
(19) United States 
US 2005O278505A1 

(12) Patent Application Publication (10) Pub. No.: US 2005/0278505 A1 
Lim et al. (43) Pub. Date: Dec. 15, 2005 

(54) MICROPROCESSOR ARCHITECTURE 
INCLUDING ZERO IMPACT PREDICTIVE 
DATA PRE-FETCH MECHANISM FOR 
PIPELINE DATA MEMORY 

(76) Inventors: Seow Chuan Lim, Berkshire (GB); 
Kar-Liik Wong, Wokinham (GB) 

Correspondence Address: 
HUNTON & WILLIAMS LLP 
INTELLECTUAL PROPERTY DEPARTMENT 
1900 KSTREET, N.W. 
SUTE 1200 
WASHINGTON, DC 20006-1109 (US) 

(21) 

(22) 

Appl. No.: 11/132,447 

Filed: May 19, 2005 

Related U.S. Application Data 

(60) Provisional application No. 60/572,238, filed on May 
19, 2004. 

Publication Classification 

(51) Int. Cl." ....................................................... G06F 9/30 

INSTRUCTION 

INSTRUCTION FETCH 

713 

DECODE 

MATCHING AND 
SELECTION 

EXECUTE STAGE 

7 

720 

725 

WRITE MEMORY CONTENTS 

(52) U.S. Cl. .............................................................. 712/207 

(57) ABSTRACT 

A microprocessor architecture including a predictive pre 
fetch XY memory pipeline in parallel to the processor's 
pipeline for processing compound instructions with 
enhanced processor performance through predictive 
prefetch techniques. Instruction operands are predictively 
prefetched from X and Y based on the historical use of 
operands in instructions that target X and Y memory. After 
the compound instruction is decoded in the pipeline, the 
pre-fetched operand pointer, address and data is reconciled 
with the operands contained in the actual instruction. If the 
actual data has been pre-fetched, it is passed to the appro 
priate execute unit in the execute Stage of the processor 
pipeline. As a result, if the prediction is correct, the data to 
use for access can be Selected and the data Selected fed to the 
execution Stage without any addition processor overhead. 
This pre-fetch mechanism avoids the need to slow down the 
clock Speed of the processor or insert Stalls for each com 
pound instruction when using XY memory. 

PRE-FETCH 

700 

705 

ACCESS PRE-FETCH 
REGISTERS 

710 

ACCESS X AND Y MEMORY 
LOCATIONSPOINTED TOBY 

REGISTER POINTERS 

715 

TO PRE-FETCH BUFFERS 

  

  

    

    

    

  

  



081 

US 2005/0278505 A1 

ZZI 

SDNCAWW&O 

00I 

082I "OIH 

Patent Application Publication Dec. 15, 2005 Sheet 1 of 5 

  

  

  



Patent Application Publication Dec. 15, 2005 Sheet 2 of 5 US 2005/0278505 A1 

FIG. 2 

210 220 230 240 250 

Fetch Reg. File Execute 

Decoded instruction 
243 

Registers Y- O Y 
242 Mem 

Y, H. 
244 

Decoded instruction Format 241 

Instr name dest ptr-update mode, 
SrC1 ptrupdate mode, Src2 ptr+update mode 

FIG. 3 

301 302 303 304 

Y \ \ 
MuldW X1 u0, x0 u1, y0 u0 

it 
Write result Read Read 

operand operand to X 
from X from Y Dual 16-bit memory 
memory memory 

multiply using using using 
instruction pointer Ax1 pointer Ax0 pointer AyO 

and update and update and update 
mode 0 p p 

mode 1 mode 0 

  

  

    

  

    

  



Patent Application Publication Dec. 15, 2005 Sheet 3 of 5 US 2005/0278505 A1 

FIG. 4 

4O1 402 403 404 405 4O6 407 

RF 

DSel-PO 
412 413 414 415 416 417 

FIG. 5 

500 510 520 530 540 550 

(a) () (c. : G. G. 
516 

Pre-Fetch 
512 

X 
Men 

Address 
Reg. File 

  

  

  



Patent Application Publication Dec. 15, 2005 Sheet 4 of 5 US 2005/0278505 A1 

FIG. 6 

601 602 603 

: | 
605 - sis | 625 N. 

PF1 PF2 DSEL F2 
614 

e 
Matching 
and Select 

Mem 

Registers N Pre-fetch 
storing 612 Buffers 
address 620 
predicting 
information 

610 

  



Patent Application Publication Dec. 15, 2005 Sheet 5 of 5 US 2005/0278505 A1 

FIG. 7 PRE-FETCH 

INSTRUCTION 700 

705 

707 ACCESS PRE-FETCH 
REGISTERS 

INSTRUCTION FETCH 
710 

ACCESS X AND Y MEMORY 713 

LOCATIONS POINTED TO BY 
ALGN REGISTER POINTERS 

714 

DECODE WRITE MEMORY CONTENTS 
TO PRE-FETCHBUFFERS 720 

MATCHING AND 
SELECTION 

725 
EXECUTE STAGE 

730 

715 

  



US 2005/0278505 A1 

MICROPROCESSOR ARCHITECTURE 
INCLUDING ZERO IMPACT PREDICTIVE DATA 
PRE-FETCH MECHANISM FOR PIPELINE DATA 

MEMORY 

CROSS REFERENCE TO RELATED 
APPLICATIONS 

0001. This application claims priority to provisional 
application No. 60/572,238 filed May 19, 2004, entitled 
“Microprocessor Architecture,” hereby incorporated by ref 
erence in its entirety. 

