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LIDAR TO CAMERA CALIBRATION FOR
GENERATING HIGH DEFINITION MAPS

CROSS REFERENCE TO RELATED
APPLICATIONS

This application claims the benefit of priority under 35
USC 119(e) to U.S. Provisional Application No. 62/574,744
entitled “Lidar to Camera Calibration for Generating High
Definition Maps,” filed on Oct. 19, 2017, which is incorpo-
rated herein by reference in its entirety for all purposes.

BACKGROUND

This disclosure relates generally to calibration of sensors
on vehicles, for example, autonomous vehicles, and more
particularly to calibration of lidar and camera sensors of
installed on vehicles.

Autonomous vehicles, also known as self-driving cars,
driverless cars, auto, or robotic cars, drive from a source
location to a destination location without requiring a human
driver to control and navigate the vehicle. Automation of
driving is difficult due to several reasons. For example,
autonomous vehicles use sensors to make driving decisions
on the fly, but vehicle sensors cannot observe everything all
the time. Vehicle sensors can be obscured by corners, rolling
hills, and other vehicles. Vehicles sensors may not observe
certain things early enough to make decisions. In addition,
lanes and signs may be missing on the road or knocked over
or hidden by bushes, and therefore not detectable by sensors.
Furthermore, road signs for rights of way may not be readily
visible for determining from where vehicles could be com-
ing, or for swerving or moving out of a lane in an emergency
or when there is a stopped obstacle that must be passed.

Autonomous vehicles can use map data to figure out some
of the above information instead of relying on sensor data.
However conventional maps have several drawbacks that
make them difficult to use for an autonomous vehicle. For
example maps do not provide the level of accuracy required
for safe navigation (e.g., 10 cm or less). GPS systems
provide accuracies of approximately 3-5 meters, but have
large error conditions resulting in an accuracy of over 100 m.
This makes it challenging to accurately determine the loca-
tion of the vehicle.

Autonomous vehicles use various processes for self-
driving based on high definition maps generated using data
obtained from multiple sensors, for example, lidar and
camera sensors. Each sensor of the autonomous vehicle,
may use its own coordinate system. For example, the lidar
may use one coordinate system and a camera may use
another coordinate system. If the coordinate systems used by
two different sensors are not calibrated together, any pro-
cessing that combines data from the two sensors is likely to
be inaccurate. Furthermore, the calibration parameters of
various sensors of autonomous vehicles drift over time.
Conventional techniques require manual processing by
experts, thereby requiring autonomous vehicles to be pro-
vided to the experts for calibration. Such techniques are time
consuming and expensive. Furthermore, these techniques
put burden on the users of the vehicles by requiring them to
arrive at a specialized facility for calibration or to perform
technical steps on their own for performing calibration.

SUMMARY

Embodiments of the invention perform calibration of
sensors mounted on a vehicle, for example, lidar and camera
sensors mounted on an autonomous vehicle.
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A system receives a lidar scan of a view comprising a
pattern, for example, a checkerboard pattern captured by a
lidar mounted on an autonomous vehicle. The pattern is
positioned less that a threshold distance from the autono-
mous vehicle. The system also receives a camera image of
the view captured by a camera mounted on the autonomous
vehicle. The system determines an approximate lidar-to-
camera transform based on the lidar scan and the camera
image of the first view.

The system further receives a second lidar scan of a view
comprising the pattern, such that the pattern is positioned
greater than a threshold distance from the autonomous
vehicle. The system receives a second camera image of the
view captured by a camera mounted on the autonomous
vehicle. The system determines an accurate lidar-to-camera
transform based on the location of the pattern in the second
lidar scan and the location of the pattern in the camera image
of the second view. The system receives sensor data com-
prising images received from the camera and lidar scans
from the lidar and generates a high definition map based on
the sensor data using the accurate lidar-to-camera transform.
The system stores the high definition map in a computer
readable storage medium for use in navigating the autono-
mous vehicle. In an embodiment, the system sends signals to
the controls of the autonomous vehicle based on the high
definition map.

Embodiments of the invention allow calibration of sen-
sors of vehicles without requiring extensive manual setup or
expert help. As a result, sensors of vehicles can be calibrated
on a regular basis. This allows accurate correlation of data
obtained by different sensors for combining the data. Since
high definition maps are generated by combining data cap-
tured by different sensors, embodiments of the invention
improve the quality of maps generated as well as efficiency
of generation of map.

The features and advantages described in this summary
and the following detailed description are not all-inclusive.
Many additional features and advantages will be apparent to
one of ordinary skill in the art in view of the drawings,
specification, and claims.

BRIEF DESCRIPTION OF THE DRAWINGS

The patent or application file contains at least one drawing
executed in color. Copies of this patent or patent application
publication with color drawing(s) will be provided by the
Office upon request and payment of the necessary fee.

Figure (FIG. 1 shows the overall system environment of
an HD map system interacting with multiple vehicle com-
puting systems, according to an embodiment.

FIG. 2 shows the system architecture of a vehicle com-
puting system, according to an embodiment.

FIG. 3 illustrates the various layers of instructions in the
HD Map API of a vehicle computing system, according to
an embodiment.

FIG. 4 shows the system architecture of an HD map
system, according to an embodiment.

FIG. 5 illustrates the components of an HD map, accord-
ing to an embodiment.

FIGS. 6A-B illustrate geographical regions defined in an
HD map, according to an embodiment.

FIG. 7 illustrates representations of lanes in an HD map,
according to an embodiment.

FIGS. 8A-B illustrates lane elements and relations
between lane elements in an HD map, according to an
embodiment.
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FIG. 9 illustrates the system architecture of a sensor
calibration module, according to an embodiment.

FIG. 10(A) illustrates sensor data obtained from a scene
comprising a checkerboard pattern held in front of a vehicle,
according to an embodiment.

FIG. 10(B) illustrates sensor data obtained from a scene
comprising a pattern including different colored tapes, for
example, alternating red and blue tapes, according to an
embodiment.

FIG. 11 shows a flowchart illustrating the overall process
of lidar-to-camera calibration, according to an embodiment.

FIG. 12 shows a flowchart illustrating the process of the
first phase of lidar-to-camera calibration based on a close
view of the checkerboard, according to an embodiment.

FIG. 13 shows a flowchart illustrating the process of the
second phase of lidar-to-camera calibration that determines
an accurate lidar-to-camera transform based on a distant
view of the checkerboard, according to an embodiment.

FIG. 14 shows a flowchart illustrating a process for
detecting the checkerboard pattern based on a use of a single
camera, according to an embodiment.

FIG. 15 shows a flowchart illustrating the process of
fitting boundary points and a normal on the checkerboard,
according to an embodiment.

FIG. 16 shows a flowchart illustrating the process of
refining the checkerboard pattern using intensity data,
according to an embodiment.

FIG. 17 shows a flowchart illustrating the process of
selecting a still frame, according to an embodiment.

FIG. 18 A shows a test sequence based on a striped pattern
according to an embodiment.

FIG. 18B shows sample debug images for a test sequence,
according to an embodiment.

FIG. 19A shows a top-down view of a reflective tape
pattern on the ground, according to an embodiment.

FIG. 19B shows a front view of the reflective tape pattern
on the wall, according to an embodiment.

FIG. 20 shows a flowchart illustrating the process of
determining a placement of the checkerboard pattern,
according to an embodiment.

FIG. 21 illustrates the overall process for performing
calibration of sensors of a vehicle based on edgel detection,
according to an embodiment.

FIG. 22 illustrates the process for processing the ground
points separate from the remaining points for performing
calibration of sensors of a vehicle based on edgel detection,
according to an embodiment.

FIG. 23 illustrates the process of searching for an
improved transform based on an initial transform, according
to an embodiment.

FIG. 24 illustrates an embodiment of a computing
machine that can read instructions from a machine-readable
medium and execute the instructions in a processor or
controller.

The figures depict various embodiments of the present
invention for purposes of illustration only. One skilled in the
art will readily recognize from the following discussion that
alternative embodiments of the structures and methods illus-
trated herein may be employed without departing from the
principles of the invention described herein.

DETAILED DESCRIPTION
Overview

Embodiments of the invention maintain high definition
(HD) maps containing up to date information using high
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precision. The HD maps may be used by autonomous
vehicles to safely navigate to their destinations without
human input or with limited human input. An autonomous
vehicle is a vehicle capable of sensing its environment and
navigating without human input. Autonomous vehicles may
also be referred to herein as “driverless car,” “self-driving
car,” or “robotic car.” An HD map refers to a map storing
data with very high precision, typically 5-10 cm. Embodi-
ments generate HD maps containing spatial geometric infor-
mation about the roads on which an autonomous vehicle can
travel. Accordingly, the generated HD maps include the
information necessary for an autonomous vehicle navigating
safely without human intervention. Instead of collecting data
for the HD maps using an expensive and time consuming
mapping fleet process including vehicles outfitted with high
resolution sensors, embodiments of the invention use data
from the lower resolution sensors of the self-driving vehicles
themselves as they drive around through their environments.
The vehicles may have no prior map data for these routes or
even for the region. Embodiments of the invention provide
location as a service (LaaS) such that autonomous vehicles
of different manufacturers can each have access to the most
up-to-date map information created via these embodiments
of invention.

Embodiments of the invention perform lidar-to-camera
calibration for use in generating and maintaining high defi-
nition (HD) maps that are accurate and include the most
updated road conditions for safe navigation. For example,
the HD maps provide the current location of the autonomous
vehicle relative to the lanes of the road precisely enough to
allow the autonomous vehicle to drive safely in the lane.

HD maps store a very large amount of information, and
therefore face challenges in managing the information. For
example, an HD map for a large geographic region may not
fit on the local storage of a vehicle. Embodiments of the
invention provide the necessary portion of an HD map to an
autonomous vehicle that allows the vehicle to determine its
current location in the HD map, determine the features on
the road relative to the vehicle’s position, determine if it is
safe to move the vehicle based on physical constraints and
legal constraints, etc. Examples of physical constraints
include physical obstacles, such as walls, and examples of
legal constraints include legally allowed direction of travel
for a lane, speed limits, yields, stops.

Embodiments of the invention allow safe navigation for
an autonomous vehicle by providing high latency, for
example, 10-20 milliseconds or less for providing a response
to a request; high accuracy in terms of location, i.e., accu-
racy within 10 cm or less; freshness of data by ensuring that
the map is updated to reflect changes on the road within a
reasonable time frame; and storage efficiency by minimizing
the storage needed for the HD Map.

FIG. 1 shows the overall system environment of an HD
map system interacting with multiple vehicles, according to
an embodiment. The HD map system 100 includes an online
HD map system 110 that interacts with a plurality of vehicles
150. The vehicles 150 may be autonomous vehicles but are
not required to be. The online HD map system 110 receives
sensor data captured by sensors of the vehicles, and com-
bines the data received from the vehicles 150 to generate and
maintain HD maps. The online HD map system 110 sends
HD map data to the vehicles for use in driving the vehicles.
In an embodiment, the online HD map system 110 is
implemented as a distributed computing system, for
example, a cloud based service that allows clients such as
vehicle computing systems 120 to make requests for infor-
mation and services. For example, a vehicle computing
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system 120 may make a request for HD map data for driving
along a route and the online HD map system 110 provides
the requested HD map data.

FIG. 1 and the other figures use like reference numerals
to identify like elements. A letter after a reference numeral,
such as “105A,” indicates that the text refers specifically to
the element having that particular reference numeral. A
reference numeral in the text without a following letter, such
as “105,” refers to any or all of the elements in the figures
bearing that reference numeral (e.g. “105” in the text refers
to reference numerals “105A” and/or “105N” in the figures).

The online HD map system 110 comprises a vehicle
interface module 160 and an HD map store 165. The online
HD map system 110 interacts with the vehicle computing
system 120 of various vehicles 150 using the vehicle inter-
face module 160. The online HD map system 110 stores map
information for various geographical regions in the HD map
store 165. The online HD map system 110 may include other
modules than those shown in FIG. 1, for example, various
other modules as illustrated in FIG. 4 and further described
herein.

The online HD map system 110 receives 115 data col-
lected by sensors of a plurality of vehicles 150, for example,
hundreds or thousands of cars. The vehicles provide sensor
data captured while driving along various routes and send it
to the online HD map system 110. The online HD map
system 110 uses the data received from the vehicles 150 to
create and update HD maps describing the regions in which
the vehicles 150 are driving. The online HD map system 110
builds high definition maps based on the collective infor-
mation received from the vehicles 150 and stores the HD
map information in the HD map store 165.

The online HD map system 110 sends 125 HD maps to
individual vehicles 150 as required by the vehicles 150. For
example, if an autonomous vehicle needs to drive along a
route, the vehicle computing system 120 of the autonomous
vehicle provides information describing the route being
traveled to the online HD map system 110. In response, the
online HD map system 110 provides the required HD maps
for driving along the route.

In an embodiment, the online HD map system 110 sends
portions of the HD map data to the vehicles in a compressed
format so that the data transmitted consumes less bandwidth.
The online HD map system 110 receives from various
vehicles, information describing the data that is stored at the
local HD map store 275 of the vehicle. If the online HD map
system 110 determines that the vehicle does not have certain
portion of the HD map stored locally in the local HD map
store 275, the online HD map system 110 sends that portion
of the HD map to the vehicle. If the online HD map system
110 determines that the vehicle did previously receive that
particular portion of the HD map but the corresponding data
was updated by the online HD map system 110 since the
vehicle last received the data, the online HD map system 110
sends an update for that portion of the HD map stored at the
vehicle. This allows the online HD map system 110 to
minimize the amount of data that is communicated with the
vehicle and also to keep the HD map data stored locally in
the vehicle updated on a regular basis.

