发明名称
具有改进活塞的活塞泵
摘要
本发明涉及一种用于输送流体的活塞泵，它包括
缸体(8)、在缸体(8)中可活动地安装的活塞
(2)、用于使活塞(2)紧的动力元件(14)以及用于
使活塞(2)在缸体(8)中运动的驱动装置，其中所述
活塞(2)两部分地由第一活塞件(3)和第二活塞件
(4)构成。
1. 一种用于输送流体的活塞泵，包括缸体（8）、在缸体（8）中可活动地安装的活塞（2）、用于使活塞（2）预紧的复位元件（14）用于使活塞（2）在缸体（8）中运动的驱动装置，其中所述活塞（2）的两部分由第一活塞件（3）和第二活塞件（4）构成。

2. 如权利要求1所述的活塞泵，其特征在于，第一活塞件（3）是圆柱体。

3. 如上述权利要求中任一项所述的活塞泵，其特征在于，第二活塞件（4）是活塞底部元件，它具有至少一个进入开口（10）和到活塞泵的压力腔（7）的连接开口（11）。

4. 如权利要求3所述的活塞泵，其特征在于，进入开口（10）在侧面设置在第二活塞件（4）的圆周上，而连接开口（11）设置在第二活塞件（4）的底部内。

5. 如上述权利要求中任一项所述的活塞泵，其特征在于，在第二活塞件（4）上构造有入口阀座。

6. 如上述权利要求中任一项所述的活塞泵，其特征在于，在第二活塞件（4）上构造有用于密封件（19）的法兰（12）。

7. 如上述权利要求中任一项所述的活塞泵，其特征在于，在第二活塞件（4）上构造有台阶（13）。

8. 如上述权利要求中任一项所述的活塞泵，其特征在于，第一活塞件（3）与第二活塞件（4）借助于压配合连接。

9. 如权利要求3至8中任一项所述的活塞泵，其特征在于，第二活塞件（4）包括连接部位（18），在这些连接部位之间分别设置槽口式的进入开口（10）。

10. 如上述权利要求中任一项所述的活塞泵，其特征在于，第二活塞件（4）制成为冷锻件，或者制成为回转挤压件，或者制成为铸件，或者制成为塑料注塑件。

11. 制动设备，尤其用于汽车，包括如上述权利要求中任一项所述的活塞泵。
具有改进活塞的活塞泵

技术领域

本发明涉及一种用于输送流体的具有改进活塞的活塞泵，它尤其用在汽车的制动设备中。

由现有技术已知不同结构的活塞泵。已知的活塞泵例如用在汽车的制动设备中，它们能够根据给定的行驶状况形成有效的压力建立。这种制动设备例如是 ABS、ESP 或 TCS 系统。这种活塞泵的响应特性和压力建立必需是非常良好的，并用于尽可能迅速地实现制动系统中的调节干预。

在已知的活塞泵中使用这样的活塞，其通过活塞实现流体输送。在此一方面必须在活塞中设置至少一个横向孔和纵向孔。已知的活塞泵还使用台阶活塞，对此需要非常费事且昂贵的调整。因此已知的活塞泵在其加工上是非常昂贵的，并且由于流体从横向孔偏转到纵向孔中，还具有相对较大的流动阻力。

发明的优点

而按照本发明的用于输送流体的具有权利要求 1 所述特征的活塞泵的优点是，它可以特别简单且经济地加工。此外由于减小流动阻力，还实现改进的抽吸特性。按照本发明，这一点由此得以实现，即所述活塞由两部分构成，并包括第一活塞件和第二活塞件。按照本发明，由此可以使抽吸路径通过活塞在第一与第二活塞件之间构成，并且省去繁琐的活塞孔。

从属权利要求给出本发明的优选改进方案。

第一活塞件优选是圆柱体。由此可以特别简单且经济地加工第一活塞件。在第一活塞件中不必加入孔或类似结构。第一活塞件可以特别简单地在其外圆周上进行加工。因此如果第二活塞件具有不同的，尤其是比圆柱形的第一活塞件更大的直径，则可以通过简单的方式提供具有活塞台阶的活塞。

还优选使第二活塞件是活塞底部元件，它具有至少一个进入开口和一个通到活塞泵的压力腔的连接开口，待输送的流体被抽吸到该压力腔
中。在此必需的卡口可以方便地设置在第二活塞件的端部和圆周区域内。

在第二活塞件中的进入开口优选在侧面布置，并且连接开口布置在活塞底部的底部。如果所述进入开口在活塞的轴向方向上靠近第二活塞件的底部，可以实现极短的活塞杆抽吸范围，由此可以明显减小在活塞抽吸状态期间的流动阻力。因此按照本发明可以明显提高泵的效率。

为了减少活塞杆的部件数量，优选在活塞底部元件上附加地构造有入口阀座。该入口阀座例如可以通过球压制，在活塞杆的装配过程中制成。在此在装配过程期间，使入口阀体挤压第二活塞件中的阀座。