FIELD OF THE INVENTION 

0002 This invention relates generally to microprocessor 
architecture and more Specifically to Systems and methods 
for achieving improved performance through a predictive 
data pre-fetch mechanism for a pipeline data memory, 
including Specifically XY-type data memory. 

BACKGROUND OF THE INVENTION 

0.003 Multistage pipeline microprocessor architecture is 
known in the art. A typical microprocessor pipeline consists 
of Several Stages of instruction handling hardware, wherein 
each rising pulse of a clock signal propagates instructions 
one Stage further in the pipeline. Although the clock Speed 
dictates the number of pipeline propagations per Second, the 
effective operational Speed of the processor is dependent 
partially upon the rate that instructions and operands are 
transferred between memory and the processor. For this 
reason, processors typically employ one or more relatively 
Small cache memories built directly into the processor. 
Cache memory typically is an on-chip random acceSS 
memory (RAM) used to store a copy of memory data in 
anticipation of future use by the processor. Typically, the 
cache is positioned between the processor and the main 
memory to intercept calls from the processor to the main 
memory. Access to cache memory is generally much faster 
than off-chip RAM. When data is needed that has previously 
been accessed, it can be retrieved directly from the cache 
rather than from the relatively slower off-chip RAM. 
0004 Generally, the microprocessor pipeline advances 
instructions on each clock signal pulse to Subsequent pipe 
line Stages. However, effective pipeline performance can be 
slower than that implied by the processor Speed. Therefore, 
Simply increasing microprocessor clock Speed does not 
usually provide a corresponding increase in System perfor 
mance. Accordingly, there is a need for a microprocessor 
architecture that enhances effective System performance 
through methods in addition to increased clock Speed. 
0005 One method of doing this has been to employ X 
and Y memory Structures in parallel to the microprocessor 
pipeline. The ARCtangent-A4TM and ARCtangent-A5TM line 
of embedded microprocessors designed and licensed by 
ARC International, Inc. of Hertfordshire, UK, (ARC) 
employ such an XY memory structure. XY memory was 
designed to facilitate executing compound instructions on a 
RISC architecture processor without interrupting the pipe 
line. XY memory is typically located in parallel to the main 
processor pipeline, after the instruction decode Stage, but 
prior to the execute Stage. After decoding an instruction, 
Source data is fetched from XY memory using address 
pointers. This Source data is then fed to the execution Stage. 

Dec. 15, 2005 

In the exemplary ARC XY architecture the two X and Y 
memory Structures Source two operands and receive results 
in the same cycle. Data in the XY memory is indexed via 
pointers from address generators and Supplied to the ARC 
CPU pipeline for processing by any ARC instruction. The 
memories are Software-programmable to provide 32-bit, 
16-bit, or dual 16-bit data to the pipeline. 
0006. It should be appreciated that the description herein 
of various advantages and disadvantages associated with 
known apparatus, methods, and materials is not intended to 
limit the Scope of the invention to their exclusion. Indeed, 
various embodiments of the invention may include one or 
more of the known apparatus, methods, and materials with 
out Suffering from their disadvantages. 
0007 AS background to the techniques discussed herein, 
the following references are incorporated herein by refer 
ence: U.S. Pat. No. 6,862.563 issued Mar. 1, 2005 entitled 
“Method And Apparatus For Managing The Configuration 
And Functionality Of A Semiconductor Design” (Hakewill 
et al.); U.S. Ser. No. 10/423,745 filed Apr. 25, 2003, entitled 
"Apparatus and Method for Managing Integrated Circuit 
Designs”; and U.S. Ser. No. 10/651,560 filed Aug. 29, 2003, 
entitled “Improved Computerized Extension Apparatus and 
Methods', all assigned to the assignee of the present inven 
tion. 

SUMMARY OF THE INVENTION 

0008 Various embodiments of the invention may ame 
liorate or overcome one or more of the shortcomings of 
conventional microprocessor architecture through a predic 
tively fetched XY memory scheme. In various embodi 
ments, an XY memory Structure is located in parallel to the 
instruction pipeline. In various embodiments, a speculative 
pre-fetching Scheme is spread over Several Sections of the 
pipeline in order to maintain high processor clock Speed. In 
order to prevent impact on clock Speed, operands are specu 
latively pre-fetched from X and Y memory before the 
current instruction has even been decoded. In various exem 
plary embodiments, the Speculative pre-fetching occurs in 
an alignment Stage of the instruction pipeline. In various 
embodiments, Speculative address calculation of operands 
also occurs in the alignment Stage of the instruction pipeline. 
In various embodiments, the XY memory is accessed in the 
instruction decode Stage based on the Speculative address 
calculation of the pipeline, and the resolution of the predic 
tive pre-fetching occurs in the register file Stage of the 
pipeline. Because the actual decoded instruction is not 
available in the pipeline until after the decode Stage, all 
pre-fetching is done without explicit knowledge of what the 
current instruction is while this instruction is being pushed 
out of the decode Stage into the register file Stage. Thus, in 
various embodiments, a comparison is made in the register 
file Stage between the operands Specified by the actual 
instruction and those predictively pre-fetched. The pre 
fetched values that match are Selected to be passed to the 
execute Stage of the instruction pipeline. Therefore, in a 
microprocessor architecture employing Such a Scheme, data 
memory fetches, arithmetic operation and result write back 
can be performed using a single instruction without slowing 
down the instruction pipeline clock Speed or Stalling the 
pipeline, even at high processor clock frequencies. 
0009. At least one exemplary embodiment of the inven 
tion may provide a predictive pre-fetch XY memory pipeline 



