上であることが好ましく、5nm以上であることがより好ましく、一方、200nm以下であることが好ましく、100nm以下であることがより好ましい。数平均粒子径を上記範囲内とすることにより、屈折率を高める効果を良好に得ることができる。
光拡散粘着層における、高屈折ナノ粒子の含有割合は、バインダ、高屈折ナノ粒子及び第2の拡散粒子の合計に対する割合として、20重量％以上であることが好ましく、30重量％以上であることがより好ましく、一方80重量％以下であることが好ましく、70重量％以下であることがより好ましい。

光拡散粘着層を含む第2の拡散粒子の材料の例としては、有機材料、特に、基準が1.5未満の有機材料、好ましくは基準が1.5未満のアクリル系架橋粒子、シリコン樹脂などを挙げることができる。より具体的には、上に述べた第2の拡散粒子の材料として例示されたもののうち、層厚率等の特性が所望の範囲のものを適宜選択して用いることができる。第2の拡散粒子の基準の下限は、特に限定されないが、1.3以上としよう。

第2の拡散粒子の数平均粒子径は、0.3μm以上であることが好ましく、0.5μm以上であることがより好ましく、一方1.7μm以下であることが好ましく、1μm以下であることがより好ましい。数平均粒子径を上記範囲内にすることにより、本発明の効果を良好に得ることができる。特に、第2の拡散粒子として数平均粒子径の小さいものを用いた場合、粒子に当たった光は高度に散乱される一方、層内において粒子間の隙間が多く存在することにより、散乱されずに直線的に光拡散粘着層を透過する光も多くなる。

したがって、数平均粒子径を上記の上限以下にすることにより、ヘイズの上昇を抑制しながら、且つ高い拡散を得ることができため、特に好ましい。

光拡散粘着層における、第2の拡散粒子の含有割合は、バインダ、高屈折ナノ粒子及び第2の拡散粒子の合計に対する割合として、1重量％以上であることが好ましく、3重量％以上であることがより好ましく、一方30重量％以下であることが好ましく、20重量％以下であることがより好ましい。

（任意成分）

光拡散粘着層は、バインダ、高屈折ナノ粒子及び第2の拡散粒子に加えて、必要に応じて任意の成分を含むことができる。当該任意の成分としては、粘着付与剤、硬化剤、可塑剤、UV吸収剤などの各種添加剤が挙げられる。
(光拡散粘着層の特性及び形状)

光拡散粘着層の屈折率は、光学シートの用途に応じて適宜設定しうる。特に、本発明の光学シートを有機EL素子の基板に貼付して用いる場合、光拡散粘着層の屈折率は、かかる基板の屈折率より高いことが好ましい。一方、製造コストの観点から、屈折率は低いほうが好ましい。具体的には、透明基材の屈折率は、1.57以上であることが好ましく、1.6以上であることがより好ましく、一方1.9以下であることが好ましく、1.8以下であることがより好ましい。このような範囲の屈折率は、主に、高屈折ナノ粒子の割合を調節することにより得ることができる。

光拡散粘着層においては、第2の拡散粒子の屈折率 n2 と、光拡散粘着層の残余の成分の屈折率 n1 とが、n1 > n2 の関係を満たすことが好ましい。

ここで、残余の成分とは、光拡散粘着層を構成する成分のうち、第2の拡散粒子以外の成分である。光拡散粘着層を形成するのと別に、第2の拡散粒子を添加せず、その他の成分を光拡散粘着層の製造に用いたのと同量用いて、光拡散粘着層と同様に層を形成し、その屈折率を測定することにより、残余の成分の屈折率 n1 を求めることがができる。又は、残余の成分を構成する主要な成分（バインダ及び高屈折ナノ粒子）の光学的性質及び配合割合を元に概算することもできる。

光拡散粘着層の厚さは、その下限が1μm以上であることが好ましく、10μm以上であることがより好ましく、さらに、30μm以上や、40μm以上とすることができ、一方その上限が100μm以下であることが好ましく、60μm以下であることがより好ましい。

(ヘイズの関係)

本発明の光学シートにおいては、光拡散層のヘイズ x1 (%) と、光拡散粘着層のヘイズ x2 (%) とが、x1 > x2 の関係を満たす。

ヘイズ x1 及びヘイズ x2 は、透明な基板上に測定対象の光拡散層又は光拡散粘着層を形成し、そのヘイズを測定することにより測定しうる。測定機
器としては、JIS K7105に準拠し、市販の濁度計（NDH—4000日本電色工業社製など）を用いることができる。

ヘイズ\(x_1\)及びヘイズ\(x_2\)が\(x_1 > x_2\)の関係を満たすことにより、光取り出し効率の向上と面状ムラの低減をいずれも達成することができる。