A vehicle 150 includes vehicle sensors 105, vehicle
controls 130, and a vehicle computing system 120. The
vehicle sensors 105 allow the vehicle 150 to detect the
surroundings of the vehicle as well as information describ-
ing the current state of the vehicle, for example, information
describing the location and motion parameters of the
vehicle. The vehicle sensors 105 comprise a camera, a light
detection and ranging sensor (LIDAR), a global positioning
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system (GPS) navigation system, an inertial measurement
unit (IMU), and others. The vehicle has one or more cameras
that capture images of the surroundings of the vehicle. A
LIDAR surveys the surroundings of the vehicle by measur-
ing distance to a target by illuminating that target with a laser
light pulses, and measuring the reflected pulses. The GPS
navigation system determines the position of the vehicle
based on signals from satellites. An IMU is an electronic
device that measures and reports motion data of the vehicle
such as velocity, acceleration, direction of movement, speed,
angular rate, and so on using a combination of accelerom-
eters and gyroscopes or other measuring instruments.

The vehicle controls 130 control the physical movement
of the vehicle, for example, acceleration, direction change,
starting, stopping, and so on. The vehicle controls 130
include the machinery for controlling the accelerator,
brakes, steering wheel, and so on. The vehicle computing
system 120 continuously provides control signals to the
vehicle controls 130, thereby causing an autonomous
vehicle to drive along a selected route.

The vehicle computing system 120 performs various tasks
including processing data collected by the sensors as well as
map data received from the online HD map system 110. The
vehicle computing system 120 also processes data for send-
ing to the online HD map system 110. Details of the vehicle
computing system are illustrated in FIG. 2 and further
described in connection with FIG. 2.

The interactions between the vehicle computing systems
120 and the online HD map system 110 are typically
performed via a network, for example, via the Internet. The
network enables communications between the vehicle com-
puting systems 120 and the online HD map system 110. In
one embodiment, the network uses standard communica-
tions technologies and/or protocols. The data exchanged
over the network can be represented using technologies
and/or formats including the hypertext markup language
(HTML), the extensible markup language (XML), etc. In
addition, all or some of links can be encrypted using
conventional encryption technologies such as secure sockets
layer (SSL), transport layer security (TLS), virtual private
networks (VPNs), Internet Protocol security (IPsec), etc. In
another embodiment, the entities can use custom and/or
dedicated data communications technologies instead of, or
in addition to, the ones described above.

FIG. 2 shows the system architecture of a vehicle com-
puting system, according to an embodiment. The vehicle
computing system 120 comprises a perception module 210,
prediction module 215, planning module 220, a control
module 225, a local HD map store 275, an HD map system
interface 280, an HD map application programming inter-
face (API) 205, and a calibration module 290. The various
modules of the vehicle computing system 120 process
various type of data including sensor data 230, a behavior
model 235, routes 240, and physical constraints 245. In other
embodiments, the vehicle computing system 120 may have
more or fewer modules. Functionality described as being
implemented by a particular module may be implemented by
other modules. Some of the modules may execute in the
online HD map system 110. For example, the calibration
module 290 may execute in the online HD map system 110.

The perception module 210 receives sensor data 230 from
the sensors 105 of the vehicle 150. This includes data
collected by cameras of the car, LIDAR, IMU, GPS navi-
gation system, and so on. The perception module 210 uses
the sensor data to determine what objects are around the
vehicle, the details of the road on which the vehicle is
travelling, and so on. The perception module 210 processes
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the sensor data 230 to populate data structures storing the
sensor data and provides the information to the prediction
module 215.

The prediction module 215 interprets the data provided by
the perception module using behavior models of the objects
perceived to determine whether an object is moving or likely
to move. For example, the prediction module 215 may
determine that objects representing road signs are not likely
to move, whereas objects identified as vehicles, people, and
so on, are either moving or likely to move. The prediction
module 215 uses the behavior models 235 of various types
of objects to determine whether they are likely to move. The
prediction module 215 provides the predictions of various
objects to the planning module 200 to plan the subsequent
actions that the vehicle needs to take next.

The planning module 200 receives the information
describing the surroundings of the vehicle from the predic-
tion module 215, the route 240 that determines the destina-
tion of the vehicle, and the path that the vehicle should take
to get to the destination. The planning module 200 uses the
information from the prediction module 215 and the route
240 to plan a sequence of actions that the vehicle needs to
take within a short time interval, for example, within the
next few seconds. In an embodiment, the planning module
200 specifies the sequence of actions as one or more points
representing nearby locations that the vehicle needs to drive
through next. The planning module 200 provides the details
of the plan comprising the sequence of actions to be taken
by the vehicle to the control module 225. The plan may
determine the subsequent action of the vehicle, for example,
whether the vehicle performs a lane change, a turn, accel-
eration by increasing the speed or slowing down, and so on.

The control module 225 determines the control signals for
sending to the controls 130 of the vehicle based on the plan
received from the planning module 200. For example, if the
vehicle is currently at point A and the plan specifies that the
vehicle should next go to a nearby point B, the control
module 225 determines the control signals for the controls
130 that would cause the vehicle to go from point A to point
B in a safe and smooth way, for example, without taking any
sharp turns or a zig zag path from point A to point B. The
path taken by the vehicle to go from point A to point B may
depend on the current speed and direction of the vehicle as
well as the location of point B with respect to point A. For
example, if the current speed of the vehicle is high, the
vehicle may take a wider turn compared to a vehicle driving
slowly.

The control module 225 also receives physical constraints
245 as input. These include the physical capabilities of that
specific vehicle. For example, a car having a particular make
and model may be able to safely make certain types of
vehicle movements such as acceleration, and turns that
another car with a different make and model may not be able
to make safely. The control module 225 incorporates these
physical constraints in determining the control signals. The
control module 225 sends the control signals to the vehicle
controls 130 that cause the vehicle to execute the specified
sequence of actions causing the vehicle to move as planned.
The above steps are constantly repeated every few seconds
causing the vehicle to drive safely along the route that was
planned for the vehicle.

The various modules of the vehicle computing system 120
including the perception module 210, prediction module
215, and planning module 220 receive map information to
perform their respective computation. The wvehicle 150
stores the HD map data in the local HD map store 275. The
modules of the vehicle computing system 120 interact with
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the map data using the HD map API 205 that provides a set
of application programming interfaces (APIs) that can be
invoked by a module for accessing the map information. The
HD map system interface 280 allows the vehicle computing
system 120 to interact with the online HD map system 110
via a network (not shown in the Figures). The local HD map
store 275 stores map data in a format specified by the HD
Map system 110. The HD map API 205 is capable of
processing the map data format as provided by the HD Map
system 110. The HD Map API 205 provides the vehicle
computing system 120 with an interface for interacting with
the HD map data. The HD map API 205 includes several
APIs including the localization API 250, the landmark map
API 255, the route API 265, the 3D map API 270, the map
update API 285, and so on.

The localization APIs 250 determine the current location
of the vehicle, for example, when the vehicle starts and as
the vehicle moves along a route. The localization APIs 250
include a localize API that determines an accurate location
of the vehicle within the HD Map. The vehicle computing
system 120 can use the location as an accurate relative
positioning for making other queries, for example, feature
queries, navigable space queries, and occupancy map que-
ries further described herein. The localize API receives
inputs comprising one or more of, location provided by
GPS, vehicle motion data provided by IMU, LIDAR scanner
data, and camera images. The localize API returns an
accurate location of the vehicle as latitude and longitude
coordinates. The coordinates returned by the localize API
are more accurate compared to the GPS coordinates used as
input, for example, the output of the localize API may have
precision range from 5-10 cm. In one embodiment, the
vehicle computing system 120 invokes the localize API to
determine location of the vehicle periodically based on the
LIDAR using scanner data, for example, at a frequency of 10
Hz. The vehicle computing system 120 may invoke the
localize API to determine the vehicle location at a higher rate
(e.g., 60 Hz) if GPS/IMU data is available at that rate. The
vehicle computing system 120 stores as internal state, loca-
tion history records to improve accuracy of subsequent
localize calls. The location history record stores history of
location from the point-in-time, when the car was turned
off/stopped. The localization APIs 250 include a localize-
route API generates an accurate route specifying lanes based
on the HD map. The localize-route API takes as input a route
from a source to destination via a third party maps and
generates a high precision routes represented as a connected
graph of navigable lanes along the input routes based on HD
maps.

The landmark map API 255 provides the geometric and
semantic description of the world around the vehicle, for
example, description of various portions of lanes that the
vehicle is currently travelling on. The landmark map APIs
255 comprise APIs that allow queries based on landmark
maps, for example, fetch-lanes API and fetch-features API.
The fetch-lanes API provide lane information relative to the
vehicle and the fetch-features API. The fetch-lanes API
receives as input a location, for example, the location of the
vehicle specified using latitude and longitude of the vehicle
and returns lane information relative to the input location.
The fetch-lanes API may specify a distance parameters
indicating the distance relative to the input location for
which the lane information is retrieved. The fetch-features
API receives information identifying one or more lane
elements and returns landmark features relative to the speci-
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fied lane elements. The landmark features include, for each
landmark, a spatial description that is specific to the type of
landmark.

The 3D map API 265 provides efficient access to the
spatial 3-dimensional (3D) representation of the road and
various physical objects around the road as stored in the
local HD map store 275. The 3D map APIs 365 include a
fetch-navigable-surfaces API and a fetch-occupancy-grid
API. The fetch-navigable-surfaces API receives as input,
identifiers for one or more lane elements and returns navi-
gable boundaries for the specified lane elements. The fetch-
occupancy-grid API receives a location as input, for
example, a latitude and longitude of the vehicle, and returns
information describing occupancy for the surface of the road
and all objects available in the HD map near the location.
The information describing occupancy includes a hierarchi-
cal volumetric grid of all positions considered occupied in
the map. The occupancy grid includes information at a high
resolution near the navigable areas, for example, at curbs
and bumps, and relatively low resolution in less significant
areas, for example, trees and walls beyond a curb. The
fetch-occupancy-grid API is useful for detecting obstacles
and for changing direction if necessary.

The 3D map APIs also include map update APIs, for
example, download-map-updates API and upload-map-up-
dates API. The download-map-updates API receives as input
a planned route identifier and downloads map updates for
data relevant to all planned routes or for a specific planned
route. The upload-map-updates API uploads data collected
by the vehicle computing system 120 to the online HD map
system 110. This allows the online HD map system 110 to
keep the HD map data stored in the online HD map system
110 up to date based on changes in map data observed by
sensors of vehicles driving along various routes.

The route API 270 returns route information including full
route between a source and destination and portions of route
as the vehicle travels along the route. The 3D map API 365
allows querying the HD Map. The route APIs 270 include
add-planned-routes API and get-planned-route API. The
add-planned-routes API provides information describing
planned routes to the online HD map system 110 so that
information describing relevant HD maps can be down-
loaded by the vehicle computing system 120 and kept up to
date. The add-planned-routes API receives as input, a route
specified using polylines expressed in terms of latitudes and
longitudes and also a time-to-live (TTL) parameter speci-
fying a time period after which the route data can be deleted.
Accordingly, the add-planned-routes API allows the vehicle
to indicate the route the vehicle is planning on taking in the
near future as an autonomous trip. The add-planned-route
API aligns the route to the HD map, records the route and
its TTL value, and makes sure that the HD map data for the
route stored in the vehicle computing system 120 is up to
date. The get-planned-routes API returns a list of planned
routes and provides information describing a route identified
by a route identifier.

The map update API 285 manages operations related to
update of map data, both for the local HD map store 275 and
for the HD map store 165 stored in the online HD map
system 110. Accordingly, modules in the vehicle computing
system 120 invoke the map update API 285 for downloading
data from the online HD map system 110 to the vehicle
computing system 120 for storing in the local HD map store
275 as necessary. The map update API 285 also allows the
vehicle computing system 120 to determine whether the
information monitored by the vehicle sensors 105 indicates
a discrepancy in the map information provided by the online
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HD map system 110 and uploads data to the online HD map
system 110 that may result in the online HD map system 110
updating the map data stored in the HD map store 165 that
is provided to other vehicles 150.

The calibration module 290 performs various actions
related to calibration of sensors of an autonomous vehicle,
for example, lidar-to-camera calibration or lidar-to-lidar
calibration. Lidar and cameras of an autonomous vehicle
record data in their own coordinate systems. In an embodi-
ment, the HD map system 100 determines a rigid 3d
transform (a rotation+translation) to convert data from a
coordinate system to another. In some embodiment, the HD
map system 100 uses perspective-n-point techniques for
determining a transform from one coordinate system to
another. Tools and modules of HD map system 100 that use
both data sources require accurate lidar-to-camera calibra-
tion, for example, OMap coloring, feature projection, cam-
era-based localization, demo viewer, and so on. In an
embodiment, the autonomous vehicle is equipped with one
lidar and two cameras (stereo). The different sensors have a
shard field of view. In an embodiment, the cameras have
been calibrated individually.

FIG. 4 illustrates the various layers of instructions in the
HD Map API of a vehicle computing system, according to
an embodiment. Different manufacturer of vehicles have
different instructions for receiving information from vehicle
sensors 105 and for controlling the vehicle controls 130.
Furthermore, different vendors provide different compute
platforms with autonomous driving capabilities, for
example, collection and analysis of vehicle sensor data.
Examples of compute platform for autonomous vehicles
include platforms provided vendors, such as NVIDIA,
QUALCOMM, and INTEL. These platforms provide func-
tionality for use by autonomous vehicle manufacturers in
manufacture of autonomous vehicles. A vehicle manufac-
turer can use any one or several compute platforms for
autonomous vehicles. The online HD map system 110
provides a library for processing HD maps based on instruc-
tions specific to the manufacturer of the vehicle and instruc-
tions specific to a vendor specific platform of the vehicle.
The library provides access to the HD map data and allows
the vehicle to interact with the online HD map system 110.