US 2005/0278505 A1 

for a microprocessor pipeline. The predictive pre-fetch XY 
memory pipeline according to this embodiment may com 
prise a first pre-fetch Stage comprising a pre-fetch pointer 
address register file and X and Y address generators, a 
Second pre-fetch Stage comprising X and Y memory Struc 
tures accessed using address pointers generated in the first 
pre-fetch Stage, and third data Select Stage comprising at 
least one pre-fetch buffer in which speculative operand data 
and address information are Stored. 

0010. At least one additional exemplary embodiment 
may provide a method of predictively pre-fetching operand 
address and data information for a instruction pipeline of a 
microprocessor. The method of predictively pre-fetching 
operand address and data information for a instruction 
pipeline of a microprocessor according to this embodiment 
may comprise, prior to decoding a current instruction in the 
pipeline, accessing a set of registers containing pointers to 
Specific locations in pre-fetch memory structures, fetching 
operand data information from the Specific locations in the 
pre-fetch memory Structures, and Storing the pointer and 
operand data information in at least one pre-fetch buffer. 

0.011 Yet another exemplary embodiment of this inven 
tion may provide a microprocessor architecture. The micro 
processor architecture according to this embodiment may 
comprise a multi-stage microprocessor pipeline, and a multi 
Stage pre-fetch memory pipeline in parallel to at least a 
portion of the instruction pipeline, wherein the pre-fetch 
pipeline comprises a first stage having a set of registers 
Serving as pointers to specific pre-fetch memory locations, a 
Second Stage, having pre-fetch memory Structures for Storing 
predicted operand address information corresponding to 
operands in an un-decoded instruction in the microprocessor 
pipeline, and a third Stage comprising at least one pre-fetch 
buffers, wherein Said first, Second and third Stage respec 
tively are parallel to, Simultaneous to and in isolation of 
corresponding Stages of the microprocessor pipeline. 

0012. Other aspects and advantages of the invention will 
become apparent from the following detailed description, 
taken in conjunction with the accompanying drawings, 
illustrating by way of example the principles of the inven 
tion. 

BRIEF DESCRIPTION OF THE DRAWINGS 

0013 FIG. 1 is a block diagram illustrating a processor 
core in accordance with at least one exemplary embodiment 
of this invention; 

0.014 FIG. 2 is a block diagram illustration a portion of 
an instruction pipeline of a microprocessor core architecture 
employing an XY memory Structure and a typical multi 
operand instruction processed by Such an instruction pipe 
line in accordance with a conventional non-speculative XY 
memory; 

0015 FIG. 3 is an exemplary instruction format for 
performing a multiply instruction on 2 operands and a 
memory write back with a single instruction in accordance 
with at least one embodiment of this invention; 

0016 FIG. 4 is a block diagram illustrating a micropro 
ceSSor instruction pipeline architecture including a parallel 
predictive pre-fetch XY memory pipeline in accordance 
with at least one embodiment of this invention; 

Dec. 15, 2005 

0017 FIG. 5 is a block diagram, illustrating in greater 
detail the Structure and operation of a predictively pre 
fetching XY memory pipeline in accordance with at least 
one embodiment of this invention; 
0018 FIG. 6 is a block diagram illustrating the specific 
pre-fetch operations in an XY memory Structure in accor 
dance with at least one embodiment of this invention; and 
0019 FIG. 7 is a flow chart detailing the steps of a 
method for predictively pre-fetching instruction operand 
addresses in accordance with at least one embodiment of this 
invention. 