即ち、光取り出し効率の向上のためには、光拡散粘着層は高屈折アナ粒子及び第2の拡散粒子を多量に含むことが求められる。しかしながら、これらの粒子を多量に含むことにより、光拡散粘着層を形成するための材料の粘度が高くなり、且つ、材料中の粒子の分散度が低下し、その結果、ムラが発生しやすい。ここで、光拡散層及び光拡散粘着層のヘイズ\(x_1\)及び\(x_2\)を\(x_1 > x_2\)となるよう調整することにより、出光面から観察した際の光拡散粘着層のムラが遮蔽される。その結果、光取り出し効率を向上させながら、面状ムラの低減をも達成することができる。

ヘイズ\(x_1\)及びヘイズ\(x_2\)のそれぞれの値は、上記要件を満たす限りにおいて特に限定されないが、\(x_1\)は、好ましくは98.5%以上である。より好ましくは98.7%以上である。一方好ましくは99.7%以下である。より好ましくは99.5%以下である。特に、\(x_1\)が上記好ましい下限以上であることにより、面状ムラの低減を良好に達成しよう。

本発明の光学シートのうち、ヘイズを有するものが光拡散層及び光拡散粘着層のみである場合、光学シート全体のヘイズは、\(\chi_1\)及び\(\chi_2\)から、下記の通り計算した値と略同じ値となる。

光学シート全体のヘイズ（計算値、\%） = \(\chi_1 + (100 - \chi_1) \times (\chi_2 / 100)\)

本発明の光学シート全体のヘイズは特に限定されないが、好ましくは98.5%以上、より好ましくは98.7%以上であり、一方好ましくは99.7%以下である。より好ましくは99.5%以下である。

（凹凸構造）

本発明の光学シートにおいては、光拡散層の表面凹凸構造は、第1の拡散粒子の形状に基づく凹凸構造としうるが、それ以外はそれに代えて、
金型などの型により賦与した凹凸構造を有していてもよい。

図2は、そのような、型により賦与した表面凹凸構造を有する本発明の光学シートの一例を模式的に示す斜視図であり、図3は、図2に示す光学シートを、図2中の線1a_1bを通り、透明基材の面方向と垂直な面で切断した断面を示す断面図である。光学シート200は、光拡散層として、図1に示す光拡散層110に代えて、型により賦与した表面凹凸構造を有する光拡散層210を有する点で図1に示す光学シート100と相違しており、その他の点では光学シート100と共通している。光拡散層210は、その上面に、複数の凹部215と、凹部215の周囲に位置する平坦部214を含む凹凸構造を有する。当該凹凸構造により、光学シート200の表面20Uが規定される。このような、型により賦与した表面凹凸構造によっても、光取り出し効率の向上等の効果を得ることができる。また、型により賦与する凹凸構造は、図2及び図3に示した四角錐型の窪みに限られず、その他の形状であってもよい。例えば、四角錐以外の角錐形状、円錐形状、球面の一部の形状、溝状の形状、及びこれらを組み合わせた形状としよう。さらに、円錐及び角錐は、その頂部が尖った通常の円錐及び角錐のみならず、先端が丸みを帯びた形状、又は平らに面取りされた形状であってもよい。

（製造方法）

本発明の光学シートは、例えば、光拡散層を形成するのに適した塗工液（1）、及び光拡散粘着層を形成するのに適した塗工液（2）を調製し、これらを用いて透明基材の両面のそれぞれに光拡散層及び光拡散粘着層を形成することにより製造することができる。

（光拡散層の形成方法）

光拡散層を形成するのに適した塗工液（1）としては、上に列挙した、光拡散層の材料の樹脂、及び第1の拡散粒子を含む組成物を用いることができる。塗工液（1）は、必要に応じて、溶媒を含むことができる。かかる溶媒の例としては、トルエン、ヘキサン、シクロヘキサン、メチルシクロヘキサン、メチルエチルケトン、酢酸エチル及びこれらの混合物を挙げることが
できる。塗工液 (1) が、樹脂、第 1 の拡散粒子及び溶媒を含む場合、塗工液 (1) 全体における溶媒の割合は、10～80重量%とすることができる。

[0055] 塗工液 (1) を、透明基材の面上に塗布し、必要に応じて溶媒を揮発させ、さらに必要に応じてエネルギー線の照射等による硬化処理を行うことにより、光拡散層を得ることができる。溶媒の揮発は、例えば所定時間、所定の温度範囲で加熱することにより行うことができる。加熱温度は、40～200℃であることが好ましく、40～140℃であることがより好ましい。加熱時間は、15～600sであることが好ましい。