As shown in FIG. 3, in an embodiment, the HD map API
is implemented as a library that includes a vehicle manu-
facturer adapter 310, a compute platform adapter 320, and a
common HD map API layer 330. The common HD map API
layer comprises generic instructions that can be used across
a plurality of vehicle compute platforms and vehicle manu-
facturers. The compute platform adapter 320 include
instructions that are specific to each computer platform. For
example, the common HD Map API layer 330 may invoke
the compute platform adapter 320 to receive data from
sensors supported by a specific compute platform. The
vehicle manufacturer adapter 310 comprises instructions
specific to a vehicle manufacturer. For example, the com-
mon HD map API layer 330 may invoke functionality
provided by the vehicle manufacturer adapter 310 to send
specific control instructions to the vehicle controls 130.

The online HD map system 110 stores compute platform
adapters 320 for a plurality of compute platforms and
vehicle manufacturer adapters 310 for a plurality of vehicle
manufacturers. The online HD map system 110 determines
the particular vehicle manufacturer and the particular com-
pute platform for a specific autonomous vehicle. The online
HD map system 110 selects the vehicle manufacturer
adapter 310 for the particular vehicle manufacturer and the
compute platform adapter 320 the particular compute plat-
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form of that specific vehicle. The online HD map system 110
sends instructions of the selected vehicle manufacturer
adapter 310 and the selected compute platform adapter 320
to the vehicle computing system 120 of that specific autono-
mous vehicle. The vehicle computing system 120 of that
specific autonomous vehicle installs the received vehicle
manufacturer adapter 310 and the compute platform adapter
320. The vehicle computing system 120 periodically checks
if the online HD map system 110 has an update to the
installed vehicle manufacturer adapter 310 and the compute
platform adapter 320. If a more recent update is available
compared to the version installed on the vehicle, the vehicle
computing system 120 requests and receives the latest
update and installs it.

HD Map System Architecture

FIG. 4 shows the system architecture of an HD map
system, according to an embodiment. The online HD map
system 110 comprises a map creation module 410, a map
update module 420, a map data encoding module 430, a load
balancing module 440, a map accuracy management mod-
ule, a vehicle interface module, and a HD map store 165.
Other embodiments of online HD map system 110 may
include more or fewer modules than shown in FIG. 4.
Functionality indicated as being performed by a particular
module may be implemented by other modules. In an
embodiment, the online HD map system 110 may be a
distributed system comprising a plurality of processors.

The map creation module 410 creates the map from map
data collected from several vehicles that are driving along
various routes. The map update module 420 updates previ-
ously computed map data by receiving more recent infor-
mation from vehicles that recently traveled along routes on
which map information changed. For example, if certain
road signs have changed or lane information has changed as
a result of construction in a region, the map update module
420 updates the maps accordingly. The map data encoding
module 430 encodes map data to be able to store the data
efficiently as well as send the required map data to vehicles
150 efficiently. The load balancing module 440 balances
load across vehicles to ensure that requests to receive data
from vehicles are uniformly distributed across different
vehicles. The map accuracy management module 450 main-
tains high accuracy of the map data using various techniques
even though the information received from individual
vehicles may not have high accuracy.

FIG. 5 illustrates the components of an HD map, accord-
ing to an embodiment. The HD map comprises maps of
several geographical regions. The HD map 510 of a geo-
graphical region comprises a landmark map (LMap) 520 and
an occupancy map (OMap) 530. The landmark map com-
prises information describing lanes including spatial loca-
tion of lanes and semantic information about each lane. The
spatial location of a lane comprises the geometric location in
latitude, longitude and elevation at high prevision, for
example, at or below 10 cm precision. The semantic infor-
mation of a lane comprises restrictions such as direction,
speed, type of lane (for example, a lane for going straight,
a left turn lane, a right turn lane, an exit lane, and the like),
restriction on crossing to the left, connectivity to other lanes
and so on. The landmark map may further comprise infor-
mation describing stop lines, yield lines, spatial location of
cross walks, safely navigable space, spatial location of speed
bumps, curb, and road signs comprising spatial location and
type of all signage that is relevant to driving restrictions.
Examples of road signs described in an HD map include stop
signs, traffic lights, speed limits, one-way, do-not-enter,
yield (vehicle, pedestrian, animal), and so on.
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The occupancy map 530 comprises spatial 3-dimensional
(3D) representation of the road and all physical objects
around the road. The data stored in an occupancy map 530
is also referred to herein as occupancy grid data. The 3D
representation may be associated with a confidence score
indicative of a likelihood of the object existing at the
location. The occupancy map 530 may be represented in a
number of other ways. In one embodiment, the occupancy
map 530 is represented as a 3D mesh geometry (collection
of triangles) which covers the surfaces. In another embodi-
ment, the occupancy map 530 is represented as a collection
of 3D points which cover the surfaces. In another embodi-
ment, the occupancy map 530 is represented using a 3D
volumetric grid of cells at 5-10 cm resolution. Each cell
indicates whether or not a surface exists at that cell, and if
the surface exists, a direction along which the surface is
oriented.

The occupancy map 530 may take a large amount of
storage space compared to a landmark map 520. For
example, data of 1 GB/Mile may be used by an occupancy
map 530, resulting in the map of the United States (including
4 million miles of road) occupying 4x10*° bytes or 4
petabytes. Therefore the online HD map system 110 and the
vehicle computing system 120 use data compression tech-
niques for being able to store and transfer map data thereby
reducing storage and transmission costs. Accordingly, the
techniques disclosed herein make self-driving of autono-
mous vehicles possible.

In one embodiment, the HD Map does not require or rely
on data typically included in maps, such as addresses, road
names, ability to geo-code an address, and ability to com-
pute routes between place names or addresses. The vehicle
computing system 120 or the online HD map system 110
accesses other map systems, for example, GOOGLE MAPs
to obtain this information. Accordingly, a vehicle computing
system 120 or the online HD map system 110 receives
navigation instructions from a tool such as GOOGLE MAPs
into a route and converts the information to a route based on
the HD map information.

Geographical Regions in HD Maps

The online HD map system 110 divides a large physical
area into geographical regions and stores a representation of
each geographical region. Each geographical region repre-
sents a contiguous area bounded by a geometric shape, for
example, a rectangle or square. In an embodiment, the online
HD map system 110 divides a physical area into geographi-
cal regions of the same size independent of the amount of
data required to store the representation of each geographi-
cal region. In another embodiment, the online HD map
system 110 divides a physical area into geographical regions
of different sizes, where the size of each geographical region
is determined based on the amount of information needed
for representing the geographical region. For example, a
geographical region representing a densely populated area
with a large number of streets represents a smaller physical
area compared to a geographical region representing
sparsely populated area with very few streets. Accordingly,
in this embodiment, the online HD map system 110 deter-
mines the size of a geographical region based on an estimate
of an amount of information required to store the various
elements of the physical area relevant for an HD map.

In an embodiment, the online HD map system 110 rep-
resents a geographic region using an object or a data record
that comprises various attributes including, a unique iden-
tifier for the geographical region, a unique name for the
geographical region, description of the boundary of the
geographical region, for example, using a bounding box of
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latitude and longitude coordinates, and a collection of land-
mark features and occupancy grid data.

FIGS. 6A-B illustrate geographical regions defined in an
HD map, according to an embodiment. FIG. 6A shows a
square geographical region 610a. FIG. 6B shows two neigh-
boring geographical regions 610a and 61056. The online HD
map system 110 stores data in a representation of a geo-
graphical region that allows for smooth transition from one
geographical region to another as a vehicle drives across
geographical region boundaries.

According to an embodiment, as illustrated in FIG. 6,
each geographic region has a buffer of a predetermined
width around it. The buffer comprises redundant map data
around all 4 sides of a geographic region (in the case that the
geographic region is bounded by a rectangle). FIG. 6A
shows a boundary 620 for a buffer of 50 meters around the
geographic region 610a and a boundary 630 for buffer of
100 meters around the geographic region 610a. The vehicle
computing system 120 switches the current geographical
region of a vehicle from one geographical region to the
neighboring geographical region when the vehicle crosses a
threshold distance within this buffer. For example, as shown
in FIG. 6B, a vehicle starts at location 650a in the geo-
graphical region 610a. The vehicle traverses along a route to
reach a location 6505 where it cross the boundary of the
geographical region 610 but stays within the boundary 620
of the buffer. Accordingly, the vehicle computing system
120 continues to use the geographical region 610a as the
current geographical region of the vehicle. Once the vehicle
crosses the boundary 620 of the buffer at location 650¢, the
vehicle computing system 120 switches the current geo-
graphical region of the vehicle to geographical region 6105
from 610qa. The use of a buffer prevents rapid switching of
the current geographical region of a vehicle as a result of the
vehicle travelling along a route that closely tracks a bound-
ary of a geographical region.

Lane Representations in HD Maps

The HD map system 100 represents lane information of
streets in HD maps. Although the embodiments described
herein refer to streets, the techniques are applicable to
highways, alleys, avenues, boulevards, or any other path on
which vehicles can travel. The HD map system 100 uses
lanes as a reference frame for purposes of routing and for
localization of a vehicle. The lanes represented by the HD
map system 100 include lanes that are explicitly marked, for
example, white and yellow striped lanes, lanes that are
implicit, for example, on a country road with no lines or
curbs but two directions of travel, and implicit paths that act
as lanes, for example, the path that a turning car makes when
entering a lane from another lane. The HD map system 100
also stores information relative to lanes, for example, land-
mark features such as road signs and traffic lights relative to
the lanes, occupancy grids relative to the lanes for obstacle
detection, and navigable spaces relative to the lanes so the
vehicle can efficiently plan/react in emergencies when the
vehicle must make an unplanned move out of the lane.
Accordingly, the HD map system 100 stores a representation
of a network of lanes to allow a vehicle to plan a legal path
between a source and a destination and to add a frame of
reference for real time sensing and control of the vehicle.
The HD map system 100 stores information and provides
APIs that allow a vehicle to determine the lane that the
vehicle is currently in, the precise vehicle location relative
to the lane geometry, and all relevant features/data relative
to the lane and adjoining and connected lanes.

FIG. 7 illustrates lane representations in an HD map,
according to an embodiment. FIG. 7 shows a vehicle 710 at
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a traffic intersection. The HD map system provides the
vehicle with access to the map data that is relevant for
autonomous driving of the vehicle. This includes, for
example, features 720a and 72054 that are associated with the
lane but may not be the closest features to the vehicle.
Therefore, the HD map system 100 stores a lane-centric
representation of data that represents the relationship of the
lane to the feature so that the vehicle can efficiently extract
the features given a lane.

The HD map system 100 represents portions of the lanes
as lane elements. A lane element specifies the boundaries of
the lane and various constraints including the legal direction
in which a vehicle can travel within the lane element, the
speed with which the vehicle can drive within the lane
element, whether the lane element is for left turn only, or
right turn only, and so on. The HD map system 100
represents a lane element as a continuous geometric portion
of a single vehicle lane. The HD map system 100 stores
objects or data structures representing lane elements that
comprise information representing geometric boundaries of
the lanes; driving direction along the lane; vehicle restriction
for driving in the lane, for example, speed limit, relation-
ships with connecting lanes including incoming and outgo-
ing lanes; a termination restriction, for example, whether the
lane ends at a stop line, a yield sign, or a speed bump; and
relationships with road features that are relevant for autono-
mous driving, for example, traffic light locations, road sign
locations and so on.

Examples of lane elements represented by the HD map
system 100 include, a piece of a right lane on a freeway, a
piece of a lane on a road, a left turn lane, the turn from a left
turn lane into another lane, a merge lane from an on-ramp an
exit lane on an off-ramp, and a driveway. The HD map
system 100 represents a one lane road using two lane
elements, one for each direction. The HD map system 100
represents median turn lanes that are shared similar to a
one-lane road.

FIGS. 8A-B illustrates lane elements and relations
between lane elements in an HD map, according to an
embodiment. FIG. 8A shows an example of a T junction in
a road illustrating a lane element 810« that is connected to
lane element 810c via a turn lane 81056 and is connected to
lane 810¢ via a turn lane 8104. FIG. 8B shows an example
of a Y junction in a road showing label 810f connected to
lane 810/ directly and connected to lane 810/ via lane 810g.
The HD map system 100 determines a route from a source
location to a destination location as a sequence of connected
lane elements that can be traversed to reach from the source
location to the destination location.

Lidar-to-Camera Calibration

FIG. 9 illustrates the system architecture of a sensor
calibration module, according to an embodiment. The sensor
calibration module comprises various modules including
pattern based calibration module 910, still frame detection
module 920, a checkerboard pattern placement module 930,
edgel based calibration module 950, and transform store
940. Other embodiments may include more of fewer mod-
ules. The modules described herein may be stored and
executed in the vehicle computing system, in the online HD
map system, or both. Steps described as being performed by
a particular module may be performed by other modules
than those indicated herein. The pattern based calibration
module performs calibration based on a pattern, for
example, checkerboard pattern that is captured by sensors of
the vehicle. The still frame detection module 920 detects still
frames from a video for use in calibration. The edgel based
calibration module 950 performs edgel based calibration as
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described in FIGS. 21, 22, and 23. The transform store 940
stores values of various transforms that are determined by
the HD map system. The transforms are used by other
modules, for example, for HD map generation. The check-
erboard pattern placement module 930 helps with placement
of checkerboard pattern, for example, by executing the
process illustrated in FIG. 20.

According to some embodiments, the HD map system
receives sensor data of scenes including a checkerboard
pattern and uses the sensor data for performing calibration.
The checkerboard pattern may be placed at various locations
in front of the vehicle by a user. The vehicle may capture a
video comprising images including the checkerboard pat-
tern. The HD map system extracts sensor data from frames
of the video and analyzes the sensor data to perform cali-
bration.

FIG. 10(A) illustrates sensor data obtained from a scene
comprising a checkerboard pattern 1010 held in front of a
vehicle, according to an embodiment. The checkerboard
pattern is kept in front of the vehicle sensors including the
lidar and camera. A lidar scan of the scene showing the
checkerboard pattern is captured by the vehicle lidar and
images of the s of the checkerboard pattern are captured
using the vehicle cameras. The lidar scans and camera
images are used for calibrating the vehicle sensors.

