
(12) STANDARD PATENT (11) Application No. AU 2017230184 B2
(19) AUSTRALIAN PATENT OFFICE

(54) Title
Structure learning in convolutional neural networks

(51) International Patent Classification(s)
G06N 3/02 (2006.01)

(21) Application No: 2017230184 (22) Date of Filing: 2017.03.13

(87) WIPO No: WO17/156547

(30) Priority Data

(31) Number (32) Date (33) Country
62/307,071 2016.03.11 US

(43) Publication Date: 2017.09.14
(44) Accepted Journal Date: 2021.10.07

(71) Applicant(s)
Magic Leap, Inc.

(72) Inventor(s)
Rabinovich, Andrew;Badrinarayanan, Vijay;Detone, Daniel;Rajendran,
Srivignesh;Lee, Douglas Bertram;Malisiewicz, Tomasz J.

(74) Agent / Attorney
Davies Collison Cave Pty Ltd, Level 14 255 Elizabeth St, Sydney, NSW, 2000, AU

(56) Related Art
US 6138109 A
WO 2005022343 A2

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization

International Bureau
(10) International Publication Number

(43) International Publication Date W O 2017/156547 A1
14 September 2017 (14.09.2017) W I P 0 I P C T

(51) International Patent Classification: (74) Agent: MEI, Peter C.; Vista IP Law Group, LLP, 2160
G06N 3/02 (2006.01) Lundy Ave., Suite 230, San Jose, California 95131 (US).

(21) International Application Number: (81) Designated States (unless otherwise indicated, for every
PCT/US2017/022206 kind of national protection available): AE, AG, AL, AM,

.22) .neraioa i AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
(22) InternationalFingDate: 13 March 2017 (13.03.2017) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM,

DO, DZ, EC, EE, EG, ES, Fl, GB, GD, GE, GH, GM, GT,
(25) Filing Language: English HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KH, KN,

KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA,
(26) Publication Language: English MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG,

(30) Priority Data: NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS,

62/307,071 11 March 2016 (11.03.2016) US RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY,
TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN,

(71) Applicant: MAGIC LEAP, INC. [US/US]; 1855 Griffin ZA, ZM, ZW.
Road,SuiteB454,DaniaBeach,Florida33004(US). (84) Designated States (unless otherwise indicated, for every

(72) Inventors: RABINOVICH, Andrew; 1855 Griffin Road, kind of regional protection available): ARIPO (BW, GH,
Suite B454, Dania Beach, Florida 33004 (US). BADRIN- GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,
ARAYANAN, Vijay; 222 Escuela Avenue, Apt. 172, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,
Mountain View, California 94040 (US). DETONE, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
Daniel; 955 Wisconsin Street, Unit 4, San Francisco, Cali- DK, EE, ES, Fl, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
fornia 94107 (US). RAJENDRAN, Srivignesh; 100 E. LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,
Middlefield Road, Apt. 5C, Mountain View, California SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
94043 (US). LEE, Douglas, Bertram; 630 Bair Island GW, KM, ML, MR, NE, SN, TD, TG).
Rd., Unit 105, Redwood City, California 94063 (US).
MALISIEWICZ, Tomasz, J.; 315 View St., Mountain Published:

View, California 94041 (US). - with international search report (Art. 21(3))

(54) Title: STRUCTURE LEARNING IN CONVOLUTIONAL NEURAL NETWORKS

Neural Network Computing Device 107

Structure Learning Module 109 I

Model 1103

Image
Data 101

Model n

Classified
Datall3

New Specialist
Layers111

105

115

Fig. 1

(57) Abstract: The present disclosure provides an improved approach to implement structure learning of neural networks by exploit
ing correlations in the data/problem the networks aim to solve. A greedy approach is described that finds bottlenecks of information
gain from the bottom convolutional layers all the way to the fully connected layers. Rather than simply making the architecture deep
er, additional computation and capacitance is only added where it is required.

WO 2017/156547 PCT/US2017/022206
1

STRUCTURE LEARNING IN CONVOLUTIONAL NEURAL NETWORKS

FIELD OF THE INVENTION

[0001] This disclosure pertains to computing networks, and more particularly to neural

networks configured to learn hierarchical representations from data.

BACKGROUND

[0002] Neural networks pertain to computational approaches that are loosely modeled

after the neural structures of biological brain processing that can be used for solving complex

computational problems. Neural networks are normally organized as a set of layers, where each

layer includes a set of interconnected nodes that include various functions. Weighted

connections implement functions that are processed within the network to perform various

analytical operations. Learning processes may be employed to construct and modify the

networks and the associated weights for the connectors within the network. By modifying the

connector weights, this permits the network to learn over time from past analysis to improve

future analysis results.

[0003] Neural networks may be employed to perform any appropriate type of data

analysis, but is particularly suitable to be applied to complex analysis tasks such as pattern

analysis and classification. Direct application of these techniques are therefore suitable, for

example, to implement machine vision functions such as recognition and classification of

specific objects and object classes from image data captured by digital imaging devices.

[0004] There are numerous types of neural networks that are known in the art. Deep

neural networks is a type of neural network where deep learning techniques are applied to

implement a cascade of many layers of nonlinear processing to perform analytical functions.

Deep learning algorithms transform their inputs through more layers than shallow learning

algorithms. At each layer, the signal is transformed by a processing unit, such as an artificial

neuron, whose parameters are learned through training.

[0005] A convolutional neural network is a type of neural network where the

connectivity pattern in the network is inspired by biological visual cortex functioning. Visual

WO 2017/156547 PCT/US2017/022206
2

fields are constructed through the network, where the response of an individual artificial neuron

to an input stimulus can be approximated mathematically by a convolution operation.

[0006] Convolutional deep neural networks have been implemented in the known art.

LeNet (LeCun et al. (1998), AlexNet (Krizhevsky et al. (2012), GoogLeNet (Szegedy et al.

(2015), and VGGNet (Simonyan & Zisserman (2015) are all examples of ConvNet architectures

that implement different types of deep neural networks. These models are quite different (e.g.,

different depth, width, and activation functions). However, these models are all the same in one

key respect - each one is a hand designed structure which embodies the architects' insights about

the problem at hand.

