
Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
— with international search report
— before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

Title: 2-AMINO-O4-SUBSTITUTED PTERIDINES AND THEIR USE AS INACTIVATORS OF O6-ALKYLGLUCURONINE-DNA ALKYLTRANSFERASE

Abstract: Disclosed are pteridine derivatives of formula (I): (I), wherein, for example, R1 and R2 are hydrogen, C1-C6 alkyl, carboxyl, formyl, C1-C6 hydroxyalkyl, C1-C6 carboxyalkyl, C1-C6 formyl alkyl, C1-C6 alkoxy, acyloxy, acyloxyalkyl wherein the alkyl is C1-C6, halogen, or hydroxy, or a group of formula II: (II); and R3 is (a) phenyl or (b) a cyclic group having at least one or 5 to 6-membered heterocyclic ring, optionally with a carbocyclic or heterocyclic ring fused thereto, wherein each heterocyclic ring has at least one hetero atom chosen from O, N, or S; or (c) a phenyl group or a cyclic group, the cyclic group optionally with a carbocyclic or heterocyclic ring fused thereto, which is substituted with 1 to 5 substituents. Disclosed also are pharmaceutical compositions, a method of enhancing the chemotherapeutic effectiveness of cancer treatment agents, a method of deactivating the O6-alkylguanine-DNA alkyltransferase enzyme, and a method of inhibiting the reaction of O6-alkylguanine-DNA alkyltransferase enzyme with an alkylated DNA.
2-AMINO-\(O^6\)-SUBSTITUTED PTERIDINES AND THEIR USE
AS INACTIVATORS OF \(O^6\)-ALKYLGUANINE-DNA ALKYLTRANSFERASE

FIELD OF THE INVENTION

[0001] This invention pertains to certain pteridine derivatives, pharmaceutical
compositions comprising such derivatives, and their use as inactivators of the \(O^6\)-
alkylguanine-DNA alkyltransferase protein ("AGT" or "alkyltransferase"). These derivatives
are contemplated for use in conjunction with cancer treatment agents such as
carmustine, lomustine, nimustine, or temozolomide for enhancing the
chemotherapeutic efficacy of these cancer treatment agents.

BACKGROUND OF THE INVENTION

[0002] \(O^6\)-Benzylguanine derivatives,\(^1\,\,^2\) some \(O^6\)-benzylpyrimidines\(^3\) and related
compounds\(^4\,\,^5\) are known to be inactivators of the human DNA repair protein, AGT.\(^6\) See also
U.S. Patents 5,091,430; 5,352,669; 5,358,952; 5,525,606; 5,691,307; 5,753,668; 5,916,894;
5,958,932; 6,172,070; 6,303,604; 6,333,331; and 6,436,945. This repair protein is the
primary source of resistance many tumor cells exhibit to chemotherapeutic agents that modify
the \(O^6\)-position of DNA guanine residues.\(^6\) Therefore, inactivation of this protein can bring
about a significant improvement in the therapeutic effectiveness of these chemotheraphy
drugs. The prototype inactivator, \(O^6\)-benzylguanine is currently in clinical trials in the US as
an adjuvant in combination with the chloroethylating agent, 1,3-bis(2-chloroethyl)-1-
nitrosourea (BCNU) and the methylating agent, temozolomide.\(^7\,\,^8\) \(O^6\)-(4-bromothenyl)guanine
is in clinical trials in the UK\(^9\) as an alkyltransferase inactivator. There is a desire, and
therefore, a need, in the pharmaceutical industry for novel inactivators that have one or more
advantageous properties compared to \(O^6\)-benzylguanine or \(O^6\)-(4-bromothenyl)guanine such
as improved water solubility and/or greater tumor selectivity. The advantages of this
invention, as well as additional inventive features, will be apparent from the description of
the invention provided herein.

BRIEF SUMMARY OF THE INVENTION

[0003] The foregoing need has been fulfilled to a great extent by the present invention
which provides pteridine derivatives of formula (I):
wherein \(R_1, R_2, \) and \(R_3 \) are suitable substituents. The present invention also provides pharmaceutical compositions comprising a pteridine derivative or pharmaceutically acceptable salt thereof. The present invention also provides a method of enhancing the chemotherapeutic effectiveness of cancer treatment agents by the use of these pteridine derivatives. The present invention further provides a method of deactivating or reducing the activity of AGT, as well as a method of inhibiting the reaction of AGT with an alkylated DNA.