[0056] 光拡散層の表面凹凸構造は、第 1 の拡散粒子の数平均粒子径、及び光拡散層の膜厚を適宜選択することにより、第 1 の拡散粒子の形状に応じた形状として得ることができる。又は、所望の形状を有する金型等の型を調製し、前記塗膜を得た後の任意の段階で前記型の形状を転写することにより表面凹凸構造を賦与することもできる。

[0057]（光拡散粘着層の形成方法）

光拡散粘着層を形成するのに適した塗工液 (2) としては、上に列挙した、光拡散粘着層の材料の樹脂、高屈折ナノ粒子、及び第 2 の拡散粒子を含む組成物を用いることができる。塗工液 (2) は、好ましくは、さらに溶媒を含むことができる。かかる溶媒の例としては、トルエン、ヘキサン、シクロヘキサン、メチルシクロヘキサン、メチルエチルケトン、酢酸エチル、及びこれらの混合物を挙げることができる。塗工液 (2) が、樹脂、高屈折ナノ粒子、第 2 の拡散粒子及び溶媒を含む場合、塗工液 (2) 全体における溶媒の割合は、30～85重量%とすることができる。

[0058] 塗工液 (2) を、透明基材の面上に塗布し、必要に応じて溶媒を揮発させ、さらに必要に応じてエネルギー線の照射等による硬化処理を行うことにより、光拡散粘着層を得ることができる。溶媒の揮発は、例えば所定時間、所定の温度範囲で加熱することにより行うことができる。加熱温度は、40～200℃であることが好ましく、40～140℃であることがより好ましい。
加熱時間は、15〜600秒が好ましい。

光拡散粘着層の形成後に、必要に応じて、光拡散粘着層上にセパレータを貼付することができる。面光源装置の製造にあたり、本発明の光学シートを他の層に貼付する直前に、セパレータを剥離することにより、容易な貼付を達成することができる。

＜面光源装置＞

本発明の面光源装置は、前記本発明の光学シートと、有機EL素子とを備える。

図4は、図1に示した本発明の光学シート100を備える、本発明の面光源装置の一例を模式的に示す断面図である。

面光源装置10は、平板状の構造を有する装置であり、ガラスなどの材料からなる基板151と、基板151の装置出光面側の表面15Uに接着して設けられた本発明の光学シート100と、基板151の他方の面15Lに接着して設けられた有機EL素子160とを備える。面光源装置10はさらに、任意の構成要素として、有機EL素子160の、装置出光面とは反対側の表面16L側に設けられた封止基板171を有する。基板151としては、好ましくは、屈折率が1.6以上の高屈折率ガラスが用いられる。このような高い屈折率を有する基板を用いることにより、有機EL素子160から基板への光取り出し効率が向上する。高屈折率ガラスの屈折率の上限は、特に限定されないが、2.5以下とする。

有機EL素子160は、基板151に近い側から順に、第1の電極層161と、発光層162と、第2の電極層163とを備える。第1の電極層161は透明電極であり、第2の電極層163は反射電極である。このような構成であるため、発光層162からの光は、第1の電極層161を透過するか、又は第2の電極層163で反射され、発光層162及び第1の電極層161を透過して、光学シート100側に向かう。

光学シート100は、光拡散層110が面光源装置10の上面（即ち面光源装置10の出光面側の最外層）に位置し、光拡散粘着層130が基板15
1に接するよう設けられている。光拡散粘着層130の粘着層としての機能により、光学シート100は基板151に粘着している。

[0064]有機EL素子160から装置出光面側に出光した光は、基板151に入光し、さらに光拡散粘着層130へ入光する。ここで、光拡散粘着層130が、高屈折率粒子134を含有し、層全体として高い屈折率を有することにより、基板151から光拡散粘着層への、高い光取り出し効率が得られる。さらに、光拡散粘着層130が、第2の拡散粒子133を有することにより、光の進行方向が拡散される。第2の拡散粒子133は、好ましくは数平均粒子径0.3～1.7μmの粒子であり、これにより、ヘイズが比較的低い状態でありながら、光が広い角度に拡散される。多量の粒子を含むことにより、光拡散粘着層130にはムラが生じ得るが、光拡散粘着層130のヘイズの値は、それ自体低い値であり、且つ光拡散層110に対して相対的に低い値であるため、かかる光拡散粘着層130のムラが、装置出光面（即ち光拡散層110の表面）10μmから観察された際に面状に影響する度合いは少ない。また、光が高度に拡散されるため、透明基材121が光拡散粘着層130に比べて低い屈折率を有していても、光拡散粘着層130から透明基材121への光取り出し効率を高めることができる。さらに、光拡散層110が第1の拡散粒子113を有し、表面凹凸構造を有し、且つ高いヘイズを有することにより、装置出光面10μmから装置外への光取り出し効率を高めることができ、且つ、装置出光面10μmから観察した際の面状を良好なものとすることができる。