[0007] These networks follow a relatively straightforward recipe, starting with a

convolutional layer that learns low-level features resembling Gabor filters or some

representations thereof. The later layers encode higher-level features such as object parts (parts

of faces, cars, and so on). Finally, at the top, there is a layer that returns a probability distribution

over classes. While there approach provide some structure, in the label space, to the output that

is produced by a trained network, the issue is that this structure is seldom utilized when these

networks are designed and trained.

[0008] Structure learning in probabilistic graphical models have been suggested, where

the conventional algorithms for structure learning in deep convolutional networks typically fall

into one of two categories: those that make the nets smaller, and those that make the nets better.

One suggested approach focuses on taking unwieldy pretrained networks and squeezing them

into networks with a smaller memory footprint, thus requiring fewer computational resources.

This class of techniques follows the "teacher-student" paradigm where the goals is to create a

student network which mimics the teacher. This means that one needs to start with both an

Oracle architecture and its learned weights - training the student only happens later. When

distilling an ensemble of specialists on very large datasets, the computationally expensive

ensemble training step must be performed first.

[0009] Feng et al, "Learning the Structure of Deep Convolutional Networks" is an

example of a technique for automatically learning aspects of the structure of a deep model. This

approach uses an Indian Buffet Process to propose a new convolutional neural network model to

identify a structure, where after the structure is determined, pruning is performed to create a

more compact representation of the network. However, one drawback with this approach is that

WO 2017/156547 PCT/US2017/022206
3

the number of layers remain static, where it is only the known individual layers within the static

number of layers that is augmented to be more or less complex through the structure learning

process. As such, this approach is unable to identify any new layers that may be needed to

optimize the structure.

[0010] Therefore, there is a need for an improved approach to implement structure

learning for convolutional neural networks.

WO 2017/156547 PCT/US2017/022206
4

SUMMARY

[0011] Some embodiments of the invention are directed to an improved approach to

implement structure learning for neural networks. The approach starts out with a network,

provides the network with a problem having labeled data, and then reviews the structure of the

output produced by this network. The network's architecture is then modified to obtain a better

solution for the specific problem. Rather than having experts come up with highly complicated

and domain-specific network architectures, this approach allows the data to drive the architecture

of the network that will be used for a specific task.

[0012] According to some embodiments, a neural network can be improved by (a)

identifying the information gain bottleneck in its structure, (b) applying the structure of the

predictions to alleviate the bottleneck, and finally (c) determining the depth of specialists

pathways.

[0013] Some embodiments implement structure learning of neural networks by

exploiting correlations in the data/problem the networks aim to solve, where a greedy approach

is performed to find bottlenecks of information gain from the bottom convolutional layers all the

way to the fully connected layers. In some embodiments, a network is created at an initial point

in time, and a set of outputs are generated from the network when applied to a designated task,

e.g., to perform image recognition/object classification tasks. Next, the various layers within the

network model are analyzed to identify the lowest performing layer within the model.

Additional structures are then injected into the model to improve the performance of the model.

In particular, new specialist layers are inserted into the model at the identified vertical position to

augment the performance of the model. Rather than just having one general purpose pathway to

perform classification for multiple types of objects, a first new specialist layer may be added just

to address classification of a first type of object and a second new specialist layer may be added

just to address classification of a second type of object. By taking this action, over time, each of

these specialist components becomes highly knowledgeable about its dedicated area of expertise,

since the specialist is forced to learn extensive levels of detail about the specific subdomain

assigned to that specialist component. In this way, the model is improved by adding new layers

that will directly address areas of classification that have been specifically identified as being

sub-optimal compared to other parts of the network. This same process continues through the

rest of the model to identify any additional layers that should be modified and/or augmented.

WO 2017/156547 PCT/US2017/022206
5

[0014] In certain embodiments, a "loss" mechanism (e.g., a loss layer, a loss function,

and/or cost function) is included at each layer of the network. Instead of just having a single top

level loss layer, additional loss layers are added to the other layer within the network, e.g., where

a deep neural network has multiple loss layers at intermediate, and final, stages of feature

extraction, where each loss layer measures the performance of the network up to that point in

depth. Predictions can be generated at each loss layer and converted to the respective confusion

matrice, forming a tensor T containing all confusion matrices for the network. By analyzing the

structure of T and its elements, the aim is to modify and augment the existing structure of the

network both in terms of depth and breadth. To maximize feature sharing and reduce

computation on one hand, yet to increase accuracy on the other, the aim is to restructure the

existing networks' structure. To do so, the approach partitions the networks' depth as well and

breadth according its current performance. Therefore, vertical splitting is performed in some

embodiments, e.g., by computing the dot product between the different layers. To partition the

architecture in depth, some embodiments compare the neighboring subspaces that correspond to

the consecutive loss function evaluations at neighboring layers. In addition, horizontal splitting

is performed, e.g., by performing K-way Bifurcation. To improve the performance of the

network at a particular layer, its structure (e.g., fully convolutional), may require augmentation.

Parts of the network focus on general knowledge (generalist), while others concentrate on a

small subset of labels that have high similarity among each other (specialist). Knowledge

achieved by layer i will be used to perform the first horizontal partitioning of the network. The

processing continues (e.g., in a recursive manner) until the top of the network is reached. At this

point, the final model is stored into a computer readable medium.

[0015] Some embodiments pertain to the deep learning of the specialists. While the

structure of the generalist is known to perform well on general knowledge, it is not guaranteed

that this same structure will perform well in a specialist where the task of the specialist may

require a more simple or complex representation. Some embodiments allow the structure of each

specialist to deviate from the structure of the generalist via depth-wise splitting, in a data-driven

manner.