The pattern used for calibration is not limited to a check-
erboard pattern and can be other types of patterns, for
example, alternating stripes. FIG. 10(B) illustrates sensor
data obtained from a scene comprising a pattern 1020
including different colored tapes, for example, alternating
red and blue tapes, according to an embodiment. The HD
map system analyzes the sensor data to detect edges in the
pattern and uses the information for calibration of sensors.

A user places the pattern at various distances and loca-
tions so as to cover different areas visible from sensors of the
vehicle. In an embodiment, the HD map system captures the
sensor data including these patterns and determines a set of
3d-to-2d correspondences between lidar points and image
pixels. The HD map system converts the information of the
3d-to-2d correspondences to a perspective-n-point (PnP)
problem and solves the problem, for example, using Lev-
enberg-Marquardt technique. The HD map system detects
2d checkerboard corners from camera images, with subpixel
accuracy.

The perspective-n-point (PnP) problem is the problem of
estimating the pose of a calibrated camera given a set of N
3D points in the world and their corresponding 2D projec-
tions in the image. The camera pose is represented using 6
degrees-of-freedom (DOF) comprising the rotation (roll,
pitch, and yaw) and 3D translation of the camera with
respect to the world. For example, techniques for solving the
perspective-n-point problem for N=3 are called P3P, and
other techniques are used for solving the perspective-n-point
problem for N>3. Accordingly, techniques for solving the
perspective-n-point problem are referred to herein as per-
spective-n-point techniques.

A perspective-n-point technique receives input compris-
ing a set of N 3D points in a reference frame and their
corresponding 2D image projections as well as the calibrated
intrinsic camera parameters, and determines the 6 DOF pose
of the camera in the form of its rotation and translation with
respect to the world. Given a pose of the camera, the
perspective-n-point technique can be used to determine the
calibrated intrinsic camera parameters and therefore used for
performing calibration of the camera. The parameters of the
camera that are calibrated include intrinsic properties of the
camera such as the focal length, principal image point, skew
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parameter, and other parameters. If the perspective-n-point
technique determines multiple solutions, the HD map sys-
tem selects a particular solution by performing post-process-
ing of the solution set. The HD map system may use
RANSAC with a PnP technique to make the solution robust
to outliers in the set of point correspondences.

The HD map system detects corners of the pattern from
lidar points. Detecting corners from lidar points is challeng-
ing for various reasons. Lidar points are a lot sparser
compared to image pixels. Typically lidar points are 0.2
degree apart on the same scan line, and greater than one
degree apart across scan lines. Furthermore, lidar points are
noisy in both range and intensity values. Range values have
a 1-sigma error of 2 cm and the checkerboard point cloud
has a 5 cm thickness. Intensity values have a large variation
across scan lines. There can be ghost points near physical
boundaries. There can be missing points near intensity
boundaries. All these issues with lidar points make it difficult
to detect 3d corners from lidar points. Techniques disclosed
herein determine the corners of the pattern with high accu-
racy.

The HD map system may have multiple vehicles running
on a daily basis for data collection or demo purposes, and
there may be a large fleet. Calibration parameters drift over
time. Therefore, every car needs to be re-calibrated periodi-
cally. Manual calibration that involves an expert can be
expensive since the vehicle must be brought to a facility
operated by experts. Embodiments provide a predefined
calibration procedure that guarantees successful calibration
without intervention by a human expert. The procedure uses
objects that are portable so that remote users that are not
experts can calibrate their cars. The proposed embodiments
require a checkerboard and a fairly simple procedure which
can be automated.

When the checkerboard is close, for example, within 4
meters, the checkerboard points form a dominant plane
within a small radius around the lidar, because there are very
few other objects within this radius. The sensor calibration
module 290 determines this dominant plane. When the
checkerboard is farther away, however, the environment can
be full of other planar objects, for example, walls, cabinets,
the side of other cars. The checkerboard is typically smaller
compared to these objects. As a result, extracting the not-
so-big checkerboard is difficult without any prior knowledge
of where it is.

Overall Process of Lidar-to-Camera Calibration

Although the processes described herein use a checker-
board pattern for illustrative purposes, the embodiments are
not limited to use of checkerboard pattern and can be used
with other patterns, for example, striped pattern. Also the
processes are described in the context of autonomous
vehicles but are not limited to autonomous vehicle and can
be applied to other vehicles that may not be autonomous,
robots, or any other device that mounts multiple sensors that
can drift over time.

FIG. 11 shows a flowchart illustrating the overall process
of lidar-to-camera calibration according to an embodiment.
The sensor calibration module 290 extracts and refines
checkerboard corners using points on the board. The sensor
calibration module 290 wuses robustness estimators
(RANSAC) where possible to minimize the impact of noise.

The sensor calibration module 290 determines 1110 an
approximate lidar-to-camera transform using lidar frames of
a pattern that is close to the vehicle sensors. This step
represents the first pass of the process. For example, the
checkerboard pattern is held in front of sensors of the vehicle
within a threshold distance. As a result, at least more than a



US 10,531,004 B2

17

threshold amount of scene captured by the sensors com-
prises the checkerboard pattern.

The sensor calibration module 290 uses the approximate
lidar-to-camera transform to determine 1120 an accurate
lidar-to-camera transform using images of checkerboard
located at a distance. This step represents the second pass of
the process. Accordingly, the checkerboard pattern is held
more than a threshold distance from the sensors of the
vehicle such that there can be multiple other objects in the
scene besides the checkerboard.

Subsequently, the HD map system receives 1130 sensor
data from sensors of the vehicle including the camera sensor
and lidar sensor, for example, data captured as the vehicle
drives along various routes. The HD map system generates
1140 HD maps using the received sensor data and the
lidar-to-camera transforms determined by calibrating the
sensors of the vehicle. For example, the lidar-to-camera
transform is used for correlating the data captured by lidar
and camera sensors and combining the data to obtain a
consistent view of the surroundings of the vehicle. The
vehicle uses 1150 the HD map for various purposes includ-
ing guiding the vehicle, displaying map data and other
applications related to driving of the vehicle or self-driving.

Following are the details of step 1110 for determining the
approximate lidar-to-camera transform based on close-up
views of the checkerboard pattern. FIG. 12 shows a flow-
chart illustrating the process of the first phase of lidar-to-
camera calibration based on a close view of the checker-
board, according to an embodiment. The sensors of the
autonomous vehicles obtain a video with the checkerboard
located within the field of view of the sensors at a close
distance, for example, within a few meters of the autono-
mous vehicle. In the first pass, the sensor calibration module
290 processes the frames in which the checkerboard is close
using a simple plane fitting method. The sensor calibration
module 290 determines whether the checkerboard is close.
If the sensor calibration module 290 fails to locate the
checkerboard in a frame, the sensor calibration module 290
skips the frame and processes the next frame.

As shown in the flowchart illustrated in FIG. 12, the
sensor calibration module 290 selects 1210 a frame from the
captured video. The sensor calibration module 290 reads
1220 a set of lidar points from the selected frame. The sensor
calibration module 290 selects a subset of lidar points that
are close to the sensor. For example, the sensor calibration
module 290 selects 1230 a subset of the lidar points that
have a range less than a threshold distance, for example, less
than 4 meters and yaw less than a threshold angle, for
example, less than 60 degrees of camera facing direction.
The sensor calibration module 290 fits 1240 a dominant
plane within the selected points, for example, using tech-
niques such as random sample consensus (RANSAC). The
sensor calibration module 290 uses 1250 the selected frame
if number of inliers is greater than a threshold value,
otherwise the sensor calibration module 290 skips the frame
and repeats the above steps by selecting 1210 another frame.
The sensor calibration module 290 uses the selected frame
to determine corners of the checkerboard pattern.

After the first pass, the sensor calibration module 290 has
determined all the 3d points representing corners of the
checkerboard pattern near the lidar and determines a rough
lidar-to-camera transform by solving the PnP problem. In
the second pass, the sensor calibration module 290 processes
all the frames again, but this time uses sensor data compris-
ing the checkerboard pattern at various distances including
a distances greater than a threshold value. The sensor
calibration module 290 triangulates the 2d checkerboard
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corners detected from left and right camera views, and uses
the rough lidar-to-camera transform computed during the
first pass to estimate where the corners are in lidar coordi-
nates. The sensor calibration module 290 only keeps lidar
points within a small radius of the estimated location. In an
embodiment, the sensor calibration module 290 uses a value
of the radius that is slightly larger than the half length of the
checkerboard. The sensor calibration module 290 ensures
that among the remaining points, a majority of them should
be on the checkerboard. The sensor calibration module 290
again resorts to a plane fitting method to fit a plane through
the points determined to represent the checkerboard. The
steps of the process corresponding to the second phase are
as follows.

FIG. 13 shows a flowchart illustrating the process of the
second phase of lidar-to-camera calibration that determines
an accurate lidar-to-camera transform based on a distant
view of the checkerboard, according to an embodiment. The
sensors of the autonomous vehicles capture a video with the
checkerboard positioned at more than a threshold distance
while in the field of view of the sensors. In an embodiment,
the sensors of the autonomous camera include a left camera,
a right camera, and a lidar.

The sensor calibration module 290 selects 1310 a frame
from the video. The sensor calibration module 290 detects
1320 2D points representing checkerboard corners from left
and right camera images. The sensor calibration module 290
triangulates 1330 corresponding 2D points to find their 3D
location in camera coordinates. The sensor calibration mod-
ule 290 applies 1340 approximate lidar-to-camera transform
to convert 3D points to lidar coordinates. The sensor cali-
bration module 290 reads 1350 lidar points and selects a
subset within a threshold radius of an estimated checker-
board center. The sensor calibration module 290 fits 1360
dominant plane within the selected points using RANSAC.
The sensor calibration module 290 uses 1370 the selected
frame if number of inliers is greater than a threshold value,
for example 100 inliers. Otherwise the sensor calibration
module 290 selects 1310 another frame and repeats the
above steps.

The process illustrated in FIG. 13 is based on use of two
cameras of the autonomous vehicle. FIG. 14 shows a flow-
chart illustrating a process for detecting the checkerboard
pattern based on a use of a single camera, according to an
embodiment. Instead of using stereo triangulation, the
embodiment uses lidar-assisted plane fitting. Accordingly,
the HD map system performs the calibration even if the
checkerboard pattern is detected in the view of only one of
the cameras. The sensor calibration module 290 selects a
frame and analyzes the frame to detect 1410 the checker-
board pattern in at least one of the left camera image or the
right camera image. If the sensor calibration module 290
detects the checkerboard pattern in both views, i.e., left
camera view and right camera view, the sensor calibration
module 290 selects any one view, for example, the left view.
If the sensor calibration module 290 fails to detect the
checkerboard pattern in either view, the sensor calibration
module 290 skips that particular frame and selects another
frame of the video. With the checkerboard pattern detected
in one view, the sensor calibration module 290 determines
1420 the bounding polygon of the checkerboard pattern by
identifying its four outer corners in the frame. Then the
sensor calibration module 290 projects 1430 lidar points
onto the image using an approximate lidar-to-camera trans-
form, for example, the lidar-to-camera transform determined
by the process illustrated in FIG. 13. The sensor calibration
module 290 selects 1440 the lidar points projected onto the
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image that fall inside the polygon area. The sensor calibra-
tion module 290 fits 1450 a plane using the collected points
in 3d. The sensor calibration module 290 determines 1460
the checkerboard plane geometry in 3d and also determines
the 3d coordinates of all the checkerboard corners. The
sensor calibration module 290 classifies 1470 all the lidar
points, considering the ones within threshold distance to the
plane (for example, a small distance of 10 cm) and within
threshold distance of one of the corners (for example, a
small distance of 20 cm) to be on the checkerboard.

Based on the computations performed by the HD map
system as illustrated in FIGS. 11, 12, 13, and 14 above, the
HD map system obtains a set of candidate points on the
checkerboard. The HD map system next fits the boundary
and normal on the checkerboard. Assuming the checker-
board is held angled (as required by the calibration proce-
dure), the system executes the steps illustrated in FIG. 15.

FIG. 15 shows a flowchart illustrating the process of
fitting boundary points and a normal on the checkerboard,
according to an embodiment.

The sensor calibration module 290 identifies 1510 points
at the checkerboard boundary as the first and last columns of
scan line segments on the checkerboard. In an embodiment,
the sensor calibration module 290 processes two adjacent
sides, for example, only the left side of the boundary
including both upper and lower sides for checkerboard
fitting purpose. The following discussion describes the
method in relation to processing the upper left and lower left
boundaries of the checkerboard pattern but can be performed
for any two adjacent sides, for example, upper left and upper
right side, lower left and lower right sides, and so on. The
sensor calibration module 290 identifies ghost points near
checkerboard boundary, especially on the left side. If a lidar
is scanning from left to right, the laser goes from far away
to nearby points at the left side boundary. The sensor
calibration module 290 may ignore such a first column.
Instead, the sensor calibration module 290 picks the first
column that has a neighbor to its right. The sensor calibra-
tion module 290 identifies ghost points as points that usually
occur a little distance (about 5 cm) away from true boundary
that are followed by a gap of 4-5 missing columns. Notice
that this may not always be accurate, as sometimes the true
boundary can also fall somewhere else within the gap.
However, the sensor calibration module 290 uses this step is
to compute a rough geometry of the checkerboard, and refine
it using intensity data. Accordingly, the sensor calibration
module 290 is able to tolerate an error of a few centimeters.