このように、本発明の面光源装置においては、各構成要素の特徴が組み合わされて効果を発揮し、本発明の効果を得ることができる。

[0065]（有機EL素子）

前記有機EL素子160として例示するように、本発明の面光源装置に用いる有機EL素子は、2層以上の電極層と、これらの電極層間に設けられ、電極から電圧を印加されることにより発光する発光層と、を備える素子とすることができる。
有機EL素子は、基板上に素子を構成する電極、発光層等の層を形成し、さらにそれらの層を覆う封止部材を設け、基板と封止部材で発光層等の層を封止した構成とされるのが一般的である。通常、ここでいう基板側から出光する素子はポトムエミッション型、封止部材側から出光する素子はトップエミッション型と呼ばれる。本発明の面光源装置は、これらのいずれであってもよく、ポトムエミッション型の場合、基板の、有機EL素子が形成された面と反対側の面上に本発明の光学シートを設けることができる。一方トップエミッション型の場合、本発明の光学シートは本発明の光学シートと任意の封止能を有する層とを組み合わせ、これを封止部材として面光源装置を構成することができる。

本発明において、有機EL素子を構成する発光層としては、特に限定されて既知のものを適宜選択することができる。発光層中の発光材料は1種類に限られず、また発光層も1層に限られず、光源としての用途に適合すべく、一種の層単独又は複数種類の層の組み合わせをすることができる。これにより、白色又はそれに近い色の光を発光するものとしろう。

有機EL素子はさらに、電極間に、発光層に加えてホール注入層、ホール輸送層、電子輸送層、電子注入層及びガスバリア層等の他の層をさらに有することができるともできる。有機EL素子はさらに、電極に通電するための配線、発光層の封止のための周辺構造等の任意の構成要素を備えることもできる。

有機EL素子の電極は、特に限定されず既知のものを適宜選択することができる。図4に示す有機EL素子160のように、出光面構造層側の電極を透明電極とし、反対側の電極を反射電極とすることにより、出光面構造層側に出光する有機EL素子とすることができる。また、両方の電極を透明電極とし、さらに出光面構造層と反対側に反射部材を有することにより、出光面構造層側への出光を達成することもできる。

電極及びその間に設ける層を構成する材料としては、特に限定されないが、具体例として下記のものを挙げることができる。

透明電極の材料としてはITO等を挙げることができる。
正孔注入層の材料としてはスターバースト系芳香族ジアミン化合物等を挙げることができる。

正孔輸送層の材料としてはトリフェニルジアミン誘導体等を挙げることができる。

黄色発光層のホスト材料としては同じくトリフェニルジアミン誘導体等を挙げることができ、黄色発光層のドーパント材料としてはテトラセン誘導体等を挙げることができる。

緑色発光層の材料としては、ピラゾリン誘導体などがあげられる。

青色発光層のホスト材料としてはアントラセン誘導体等を挙げることができ、青色発光層のドーパント材料としてはペリレン誘導体等を挙げることができる。

赤色発光層の材料としては、ユーロピウム錯体などを上げることができる。

電子輸送層の材料にはアルミニウムキノリン錯体 (A l q) 等を挙げることができる。

陰極材料にはフッ化リチウムおよびアルミニウムをそれぞれ用い、これらを順次真空成膜により積層させたものを挙げることができる。

[0071] 上記のもの又はその他の発光層を適宜組み合わせて積層型又はタンデム型と呼ばれる、補色関係にある発光色を発生する発光層を得ることができる。補色関係の組み合わせは、黄 / 青、又は緑 / 青 / 赤等とすることができる。

[0072] (面光源装置の用途)

本発明の面光源装置は、照明器具及びバックライト装置等の用途に用いる。

前記照明器具は、本発明の面光源装置を光源として有し、さらに、光源を保持する部材、電力を供給する回路等の任意の構成要素を含むことができる。

前記バックライト装置は、本発明の面光源装置を光源として有し、さらに、筐体、電力を供給する回路、出光する光をさらに均一にするための拡散板、拡散シート、プリズムシート等の任意の構成要素を含むことができる。前
記バックライト装置の用途は、液晶表示装置等、画素を制御して画像を表示させる表示装置、並びに看板等の固定された画像を表示させる表示装置のバックライトとして用いることができる。