[0016] Additional variations of these techniques may be applied in alternate

embodiments. For example, for every pair of splits (vertical or horizontal), a network can be

retrained to get classification at a given pathway. Techniques can be applied in certain

6

embodiments for speeding this up and/or avoiding it at all, such as by agglomerative clustering

and/or splitting. Further, given confusion matrix Ci, and its partitioning K, agglomerative

clustering may be performed on each of the K parts of the Ci to estimate further splits. This leads

to the cost Xu. Cost Xs is the cost of supervised grouping, learning new confusion matrices at high

levels of the network. Xu is less than or equal to Xs + Tau, where Tau is the upper bound on the

clustering error.

[0017] In some embodiments, variations are considered with respect to convolutional layer

versus fully-connected (1xi convolution). If splitting is required among the convolutional layers

(even fully convolutional layers, such as in the case of semantic segmentation), then instead of

changing the linear size of the layer (fc in this case), the depth of dimension may be changed to

reflect the number of classes (this is the extension to FCN).

[0018] Further variations and embodiments may be produced using collapsing or adding

or vertical layers per pathway, changing the size of layer as a function of label space, and/or

extension to detection and RNN (unrolling in the same way by comparing confusions).

[0019] In yet another embodiment, techniques may be applied to identify when there may

be too many layers in the network, such that fewer layers would be adequate for the required

processing tasks. As noted above, one can reliably add depth to a network and see an improvement

in performance given enough training data. However, this added boost in performance may come

at a cost in terms of FLOPs and memory consumption. In some embodiments, the network is

optimized with this tradeoff in mind with the usage of an all-or-nothing highway network, which

learns whether or not a given layer of computation in the network is used via a binary decision. If

a given computational block is used, a penalty is incurred. By varying this penalty term, one can

customize the learning process with a target architecture in mind: an embedded system would

prefer a much leaner architecture then a cloud-based system.

[0019A] In another embodiment there is provided a method implemented with a processor,

comprising: creating a neural network; generating output from the neural network; identifying a

low performing layer from the neural network, the low performing layer having a relatively lower

performance than a performance of another layer in the neural network; inserting a new specialist

layer at the low performing layer; and repeating the act of identifying and the act of inserting until

a top of the neural network is reached.

6A

[0019B] In another embodiment there is provided a system, comprising: a processor; a

memory for holding programmable code; and wherein the programmable code includes

instructions for creating a neural network; generating output from the neural network; identifying

a low performing layer from the neural network, the low performing layer having a relatively lower

performance than a performance of another layer in the neural network; inserting a new specialist

layer at the low performing layer; and repeating the act of identifying and the act of inserting until

a top of the neural network is reached.

[0019C] In another embodiment there is provided a computer program product embodied on

a non-transitory computer readable medium, the non-transitory computer readable medium having

stored thereon a sequence of instructions which, when executed by a processor causes the

processor to execute a method comprising: creating a neural network; generating output from the

neural network; identifying a low performing layer from the neural network, the low performing

layer having a relatively lower performance than a performance of another layer in the neural

network; inserting a new specialist layer at the low performing layer; and repeating the act of

identifying and the act of inserting until a top of the neural network is reached.

[0020] Further details of aspects, features and advantages of the invention are described

below in the detailed description, drawings, and claims. Both the foregoing general description

and the following detailed description are exemplary and explanatory, and are not intended to be

limiting as to the scope of the invention.

WO 2017/156547 PCT/US2017/022206
7

BRIEF DESCRIPTION OF THE DRAWINGS

[0021] The drawings illustrate the design and utility of various embodiments of the

present invention. It should be noted that the figures are not drawn to scale and that elements of

similar structures or functions are represented by like reference numerals throughout the figures.

In order to better appreciate how to obtain the above-recited and other advantages and objects of

various embodiments of the invention, a more detailed description of the present inventions

briefly described above will be rendered by reference to specific embodiments thereof, which are

illustrated in the accompanying drawings. Understanding that these drawings depict only typical

embodiments of the invention and are not therefore to be considered limiting of its scope, the

invention will be described and explained with additional specificity and detail through the use

of the accompanying drawings in which:

[0022] Fig. 1 illustrates an example system which may be employed in some

embodiments of the invention to implement structure learning for neural networks.

[0023] Fig. 2 shows a flowchart of an approach to implement structure learning for

neural networks according to some embodiments of the invention.

[0024] Fig. 3 illustrates a more detailed flowchart of an approach to implement structure

learning for neural networks according to some embodiments.

[0025] Figs. 4A-4F illustrate various embodiments of the invention.

[0026] Figs. 5A-5B illustrate an approach to identify when there may be too many layers

in the network.

[0027] Figs. 6A-6D illustrate general AR system component options for various

embodiments.

[0028] Fig. 7 depicts a computerized system on which some embodiments of the

invention can be implemented

WO 2017/156547 PCT/US2017/022206
8

DETAILED DESCRIPTION

[0029] Some embodiments of the invention are directed to an improved approach to

implement structure learning for neural networks. The approach starts out with a network,

provides the network with a problem having labeled data, and then reviews the structure of the

output produced by this network. The network's architecture is then modified to obtain a better

solution for the specific problem. Rather than having experts come up with highly complicated

and domain-specific network architectures, this approach allows the data to drive the architecture

of the network that will be used for a specific task.

[0030] Fig. 1 illustrates an example system which may be employed in some

embodiments of the invention to implement structure learning for neural networks. The system

may include one or more users that interface with and operate a computing system 107 or 115 to

control and/or interact with the system. The system comprises any type of computing station that

may be used to operate, interface with, or implement a neural network computing device 107 or

user computing device 115. Examples of such computing systems include for example, servers,

workstations, personal computers, or remote computing terminals connected to a networked or

cloud-based computing platform. The computing system may comprise one or more input

devices for the user to provide operational control over the activities of the system, such as a

mouse or keyboard to manipulate a pointing object. The computing system may also be

associated with a display device, such as a display monitor, for control interfaces and/or analysis

results to users of the computing system.