DETAILED DESCRIPTION OF THE 
DISCLOSURE 

0020. The following description is intended to convey a 
thorough understanding of the invention by providing Spe 
cific embodiments and details involving various aspects of a 
new and useful microprocessor architecture. It is under 
stood, however, that the invention is not limited to these 
Specific embodiments and details, which are exemplary only. 
It further is understood that one possessing ordinary skill in 
the art, in light of known Systems and methods, would 
appreciate the use of the invention for its intended purposes 
and benefits in any number of alternative embodiments, 
depending upon specific design and other needs. 
0021 Discussion of the invention will now made by way 
of example in reference to the various drawing figures. FIG. 
1 illustrates in block diagram form, an architecture for a 
microprocessor core 100 and peripheral hardware structure 
in accordance with at least one exemplary embodiment of 
this invention. Several novel features will be apparent from 
FIG. 1 which distinguish the illustrated microprocessor 
architecture from that of a conventional microprocessor 
architecture. Firstly, the exemplary microprocessor architec 
ture of FIG. 1 features a processor core 100 having a seven 
Stage instruction pipeline. However, it should be appreciated 
that additional pipeline Stages may also be present. An align 
stage 120 is shown in FIG. 1 following the fetch stage 110. 
Because the microprocessor core 100 shown in FIG. 1 is 
operable to work with a variable bit-length instruction Set, 
namely, 16-bits, 32-bits, 48-bits or 64-bits, the align stage 
120 formats the words coming from the fetch stage 110 into 
the appropriate instructions. In various exemplary embodi 
ments, instructions are fetched from memory in 32-bit 
words. Thus, when the fetch stage 110 fetches a 32-bit word 
at a specified fetch address, the entry at that fetch address 
may contain an aligned 16-bit or 32-bit instruction, an 
unaligned 16 bit instruction preceded by a portion of a 
previous instruction, or an unaligned portion of a larger 
instruction preceded by a portion of a previous instruction 
based on the actual instruction address. For example, a 
fetched word may have an instruction fetch address of Ox4, 
but an actual instruction address of OX6. In various exem 
plary embodiments, the 32-bit word fetched from memory is 
passed to the align Stage 120 where it is aligned into an 
complete instruction. In various exemplary embodiments, 
this alignment may include discarding Superfluous 16-bit 
instructions or assembling unaligned32-bit or larger instruc 
tions into a single instructions. After completely assembling 
the instruction, the N-bit instruction is forwarded to the 
decoder 130. 

0022. Still referring to FIG. 1, an instruction extension 
interface 180 is also shown which permits interface of 



US 2005/0278505 A1 

customized processor instructions that are used to comple 
ment the Standard instruction Set architecture of the micro 
processor. Interfacing of these customized instructions 
occurs through a timing registered interface to the various 
Stages of the microprocessor pipeline 100 in order to mini 
mize the effect of critical path loading when attaching 
customized logic to a pre-existing processor pipeline. Spe 
cifically, a custom opcode slot is defined in the extensions 
instruction interface for the Specific custom instruction in 
order for the microprocessor to correctly acknowledge the 
presence of a custom instruction 182 as well as the extrac 
tion of the Source operand addresses that are used to indeX 
the register file 142. The custom instruction flag interface 
184 is used to allow the addition of custom instruction flags 
that are used by the microprocessor for conditional evalu 
ation using either the Standard condition code evaluators or 
custom extension condition code evaluators 184 in order to 
determine whether the instruction is executed or not based 
upon the condition evaluation result of the execute Stage 
(EXEC) 150. A custom ALU interface 186 permits user 
defined arithmetic and logical extension instructions the 
result of which are selected in the result select stage (SEL) 
160. 

0023 Referring now to FIG. 2, a block diagram illus 
trating a portion of an instruction pipeline of a micropro 
ceSSor core architecture employing an XY memory Structure 
and a typical multi-operand instruction processed by Such an 
instruction pipeline in accordance with a conventional non 
Speculative XY memory is illustrated. XY-type data memory 
is known in the art. Typically, in a RISC processor, only one 
memory load or Store can be effected per pipelined instruc 
tion. However, in Some cases, in order to accelerate pipeline 
efficiency, i.e., the number of operations executed per clock, 
it is desirable to have a single instruction perform multiple 
operations. For example, a Single instruction could perform 
a memory read, an arithmetic operation and a memory write 
operation. The ability to decode and execute these kind of 
compound instructions is particularly important for achiev 
ing high performance in Digital Signal Processor (DSP) 
operations. DSP operations typically involve repetitive cal 
culations on large data Sets, thus, high memory bandwidth is 
required. By using an XY-memory Structure, up to 2x32-bits 
of Source data memory read acceSS , and 1x32-bits of 
destination data memory write acceSS per clock cycle are 
possible, resulting in a very high data memory bandwidth. 
(For example, a 4.8 Gbytes/s memory bandwidth can be 
achieved based on 3 32-bit accesses, 2 read and 1 write, per 
instruction in a 400 MHz processor or 3*32 bits 400 MHz/ 
sec=38.4 Gbit/s or 4.8 Gbyte/s.) 
0024. In typical XY memory implementation, data used 
for XY memory is fetched from memory using addresses 
that are Selected using register numbers decoded from the 
instruction in the decode Stage. This data is then fed back to 
the execution units in the processor pipeline. FIG. 2 illus 
trates such an XY memory implementation. In FIG. 2, an 
instruction is fetched from memory in the fetch stage 210 
and, in the next clock cycle is passed to the align Stage 220. 
In the align Stage 220, the instruction is formatted into 
proper form. For example, if in the fetch stage 210 a 32-bit 
word is fetched from memory with the fetch address 0x4, but 
the actual instruction address is for the 16-bit word having 
instruction address 0x6, the first 16 bits of 32-bit word are 
discarded. This properly formatted instruction is then passed 
to the decode Stage 230, where it is decoded into an actual 