（その他）

本発明は、前記具体例には限定されず、本願の特許請求の範囲及びその同等の範囲内で、任意の変更を施すことができる。

例えば、本発明の光学シートは、透明基材、光拡散層及び光拡散粘着層に加えて任意の層をさらに含むものであってもよい。かかる任意の層は、透明基材、光拡散層及び光拡散粘着層の間に位置する層のみならず、例えば光拡散層の表面の凹凸構造の上にさらに設けられたコーティング層であってもよく、かかるコーティング層が、本発明の面光源装置の装置出光面の凹凸構造を規定するものであってもよい。

また、上記具体例中の反射電極層を、透明電極層と反射層に置き換えても、反射電極層と同様の効果を有する装置を構成することができる。

実施例

以下において、実施例及び比較例を参照して本発明をより具体的に説明するが、本発明はこれらに限定されない。以下の実施例において、材料の量比は、別に断らない限り重量比である。また、実施例及び比較例中の操作は、別に断らない限り常温常圧の環境下で行った。

以下の実施例及び比較例において、諸特性の評価は、下記の通り行った。

（ヘイズ）

ヘイズは、JIS K7105に準拠し、濁度計（NDH-4000 日本電色工業社製）を用いて、測定した。

（屈折率）

各層の屈折率は、拡散粒子を含まない状態の単層またはガラス基材上に測定したい材料を塗布した基板を作成し、分光ツリプソメータ（M-2000 ウーラム社製）により測定した。

（面状）
面状は、黒色板状にフィルムを配置し、目視にて濃淡のムラが見えるかどうかを、一般照明環境下（800 Lx程度）で観察し、見えるものをNG、見えないものをOKとして判定した。

（光取り出し効率）
光取り出し効率は、高速配光測定システムImaging sphere（PROMETRIC社製）を用い、本願記載の光学シートを設ける前の状態と、設けた後の状態とにおいて、同じ通電条件で発光させた際の光束の比を測定した。各実施例及び比較例1～3において、比較例4の値を1とする相対値を求めた。

（色変化A×y）
以下の通り、観察角度の変化による色ムラを測定した。
装置出光面の法線方向に分光放射輝度計（トプコン社製BM—5）を設置し、面光源装置100mA/m²の定電流を印加し、出光面を回転させ、出光面に対する分光放射輝度計の観察方向を変化させ、色度（x，y）を測定した。観察方向は、出光面の長辺に平行な方向へ、正面（法線方向）を0°としたときの90～90°の範囲で変更させ、観察角度±60°の範囲内での色度（x，y）の変化量A×yを求めた。

＜実施例1＞
（1-1.塗工液（1））
樹脂（ウレタンアクリレートを主成分とするUV硬化樹脂、硬化後の屈折率1.54）に、第1の拡散粒子として数平均粒子径4.5μmの粒子（シリコーン樹脂、屈折率1.43）を添加し、攪拌して粒子を分散させ、光拡散層の材料となる塗工液（1）を調製した。粒子の含有割合は、塗工液（1）全量中50重量％とした。

（1-2.塗工液（2））
メチルシクロヘキサンと酢酸エチルを8:2（重量比）で混合した溶媒に、バインダーとして酸変性ポリオレフィン重合体を主成分とする樹脂（屈折率1.48）を溶解し、さらに、第2の拡散粒子として数平均粒子径0.6
μmの粒子（シリコーン樹脂、屈折率1.43）、及び高屈折ナノ粒子としてのジルコニア粒子（数平均粒子径20nm、屈折率1.9）を添加し、撹拌して粒子を分散させ、光拡散粘着層の材料となる塗工液（2）を調製した。塗工液（2）中の固形分（樹脂、第2の拡散粒子、及び高屈折ナノ粒子の合計）濃度は、40重量％とした。第2の拡散粒子の濃度は固形分全量中9重量％とし、高屈折ナノ粒子の濃度は固形分全量中65重量％とした。

【0083】（1-3. 光拡散粘着層の形成）
塗工液（2）を基材フィルム（ポリエステルフィルム）に2回に分けて塗布し、溶媒を揮発させて、厚さ20μmの光拡散粘着層を形成し、さらに、この光拡散粘着層の上にセパレータをラミネートして、基材フィルム←（光拡散粘着層）←（セパレータ）の層構成を有する、複層フィルム1を得た。この複層フィルム1のヘイズ（即ちヘイズ×2）を測定したところ、70％であった。

【0084】（1-4. 屈折率の検討）
第2の拡散粒子を添加しなかった他は、工程（1-2）と同様にして、屈折率検討用の塗工液（3）を調製した。第2の拡散粒子以外の成分の使用量は、全て工程（1-2）と同様とした。
塗工液（2）に代えて塗工液（3）を用いた他は、工程（1-3）と同様にして、基材フィルム←（粘着層）←（セパレータ）の層構成を有する、複層フィルム2を、屈折率の検討用サンプルとして得た。この複層フィルム2の粘着層の屈折率（即ち、屈折率n1）は1.66であり、第2の拡散粒子の屈折率n2より十分高い値であった。