[0031] In some embodiments, the system is employed to implement computer vision

functionality. As such, the system may include one or more image capture devices, such as

camera 103, to capture image data 101 for one or more objects 105 in the environment at which

the system operates. The image data 101 and/or any analysis results (e.g., classification output

data 113) may be stored in one or more computer readable storage mediums. The computer

readable storage medium includes any combination of hardware and/or software that allows for

ready access to the data that is located at the computer readable storage medium. For example,

the computer readable storage medium could be implemented as computer memory and/or hard

drive storage operatively managed by an operating system, and/or remote storage in a networked

storage device, such as networked attached storage (NAS), storage area network (SAN), or cloud

WO 2017/156547 PCT/US2017/022206
9

storage. The computer readable storage medium could also be implemented as an electronic

database system having storage on persistent and/or non-persistent storage.

[0032] The neural network computing device 107 includes a structure learning module

109 to modify an original model 1 into an improved model n, where model n is the results of

possibly multiple iterative processes to modify the layers within the model. The model n

preferably includes a depth and breadth in knowledge, essentially a mixture of experts. The

model should understand the difference between coarse categories, yet at the same time

understands the difference for fine grained classes across various domains. New specialist layers

111 are added to the model as necessary to implement these goals. The design of such a system

is governed by the constraint of adding resources solely where they are required. Simply

expanding the network by making it arbitrarily deeper and wider does not scale due to

computational constraints and thus the present approach avoids the need for extra regularization

tricks.

[0033] Fig. 2 shows a flowchart of an approach to implement structure learning for

neural networks according to some embodiments of the invention. The present approach

implements structure learning of neural networks by exploiting correlations in the data/problem

the networks aim to solve. A greedy approach is described that finds bottlenecks of information

gain from the bottom convolutional layers all the way to the fully connected layers. Rather than

simply making the architecture deeper arbitrarily, additional computation and capacitance is only

added where it is required.

[0034] At 131, a network is created at an initial point in time. Any suitable approach can

be used to create the network. For example, conventional Alexnet or Googlenet approaches may

be used to generate the network.

[0035] Next, at 133, a set of outputs are generated from the network when applied to a

designated task, e.g., to perform image recognition/object classification tasks. For example,

assume that a number of people and animals are within an environment, and the assigned task is

to analyze the image data to classify the different people and types of animals that can be

observed within the environment. Each layer of the model provides certain outputs for the

activities performed within that layer. The output has certain structures to it which can be

reviewed to ascertain relationships between classes in the classification problem being solved.

WO 2017/156547 PCT/US2017/022206
10

[0036] At 135, the various layers within the network model are analyzed to identify the

lowest performing layer within the model. For example, assume a model having ten layers,

where the layers from layers 1 through 3 and layers 5 through 10 each provide a 10%

improvement in classification accuracy, but layer 4 only provides a 1% improvement. In this

situation, layer 4 would be identified as the lowest performing layer.

[0037] Next, at 137, additional structures are injected into the model to improve the

performance of the model. In particular, new specialist layers are inserted into the model at the

identified vertical position to augment the performance of the model.

[0038] To explain this aspect of the inventive embodiment, assume that the model is

intended to perform classifications of the people and animals in the environment as illustrated in

Fig. 4A. Here, the image capture device captures images of different people (e.g., a woman 401,

a man 403, and a child 405). In addition, the environment includes multiple animals (e.g., a cat

407, a dog 409, and a mouse 411). Further assume that the existing model is able to successfully

distinguish the people (401, 403, 405) from the animals (407, 409, 411), but appears to have a

more difficult time distinguishing the different people from each other or distinguishing the

different types of animals from one another. If one reviews the actual structure that can be

learned from a network (e.g., an Oracle network), it is clear that the network includes learning

dependence between the predictions that is being made. However, in traditional deep-learning

architecture design, this is not utilized. If one looks even closer at this structure, it is evident that

the system is learning concepts that are actually visually similar to one another. Referring to Fig.

4B, an example scatter plot in 3D of classes is shown to illustrate an example structure of

predictions for a fully-trained AlexNet, clustered into multiple groups. The distance between

points corresponds to the visual similarity between concepts. Here, it can be seen that there is a

first tight clustering of the points relative to the people objects and a second tight clustering of

points relative to the animal objects. It is this phenomena that may contributes to difficulties in a

model being able to distinguish one person from another or one animal from another.

[0039] In this situation in some embodiments of the invention, rather than just having one

general purpose pathway to perform classification for all of these types of objects, a first new

specialist layer may be added just to address classification of people and a second new specialist

layer may be added just to address classification of animals. One specialist (people specialist

layer) would therefore be assigned to handle data for portion 413 of the chart in Fig. 4B while

WO 2017/156547 PCT/US2017/022206
11

the second specialist (animal specialist layer) would be assigned to handle data for portion 415 in

Fig. 4B. By taking this action, over time, each of these specialist components becomes highly

knowledgeable about its dedicated area of expertise, since the specialist is forced to learn

extensive levels of detail about the specific subdomain assigned to that specialist component. In

this way, the model is improved by adding new layers that will directly address areas of

classification that have been specifically identified as being sub-optimal compared to other parts

of the network.

[0040] This same process continues through the rest of the model to identify any

additional layers that should be modified and/or augmented. Therefore, a determination is made

at 139 whether the processing has reached the top of the network. If so, then the model is

finalized at 141. If not, then the process returns back to 133 to continue the process until the top

of the network is reached.

[0041] This approach can be taken to modify and improve the architecture of any off-the

shelf convolutional neural network. By following the inventive approach of the present

disclosure, any neural network can be improved by (a) identifying the information gain

bottleneck in its structure, (b) applying the structure of the predictions to alleviate the bottleneck,

and finally (c) determining the depth of specialists pathways.

[0042] Fig. 3 illustrates a more detailed flowchart of an approach to implement structure

learning for neural networks according to some embodiments. For the purposes of this flow,

assume that a network (e.g., a monolithic network) has already been created pursuant to any

suitable approach such as Alexnet or Googlenet.