Dec. 15, 2005 

instruction, for example, the decoded instruction 241 shown 
in FIG. 2. This decoded instruction is then passed to the 
register file Stage 240. 
0025 FIG. 2 illustrates the format of such a decoded 
instruction 241. The instruction is comprised of a name (any 
arbitrary name used to reference the instruction), the desti 
nation address pointer and update mode, the first Source 
address pointer and update mode, and the Second Source 
address pointer and update mode. In the register file Stage 
240, from the decoded instruction 241, the address of the 
Source and destination operands are Selected using the 
register numbers (windowing registers) as pointers to a set 
of address registers 242. The Source addresses are then used 
to access X memory 243 and Y memory 244. Thus, between 
the decode stage 230 and the execute stage 250, the address 
to use for access needs to be Selected, the memory access 
performed, and the data Selected fed to the execution Stage 
250. AS microprocessor clock Speeds increases, it becomes 
difficult, if not impossible, to perform all these Steps in a 
Single clock cycle. As a result, either a decrease in the 
processor clock frequency must occur to accommodate these 
extra Steps, or multiple clock cycles for each instruction 
using XY memory must be used, both of which negate or at 
least reduce the benefits of using XY memory in the first 
place. 
0026. One method of solving this problem is extending 
the processor pipeline to add more pipeline Stages between 
the decode and the execution Stage. However, extra proces 
Sor stages are undesirable for Several reasons. Firstly, they 
complicate the architecture of the processor. Secondly, any 
penalties from incorrect predictions in the branch prediction 
Stage will be increased. Finally, because XY memory func 
tions may only be needed when certain applications are 
being run on the processor, extra pipeline Stages will nec 
essarily be present even when these applications are not 
being used. 
0027. An alternative approach is to move the XY memory 
to an earlier Stage of the instruction pipeline, ahead of the 
register file Stage, to allow for more cycle time for the data 
Selection. However, doing SO may result in the complication 
that, when XY memory is moved into the decode Stage, the 
windowing register number is not yet decoded before 
accessing memory. 
0028. Therefore, in accordance with at least one embodi 
ment of this invention, to overcome these problems, the 
Source data is predictively pre-fetched and Stored for use in 
data buffers. When the source data from X or Y memory is 
required, just before the execution Stage, a comparison may 
be made to check if the desired data was already pre-fetched, 
and if So, the data is simply taken from the pre-fetched data 
buffer and used. If it has not been pre-fetched, then the 
instruction is Stalled and the required data is fetched. In 
order to reduce the number of instructions that are Stalled, it 
is essential to ensure that data is pre-fetched correctly most 
of the time. Two Schemes may be used to assist in this 
function. Firstly, a predictable way of using windowing 
registers may be employed. For example, if the same Set of 
N windowing registers are used most of the time, and each 
pointer address is incremented in a regular way (sequentially 
as selected by the windowing registers), then the next few 
data for each of these N windowing registers can be pre 
fetched fairly accurately. This reduces the number of pre 
diction failures. 



US 2005/0278505 A1 

0029 Secondly, by having more prediction data buffers, 
more predictive fetches can be made in advance, reducing 
the chance of a prediction miss. Because compound instruc 
tions also include updating addresses, these addresses must 
also be predictively updated. In general, address updates are 
predictable as long as the user uses the same modifierS along 
with its associated non-modify mode in a Sequence of code 
and the user Sticks to a set of N pointers for an implemen 
tation with N pre-fetch data buffers. Since the data is 
pre-fetched, the pre-fetched data can become outdated due to 
write-backs to XY memory. In cases Such as this, the Specific 
pre-fetch buffer can be flushed and the out-of-date data 
re-fetched, or, alternatively, data forwarding can be per 
formed to update these buffers. 
0030 FIG. 3 illustrates the format of a compound 
instruction, Such as an instruction that might be used in a 
DSP application that would require extendible processing 
functions including XY memory in accordance with various 
embodiments of this invention. The compound instruction 
300 consists of four sub-components, the name of the 
instruction 301, the destination pointer 302, the first operand 
pointer 303 and the second operand pointer 304. In the 
instruction 300 shown in FIG. 3, the instruction, Muldw, is 
a dual 16-bit multiply instruction. The destination pointer 
302 specifies that the result of the calculation instruction is 
to be written to X memory using the pointer address AX1. 
The label u0 specifies the update mode. This is a user defined 
address update mode and must be specified before calling 
the extendible function. The source operand pointers 303 
and 304, specify that the first operand is to be read from X 
memory using the pointer address AX0 and updated using 
update mode u1 and the Second operand is to be read from 
Y memory using the pointer address AY0 and the update 
mode u0. 