The sensor calibration module 290 splits 1520 the left
boundary into upper and lower sides by identifying the
turning point corresponding to the left most corner of the
checkerboard pattern. These sides correspond to two sides of
the checkerboard. The sensor calibration module 290 iden-
tifies the turning point as having the minimum x (to the left).
The sensor calibration module 290 classifies the points
above the turning point as the upper side, and points below
the turning point as the lower side. The sensor calibration
module 290 may discard the turning point itself, since it can
be considered as belonging to either side.

The sensor calibration module 290 projects 1530 the
upper/lower side points to the checkerboard plane. This is so
because the boundary points are usually noisy in range, as
half of the laser beam may hit some background object far
away, causing its range to be interpolated. The sensor
calibration module 290 projects 1530 the upper/lower side
points to the checkerboard plane to eliminate such errors.

The sensor calibration module 290 fits 1540 the check-
erboard geometry from boundary points. In an embodiment,
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the sensor calibration module 290 fits two perpendicular
lines that best fit the upper side and lower side boundary
points. The sensor calibration module 290 marks the two
lines as the X and Y axes of the checkerboard, and their
intersection as the origin.

In order to handle noise in the data while enforcing the
fitted lines to be always perpendicular, the sensor calibration
module 290 uses a RANSAC algorithm, for example, the
following 3-point RANSAC algorithm. During each itera-
tion, the sensor calibration module 290 performs the fol-
lowing steps: (a.) Randomly select 2 points from the upper
side, for example, point A and point B (b.) Randomly select
1 point from the lower side, for example, point C (c.) Fity
axis using points A, B (d.) Project point C to the y axis to
obtain point D, and mark the point D as the origin (e.) Fit x
axis using points C and D, and (f.) Count the number of
inliers, i.e., boundary points close to the fitted x and y axes.

The sensor calibration module 290 derives 1550 the
location of the checkerboard pattern using pre-measured
offset of the checkerboard pattern on the board including the
corners of the checkerboard pattern.

Refining Checkerboard Pattern Using Intensity Data

The checkerboard corners fitted as shown in FIGS. 11-15
may contain a small amount of error, for example, due to
ghost points, missing points, and noise in range values. The
sensor calibration module 290 uses the intensity value
associated to each lidar point to refine the location of
checkerboard corners. For each lidar point, its intensity
value (for example, a value in the range of [0, 255])
measures the reflectivity of the object, with 0 being black,
absorbent diffuse reflector, 100 being white, reflective dif-
fuse reflector, and 255 being complete retro-reflector.

According to the definition of lidar intensity, the black
squares on the checkerboard should produce near-0 intensity
values, while the white squares on the checkerboard should
be close to 100. Given this information, the sensor calibra-
tion module 290 performs a full search in a small neighbor-
hood of the parameter space, by varying the location of the
checkerboard pattern, and measures the alignment of black
and white squares to underlying intensity data

FIG. 16 shows a flowchart illustrating the process of
refining the checkerboard pattern using intensity data,
according to an embodiment.

The sensor calibration module 290 defines 1610 check-
erboard coordinates. In an embodiment, the sensor calibra-
tion module 290 defines 1610 checkerboard coordinates
with origin at the top-left corner of the checkerboard pattern,
X-axis pointing down along the short side, Y-axis pointing
right along the long side, and Z-axis pointing towards the
lidar. The sensor calibration module 290 converts 1620
points of the checkerboard pattern from lidar to checker-
board coordinates.

The sensor calibration module 290 repeats the steps 1630,
1640, 1650, 1660, and 1670. The sensor calibration module
290 transforms 1630 checkerboard points by small amounts,
by varying translation in X, y and rotation around z. The
sensor calibration module 290 projects 1640 each checker-
board point to the checkerboard pattern and determine the
color (black or white) of square that the point falls into. The
sensor calibration module 290 determines 1650 the align-
ment score for each checkerboard point based on intensity of
square the point falls into.

In an embodiment, the sensor calibration module 290
determines 1650 the alignment score for each checkerboard
point as a value matching the intensity if the checkerboard
point falls in a white square and as a value (255—intensity)
if the checkerboard point falls in a black square. The sensor
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calibration module 290 determines 1660 a final score for this
transform as sum of the alignment scores of all checkerboard
points. If the sensor calibration module 290 determines that
the current transform has higher score than the previous best
transform, the sensor calibration module 290 uses the cur-
rent transform as the best transform. Accordingly, the sensor
calibration module 290 uses the transform (i.e., delta of
translation in X, y and rotation around z) with highest
alignment score as the final transform.

The sensor calibration module 290 applies the inverse of
this transform to the checkerboard pattern to convert the
checkerboard pattern back from checkerboard coordinates to
lidar coordinates. The sensor calibration module 290 uses
the converted checkerboard corners as the final locations of
checkerboard corners.

The steps 1630, 1640, 1650, 1660, and 1670 that are
repeated perform a full search for 3 of the 6 degrees of
freedom of a rigid transform. Accordingly, the sensor cali-
bration module 290 assumes that the plane fitted in the
previous iteration is correct, and only allows in-plane trans-
form for refining the checkerboard pattern. This performs
better than doing a full 6 degrees of freedom search, as (1)
the plane fitting step was already performed using a robust-
ness estimator (RANSAC) and processes multiple point
samples, thereby reducing the impact of noise in range, so
refinement using intensity is unlikely to improve it, and (2)
with a lower dimensional search space, the system can
search a bigger neighborhood with higher computational
efficiency.

There can be noise in intensity data as well. There can be
a significant variance in intensity among scan lines. For
example, when the lidar faces a white wall, different inten-
sity values can be observed among different scan lines, even
though the reflectivity of the wall should be uniform. Simi-
larly, when the laser hits an intensity boundary, for example,
from plastic board to reflective tape, there may be a gap of
4-5 missing lidar points near the boundary. This may happen
since lasers can get saturated by the sudden increase in
reflectivity.

In an embodiment, the sensor calibration module 290 uses
two additional constraints on intensity-based refinement.
The sensor calibration module 290 skips refinement for
checkerboards that are too far away (i.e., more than a
threshold, for example a threshold of 10 meters) from the
lidar. This is so because for checkerboard patterns based on
very far checkerboards, too few points may be available on
the checkerboard for robust alignment. Furthermore, sensor
calibration module 290 measures the maximum movement
of'any checkerboard corner before and after refinement. The
sensor calibration module 290 claims failure if it exceeds
certain threshold (e.g., 5 cm). This is so, because the sensor
calibration module 290 assumes that the checkerboard fitted
from previous steps should already be fairly accurate, and if
large modifications need to be made, it is probably caused by
noise in the intensity data. Accordingly, the sensor calibra-
tion module 290 decides to skip this frame and try another
frame.

Combining Left Camera and Right Camera Points

The standard input to a PnP solver includes a set of
3d-to-2d point correspondences and a 3x3 camera matrix.
The sensor calibration module 290 has two sets of 2d points
extracted from left and right cameras, corresponding to the
same set of 3d points extracted from lidar. Since the left and
right cameras are stereo rectified, their projection matrices
are in the following form, where P, is the projection matrix
of the left camera and {,,,,, is the projection matrix of the
right camera.
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Pros=1£.0,¢:,0504£,,¢,,0;0,0,1,0]

Prign=11,0:6,10£,,¢,,0;0,0,1,0]

The two projection matrices differ in the 4% element
where the right camera has an offset t=T, -f where T, is the
relative translation in camera x coordinate in meters.

Ifthe system can tweak the 3d points in a way that cancels
t, it will be able to use the same 3x3 matrix for both cameras.
Given a 3d point in homogeneous coordinate (x,y,z,1), it
projects to the following image coordinate in the right
camera:

(v w)=(foxte zH fv+e,2,7)

In this equation, only u is affected by t. The sensor
calibration module 290 removes t by transforming x to x'
such that,

Soxte zHt=frx've,

=x'=x+t/f,=x+T,

Accordingly, the sensor calibration module 290 modifies
the x coordinate of each 3d point for the right camera by
adding T, to it. This allows sensor calibration module 290 to
use identical camera matrices for both left and right cameras
and thereby optimize the 3d-to-2d projection for both cam-
eras simultaneously.

Still Frame Selection

The sensor calibration module 290 avoids using frames
for calibration where the checkerboard is moving. For
almost all lidar devices, all points are not captured at the
same time. For example, VELODYNE rotates at 10 Hz and
captures points column by column. If the checkerboard
moves during the duration of the scan (0.1 second), the
captured point cloud may not be geometrically consistent, as
it captures different parts of the checkerboard at different
times.

In some embodiments, as part of the calibration proce-
dure, the sensor calibration module 290 requires the operator
to hold the checkerboard still for at least 3 seconds at each
spot. This section describes an automatic algorithm for
selecting these still frames for calibration.

Techniques based on entire point clouds or entire images
may not work well, because even if the system requires the
checkerboard to be still, other objects (e.g., people) can
move in the environment. The system may select not only
still frames, but also distinct ones. Furthermore, if a check-
erboard stays still for 3 seconds (say a batch of 30 frames),
the system may only select a single frame out of this batch
of frames.

The sensor calibration module 290 initializes 1710 sets H
and S as empty lists, where H represents historical check-
erboard locations and S represents selected frames. The
sensor calibration module 290 repeats the following steps.
The sensor calibration module 290 selects 1720 a new frame
and corresponding left and right camera images. The sensor
calibration module 290 detects 1730 checkerboard pattern in
both left and right camera images. The sensor calibration
module 290 triangulates 1740 corresponding 2d corners
from left and right camera images to determine their 3d
locations in camera coordinate. The sensor calibration mod-
ule 290 adds 1750 the 3D locations of corners to set H for
future reference. The sensor calibration module 290 com-
pares the 3D locations of corners of the checkerboard to the
3D locations of corners in set H to determine whether the
movement between 3D locations of corners compared with
3d locations of corners in the set H at k seconds (for
example, 1 second) ago is less than x cm. If the sensor
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calibration module 290 determines that the movement
between 3D locations of corners compared with 3d locations
of corners in H at k seconds ago is less than the threshold
distance, the sensor calibration module 290 marks the frame
at k seconds ago as a still frame and selects it as a candidate
still frame. The sensor calibration module 290 compares the
candidate still frame to all frames in S. If the sensor
calibration module 290 determines that the minimum move-
ment between current frame and any frame in S is larger than
a threshold distance, for example, 20 cm, the sensor cali-
bration module 290 determines that this candidate frame is
likely to be a distinct still frame and adds the candidate
frame to set S. The sensor calibration module 290 returns the
set S as the set of still frames.

The process shown in FIG. 17 can be executed either
online or offline as post processing. The output of the
process shown in FIG. 17 provides a list of frames for use
as input calibration data.

The embodiment illustrated in FIG. 17 above relies on
triangulation of checkerboard corners. Accordingly, the pro-
cess may not work for single-camera setups, and in order for
a frame to be considered for selection, both views must see
the checkerboard in full. This means the HD map system
may not get constraint near image boundary as it is likely to
be partially outside for the other view. Such constraints may
be relevant for robust calibration. Furthermore, triangulation
errors can be amplified when the checkerboard is farther
away, causing unstable results. Following embodiments of
still frame selection address these issues.

The sensor calibration module 290 detects checkerboard
corners from the image from a single view. Since the HD
map system has the knowledge of the dimensions of the
checkerboard (grid size and row/column count), the sensor
calibration module 290 determines the 3D coordinate of
each checkerboard corner in checkerboard coordinate. The
checkerboard coordinate is defined to be centered at the
upper left corner, with X-axis pointing along the short side,
Y-axis pointing along the long side, and Z-axis pointing
towards the camera. With the coordinate system defined, the
sensor calibration module 290 derives the 3d coordinate for
each corner, thereby getting a list of 3d-to-2d correspon-
dences.

The sensor calibration module 290 then determines the
checkerboard-to-camera transform (a rotation and transla-
tion) by solving a PnP problem using, e.g., Levenberg-
Marquardt. This works as long as one view shows the
checkerboard in full. If the autonomous vehicle does have a
stereo camera and both views see the checkerboard in full,
the system can use the method explained above in the
“Combining Left/Right Camera Points™ section to combine
both constraints into one PnP problem.

After processing each frame, the sensor calibration mod-
ule 290 obtains a list of checkerboard-to camera transforms
{T,}. Since the camera was never moved during the entire
sequence, the sensor calibration module 290 uses the list of
transforms to measure the checkerboard movement between
any pair of frames. Given any checkerboard point X in 3D
checkerboard coordinate in frame i, the sensor calibration
module 290 determines the projected position of the point X
in frame j using the equation X'].:Tj‘lTl.Xl.. If there is no
movement, then T,=T, and the two cancel out resulting in
X'=X,. The sensor calibration module 290 determines the
amount of movement by the difference between X', and its
actual position in) frame j as given by d(X,1,j)=I1X",-X I=IT,
1T,X,-X|. Given two detected checkerboard patterns, each
comprising a list of checkerboard corners, C={X,}, the
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sensor calibration module 290 determines their movement
by using the equation m(C,i,j)=max . d(X,i,j).

Thus, the sensor calibration module 290 uses a modified
greedy algorithm to still walk all frames, and select a frame
if and only if its movement is small compared to its
neighbors: m(C,i,i-1)<x, m(C,i,i+1)<x and its movement is
large compared to existing selections: m(C,i,s)>y, s&{S},
where e.g., x=1 cm and y=20 cm.

Accordingly, the sensor calibration module 290 executes
the following steps (as illustrated in FIG. 11): (1) Select still
frames for calibration. In this step, the sensor calibration
module 290 selects all the static views of the checkerboard.
(2) Run the first pass of lidar-to-camera calibration, using
nearby checkerboard patterns only. Step 2 bootstraps initial
lidar-to-camera calibration by using frames in which check-
erboard is near the car (e.g., within 3 meters from the lidar).
In this scenario the system does not need to rely on any prior
knowledge (such as a rough lidar-to-camera transform) to
locate the checkerboard in 3d, because the checkerboard
points would naturally fit the dominant plane within the 3
meter radius. The sensor calibration module 290 then com-
putes an initial lidar-to-camera calibration by solving the
PnP problem using the small subset of static views. (3) Run
the second pass of lidar-to-camera calibration, using results
from previous step as initial estimate, and use checkerboard
patterns from all frames to refine the transform. In step 3, the
sensor calibration module 290 relies on the initial lidar-to-
camera transform, and may use stereo triangulation to
robustly locate the checkerboard in 3d even when it is far
away from the car. This allows the sensor calibration module
290 to use all the static frames to optimize the lidar-to-
camera transform and get the final output.