[0043] At 151, a "loss" mechanism (e.g., a loss layer, a loss function, and/or cost

function) is included at each layer of the network. A loss mechanism corresponds to a function

that maps an event or value to a representation of a cost or error value associated with processing

within the neural network. As shown in Fig. 4C, instead of just having a single top-level loss

layer 421, additional loss layers 423 are added to the other layer within the network. Therefore,

this figure shows an example of a deep neural network with multiple loss layers at intermediate,

and final, stages of feature extraction, where each loss layer measures the performance of the

network up to that point in depth. Recall that the goal is to augment and modify the network

architecture to solve a given problem as best as possible by modifying its architecture to best fit

WO 2017/156547 PCT/US2017/022206
12

the task. Therefore, the approach analyzes the predictions, formed at the various loss layers

throughout the network, and groups neuron activations based on the confusion between them.

[0044] As illustrated in Figs. 4D and 4E, predictions generated at each loss layer and

converted to the respective confusion matrices (as shown in Fig. 4D), forming a tensor T

containing all confusion matrices for the network, e.g., Oracle network (as shown in Fig. 4E).

By analyzing the structure of T and its elements, the aim is to modify and augment the existing

structure of the network both in terms of depth and breadth.

[0045] To explain, let Ci be the confusion matrix of classes and loss layer i, then:

RD ,i) 7A(i

112 (21)
L; D7"'AiD1 (3)

O = top (eig (L)) (4)

where Ai is the affinity matrix at loss layer i, Di is the diagonal matrix, Li is the graph Laplacian,

and Ci is a subspace spanned by the leading eigenvectors of the graph Laplacian of the affinity

matrix produced by Ci. Consequently, tensor:

[0046] To maximize feature sharing and reduce computation on one hand, yet to increase

accuracy on the other, the aim is to restructure the existing networks' structure. To do so, the

approach partitions the networks' depth as well and breadth according its current performance.

[0047] Therefore, at 153, vertical splitting is performed, e.g., by computing the dot

product between the different layers. To partition the architecture in depth, some embodiments

compare the neighboring subspaces that correspond to the consecutive loss function evaluations

at neighboring layers using the following equation:

1 (

WO 2017/156547 PCT/US2017/022206
13

[0048] Here, ai and 0i;i denote the approximate leading eigenvectors of the confusion

matrices for loss functions at levels i and i + 1, and Fdenotes the Frobenius norm. Formally, ai
and Ci1 represent NE-dimensional subspaces and § (i, i+1) is the normalized complement angle

between them. It is important to note that this measure only depends on the subspace spanned

by the columns of ai and 1 and thus is invariant to rotations of the eigenvectors. Also, 4 is

constrained within [0, 1], with levels i and i + 1 are deemed similar in structure if (i, i+1) is

close to zero and is exactly 1 when (i, i+1) are orthogonal. To construct a complete similarity

relation between levels of scale space, all neighboring pairs of losses layers are compared using

4. With the established similarity relations it is now possible to address the problem of

partitioning the monolithic network architecture.

[0049] Let 4 be the vector of all sequential pairs of i and i+1, where#i= (i, i+1).

Values of #i closest to zero indicate the lowest information gain between layers i and i+1. Thus,

argmin(#) is the optimal initial split of the monolithic architecture. Splitting the architecture in

depth facilitates feature sharing while identifying points of redundancy (zero information gain).

[0050] At 155, horizontal splitting is performed, e.g., by performing K-way Bifurcation.

To improve the performance of the network at a particular layer, its structure (e.g., fully

convolutional), may require augmentation. Parts of the network focus on general knowledge

(generalist), while others concentrate on a small subset of labels that have high similarity among

each other (specialist). Knowledge achieved by layer i will be used to perform the first horizontal

partitioning of the network.

[0051] Formally, given Ci, compute Li as per Equations (1), (2), and (3) as disclosed

above. An Eigengap is determined by analyzing the leading eigenvalues of the graph Laplacian

Li to determine the number of new pathways (specialists). Original data is projected onto the top

N leading eigengectors of Li; in RN, the data is further clustered into k classes, where k equals the

Eigengap. An example of such projection and grouping is illustrated in Fig. 4B. This procedure

will lead to the modification of the architecture as shown in Fig. 4F, which illustrates a network

407 after the first split.

[0052] Once the first split has been established, then all new pathways are treated as the

original network. The splitting procedure are applied until no more labels are left to split or

100% accuracy is achieved.

WO 2017/156547 PCT/US2017/022206
14

[0053] At 157, the above processing continues (e.g., in a recursive manner) until the top

of the network is reached. At this point, the final model is stored into a computer readable

medium.

[0054] This portion of the disclosure pertains to the deep learning of the specialists.

While the structure of the generalist is known to perform well on general knowledge, it is not

guaranteed that this same structure will perform well in a specialist where the task of the

specialist may require a more simple or complex representation. Some embodiments allow the

structure of each specialist to deviate from the structure of the generalist via depth-wise splitting,

in a data-driven manner.

[0055] Let L = {L1, L 2, Ln} be a set of fully-connected layers to be considered for

further splitting. Consider a layer Li in L that produces an output y. One can write the

transformation that it applies to its input as y = a(f(x)), where a() applies a non-linearity such as

ReLU andf(x) = Wx where W is a learned weight matrix of dimensions M x N and x is input to

this layer having dimensions N x 1. To perform a split, the approach decomposes the

transformation of Li into y = a1(g(a2(h(x))), where a1() and C2() are activation functions and g(x)

= Wix and h(x) = W2x in which W 1 has dimensions N x N and W 2 has dimensions M x N. The

approach chooses:

oJ) = (6)

g(x) = v'h (7)

() (8)

h(&) v~'V x (9)

[0056] Here, W= U YVT is the SVD factorization of W and Iis the identity matrix. With

this change, the transformation of layer Li is unchanged. To increase the complexity of the

learned representation of Li one could set C2 as a non-linear activation function, such as ReLU.

However, adding this non-linearity causes an abrupt change in the learned representation of Li

and may cause the network to restart much of its learning from scratch. Instead, one can insert a

PReLU non-linearity and initialize its single parameter a to be 1, which is equivalent to I in

equation 8. This provides the specialist with a smooth mechanism for introducing a new non

linearity at this layer.