【0085】（1-5. 光拡散層の形成）
工程（1-3）で得た複層フィルム1の、基材フィルムが露出する側の面上に、工程（1-1）で得た塗工液（1）を塗布し、塗工液（1）の膜を形成した。この膜に、セパレータ、粘着層及び基材フィルムを透過して、紫外線を1J/cm²照射し、膜を硬化させ、光拡散層を形成し、（光拡散層）←（基材フィルム）←（光拡散粘着層）←（セパレータ）の層構成を有するセ
パレータ付き光学シート1を得た。得られた光拡散層の厚みは15μmであった。また、光拡散層の表面には、Ra = 1μmの凹凸構造が形成されていった。

（1-6. 光拡散層のヘイズ）

工程（1-5）とは別に、工程（1-3）で用意したものと同一の基材フッ化リチウム（LiF）反射電極層：Al

【0089】透明電極層の形成方法は、ITOターゲットとした反応性スパッタリング法にて行い、表面抵抗を10Ω/□以下とした。また、ホール注入層から反
射電極層までの形成は、真空蒸着装置内に透明電極層を既に形成したガラス基板を設置し、上記のホール輸送層から反射電極層までの材料を抵抗加熱式により順次蒸着させることにより行なった。系内圧は $5 \times 10^{-3} \text{ Pa}$ で、蒸発速度は $0.1\sim0.2 \text{ nm/s}$ で行った。

さらに、電極層に通電のための配線を取り付け、さらにホール輸送層から反射電極層までを封止部材により封止し、有機EL素子を得た。

（1-8. 面光源装置）

工程（1-5）で得たセパレータ付き光学シート1からセパレータを剥離し、残りの光学シート1を工程（1-7）で得た有機EL素子のガラス基板に貼付した。貼付は、露出した光拡散粘着層がガラス基板に粘着するように行った。これにより、面光源装置を得た。得られた面光源装置は、光学シート1の光拡散層から白色の光を出光しうる長方形の出光面を有していた。

（1-9. 評価）

工程（1-8）で得られた面光源装置について、面状ムラ、光取り出し効率、及び観察角度の変化による色変化 $\Delta \chi_y$ を評価した。結果を表1に示す。

＜実施例2＞

工程（1-1）において、第1の拡散粒子として、数平均粒子径4.5 μm の粒子に代えて、数平均粒子径1.7 μm の粒子（シリコーン樹脂、屈折率1.43）を用いた他は、実施例1の工程（1-1）～工程（1-9）と同様にして、光学シート、面光源装置、及びその他の検討用サンプルを作成し評価した。結果を表1に示す。

本実施例においては、工程（1-5）で得られた光拡散層の厚みは15 μm であり、その表面には、 $R_a = 0.3 \mu m$ の凹凸構造が形成されていた。

＜比較例1＞

下記の点を変更した他は、実施例1の工程（1-1）～工程（1-9）と同様にして、光学シート、面光源装置、及びその他の検討用サンプルを作成し評価した。結果を表1に示す。
・工程（1_1）において、第1の拡散粒子として、数平均粒子径4.5μmの粒子に代えて、数平均粒子径0.6μmの粒子（屈折率1.43）を用いた。

・工程（1_2）において、第2の拡散粒子として、数平均粒子径0.6μmの粒子に代えて、数平均粒子径1.7μmの粒子（屈折率1.43）を用いた。第2の拡散粒子の濃度は固定分全量中5重量％とした。

[0096] 本比較例においては、工程（1_4）で得られた複層フィルム2の粘着層の屈折率n1は1.66であった。工程（1_5）で得られた光拡散層の厚みは15μmであり、その表面は平坦であった。

[0097] < 比較例2 >

下記の点を変更した他は、実施例1の工程（1_1）→工程（1_9）と同様にして、光学シート、面光源装置、及びその他の検討用サンプルを作成し評価した。結果を表1に示す。

・工程（1_1）において、第1の拡散粒子として、数平均粒子径4.5μmの粒子に代えて、数平均粒子径0.6μmの粒子（屈折率1.43）を用いた。

・工程（1_2）において、第2の拡散粒子として、数平均粒子径0.6μmの粒子に代えて、数平均粒子径4μmの粒子（シリコン樹脂、屈折率1.43）を用いた。第2の拡散粒子の濃度は固定分全量中5重量％とした。

[0098] 本比較例においては、工程（1_4）で得られた複層フィルム2の粘着層の屈折率n1は1.66であった。工程（1_5）で得られた光拡散層の厚みは15μmであり、その表面は平坦であった。