Calibration Based on Reflective Tape

In some embodiments the HD map system performs
calibration using one video (calibration sequence) with a
checkerboard, and a second video (test sequence) with a
board with a static tape pattern based on reflective tape on
it, which is more suitable for visualizing calibration error.
Accordingly, the process comprises a first video with cali-
bration sequence of frames with the checkerboard pattern
and a second video with a test sequence of frames with
reflective tape based pattern.

The calibration sequence includes frames with checker-
board pattern placed at various spots including a set S1 of
spots in a close range in front of the car, i.e., within a
threshold distance, a set S2 of spots within medium range,
i.e., greater than a first threshold but less than a second
threshold, a set of spots in a far range, i.e., range greater than
a threshold distance. For example, the HD map system
receives a video with about 25 spots, about 5 in front of the
car (within 3 meters to the lidar), about 10 in the medium
range (about 6 meters away from the lidar), and about 10 in
the far range (about 10 meters away from the lidar). For each
layer, the spots are equally spaced out to cover the entire
shared field of vision. The checkerboard is fully contained
by both views to be useful, so the checkerboard needs to
move in smaller steps near the boundary of shared field of
vision, to ensure that it covers the shared field of vision as
much as possible. If the checkerboard is partially outside of
a camera view, that frame is dropped, so having more frames
will not hurt calibration, just waste more time.

The HD system assumes that the checkerboard is held
about 45 degrees angled to the ground, with left side higher
than the right side (from holder’s point of view). The way
the checkerboard is held determines the pre-measured off-
sets of the pattern on the checkerboard.
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The test sequence is based on a black board with reflective
tapes on it. The strong contrast of intensity near tape
boundaries makes it more suitable for visualizing calibration
error. To simulate the usage of lidar-to-camera calibration,
the board is held by the side of the car at different distances
(to simulate traffic sign projection), and laid on the ground
in front of the car (to simulate lane line and crosswalk
projection).

In an embodiment, the HD map system shows debug
images upon completion of the calibration process and test
process showing lidar points overlaid on top of left and right
images, color-coded by intensity so that a user can inspect
the alignment between lidar points and image pixels. The
HD map system displays a user interface that allows the user
to select lidar points and corresponding image pixels (e.g.,
corresponding to the same tape boundary). The HD map
system receives the user selection and measures the 3d
distance (in cm). The HD map system ensures that the error
does not exceed a threshold (half OMap cell) in all views.

FIG. 18 A shows a test sequence based on a striped pattern
according to an embodiment. As shown, a black board is
held with reflective tape around the car to simulate traffic
signs. The board is laid on the ground in front of the car to
simulate lane lines. The board is kept at varying distances
including close (less than a predetermined threshold) and far
(greater than a predetermined threshold). FIG. 18B shows
sample debug images for a test sequence, according to an
embodiment.

Static Tape Pattern

In some embodiments, the test sequence is replaced with
a static setup in the calibration environment (for example,
garage). There are vertical stripes of reflective tape on the
wall facing the vehicle, and possibly on the side walls to
cover the horizontal field of vision as much as possible (to
simulate traffic signs). There is reflective tape on the ground
in front of the car (to simulate lane lines and crosswalks).
The reflective tape is different in color with background
material (e.g., dark color tapes for white wall) so that they
can be easily differentiated from images.

Similar to the test sequence, the HD map system checks
the alignment for each reflective tape between their lidar
projection and image pixels. There will be a viewer to
facilitate error estimation, which allows the user to slightly
tweak one of the 6 degrees of freedom in the calibration
matrix to achieve better alignment between image and lidar
projection. By the amount of tweaking (e.g., 0.1 degree
change in pitch, 0.1 degree in yaw and 2 cm in x), the HD
map system estimates the error in the calibration matrix
accordingly.

FIGS. 19A-B show example setups of reflective tapes.
FIG. 19A shows a top-down view of a reflective tape pattern
on the ground, according to an embodiment. Tapes are put
in front of the car within camera field of view (specified by
dashed lines). The tapes have a different color from the
ground so that they can be easily distinguished from camera
view. Tapes are made of a material that has very different
reflectivity from the ground so that tape boundary can be
easily distinguished from lidar point cloud. Embodiments
can use different patterns and the selection of the exact
pattern can vary and preknown measurements are not
needed. The pattern should (1) fill camera field of view as
much as possible, and (2) provide constraints in all 6 degree
of freedoms. E.g., if only vertical tapes are placed on the
ground (parallel to the car direction), there will be little
constraint to tx (translation in car direction) of the transform.
Similarly, if only horizontal tapes are placed on the ground
(orthogonal to the car direction), there will be little con-
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straint to ty (translation orthogonal to car direction).
Embodiments use tapes in at least two diagonal directions to
ensure that error in any of the 6 DoF can be spotted as
misalignment somewhere in the pattern.

FIG. 19B shows a front view of the reflective tape pattern
on the wall, according to an embodiment. Similar to FIG.
19A, the pattern is not strict and preknown measurement is
not needed. However, the pattern should (1) fill camera field
of' view as much as possible—which means a pattern may be
needed on the wall to both sides of the car as well as in front
of the car, and (2) provide constraints in all 6 degree of
freedoms.

Placement of Checkerboard Pattern

In an embodiment, the checkerboard pattern (or any other
pattern) used for calibration of sensors is manually moved
by a person. A user may view the sensor data to determine
whether the various portions of the areca viewed by the
sensor are covered by the different places where the check-
erboard pattern is placed. If certain portion of the viewing
area is not covered, there is a likelihood that the calibration
is not accurate. For example, if the checkerboard is mostly
placed on the left half of the viewing area and there is no
placement in the right half of the viewing area, the sensor
calibration may not be accurate.

In an embodiment, the HD map system detects the pres-
ence of the checkerboard pattern in sensor data and deter-
mines coordinates of the corners of the checkerboard pat-
tern. The HD map system maintains a shape of the overall
viewing area of sensor. The HD map system and overlays the
areas where the checkerboard pattern occurs in images and
lidar scans that are processed based on the determined
coordinates of the checkerboard corners. Accordingly, the
HD map system determines regions of the viewing area that
have not yet been covered.

In an embodiment, the HD map system determines por-
tions of the viewing are that are not yet covered by itera-
tively moving a template representing the checkerboard
pattern within the shape represented by the viewing area and
determining whether the new area covered by the template
includes a substantial portion of viewing area that has not
been covered so far by the placements of checkerboard
pattern. Accordingly, the HD map system iteratively deter-
mines various positions for the checkerboard pattern in the
viewing area and maps them to a location and orientation of
the checkerboard pattern in the real world.

The HD map system provides a position and orientation
for the next placement of the checkerboard pattern, for
example, by specitying a distance from the vehicle where
the checkerboard pattern should be placed and an orienta-
tion, for example, whether it should be laid on the ground,
held vertically, and if the pattern has stripes, whether the
stripes should be at an incline pointing top left to bottom
right or from bottom left to top right. In an embodiment, the
HD map system provides real time direction to a person
holding the checkerboard pattern, whether the person should
move away from the vehicle, towards the vehicle, tilt the
pattern appropriately, and so on.

The direction may be provided via an application, for
example, a client application executing on a mobile device.
The HD map system maintains various variables including
an amount of the portion of the viewing area that has been
covered, an amount of left boundary that has been covered,
an amount of right boundary that has been covered, an
amount of bottom boundary that has been covered, an
amount of top boundary that has been covered, and so on.
The HD map system evaluates these variables and deter-
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mines the directions for the next placement of the pattern for
sending to the client device of a user managing the place-
ments.

In an embodiment, the HD map system presents a heat
map via a user interface, such that the heat map shows an
indication of how well each portion of the viewing area of
the sensor is covered. In an embodiment, the HD map
system presents multiple heat maps, for example, one heat
map for a close placement of the pattern and another heat
map for a distant placement of the pattern. Accordingly, the
HD map system presents a plurality of heat maps, each heat
map for a different depth value.

In an embodiment, instead of a heat map, the HD map
system presents a user interface that divides the viewing area
into different portions and associates each portion with a
score indicating the amount of coverage via the pattern for
that portion. For example, a low score value indicates less
coverage and high score value indicates higher coverage.

FIG. 20 shows a flowchart illustrating the process of
determining a placement of the checkerboard pattern,
according to an embodiment. The checkerboard pattern
placement module 930 initializes a shape representing the
viewing area of the sensors. The shape may be specified
using the lidar coordinates or any other 3D coordinate
system. The checkerboard pattern placement module 930
repeats the following steps 2020, 2030, 2040, 2050, and
2060 of the process. The checkerboard pattern placement
module 930 receives sensor data based on a placement of the
checkerboard pattern, for example, the most recent place-
ment of the checkerboard pattern. In an embodiment, the
placement is specified using the depth and orientation of the
checkerboard. Alternatively, the placement is specified by
identifying coordinates of a plurality of corners. The check-
erboard pattern placement module 930 determines 2030 the
coordinates of the checkerboard pattern based on the place-
ment. For example, the checkerboard pattern placement
module 930 determines coordinates of all the corners of the
checkerboard pattern.

The checkerboard pattern placement module 930 updates
2040 information describing the portions of the viewing area
that are covered by the placements of the checkerboard
pattern processed so far. Determine portions of viewing area
that are already covered by the checkerboard pattern. The
checkerboard pattern placement module 930 identifies 2050
the next position of the checkerboard pattern to cover a
portion of the viewing area that is not yet covered by the
placements of the checkerboard pattern processed so far. The
checkerboard pattern placement module 930 sends instruc-
tions re next placement of the checkerboard pattern based on
the position of the identified portion of the viewing area. In
an embodiment, the checkerboard pattern placement module
930 displays a user interface displaying the position of the
portion of the viewing area that needs to be covered next. In
another embodiment, the checkerboard pattern placement
module 930 gives real time instructions directing a user to
move so as to align the checkerboard pattern held by the user
with the identified position. In another embodiment, the
checkerboard pattern is automatically positioned using a
drone. The checkerboard pattern is attached to a drone and
the HD map system sends instructions to the drone using an
API (application programming interface) of the drone to
move the drone to the identified position. The HD map
system repeats the above instructions until all portions of the
viewing area are covered. In an embodiment, the HD map
system repeats the entire process of covering the viewing
area for a plurality of depths, for example, for a close-up
position of the checkerboard pattern and for a distant posi-
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tion of the checkerboard pattern. In an embodiment, the
vehicle is driven to a facility that has previously placed
patterns at various locations including close to the vehicle
and at distant locations. The facility uses automatic or
manual mechanical devices such as arms to move the
checkerboard patterns in different positions. For example, an
arm places the checkerboard pattern in front of the vehicle
and close to the vehicle. The arm removes the checkerboard
pattern from the front of the vehicle. A different arm places
one or more checkerboard patterns at a distant location from
the vehicle. The process is repeated to get full coverage of
the viewing area.

Calibration Based on 3D-to-3D Transform

In one embodiment, a client application of the HD map
system, for example, a point cloud viewer displays a scene
based on the point cloud. The user interface of the client
application allows users to select points of the point cloud,
for example, using a pointing device such as a mouse based
cursor. The client application receives from the user, selec-
tion of three corners of the checkerboard in the point cloud.
The HD map system refines the corner locations based on
intensity alignment. The HD map system thereby obtains a
set of 3d checkerboard corners in the lidar coordinate.

From the same frame, the HD map system detects check-
erboard pattern in the left and right images and triangulates
3d checkerboard corners in the camera coordinate. With a set
of corresponding points in the two coordinate system, the
system determines a least squares solution for the rigid
transform between lidar and camera coordinates. In some
embodiments, this process receives the coordinates of cor-
ners from multiple frames. The HD map system uses
RANSAC in the rigid transform solver to account for noise
in the checkerboard corners detected from lidar points.
Embodiments of the invention provide an improvement by
automating the detection of checkerboard corners from lidar
points (that achieves higher precision by separating plane
fitting from intensity based refinement), and using PnP
solver for 3d-to-2d correspondences, which avoids the error
in stereo triangulation.

Edgel Based Calibration of Sensors

The edgel based calibration module 950 performs lidar-
to-camera calibration by detecting edgels in both lidar based
point cloud and camera based images, and optimizing the
alignment between those edges. An edgel corresponds to
edges representing boundaries of objects or shapes in an
image, for example, objects or shapes representing edges of
buildings, traffic signs, poles, figures painted on the road
such as turn arrows, lane lines, and so on. The edgel based
calibration module 950 obtains 3D points from the lidar scan
and 2D points from the image.

These embodiments are advantageous since they can be
used for performing calibration of sensors using real world
data representing objects/images that are obtained by a
vehicle driving on the road. Accordingly, these embodiments
can be used to perform calibration without requiring use of
calibration object, for example, a checkerboard or requiring
use of a controlled environment meant specifically for
calibration.

The HD map system achieves higher calibration accuracy
by using frames where the car is stopped at intersections, to
prevent other sources of error (e.g., pose error) from affect-
ing calibration. One advantage of these solutions is that they
are capable of online calibration during driving of the
vehicle. In some scenarios, due to the high variance in real
world data, the process may not converge all the time, and
may result in lower precision even when the process does
converge.
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Calibration parameters drift over time, either caused by
vehicle shaking or material expansion due to heat. For data
collection, test vehicles, or research vehicles, performing
calibration on a regular basis may not be very inconvenient
since the number of times the calibration is performed is not
very high. However, if there is a big fleet of vehicles or if
there is a large number of commercial vehicles that are
operating, requiring all these vehicles to be calibrated in a
controlled environment is time consuming as well as
resource consuming. Also, requiring a controlled environ-
ment places burden on the user of the vehicle to take time
and resources for performing calibration.