WO 2017/156547 PCT/US2017/022206
15

[0057] Given the set of layers L, one can apply the above strategy to each layer Li

independently and greedily choose the split which provides the best improvement on the training

loss. This process can be repeated recursively to our the set of layers Lew = {LI, L 2 . . . , Ln,

[0058] Additional variations of these techniques may be applied in alternate

embodiments. For example, for every pair of splits (vertical or horizontal), a network can be

retrained to get classification at a given pathway. Techniques can be applied in certain

embodiments for speeding this up and/or avoiding it at all, such as by agglomerative clustering

and/or splitting. Further, given confusion matrix Ci, and its partitioning K, agglomerative

clustering may be performed on each of the K parts of the Ci to estimate further splits. This

leads to the cost Xu. Cost Xs is the cost of supervised grouping, learning new confusion matrices

at high levels of the network. Xu is less than or equal to X, + Tau, where Tau is the upper bound

on the clustering error.

[0059] In some embodiments, variations are considered with respect to convolutional

layer versus fully-connected (1xi convolution). If splitting is required among the convolutional

layers (even fully convolutional layers, such as in the case of semantic segmentation), then

instead of changing the linear size of the layer (fc in this case), the depth of dimension may be

changed to reflect the number of classes (this is the extension to FCN).

[0060] Further variations and embodiments may be produced using collapsing or adding

or vertical layers per pathway, changing the size of layer as a function of label space, and/or

extension to detection and RNN (unrolling in the same way by comparing confusions).

[0061] In yet another embodiment, techniques may be applied to identify when there may

be too many layers in the network, such that fewer layers would be adequate for the required

processing tasks. As noted above, one can reliably add depth to a network and see an

improvement in performance given enough training data. However, this added boost in

performance may come at a cost in terms of FLOPs and memory consumption. In some

embodiments, the network is optimized with this tradeoff in mind with the usage of an all-or

nothing highway network, which learns whether or not a given layer of computation in the

network is used via a binary decision. If a given computational block is used, a penalty is

incurred. By varying this penalty term, one can customize the learning process with a target

WO 2017/156547 PCT/US2017/022206
16

architecture in mind: an embedded system would prefer a much leaner architecture then a cloud

based system.

[0062] The issue addressed by this embodiment is to determine how deep a network

should be given a computational budget for a given problem X. With the approach of using an

all-or-nothing highway network, highway networks introduce a mixing matrix to learn how the

skip connection from the previous layer should be transformed before mixing with the output of

the current computational block. Consider the following equation:

y = F(x, W) + Wsx (10)

[0063] Residual networks can find success in using the identity mapping to combine the

skip connection. Although the identity mapping is less representative, it is more efficient and

easier to optimize:

y = F(x, Wi) + x (1

[0064] The current approach instead parameterize a mixing matrix by a single scalar a

which gates the output of the computational block (see Fig. 5A):

y = a F(x, W) + x (12)

[0065] When a = 0, the y = x and the input is simply passed to the output. When a = 1,

(eqn 12) becomes (eqn 10) and a residual unit is used for computation.

[0066] Fig. 5A illustrates a chart 501 for a network with an all-or-nothing highway

connection. In this figure, a computational block is fed an input and later joined via a residual

connection (elementwise addition). Before the addition, the output of the computation block is

scaled by a learned parameter a which penalizes the use of this computational block. This loss is

described below.

WO 2017/156547 PCT/US2017/022206
17

[0067] Learning is performed to determine whether or not to use a computation block. It

is desirable to impose a prior on the a parameter which controls the behavior of a given layer in a

deep network, and optimize this parameter jointly with the model parameters and its objective

function. During training, it is desirable to encourage a binary decision for a to choosing either 0

or 1 for each depth independently. If a computational block is learned to be skipped, then one

can simply remove that computation block from the model at inference time.

[0068] In a residual network, consecutive layers in general have small mappings, where

the learned residual functions in general have small responses, suggesting that identity mappings

provide reasonable preconditioning. This suggests that transitioning between an identity map in

(eqn 10) and an identity layer and vice versa should not cause catastrophic change in the

objective function. Thus the present approach introduces a piecewise smooth loss function on

the a parameter which gates the output of the computational block at various depths.

[0069] In addition, it is desirable to parameterize the loss function on the a parameters

such that for a different scenarios, a higher penalty is assigned to models which use more

computation. In the case a light embedded platform such as smartphone, one might want a high

penalty for choosing a layer. In the case of a cloud computing platform, no such penalty for

using a computation block might be wanted. Given these criteria, one can use the piecewise

smooth polynomial/linear function shown in Fig. 5B, which can be parameterized by the

following:

if x <0.:

y = (np.absolute(x) * self.steepness)

elif x > 1.:

y = (x - 1.) * self.steepness ++ self peak*0.125

elif x < 0.5:

y = -self.peak * (x**2. - x)

else:

y = -self.peak/2. * (x**2. - x) + self peak*0.125

WO 2017/156547 PCT/US2017/022206
18

[0070] For various selections of the peak shown in Fig. 5B, a varying usage penalty is

given to the model.

AGUMENTED REALITY AND COMPUTING SYSTEMS ARCHITECTURE(S)

[0071] The above-described techniques are particularly applicable to machine vision

applications for virtual reality and augmented reality systems. The inventive neural network

classification device may be implemented independently of AR systems, but many embodiments

below are described in relation to AR systems for illustrative purposes only.

[0072] Disclosed are devices, methods and systems for classification and recognition for

various computer systems. In one embodiment, the computer system may be a head-mounted

system configured to facilitate user interaction with various other computer systems (e.g.,

financial computer systems). In other embodiments, the computer system may be a stationary

device (e.g., a merchant terminal or an ATM) configured to facilitate user financial transactions.

Various embodiments will be described below in the context of an AR system (e.g., head

mounted), but it should be appreciated that the embodiments disclosed herein may be used

independently of any existing and/or known AR systems.

[0073] Referring now to Figs. 6A-6D, some general AR system component options are

illustrated according to various embodiments. It should be appreciated that although the

embodiments of Figs. 6A-6D illustrate head-mounted displays, the same components may be

incorporated in stationary computer systems as well, and Figs. 6A-6D should not be seen as

limiting.