[0099] < 比較例3 >

下記の点を変更した他は、実施例1の工程（1_1）→工程（1_9）と同様にして、光学シート、面光源装置、及びその他の検討用サンプルを作成し評価した。結果を表1に示す。

・工程（1_2）において、高屈折ナノ粒子を添加しなかった。
工程（1—2）において、第2の拡散粒子として、数平均粒子径0.6
μmの粒子に代えて、数平均粒子径4μmの粒子（シリコーン樹脂、屈折率
1.43）を用いた。固形分中の第2の拡散粒子の濃度は、工程（1—2）
と同様とした。第2の拡散粒子の濃度は固形分全量中2.5重量%とした。

[0100] 本比較例においては、工程（1—4）で得られた複層フィルム2の粘着層
の屈折率n1は1.48であった。工程（1—5）で得られた光拡散層の厚みは
15μmであり、その表面には、Ra = 1μmの凹凸構造が形成されて
いた。

[0101] <比較例4>
実施例1の工程（1—7）で得た有機EL素子をそのまま面光源装置とし
て、工程（1—9）と同様に色度（x, y）の変化量Δχyを測定した。ま
た、光取り出し効率を測定し、この値を1として、他の実施例及び比較例の
光取り出し効率を相対値で示した。結果を表1に示す。

[0102] [表1]

<table>
<thead>
<tr>
<th>実施例</th>
<th>ヘイズx1</th>
<th>ヘイズx2</th>
<th>第1の拡散粒子粒径</th>
<th>第2の拡散粒子粒径</th>
<th>面状 ムラ</th>
<th>光取り出し効率</th>
<th>色変化 Δχy</th>
</tr>
</thead>
<tbody>
<tr>
<td>実施例 1</td>
<td>99%</td>
<td>70%</td>
<td>4.5</td>
<td>0.6</td>
<td>OK</td>
<td>1.5</td>
<td>0.01</td>
</tr>
<tr>
<td>実施例 2</td>
<td>98.7%</td>
<td>70%</td>
<td>1.7</td>
<td>0.6</td>
<td>OK</td>
<td>1.48</td>
<td>0.01</td>
</tr>
<tr>
<td>比較例 1</td>
<td>86%</td>
<td>80%</td>
<td>0.6</td>
<td>1.7</td>
<td>OK</td>
<td>1.4</td>
<td>0.02</td>
</tr>
<tr>
<td>比較例 2</td>
<td>86%</td>
<td>90%</td>
<td>0.6</td>
<td>4</td>
<td>NG</td>
<td>1.4</td>
<td>0.02</td>
</tr>
<tr>
<td>比較例 3</td>
<td>99%</td>
<td>93%</td>
<td>4.5</td>
<td>4</td>
<td>OK</td>
<td>1.35</td>
<td>0.02</td>
</tr>
<tr>
<td>比較例 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>0.07</td>
</tr>
</tbody>
</table>

[0103] 表1の結果から明らかな通り、本願発明の要件を満たす実施例1及び2に
おいては、面状及び光学特性がいずれも良好であった。

第1の拡散粒子の数平均粒子径が本願に規定する範囲外である比較例1で
は、光取り出し効率が不十分であった。

第1の拡散粒子の数平均粒子径が本願に規定する範囲外であり、またヘイ
ズ x 1 及び χ 2 の関係が本願に規定する要件を満たさない比較例 2 では、光取り出し効率が不十分である上、光拡散粘着層に起因する面状ムラが顕著に視認され、ムラの多い面光源装置となった。

高屈折ナノ粒子を添加していない比較例 3 では、ムラの無い出光面を得ることはできたものの、第 2 の拡散粒子のみではガラス基板との界面において光取り出し効率を上げることができず、結果的に光取り出し効率が著しく低かった。

符号の説明

| 0104 | 10 : 面光源装置 |
| 10 U | 装置出光面、光拡散層表面 |
| 20 : 面光源装置 |
20 U	光拡散層表面
100	光学シート
110	光拡散層
112	樹脂
113	第 1 の拡散粒子
121	透明基材
130	光拡散粘着層
132	バインダー
133	第 2 の拡散粒子
134	高屈折ナノ粒子
141	セパレーター
151	基板
160	有機 E L 素子
161	第 1 の電極層
162	発光層
163	第 2 の電極層
171	封止基板
200: 光学シート
210: 光拡散層
214: 平坦部
215: 凹部
請求の範囲