However, embodiments of the invention perform online
calibration by refining calibration parameters using real time
data while the car is driving. As a result, the process does not
require a large number of vehicles to be calibrated in
controlled setting, thereby providing significant savings in
terms of time and resources.

FIG. 21 illustrates the overall process for performing
calibration of sensors of a vehicle based on edgel detection,
according to an embodiment. The edgel based calibration
module 950 receives 2110 a lidar scan captured by the lidar
of the vehicle and a camera image captured by a camera of
the vehicle. The lidar scan and the camera image are
obtained from a frame captured at the same time. Accord-
ingly, the lidar scan and the camera image substantially
represent the same scene or surroundings of the vehicle or at
least have a significant overlap in the portion of the scene
captured by the lidar and the camera. If there is a time
difference between the capture of the lidar scan and the
camera image, the edgel based calibration module 950
performs a temporal correction, for example, by transform-
ing the 3D points to a position corresponding to the time of
capture of the image.

The edgel based calibration module 950 determines 2120
a set S1 of edges from the camera image by processing the
pixels of the camera image. The set S1 of edges may be
determines by an edge detection technique, for example, a
gradient based edge detection technique, a Laplacian based
edge detection technique, or a neural network based edge
detection technique. In an embodiment, the edgel based
calibration module 950 detects edges in the camera image by
identifying changes or discontinuity in image brightness.
The edgel based calibration module 950 identifies points at
which image brightness changes sharply and identifies a set
of curved line segments termed edges passing through the
identified points.

The edgel based calibration module 950 further deter-
mines a set S2 of edges from the lidar scan. The edgel based
calibration module 950 determines an edge in the lidar scan
based on depth discontinuities in the 3D points of the lidar
scan as well as intensity discontinuities in the 3D points of
the lidar scan. The edgel based calibration module 950
measures intensity discontinuities for identifying edges
based on points on the ground and uses depth discontinuities
to identify edges based on points that are above the ground.
FIG. 22 further illustrates the process for determining edges
in the lidar scan.

The edgel based calibration module 950 receives 2140 a
transform T1 for transforming between 3D points of lidar
scan and 2D points of camera image. In an embodiment, the
transform is 6-dimensional transform between the two sen-
sors, i.e., the lidar and the camera. Specifically, the six
values are the X, y, and z translations, and the roll, pitch, and
yaw Euler angle rotations between the two sensors. In an
embodiment, the transform operation between lidar and
camera sensors comprises the following steps. The first step
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transforms 3D points from lidar coordinates to 3D points in
camera coordinates (both in 3D) wusing equation
Xcamera:TZidar2camera *Xlidar where Tlidar2camera is the 6 DoF
transform between lidar and camera coordinates. The next
step projects points in camera coordinate into two dimen-
sional image space using equation x=P*X__ ... where P is
the 3x4 projection matrix of the camera, encoded by focal
length and principal point position.

The edgel based calibration module 950 determines 2150
pairs of matching edges between S1 and S2 based on
transform T1. The edgel based calibration module 950
determines 2160 a transform T2 that is more accurate than
T1 by iterative improvement of the transform T1. The edgel
based calibration module 950 2160 initializes the second
transform to the first transform. The edgel based calibration
module 950 iteratively modifies the second transform, such
that an aggregate distance between the corresponding edges
of the one or more pairs of matching edges based on the
second transform in a current iteration is less than an
aggregate distance between the edges of the one or more
pairs of matching edges based on the second transform in a
previous iteration.

The edgel based calibration module 950 uses the trans-
form T2 for various steps of HD map generation for
example, to combine lidar scan data with the image data.
The generated HD map may be used for various purposes,
for example, for guiding an autonomous vehicle.

Techniques for calibration of sensors of a vehicle are
described in the article titled Automatic Online Calibration
of Cameras and Lasers, Stanford Artificial Intelligence
Laboratory, co-authored by J. Levison, S. Thrun, which is
incorporated herein by reference in its entirety. The process
disclosed in this reference only uses off-ground points,
because ground points, by definition, are continuous and
never exhibit range discontinuity. The HD map system in
contrast includes points from the ground, by also detecting
points at intensity discontinuity, i.e., when neighboring
points have a large delta in intensity. The method starts by
segmenting the lidar point cloud into ground and off-ground
points, by fitting a ground plane. For off-ground points, the
HD map system follow Levinson’s algorithm. For ground
points, the HD map system uses intensity discontinuity
instead of range discontinuity. The system combines range
and intensity discontinuity scores in a linear fashion, where
weights are adjusted such that typical vertical features (e.g.,
silhouette of a pole) have the same weight towards optimi-
zation as a typical ground feature (e.g., lane line boundar-
ies). It improves the accuracy and robustness of calibration,
specifically in the dimensions in which the vehicle is driving
and pitch, which are poorly constrained by techniques that
use off-ground points alone.

FIG. 22 illustrates the process for processing the ground
points separate from the remaining points for performing
calibration of sensors of a vehicle based on edgel detection,
according to an embodiment.

The edgel based calibration module 950 determines 2210
a ground plane in the point cloud corresponding to the lidar
scan. In an embodiment, the edgel based calibration module
950 determines a plane passing through a set of points that
are immediately in front of the vehicle. For example, the
edgel based calibration module 950 identifies a set of points
that are in the lowest portion of the lidar scan representing
the portion of the scene immediately in front of the vehicle
and passes a plane through the set of points.

The edgel based calibration module 950 identifies 2220
based on the ground plane, a set S1 of 3D points on ground
and a set S2 of 3D points that are above the ground, for
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example, 3D points representing buildings, traffic signs, and
so on. Accordingly, the edgel based calibration module 950
separates the 3D points on the ground from the 3D points
above the ground so that the two sets of points can be
processed separately. The edgel based calibration module
950 determines edges within the set of point S1 representing
ground using lidar intensity values, for example, by identi-
fying sudden change or discontinuity in intensity values
while travelling in a particular direction along the point
cloud represented by the lidar scan. Accordingly, the edgel
based calibration module 950 determines 2230 S1' a subset
of set S1 representing points associated with greater than a
threshold change in intensity. The edgel based calibration
module 950 determines a change in intensity by measuring
the gradient of the intensity values in the neighborhood of
each point. The edgel based calibration module 950 deter-
mines a change in depth by measuring the gradient of the
depth values in the neighborhood of each point.

The edgel based calibration module 950 determines edges
within the set of point S2 representing 3D points above
ground using lidar depth values, for example, by identifying
sudden change or discontinuity in depth values while trav-
elling in a particular direction along the point cloud repre-
sented by the lidar scan. Accordingly, the edgel based
calibration module 950 determines 2240 S2' a subset of set
S2 representing points associated with greater than a thresh-
old change in depth. The edgel based calibration module 950
uses intensity for determining edges on ground since there is
no depth variation for points on ground, unlike points above
ground. Therefore, the edgel based calibration module 950
uses features on ground such as letters written on the road,
e.g., stop, yield, and such words on the road, shapes of
figures drawn on the road, for example, left turn arrow, right
turn arrow, lane lines, and so on. These features are asso-
ciated with intensity change and not depth change. For
example, a letter written on the road may be painted in
white, and the edges of the shape of the letter have a change
in intensity from high intensity of the white paint to low
intensity of the asphalt of the road that is adjacent to the
letter. For structures above the ground, the edgel based
calibration module 950 uses change in depth. For example,
a pole may be at a depth of 10 meters and the structure
behind the pole may be a building that is 20 meters away. As
a result, edgel based calibration module 950 determines
edges associated with the pole using a set of points associ-
ated with a change in depth from 10 meters to 20 meters.

The edgel based calibration module 950 determines 2250
edges based on the points in sets S1' and S2'. The edgel
based calibration module 950 identifies sets of points from
the set S1' or set S2' that are close to each other and
determining edges representing curves or likes passing
through the identified plurality of points. The edgel based
calibration module 950 identifies sets of points that are close
to each other by performing a clustering algorithm, for
example, k-means clustering.

In an embodiment, the edgel based calibration module
950 determines an edge score representing a degree of
confidence with which the point corresponds to an edge. The
edgel based calibration module 950 determines the edge
score for each point above ground based on a difference
between the depth of the point and adjacent point. Accord-
ingly, higher edge score represents higher difference is depth
and is indicative of a higher confidence that the point
corresponds to an edge. The edgel based calibration module
950 determines the edge score for each point on the ground
based on a difference between the intensity of the point and
adjacent point. Accordingly, higher edge score represents
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higher difference in intensity and is indicative of a higher
confidence that the point on the ground corresponds to an
edge. Since the edge scores of points on the ground are
determined using a different mechanism compared to the
edge scores of points above ground, edgel based calibration
module 950 normalizes the two scores so that they are
comparable value. In an embodiment, the edgel based cali-
bration module 950 determines a distribution of the edge
scores of points on the ground, and a distribution of the edge
scores of points above ground. The edgel based calibration
module 950 determines an aggregate value v1 representing
the edge scores of points on the ground and an aggregate
value v2 representing the edge scores of points above the
ground. The aggregate value may be determined as a median
value, a maximum value, a mean value or using another
measure of statistical aggregate. The edgel based calibration
module 950 scales the edge scores of at least one of the sets
of points based on the values v1 and v2. For example, the
edgel based calibration module 950 scales the edge scores of
ground points by v2/v1l or scales the edge scores of above
ground points by v1/v2.

In an embodiment, the HD map system performs a full
(i.e., exhaustive) 6 degrees of freedom (DoF) search instead
of a simple gradient descent. Gradient descent often con-
verges to a bad solution, especially when the optimal solu-
tion is several search steps away from the starting point
(which is almost always the case). Doing a full search
guarantees an optimal solution within a small neighborhood
in the 6 DoF search space. The edgel based calibration
module 950 uses a fairly close initial estimate (e.g., the
calibration results from two weeks back) to ensure that a
small neighborhood is sufficient for determining a solution
via an exhaustive search. For example, the HD map system
may searches 1 degree for raw, pitch, yaw and 10 centime-
ters in translation X, y, and z.

In an embodiment, the edgel based calibration module
950 determines the size of the neighborhood in which the
exhaustive search is performed based on the rate at which
the calibration is performed. The edgel based calibration
module 950 determines the size of the neighborhood in
which the exhaustive search is performed as a value that is
inversely related to the rate at which the calibration is
performed. Accordingly, if the edgel based calibration mod-
ule 950 performs calibration more frequently (i.e., initial
estimate is more accurate), the edgel based calibration
module 950 reduces the size of the search neighborhood.
This is so because the initial estimate of the transform that
is improved is more accurate if the HD map system uses a
recently performed calibration result as the initial transform
estimate.

FIG. 23 illustrates the process of searching for an
improved transform based on an initial transform, according
to an embodiment. The edgel based calibration module 950
determines 2310 an upper bound and a lower bound for each
transformation parameter based on historical data. The
transform has a plurality of transform parameters, each
transform parameter corresponding to a dimension, for
example, six transform parameters, roll/pitch/yaw and three
X, V, and z translations tx/ty/tz. In an embodiment, the edgel
based calibration module 950 determines the upper and
lower bounds for each transform parameter based on an
amount of variation in the value of the transform parameter
based on historical data, for example, recent history based
on driving routes along which the vehicle was driven
recently. For example, a particular camera may not have
been installed properly and is loose along a particular
direction, there having more movement along that dimen-
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sion resulting in higher drift along that dimension. As a
result, if the value of that transform parameter computed in
the previous iteration that performed calibration was used as
the initial transform, the transform parameter is likely to
have more drift compared to another transform parameter.
Each transform parameter may have distinct upper and
lower bounds. For example, a transform parameter t1 may
have upper and lower bounds 11 and ul respectively,
whereas a transform parameter t2 may have upper and lower
bounds 12 and u2 respectively where 11 is distinct from 12
and ul is distinct from u2.

The selection of bounds for each parameters ensures that
the edgel based calibration module 950 does not perform
unnecessary search, for example, searching along a dimen-
sion for more than a threshold delta value even if the
transform parameter corresponding to that dimension is
unlikely to change more than a delta value that is much
smaller than the threshold delta value. Accordingly, the
ability to select the required bounds for each transform
parameters makes the process of performing exhaustive
search efficient.

The edgel based calibration module 950 initializes 2320
transform parameters to values that were previously deter-
mined, for example, when the sensors were calibrated the
last time (i.e., the most recent transform parameter values).
The edgel based calibration module 950 determines an
alignment score for each transform based on a degree of
match between the edges determined using the different
sensors, i.e., lidar and camera. Accordingly, a better align-
ment score is indicative of higher degree of match between
the edges.

The edgel based calibration module 950 performs an
exhaustive search for the best transform within the polygon
formed by the determined bounds. The exhaustive search
divides the polygon formed by the determined bounds into
smaller portions and determines a value of the transform
parameters for a point corresponding to each portion. The
edgel based calibration module 950 determines the align-
ment score for each point and selects the transform param-
eters corresponding to the point with the best alignment
score.

In an embodiment, the edgel based calibration module
950 uses an iterative modification based approach that
modifies the transform by varying the value of one of the
transform parameters and recomputes the alignment score
for the modified transform. The edgel based calibration
module 950 varies a transform parameter by adding a delta
value or subtracting a delta value from the transform param-
eter. The delta value for each parameter may be preconfig-
ured. The edgel based calibration module 950 varies each
transform parameter in each iteration and determines the
alignment scores for the total number of combinations of
transforms obtained by varying each transform parameter.
The edgel based calibration module 950 selects the combi-
nation of transform parameters that has the highest align-
ment score, thereby representing the current best alignment
between edges determined using the two sensors. The edgel
based calibration module 950 repeats this computation by
treating the current best transform as an initial transform and
varying the transform parameters again. The edgel based
calibration module 950 selects the best transform that results
in the highest alignment score corresponding to the best
alignment.