[0074] As shown in Fig. 6A, a head-mounted device user 60 is depicted wearing a frame

64 structure coupled to a display system 62 positioned in front of the eyes of the user 60. The

frame 64 may be permanently or temporarily coupled to one or more user identification specific

sub systems depending on the required level of security. A speaker 66 may be coupled to the

frame 64 in the depicted configuration and positioned adjacent the ear canal of the user 60. In an

alternative embodiment, another speaker (not shown) is positioned adjacent the other ear canal of

the user 60 to provide for stereo/shapeable sound control. In one or more embodiments, the user

identification device may have a display 62 that is operatively coupled, such as by a wired lead

WO 2017/156547 PCT/US2017/022206
19

or wireless connectivity, to a local processing and data module 70, which may be mounted in a

variety of configurations, such as fixedly attached to the frame 64, fixedly attached to a helmet or

hat 80 as shown in the embodiment depicted in Fig. 6B, embedded in headphones, removably

attached to the torso 82 of the user 60 in a backpack-style configuration as shown in the

embodiment of Fig. 6C, or removably attached to the hip 84 of the user 60 in a belt-coupling

style configuration as shown in the embodiment of Fig. 6D.

[0075] The local processing and data module 70 may comprise a power-efficient

processor or controller, as well as digital memory, such as flash memory, both of which may be

utilized to assist in the processing, caching, and storage of data. The data may be captured from

sensors which may be operatively coupled to the frame 64, such as image capture devices (such

as cameras), microphones, inertial measurement units, accelerometers, compasses, GPS units,

radio devices, and/or gyros. Alternatively or additionally, the data may be acquired and/or

processed using the remote processing module 72 and/or remote data repository 74, possibly for

passage to the display 62 after such processing or retrieval. The local processing and data

module 70 may be operatively coupled 76, 78, such as via a wired or wireless communication

links, to the remote processing module 72 and the remote data repository 74 such that these

remote modules 72, 74 are operatively coupled to each other and available as resources to the

local processing and data module 70.

[0076] In one embodiment, the remote processing module 72 may comprise one or more

relatively powerful processors or controllers configured to analyze and process data and/or image

information. In one embodiment, the remote data repository 74 may comprise a relatively large

scale digital data storage facility, which may be available through the internet or other

networking configuration in a "cloud" resource configuration. In one embodiment, all data is

stored and all computation is performed in the local processing and data module, allowing fully

autonomous use from any remote modules.

[0077] In some embodiments, identification devices (or AR systems having identification

applications) similar to those described in Figs. 6A-6D provide unique access to a user's eyes.

Given that the identification/AR device interacts crucially with the user's eye to allow the user to

perceive 3-D virtual content, and in many embodiments, tracks various biometrics related to the

user's eyes (e.g., iris patterns, eye vergence, eye motion, patterns of cones and rods, patterns of

eye movements, etc.), the resultant tracked data may be advantageously used in identification

WO 2017/156547 PCT/US2017/022206
20

applications. Thus, this unprecedented access to the user's eyes naturally lends itself to various

identification applications.

[0078] Fig. 7 is a block diagram of an illustrative computing system 1400 suitable for

implementing an embodiment of the present invention. Computer system 1400 includes a bus

1406 or other communication mechanism for communicating information, which interconnects

subsystems and devices, such as processor 1407, system memory 1408 (e.g., RAM), static

storage device 1409 (e.g., ROM), disk drive 1410 (e.g., magnetic or optical), communication

interface 1414 (e.g., modem or Ethernet card), display 1411 (e.g., CRT or LCD), input device

1412 (e.g., keyboard), and cursor control.

[0079] According to one embodiment of the invention, computer system 1400 performs

specific operations by processor 1407 executing one or more sequences of one or more

instructions contained in system memory 1408. Such instructions may be read into system

memory 1408 from another computer readable/usable medium, such as static storage device

1409 or disk drive 1410. In alternative embodiments, hard-wired circuitry may be used in place

of or in combination with software instructions to implement the invention. Thus, embodiments

of the invention are not limited to any specific combination of hardware circuitry and/or

software. In one embodiment, the term "logic" shall mean any combination of software or

hardware that is used to implement all or part of the invention.

[0080] The term "computer readable medium" or "computer usable medium" as used

herein refers to any medium that participates in providing instructions to processor 1407 for

execution. Such a medium may take many forms, including but not limited to, non-volatile

media and volatile media. Non-volatile media includes, for example, optical or magnetic disks,

such as disk drive 1410. Volatile media includes dynamic memory, such as system memory

1408.

[0081] Common forms of computer readable media include, for example, floppy disk,

flexible disk, hard disk, magnetic tape, any other magnetic medium, CD-ROM, any other optical

medium, punch cards, paper tape, any other physical medium with patterns of holes, RAM,

PROM, EPROM, FLASH-EPROM, any other memory chip or cartridge, or any other medium

from which a computer can read.

[0082] In an embodiment of the invention, execution of the sequences of instructions to

practice the invention is performed by a single computer system 1400. According to other

21

embodiments of the invention, two or more computer systems 1400 coupled by communication

link 1415 (e.g., LAN, PTSN, or wireless network) may perform the sequence of instructions

required to practice the invention in coordination with one another.

[0083] Computer system 1400 may transmit and receive messages, data, and instructions,

including program, e.g., application code, through communication link 1415 and communication

interface 1414. Received program code may be executed by processor 1407 as it is received,

and/or stored in disk drive 1410, or other non-volatile storage for later execution. Computer

system 1400 may communicate through a data interface 1433 to a database 1432 on an external

storage device 1431.

[0084] In the foregoing specification, the invention has been described with reference to

specific embodiments thereof. It will, however, be evident that various modifications and changes

may be made thereto without departing from the broader spirit and scope of the invention. For

example, the above-described process flows are described with reference to a particular ordering

of process actions. However, the ordering of many of the described process actions may be

changed without affecting the scope or operation of the invention. The specification and drawings

are, accordingly, to be regarded in an illustrative rather than restrictive sense.