[請求項1]
透明基材と、前記透明基材の一方の面側に設けられた表面凹凸構造
を有する光拡散層と、前記透明基材のもう一方の面側に設けられた光
拡散粘着層とを有する光学シートであって、
前記光拡散層が、樹脂と数平均粒子径 1.7 \mu m 以上の第 1 の拡散
粒子とを含み、
前記光拡散粘着層が、ビンダと高屈折ナノ粒子と第 2 の拡散粒子
とを含み、
前記光拡散層のヘイズ x 1 (\%) の及び前記光拡散粘着層のヘイズ
x 2 (\%) の x 1 > x 2 の関係を満たす光学シート。

[請求項2]
前記ヘイズ x 1 が 98 以上である、請求項 1 に記載の光学シート。

[請求項3]
前記第 2 の拡散粒子の数平均粒子径が 0.3 〜 1.7 \mu m である、
請求項 1 または 2 に記載の光学シート。

[請求項4]
前記高屈折ナノ粒子が、無機材料からなる粒子又は無機材料からな
る芯とその外表面を覆う有機皮膜からなる粒子であり、前記第 2 の
拡散粒子が、有機材料からなる粒子である、請求項 1 〜 3 のいずれか
1 項に記載の光学シート。

[請求項5]
前記高屈折ナノ粒子が、屈折率 1.68 以上の粒子であり、前記第
2 の拡散粒子が、屈折率 1.55 未満の粒子である、請求項 1 〜 4 の
いずれか 1 項に記載の光学シート。

[請求項6]
前記光拡散粘着層において、前記第 2 の拡散粒子の屈折率 n 2 と、
前記光拡散粘着層の残余の成分の屈折率 n 1 とが、n 1 > n 2 の関係
を満たす、請求項 1 〜 5 のいずれか 1 項に記載の光学シート。

[請求項7]
請求項 1 〜 6 のいずれか 1 項に記載の光学シートと、有機エレクト
ロル ミネッセンス発光素子を有する面光源装置。
[図1]
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

According to International Patent Classification (IPC) or to both national classification and IPC

Minimum documentation searched (classification system followed by classification symbols)
G02B5/02, F21V3/04, H01L51/50, H05B3/02

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Jitsuyo, Shinan, Koho 1922-1996, Jitsuyo, Shinan, Toroku, Koho 1996-2013
Kokai, Jitsuyo, Shinan, Koho 1971-2013, Toroku, Jitsuyo, Shinan, Koho 1994-2013

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
</table>

Further documents are listed in the continuation of Box C.

Date of the actual completion of the international search
15 August 2013 (15.08.13)

Date of mailing of the international search report
27 August 2013 (27.08.13)

Name and mailing address of the ISA/Japanese Patent Office

Facsimile No.

Authorized officer

Telenhone No.
A. 発明の属する分野の分類（国際特許分類（IPC））

Int.Cl. G02B5/02 (2006. 01) i, F21V3/04 (2006. 01) i, H01L51/50 (2006. 01) i, H05B33/02 (2006. 01) i

B. — 調査を行った分野

調査を行った最小限資料（国際特許分類（IPC））

Int.Cl. G02B5/02, F21V3/04, H01L51/50, H05B33/02

C. 関連すると認められる文献

<table>
<thead>
<tr>
<th>引用文献のカテゴリー</th>
<th>引用文献名及 び一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>関連する請求項の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>JP 2007-114760 A (富士フィルム株式会社) 2007. 05. 10, [0 0 5 4], [0 0 7 8] & US 2007/0065602 A1 & CN 1936622 A</td>
<td>1-7</td>
</tr>
</tbody>
</table>

注）C欄の続きにも文献が列挙されている。

* 引用文献のカテゴリー

IA 特に関連のある文献ではなく、一般的技術水準を示すもの

IE 国際出願 日前の出願または特許であるが、国際出願日以後に公表されたもの

E 優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する文献（理由を付す）

B 口頭による開示、使用、展示等に言及する文献

IP 国際出願 日前の、かつ優先権の主張の基礎となる出願

の日の後に公表された文献

T 国際出願 日又は優先 日後に公表された文献であって出願と矛盾するものではなく、発明の原理又は理論の理解のために引用するもの

X 特に関連のある文献であって、当該文献のみで発明の新規性又は進歩性が考えられないもの

Y 特に関連のある文献であって、当該文献と他の1以上の文献との、当業者にとって自明である組合せによって進歩性がないと考えられるもの

β 同一パテントファミリー関係文献

国際調査を完了した日 15.08.2013 国際調査報告の発送日 27.08.2013

国際調査機関の名称及びあて先

日本国特許庁（ISA／JP）

郵便番号 100—8915

東京都千代田区霞が関三丁目4番3号

特許庁審査官（権限のある職員） 20 3314

早川 貴之

電話番号 03-3581-1101 内線 3271

様式 PCT／ISA／210（第2ページ）（2009年7月）