0.031 FIG. 4 is a block diagram illustrating a micropro 
ceSSor instruction pipeline architecture including a parallel 
predictive pre-fetch XY memory pipeline in accordance 
with at least one embodiment of this invention. In the 
example illustrated in FIG. 4, the instruction pipeline is 
comprised of seven stages, FCH 401, ALN 402, DEC 403, 
RF04, EX405, SEL 406 and WB 407. As stated above, each 
rising pulse of the clock cycle propagates an instruction to 
the next stage of the instruction pipeline. In parallel to the 
instruction pipeline is the predictive pre-fetch XY memory 
pipeline comprised of 6 stages including PF1412, PF2413, 
DSEL 414, P0415, P1416 and C 417. It should be appreci 
ated that various embodiments may utilize more or leSS 
pipeline Stages. In various exemplary embodiments, specu 
lative pre-fetching may begin in stage PF1412. However, in 
various exemplary embodiments, pre-fetching does not have 
to begin at the same time as the fetch instruction 401. 
Pre-fetching can happen much earlier, for example, when a 
pointer is first Set-up, or was already fetched because it was 
recently used. Pre-fetching can also happen later if the 
pre-fetched instruction was predicted incorrectly. The two 
previous stages PF1412 and PF2413, prior to the register file 
stage 404, allow sufficient time for the access address to be 
Selected, the memory access performed, and the data 
selected to be fed to the execution stage 405. 
0.032 FIG. 5, is a block diagram, illustrating in greater 
detail the Structure and operation of a predictively pre 
fetching XY memory pipeline in accordance with at least 
one embodiment of this invention. In FIG. 5, 6 pipeline 

Dec. 15, 2005 

Stages of the predictive pre-fetch XY memory pipeline are 
illustrated. AS noted here, it should be appreciated that in 
various embodiments, more or leSS Stages may be employed. 
As stated above in the context of FIG. 4, these stages may 
include the PF1500, PF2510, DSEL (data select) 520, 
P0530, P1540 and C 550. Stage PF1500, which occurs 
Simultaneous to the align Stage of the instruction pipeline, 
includes the pre-fetch Shadow pointer address register file 
502 and the X and Yaddress generators (used to update the 
pointer address) 504 and 506. Next, stage PF2, includes 
access to X memory unit 512 and Y memory unit 514, using 
the pointers 504 and 506 in stage PF1500. In stage DSEL 
520, the data accessed from X memory 512 and Y memory 
514 in stage PF2510 are written to one of multiple pre-fetch 
buffers 522. For purposes of example only, four pre-fetch 
buffers 522 are illustrated in FIG. 5. In various embodi 
ments, multiple queue-like pre-fetch buffers will be used. It 
should be noted that typically each queue is associated to 
any pointer, but each pointer associated with at most one 
queue. In the DSEL stage 520, the pre-fetched data is 
reconciled with the pointer of the operands contained in the 
actual instruction forwarded from the decode Stage. If the 
actual data have been pre-fetched, they are passed to the 
appropriate execute unit in the execute Stage. 
0033) P0530, P1540 and C 550 stages are used to con 
tinue to pass down the Source address and destination 
address (destination address is Selected in DSEL Stage) So 
that when they reach the C 550 stage, they update the actual 
pointer address registers, and the destination address is also 
used for writing the results of execution (if required, as 
specified by the instruction) back to XY memory. The 
address registers in PF1500 stage are only shadowing 
address registers which are predictively updated when 
required. These values only become committed at the C 
stage 550. Pre-fetch hazard detection performs the task of 
matching the addresses used in PF1500 and PF2510 stages 
to the destination addresses in DSEL 520, P0530, P1540, 
and C 550 stage, so that if there is a write to a location in 
memory that is to be pre-fetched, the pre-fetch is Stalled 
until, or restarted when, this Read after Write hazard has 
disappeared. A pre-fetch hazard can also occur when there is 
a write to a location in memory that has already been 
prefetched and stored in the buffer in DSEL stage. In this 
case, the item in the buffer is flushed and refetched when the 
write operation is complete 
0034 FIG. 6 is a block diagram illustrating the specific 
Structure of the pre-fetch logic in an XY memory Structure 
in accordance with at least one embodiment of this inven 
tion. In various exemplary embodiments, in the PF1 Stage 
605, Speculative pre-fetch is performed by accessing a Set of 
registers 610 that Serve as pointers pointing to specific 
locations in the X and Y memories 614 and 612. In the PF2 
stage 602, the data is fetched from the XY memory and then 
on the next clock pulse, the Speculative operand data and 
address information is stored in pre-fetch buffers 620. While 
still in the DSEL stage which also corresponds with the 
processor's Register File Stage 603, matching and Select 
block 622 checks for the pre-fetched addresses. If the 
required operand addresses from the decoded instruction are 
in the pre-fetch buffers, they are Selected and registered for 
use in the execution Stage. In various exemplary embodi 
ments, the pre-fetch bufferS may be one, two, three or more 
deep Such that a first in, first out Storing Scheme is used. 
When a data item is read out of one of the pre-fetch buffers 