[0085] Throughout this specification and the claims which follow, unless the context

requires otherwise, the word "comprise", and variations such as "comprises" or "comprising", will

be understood to imply the inclusion of a stated integer or step or group of integers or steps but not

the exclusion of any other integer or step or group of integers or steps.

[0086] The reference in this specification to any prior publication (or information derived

from it), or to any matter which is known, is not, and should not be taken as, an acknowledgement

or admission or any form of suggestion that that prior publication (or information derived from it)

or known matter forms part of the common general knowledge in the field of endeavour to which

this specification relates.

22

CLAIMS

The claims defining the invention are as follows:

1. A method implemented with a processor, comprising:

creating a neural network;

generating output from the neural network;

identifying a low performing layer from the neural network, the low performing layer

having a relatively lower performance than a performance of another layer in the neural network;

inserting a new specialist layer at the low performing layer; and

repeating the act of identifying and the act of inserting until a top of the neural network is

reached.

2. The method of claim 1, further comprising updating a model for the neural network to

obtain an updated model, wherein the updated model comprises the new specialist layer, and at

least one generalist layer.

3. The method of claim 1 or 2, wherein the new specialist layer is configured to handle a

specific subdomain of data distinct from a subdomain handled by another specialist layer.

4. The method of any one of claims I to 3, wherein a plurality of loss layers are added to the

neural network.

5. The method of claim 4, further comprising generating predictions at one of the loss

layers, and converting the predictions to one or more confusion matrices forming a tensor T.

6. The method of claim 5, wherein a structure of T is analyzed to modify and augment an

existing structure of the neural network both in terms of depth and breadth.

7. The method of any one of claims 1 to 6, wherein the neural network undergoes both

vertical splitting and horizontal splitting.

8. The method of claim 7, wherein K-way Bifurcation is performed to implement the

horizontal splitting.

9. The method of any one of claims I to 8, wherein each layer of the neural network is

addressed independently, and a given layer of the neural network undergoes splitting by

23

performing a greedy choice to split the given layer which provides a best improvement on a

training loss.

10. The method of any one of claims I to 9, wherein an all-or-nothing highway network is

employed to identify layers in the neural network to be removed.

11. The method of any one of claims 1 to 10, wherein the neural network is employed to

classify images captured for a virtual realty or augmented reality system.

12. A system, comprising:

a processor;

a memory for holding programmable code; and

wherein the programmable code includes instructions for creating a neural network;

generating output from the neural network; identifying a low performing layer

from the neural network, the low performing layer having a relatively lower

performance than a performance of another layer in the neural network; inserting

a new specialist layer at the low performing layer; and repeating the act of

identifying and the act of inserting until a top of the neural network is reached.

13. The system of claim 12, wherein the processor is configured to update a model for the

neural network to obtain an updated model, wherein the updated model comprises the new

specialist layer and at least one generalist layer.

14. The system of claim 12 or 13, wherein the new specialist layer is configured to handle a

specific subdomain of data distinct from a subdomain handled by another specialist layer.

15. The system of any one of claims 12 to 14, wherein the neural network comprises a

plurality of loss layers.

16. The system of claim 15, wherein the processor is configured to generate predictions at

one of the loss layers, and to convert the predictions to one or more confusion matrices forming a

tensor T.

17. The system of claim 16, wherein a structure of T is analyzed to modify and augment an

existing structure of the neural network both in terms of depth and breadth.

24

18. The system of any one of claims 12 to 17, wherein the neural network is configured to

undergo both vertical splitting and horizontal splitting.

19. The system of claim 18, wherein the horizontal splitting is implemented using K-way

Bifurcation.

20. The system of any one of claims 12 to 19, wherein the processor is configured to address

each layer of the neural network independently, and to cause a given layer of the neural network

to undergo splitting by performing a greedy choice to split the given layer which provides a best

improvement on a training loss.

21. The system of any one of claims 12 to 20, wherein the processor is configured to employ

an all-or-nothing highway network to identify layers in the neural network to be removed.

22. The system of any one of claims 12 to 21, wherein the neural network is configured to

classify images captured for a virtual realty or augmented reality system.

23. A computer program product embodied on a non-transitory computer readable medium,

the non-transitory computer readable medium having stored thereon a sequence of instructions

which, when executed by a processor causes the processor to execute a method comprising:

creating a neural network;

generating output from the neural network;

identifying a low performing layer from the neural network, the low performing layer

having a relatively lower performance than a performance of another layer in the neural network;

inserting a new specialist layer at the low performing layer; and

repeating the act of identifying and the act of inserting until a top of the neural network is

reached.

24. The computer program product of claim 23, wherein the method further comprises

updating a model for the neural network to obtain an updated model, wherein the updated model

comprises the new specialist layer and at least one generalist layer.

25. The computer program product of claim 23 or 24, wherein in the method, the new

specialist layer is configured to handle a specific subdomain of data distinct from a subdomain

handled by another specialist layer.

25

26. The computer program product of any one of claims 23 to 25, wherein in the method, a

plurality of loss layers are added to the neural network.

27. The computer program product of claim 26, wherein the method further comprises

generating predictions at one of the loss layers, and converting the predictions to one or more

confusion matrices forming a tensor T.

28. The computer program product of claim 27, wherein a structure of T is analyzed in the

method to modify and augment an existing structure of the neural network both in terms of depth

and breadth.

29. The computer program product of any one of claims 23 to 28, wherein in the method, the

neural network undergoes both vertical splitting and horizontal splitting.

30. The computer program product of claim 29, wherein K-way Bifurcation is performed in

the method to implement the horizontal splitting.

31. The computer program product of any one of claims 23 to 30, wherein each layer of the

neural network is addressed independently in the method, and a given layer of the neural network

undergoes splitting by performing a greedy choice to split the given layer which provides a best

improvement on a training loss.

32. The computer program product of any one of claims 23 to 31, wherein an all-or-nothing

highway network is employed in the method to identify layers in the neural network to be

removed.

33. The computer program product of any one of claims 23 to 32, wherein the neural network

is employed in the method to classify images captured for a virtual realty or augmented reality

system.

	Bibliographic Page
	Abstract
	Description
	Claims
	Drawings