In an embodiment, the edgel based calibration module
950 combines the iterative modification based approach and
the exhaustive search based approach. For example, the
edgel based calibration module 950 initially performs the
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edgel based calibration module 950 to get closer to the
solution and then switches to exhaustive search based
approach to find the solution. In an embodiment, the edgel
based calibration module 950 switches to the exhaustive
search based approach if an aggregate measure based on the
alignment scores of the edges reaches above a threshold
value.

Besides real-world data representing scenes surrounding a
vehicle during normal driving of a vehicle, the proposed
techniques for performing edgel based calibration can also
be applied to a controlled environment (e.g., a garage)
decorated with calibration objects (e.g., reflective tapes on
the walls and ground). The techniques do not assume any
prior knowledge of scene structure, as long as there are
range and/or intensity boundaries in the lidar points, and
corresponding edgels in the images.

In an embodiment, to detect parameter drift over time, the
HD map system uses an application comprising a user
interface acting as a viewer installed in the vehicle. A user,
for example, a driver of the vehicle views images shown in
the viewer displaying reflective tapes in the environment and
checks if point projection looks good. The application
displays widgets that receive input from the user for modi-
fying roll/pitch/yaw and tx/ty/tz by small amounts to
improve point-to-pixel alignment. The application quantifies
the amount of drift based on the received user input and
sends an alert for re-calibration if needed.

Computing Machine Architecture

FIG. 24 is a block diagram illustrating components of an
example machine able to read instructions from a machine-
readable medium and execute them in a processor (or
controller). Specifically, FIG. 24 shows a diagrammatic
representation of a machine in the example form of a
computer system 2400 within which instructions 2424 (e.g.,
software) for causing the machine to perform any one or
more of the methodologies discussed herein may be
executed. In alternative embodiments, the machine operates
as a standalone device or may be connected (e.g., net-
worked) to other machines. In a networked deployment, the
machine may operate in the capacity of a server machine or
a client machine in a server-client network environment, or
as a peer machine in a peer-to-peer (or distributed) network
environment.

The machine may be a server computer, a client computer,
a personal computer (PC), a tablet PC, a set-top box (STB),
a personal digital assistant (PDA), a cellular telephone, a
smartphone, a web appliance, a network router, switch or
bridge, or any machine capable of executing instructions
2424 (sequential or otherwise) that specify actions to be
taken by that machine. Further, while only a single machine
is illustrated, the term ‘“machine” shall also be taken to
include any collection of machines that individually or
jointly execute instructions 2424 to perform any one or more
of the methodologies discussed herein.

The example computer system 2400 includes a processor
2402 (e.g., a central processing unit (CPU), a graphics
processing unit (GPU), a digital signal processor (DSP), one
or more application specific integrated circuits (ASICs), one
or more radio-frequency integrated circuits (RFICs), or any
combination of these), a main memory 2404, and a static
memory 2406, which are configured to communicate with
each other via a bus 2408. The computer system 2400 may
further include graphics display unit 2410 (e.g., a plasma
display panel (PDP), a liquid crystal display (LCD), a
projector, or a cathode ray tube (CRT)). The computer
system 2400 may also include alphanumeric input device
2412 (e.g., a keyboard), a cursor control device 2414 (e.g.,
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a mouse, a trackball, a joystick, a motion sensor, or other
pointing instrument), a storage unit 2416, a signal generation
device 2418 (e.g., a speaker), and a network interface device
2420, which also are configured to communicate via the bus
2408.

The storage unit 2416 includes a machine-readable
medium 2422 on which is stored instructions 2424 (e.g.,
software) embodying any one or more of the methodologies
or functions described herein. The instructions 2424 (e.g.,
software) may also reside, completely or at least partially,
within the main memory 2404 or within the processor 2402
(e.g., within a processor’s cache memory) during execution
thereof by the computer system 2400, the main memory
2404 and the processor 2402 also constituting machine-
readable media. The instructions 2424 (e.g., software) may
be transmitted or received over a network 2426 via the
network interface device 2420.

While machine-readable medium 2422 is shown in an
example embodiment to be a single medium, the term
“machine-readable medium” should be taken to include a
single medium or multiple media (e.g., a centralized or
distributed database, or associated caches and servers) able
to store instructions (e.g., instructions 2424). The term
“machine-readable medium” shall also be taken to include
any medium that is capable of storing instructions (e.g.,
instructions 2424) for execution by the machine and that
cause the machine to perform any one or more of the
methodologies disclosed herein. The term “machine-read-
able medium” includes, but not be limited to, data reposi-
tories in the form of solid-state memories, optical media, and
magnetic media.

Additional Configuration Considerations

The foregoing description of the embodiments of the
invention has been presented for the purpose of illustration;
it is not intended to be exhaustive or to limit the invention
to the precise forms disclosed. Persons skilled in the relevant
art can appreciate that many modifications and variations are
possible in light of the above disclosure.

For example, although the techniques described herein are
applied to autonomous vehicles, the techniques can also be
applied to other applications, for example, for displaying
HD maps for vehicles with drivers, for displaying HD maps
on displays of client devices such as mobile phones, laptops,
tablets, or any computing device with a display screen.
Techniques displayed herein can also be applied for display-
ing maps for purposes of computer simulation, for example,
in computer games, and so on.

Some portions of this description describe the embodi-
ments of the invention in terms of algorithms and symbolic
representations of operations on information. These algo-
rithmic descriptions and representations are commonly used
by those skilled in the data processing arts to convey the
substance of their work effectively to others skilled in the
art. These operations, while described functionally, compu-
tationally, or logically, are understood to be implemented by
computer programs or equivalent electrical circuits, micro-
code, or the like. Furthermore, it has also proven convenient
at times, to refer to these arrangements of operations as
modules, without loss of generality. The described opera-
tions and their associated modules may be embodied in
software, firmware, hardware, or any combinations thereof.

Any of the steps, operations, or processes described
herein may be performed or implemented with one or more
hardware or software modules, alone or in combination with
other devices. In one embodiment, a software module is
implemented with a computer program product comprising
a computer-readable medium containing computer program
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code, which can be executed by a computer processor for
performing any or all of the steps, operations, or processes
described.

Embodiments of the invention may also relate to an
apparatus for performing the operations herein. This appa-
ratus may be specially constructed for the required purposes,
and/or it may comprise a general-purpose computing device
selectively activated or reconfigured by a computer program
stored in the computer. Such a computer program may be
stored in a tangible computer readable storage medium or
any type of media suitable for storing electronic instructions,
and coupled to a computer system bus. Furthermore, any
computing systems referred to in the specification may
include a single processor or may be architectures employ-
ing multiple processor designs for increased computing
capability.

Embodiments of the invention may also relate to a com-
puter data signal embodied in a carrier wave, where the
computer data signal includes any embodiment of a com-
puter program product or other data combination described
herein. The computer data signal is a product that is pre-
sented in a tangible medium or carrier wave and modulated
or otherwise encoded in the carrier wave, which is tangible,
and transmitted according to any suitable transmission
method.

Finally, the language used in the specification has been
principally selected for readability and instructional pur-
poses, and it may not have been selected to delineate or
circumscribe the inventive subject matter. It is therefore
intended that the scope of the invention be limited not by this
detailed description, but rather by any claims that issue on
an application based hereon.

What is claimed is:

1. A non-transitory computer readable storage medium
storing instructions for performing calibration of sensors of
a vehicle, wherein the instructions when executed by a
processor, cause the processor to perform the steps includ-
ing:

receiving a first lidar scan of a first view comprising a

pattern, the first lidar scan captured by a lidar mounted
on an autonomous vehicle, wherein the pattern is
positioned less that a first threshold distance from the
autonomous vehicle;

receiving a first camera image of the first view, the first

camera image captured by a camera mounted on the
autonomous vehicle;

determining an approximate lidar-to-camera transform

based on the first lidar scan of the first view and the first
camera image of the first view;
receiving a second lidar scan of a second view comprising
the pattern, the second lidar scan captured by the lidar
mounted on the autonomous vehicle, wherein the pat-
tern is positioned greater than a second threshold
distance from the autonomous vehicle;
receiving, by a camera mounted on the autonomous
vehicle, a second camera image of the second view;

determining an accurate lidar-to-camera transform based
on the location of the pattern in the second lidar scan
and the location of the pattern in the camera image of
the second view;

receiving sensor data comprising images received from

the camera and lidar scans from the lidar;
generating a high definition map based on the sensor data
using the accurate lidar-to-camera transform; and

storing the high definition map in a computer readable
storage medium for use in navigating the autonomous
vehicle.
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2. The non-transitory computer readable storage medium
of claim 1, wherein the instructions when executed by the
processor, further cause the processor to perform steps
including:

sending signals to the controls of the autonomous vehicle

based on the high definition map.

3. The non-transitory computer readable storage medium
of claim 1, wherein instructions for determining the accurate
lidar-to-camera transform comprises instructions for:

detecting location of the pattern in the camera image of

the second view; and

determining points on the pattern in the second lidar scan

based on the approximate lidar-to-camera transform
and the points on the pattern in the image of the second
view.

4. The non-transitory computer readable storage medium
of claim 1, wherein the camera is a left camera, and the
camera image is a left camera image, wherein the instruc-
tions when executed by the processor, further cause the
processor to perform steps including:

receiving, by a right camera mounted on the autonomous

vehicle, a right camera image of the second view;

for a plurality of points on the pattern:

detecting a first location of the point from the left
camera image;

detecting a second location of point from the right
camera image;

triangulating the first location and the second location
to obtain a 3D location of the point in camera
coordinates; and

determining 3D coordinates of the point by applying
the approximate lidar-to-camera transform to the 3D
location of the point;

fitting a dominant plane within the plurality of points; and

adjusting locations of one or more 3D points by projecting

the one or more 3D points to the dominant plane.

5. The non-transitory computer readable storage medium
of claim 1, wherein the instructions when executed by the
processor, further cause the processor to perform steps
including:

determining a bounding polygon of the pattern using the

camera image;

projecting a set of 3D points of lidar scan onto the camera

image;

identifying a subset of 3D points of the lidar scan such

that a projected point corresponding to each of the
subset of 3D points is within a threshold of the bound-
ing polygon;

fitting a dominant plane within the subset of 3D points;

and

adjusting locations of one or more 3D points by projecting

the one or more 3D points to the dominant plane.

6. The non-transitory computer readable storage medium
of claim 1, wherein the instructions when executed by the
processor, further cause the processor to perform steps
including:

monitoring portions of viewing area of at least one of the

camera or lidar that are covered by the pattern in sensor
data captured; and

determining a portion of the viewing area that is not

covered by the pattern in sensor data captured; and
determining the position of the pattern for subsequently

capturing sensor data based on the portion of the

viewing area that is not covered by the pattern.
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7. The non-transitory computer readable storage medium
of claim 6, wherein the instructions when executed by the
processor, further cause the processor to perform steps
including:

transmitting information describing the location for plac-

ing the pattern corresponding to the determined posi-
tion.

8. The non-transitory computer readable storage medium
of claim 1, wherein the instructions when executed by the
processor, further cause the processor to perform steps
including:

determining position of points on the lidar scan based on

intensity data in the lidar scan.

9. A method for performing calibration of sensors of a
vehicle, the method comprising:

receiving a first lidar scan of a first view comprising a

pattern, the first lidar scan captured by a lidar mounted
on an autonomous vehicle, wherein the pattern is
positioned less that a first threshold distance from the
autonomous vehicle;

receiving a first camera image of the first view, the first

camera image captured by a camera mounted on the
autonomous vehicle;

determining an approximate lidar-to-camera transform

based on the first lidar scan of the first view and the first
camera image of the first view;
receiving a second lidar scan of a second view comprising
the pattern, the second lidar scan captured by the lidar
mounted on the autonomous vehicle, wherein the pat-
tern is positioned greater than a second threshold
distance from the autonomous vehicle;
receiving, by a camera mounted on the autonomous
vehicle, a second camera image of the second view;

determining an accurate lidar-to-camera transform based
on the location of the pattern in the second lidar scan
and the location of the pattern in the camera image of
the second view;

receiving sensor data comprising images received from

the camera and lidar scans from the lidar;
generating a high definition map based on the sensor data
using the accurate lidar-to-camera transform; and

storing the high definition map in a computer readable
storage medium for use in navigating the autonomous
vehicle.

10. A computer system comprising:

one or more processors; and

a non-transitory computer readable storage medium stor-

ing instructions for performing calibration of sensors of

a vehicle, wherein the instructions when executed by a

processor, cause the processor to perform the steps

including:

receiving a first lidar scan of a first view comprising a
pattern, the first lidar scan captured by a lidar
mounted on an autonomous vehicle, wherein the
pattern is positioned less that a first threshold dis-
tance from the autonomous vehicle;

receiving a first camera image of the first view, the first
camera image captured by a camera mounted on the
autonomous vehicle;

determining an approximate lidar-to-camera transform
based on the first lidar scan of the first view and the
first camera image of the first view;

receiving a second lidar scan of a second view com-
prising the pattern, the second lidar scan captured by
the lidar mounted on the autonomous vehicle,
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wherein the pattern is positioned greater than a
second threshold distance from the autonomous
vehicle;

receiving, by a camera mounted on the autonomous
vehicle, a second camera image of the second view;

determining an accurate lidar-to-camera transform
based on the location of the pattern in the second
lidar scan and the location of the pattern in the
camera image of the second view;

receiving sensor data comprising images received from
the camera and lidar scans from the lidar;

generating a high definition map based on the sensor
data using the accurate lidar-to-camera transform;
and

storing the high definition map in a computer readable
storage medium for use in navigating the autono-
mous vehicle.
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