US 2005/0278505 A1 

620, it no longer resides in the buffer. The next data in the 
FIFO buffer automatically moves to the front of the queue. 
0035) Referring now to FIG. 7, a flow chart detailing the 
Steps of a method for predictively pre-fetching instruction 
operand addresses in accordance with at least one embodi 
ment of this invention is depicted. In FIG. 7, the steps of a 
pre-fetch method as well as the Steps of a typical instruction 
pipeline are illustrated in parallel. The individual Steps of the 
pre-fetch method may occur at the same time as the various 
Steps or even before. 
0036) Any correspondence between steps of the pre-fetch 
proceSS and the instruction pipeline process implied by the 
figure are merely for ease of illustration. It should be 
appreciated that the Steps of the pre-fetch method occur in 
isolation of the Steps of the instruction pipeline method until 
matching and Selection. 
0037. With continued reference to FIG. 7, operation of 
the pre-fetch method begins in step 700 and proceeds to step 
705 where a set of registers are accessed that serve as 
pointers pointing to specific locations in the X and Y 
memory structures. In various embodiments, step 705 may 
occur Simultaneous to a compound instruction entering the 
fetch Stage of the microprocessor's instruction pipeline. 
However, as noted herein, in various other embodiments, 
because the actual compound instruction has not yet been 
decoded, and therefore, the pre-fetch proceSS is not based on 
any information in the instruction this may occur before, an 
instruction is fetched in step 707. Alternatively, step 705 
may occur after a compound instruction is pre-fetched but 
prior to decoding. 
0.038. As used herein, a compound instruction is one that 
performs multiple Steps, Such as, for example, a memory 
read, an arithmetic operation and a memory write. 
0039. With continued reference to the method of FIG. 7, 
in step 710, the X and Y memory structures are accessed at 
locations Specified by the pointers in the pre-fetch registers. 
0040 Operation of the method then goes to step 715 
where the data read from the X and Y memory locations are 
written to pre-fetch buffers. 
0041) Next, in step 720, the results of the pre-fetch 
method are matched with the actual decoded instruction in 
the matching and Selection Step. Matching and Selection is 
performed to reconcile the addresses of the operands con 
tained in the actual instruction forwarded from the decode 
Stage of the instruction pipeline with the pre-fetched data in 
the pre-fetch buffers. If the pre-fetched data is correct, 
operation continues to the appropriate execute unit of the 
execute pipeline in Step 725 depending upon the nature of 
the instruction, i.e., Shift, add, etc. It should be appreciated 
that if the pre-fetched operand addresses are not correct, a 
pipeline flush will occur while actual operands are fetched 
and injected into pipeline. Operation of the pre-fetch method 
terminates after matching and Selection. It should be appre 
ciated that if necessary, that is, if the instruction requires a 
write operation to XY memory, the results of execution are 
written back to XY memory. Furthermore, it should be 
appreciated that because steps 700-715 are performed in 
parallel and isolation to the processor pipeline operations 
703-720 that they do not effect or otherwise delay the 
processor pipeline operations of fetching, aligning, decod 
ing, register file or execution. 

Dec. 15, 2005 

0042. As stated above, when performing repetitive func 
tions, Such as DSP extension functions where data is repeat 
edly read from and written to XY memory, predictive 
pre-fetching is an effective means of taking advantage of the 
benefits of XY memory without impacting the instruction 
pipeline. Processor clock frequency may be maintained at 
high Speeds despite the use of XY memory. Also, when 
applications being run on the microprocessor do not require 
XY memory, the XY memory functionality is completely 
transparent to the applications. Normal instruction pipeline 
flow and branch prediction are completely unaffected by this 
XY memory functionality both when it is invoked and when 
it is not used. The auxiliary unit of the execute branch 
provides an interface for applications to Select this extend 
ible functionality. Therefore, as a result of the above 
described microprocessor architecture, with careful use of 
pointers and their associated update modes, operands can be 
predictively pre-fetched with Sufficient accuracy to out 
weigh the overhead associated with mispredictions and 
without any impact on the processor pipeline. 
0043. It should be appreciated that, while the descriptors 
“X” and “Y” have been used throughout the specification 
that theses terms are purely descriptive to the extent that they 
do not imply any specific structural. That is to say that any 
two dimensional pre-fetch memory Structure can be consid 
ered “XY memory.” 
0044) While the foregoing description includes many 
details and Specificities, it is to be understood that these have 
been included for purposes of explanation only. The embodi 
ments of the present invention are not to be limited in Scope 
by the Specific embodiments described herein. For example, 
although many of the embodiments disclosed herein have 
been described with reference to particular embodiments, 
the principles herein are equally applicable to microproces 
Sors in general. Indeed, various modifications of the embodi 
ments of the present inventions, in addition to those 
described herein, will be apparent to those of ordinary skill 
in the art from the foregoing description and accompanying 
drawings. Thus, Such modifications are intended to fall 
within the Scope of the following appended claims. Further, 
although the embodiments of the present inventions have 
been described herein in the context of a particular imple 
mentation in a particular environment for a particular pur 
pose, those of ordinary skill in the art will recognize that its 
usefulness is not limited thereto and that the embodiments of 
the present inventions can be beneficially implemented in 
any number of environments for any number of purposes. 
Accordingly, the claims Set forth below should be construed 
in view of the full breadth and spirit of the embodiments of 
the present inventions as disclosed herein. 

1. A microprocessor comprising: 

a multistage instruction pipeline; and 
a predictive pre-fetch memory pipeline comprising: 

a first pre-fetch Stage comprising a pre-fetch pointer 
address register file and memory address generators, 

a Second pre-fetch Stage comprising pre-fetch memory 
Structures accessed using address pointers generated in 
the first pre-fetch Stage; and 



US 2005/0278505 A1 

a data Select Stage comprising at least one pre-fetch buffer 
in which predictive operand address and data informa 
tion from the pre-fetch memory Structures are Stored. 