还优选在第二活塞底部元件上整体地构造有用于密封件的法兰。优选还附加地在活塞底部元件上构造有台阶。在此用于密封件的法兰台阶可以在活塞的轴向方向上相互间直接相邻地构造。

为了能够方便且经济地实现第一与第二活塞件的连接，使第一活塞件与第二活塞件优选通过压配合连接。但是也可以使用其它的连接技术，如熔焊、钎焊、粘接或嵌缝（Verstemmen）。

按照本发明的特别优选的变型方案，使活塞底部元件包括四个连接部位，在这些连接部位之间分别设置槽口式的进入开口。这四个连接部位围绕活塞的中心轴线对称地布置，由此能够使流体从四个不同的方向在单个连接部位之间入流。需要指出的是，也可以设置多于或少于四个进入开口。

所述活塞底部元件优选由冷锻件，或者由回转加工件，或者由铸件，或者由金属注塑件，或者由烧结件，或者由塑料注塑件制成。

本发明还涉及用于汽车的具有按照本发明的活塞杆的制动设备。这种制动设备优选是具有有效的压力建立系统的制动设备。

附图

下面借助于附图详细描述本发明的实施例。附图中：
图 1 显示出按照本发明的一个实施例的活塞杆的剖视图，
图 2 显示图 1 中所示活塞的透视图，其中示出两个活塞件的未装配状态。
实施例的说明

下面借助于图 1 和图 2 描述按照本发明的活塞泵 1 的实施例。

如图 1 所示，所述活塞泵 1 包括活塞 2 和缸体 8。活塞 2 能够以公知的方式通过偏心轮驱动，并且流体从箭头 S 的方向径向被抽吸通过过滤器 9。流体在活塞轴向 X-X 方向上输送到压力腔 7 里面。压力腔 7 在入口阀 5 与出口阀 6 之间设置在缸体 8 中。在压力腔 7 中还设置有用于活塞的复位弹簧 14。

所述入口阀 5 由止回阀构成并且包括保持架 15，在保持架 15 中设置弹簧 16 和球体 17。所述出口阀 6 同样由弹簧加载的止回阀构成，并且一旦压力腔 7 中的压力大于作用在出口阀 6 球体上的弹簧力，出口阀 6 就打开。

如图 1 和 2 所示，所述活塞 2 两部分地由第一活塞件 3 和第二活塞件 4 构成。第一活塞件 3 是圆柱体，它可以通过通过偏心驱动装置或其它驱动装置来运动。在此第一活塞件 3 没有孔或类似结构。第二活塞件 4 是活塞底部元件，在其中设置有四个径向的进入开口 10 和一个轴向的用于连接到压力腔 7 的连接开口 11。在活塞底部元件的外圆周上设置有用于布置密封件 19 的法兰 12。法兰 12 设置在相邻于第二活塞件 4 的底部的台阶 13 上。其它密封件 20、21 以公知的方式设置在第一活塞件 3 上。

如图 2 所示，四个进入开口 10 沿着活塞底部元件的圆周对称地布置。在每个进入开口 10 之间分别设置有一个连接部位 18，通过这些连接部位 18，在第一活塞件 3 与第二活塞件 4 之间建立起连接。两个活塞件 3、4 之间的连接通过压配合实现。在此一个进入开口 10 的圆周长度相当于一个连接部位 18 的圆周长度。

在此如下实现按照本发明的活塞泵 1 的功能：在活塞 2 的抽吸行程期间，流体通过过滤器 9 在箭头 S 的方向上径向通过进入开口 10 和连接开口 11 输入到压力腔 7 里面。在达到上死点以后，活塞 2 的运动方向反转，由此使入口阀 5 封闭第二活塞件 4 上的连接开口 11。现在在压力腔 7 中这样长时间地建立压力，直到压力腔 7 中的压力大于出口阀 6 的弹簧力。如果是这种情况，出口阀 6 打开，由此使处于压力下的流体可以从压力腔 7 输出到排出管道 (未示出)。在达到下死点以后，活塞 2 的运动方向又反转，由此再关闭出口阀 6 并且再开始抽吸行程。在此复
位弹簧 14 的复位力顶压入口阀 5 的保持架 15，该保持架 15 支撑在台阶 13 上，用于使活塞 2 再复位。

因此通过两部分的活塞 2 结构，能够省去活塞中的繁琐的纵向孔和横向孔。此外使通过第二活塞件 4 被导引的流体的进入行程非常短，并且通过将四个进入开口 10 的结构非常大地确定尺寸，由此可以使得往状态中的流动阻力最小化。由此可以使按照本发明的活塞泵 1 可以更快地输送，并且实现显著改善的压力建立动态特性。在此按照本发明的活塞可以方便地组装，并且同样方便地装配在活塞泵 1 里面。在此第一活塞件 3 尤其是非常经济地制成，例如通过切割棒料。如果第二活塞件 4 也由塑料注塑件或者由冷锻件制成，还可以完全省去切削加工。按照本发明的活塞泵特别优选与汽车的制动设备相结合，尤其是与有效的压力建立系统相结合，例如用于 ABS 系统、ESP 系统、TCS 系统和/或 EHB 系统。