2. The microprocessor of claim 1, wherein the pre-fetch 
memory Structures comprise X and Y memory Structures 
Storing operand address data. 

3. The microprocessor of claim 1, wherein the first and 
Second pre-fetch Stages and the data Select Stage occur in 
parallel to Stages preceding an execute Stage of the instruc 
tion pipeline. 

4. The microprocessor of claim 1, wherein the instruction 
pipeline comprises align, decode and register file Stages, and 
the first and Second and pre-fetch Stages and the data Select 
Stage occur in parallel to the align, decode and register file 
Stages, respectively. 

5. The microprocessor of claim 1, wherein the predictive 
pre-fetch memory pipeline further comprises hardware logic 
in the data Select Stage adapted to reconcile actual operand 
address information contained in an actual decoded instruc 
tion with the predictive operand address information the 
predictive operand address information. 

6. The microprocessor of claim 5, wherein the predictive 
pre-fetch memory pipeline further comprises hardware logic 
adapted to pass the predictive operand address information 
from the pre-fetch buffer to an execute Stage of the instruc 
tion pipeline if the actual operand address information 
matches the predictive operand address information. 

7. The microprocessor of claim 1, wherein the predictive 
pre-fetch memory pipeline further comprises a write back 
Structure invoked after the execute Stage and being adapted 
to write the results of execution back to XY memory if the 
instruction requires a write to at least one of the pre-fetch 
memory Structures. 

8. A method of predictively pre-fetching operand address 
and data information for an instruction pipeline of a micro 
processor, the method comprising: 

prior to decoding a current instruction in the instruction 
pipeline, accessing at least one register containing 
pointers to Specific locations in pre-fetch memory 
Structures, 

fetching predictive operand data from the Specific loca 
tions in the pre-fetch memory Structures, and 

Storing the pointer and predictive operand data in at least 
one pre-fetch buffer. 

9. The method according to claim 8, wherein accessing, 
fetching and Storing occur in parallel to, Simultaneous to and 
in isolation of the instruction pipeline. 

10. The method according to claim 9, wherein accessing, 
fetching and Storing occur, respectively, in parallel to align, 
decode and register file Stages of the instruction pipeline. 

11. The method according to claim 8, further comprising, 
after decoding the current instruction, reconciling actual 
operand data contained in the decoded current instruction 
with the predictive operand data. 

12. The method according to claim 8, further comprising 
decoding the current instruction and passing the pre-fetched 
predictive operand data to an execute unit of the micropro 

Dec. 15, 2005 

ceSSor pipeline if the pre-fetched predictive operand data 
matches actual operand data contained in the current instruc 
tion. 

13. The method according to claim 8, wherein accessing, 
fetching and Storing are performed on Successive clock 
pulses of the microprocessor. 

14. The method according to claim 8 further comprising, 
performing pre-fetch hazard detection. 

15. The method according to claim 14, wherein perform 
ing pre-fetch hazard detection comprises at least one opera 
tion Selected from the group consisting of Stalling pre-fetch 
operation or restarting pre-fetch operation when the read 
after write hazard has disappeared, if it is determined that 
there is a read after write hazard characterized by a memory 
write to a location in memory that is to be pre-fetched; and 
clearing the pre-fetch buffers if there is a read from a 
memory location previously pre-fetched. 

16. A microprocessor comprising: 
a multistage microprocessor pipeline; and 
a multistage pre-fetch memory pipeline in parallel to at 

least a portion of the microprocessor pipeline, wherein 
the pre-fetch memory pipeline comprises: 

a first Stage having at least one register Serving as pointers 
to specific pre-fetch memory locations, 

a Second Stage, having pre-fetch memory Structures for 
Storing predicted operand address information corre 
sponding to operands in a pre-decoded instruction in 
the microprocessor pipeline; and 

a third Stage comprising at least one pre-fetch buffer; 
wherein Said first, Second and third Stages, respectively, 

are parallel to, Simultaneous to and in isolation of 
corresponding Stages of the microprocessor pipeline. 

17. The microprocessor according to claim 16, wherein 
the microprocessor pipeline comprises align, decode, and 
register file Stages, and the first, Second and third Stages of 
the pre-fetch memory pipeline, respectively, are parallel to 
the align, decode and register file Stages. 

18. The microprocessor according to claim 16, further 
comprising hardware logic in the third Stage adapted to 
reconcile operand address information contained in an actual 
instruction forwarded from a decode Stage of the micropro 
ceSSor pipeline with the predicted operand address informa 
tion. 

19. The microprocessor according to claim 16, further 
comprising circuitry adapted to passing the predicted oper 
and address information from the pre-fetch buffer to an 
execute Stage of the microprocessor pipeline if the operand 
pointer in the actual instruction matches the predicted oper 
and address information. 

20. The microprocessor according to claim 16, further 
comprising post-execute Stage hardware logic adapted to 
write the results of execution back to pre-fetch memory if a 
decoded instruction Specifies a write back to at least one 
pre-fetch memory Structure. 

k k k k k 