[0004] While the invention has been described and disclosed below in connection with certain embodiments and procedures, it is not intended to limit the invention to those embodiments. Rather, it is intended to cover all such alternative embodiments and modifications as fall within the spirit and scope of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

[0005] Figure 1 depicts a reaction scheme useful to prepare certain compounds (4-7) in accordance with an embodiment of the invention. “Bn” in the formulas represents benzyl.

[0006] Figure 2 depicts the effect of compound 7 on cell killing of various tumor cells by BCNU.

DETAILED DESCRIPTION OF THE INVENTION

[0007] The present invention provides compounds having, in addition to AGT inactivating ability, one or more advantageous properties compared to \(O^6 \)-benzylguanine. Accordingly, the present invention provides compounds of formula (I):
wherein R₁ and R₂ are independently selected from the group consisting of hydrogen, C₁-C₆ alkyl, carboxyl, formyl, C₁-C₆ hydroxyalkyl, C₁-C₆ carboxyalkyl, C₁-C₆ formyl alkyl, C₁-C₆ alkoxy, acyloxy, acyloxy C₁-C₆ alkyl, halo, hydroxy, aryl, amino, monoalkylamino wherein the alkyl is C₁-C₆, dialkylamino wherein the alkyl is C₁-C₆, acylamino, C₁-C₆ alkyl substituted aryl, nitro, C₃-C₈ cycloalkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, and a group of formula (II):

R₃ is (a) phenyl; (b) a cyclic group having at least one 5 or 6-membered heterocyclic ring, optionally with a carbocyclic or heterocyclic ring fused thereto, wherein each heterocyclic ring has at least one hetero atom chosen from O, N, or S; or (c) a phenyl group or a cyclic group, the cyclic group optionally with a carbocyclic or heterocyclic ring fused thereto, which is substituted with 1 to 5 substituents selected from the group consisting of halo, hydroxy, aryl, C₁-C₆ alkyl substituted aryl, nitro, polycyclic aryl alkyl containing 2 to 4 aromatic rings wherein the alkyl is a C₁-C₆, C₃-C₈ cycloalkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ hydroxyalkyl, C₁-C₆ alkoxy, C₁-C₆ alkoxy C₁-C₆ alkyl, arloxy, acyloxy, acyloxy C₁-C₆ alkyl, amino, monoalkylamino wherein the alkyl is C₁-C₆, dialkylamino wherein the alkyl is C₁-C₆, acylamino wherein the alkyl is C₁-C₆, acylamino, ureido, thioureido, carboxy, carboxy C₁-C₆ alkyl, azido, cyano, cyano C₁-C₆ alkyl, formyl, acyl, dialkoxyl alkyl wherein the alkoxyl and alkyl are independently C₁-C₆, aminoalkyl wherein the alkyl is C₁-C₆, and SO₃R’ wherein n=0, 1, 2 or 3, R’ is H, a C₁-C₆ alkyl or aryl; or a pharmaceutically acceptable salt thereof;
with the provisos that (1) \(R_1 \) and \(R_2 \) are not simultaneously hydrogen; and (2) when \(R_3 \) is unsubstituted phenyl, \(R_1 \) and \(R_2 \) are not simultaneously methyl. "Halo" refers to fluoro, chloro, bromo, or iodo. "Aryl" refers to an aromatic group having 1, 2, or 3 phenyl rings.

[0008] In an embodiment of the invention, \(R_3 \) is phenyl or a phenyl group substituted with 1, 2, 3, 4, or 5 substituents selected from the group consisting of halo, hydroxy, aryl, \(C_1-C_6 \) alkyl substituted aryl, nitro, polycyclic aryl alkyl containing 2 to 4 aromatic rings wherein the alkyl is a \(C_1-C_6, C_3-C_8 \) cycloalkyl, \(C_2-C_6 \) alkenyl, \(C_2-C_6 \) alkynyl, \(C_1-C_6 \) hydroxyalkyl, \(C_1-C_6 \) alkoxy, \(C_1-C_6 \) alkoxy \(C_1-C_6 \) alkyl, aryloxy, acyloxy, aryloxy \(C_1-C_6 \) alkyl, amino, monoalkylamino wherein the alkyl is \(C_1-C_6 \), dialkylamino wherein the alkyl is \(C_1-C_6 \), acylamino, ureido, thioureido, carbonyl, carbonyl \(C_1-C_6 \) alkyl, azido, cyano, cyano \(C_1-C_6 \) alkyl, formyl, acyl, dialkoxycarbonyl wherein the alkyl and alkoxyl are independently \(C_1-C_6 \), aminoalkyl wherein the alkyl is \(C_1-C_6 \), and \(SO_nR' \) wherein \(n = 0, 1, 2 \) or 3, \(R' \) is \(H \), a \(C_1-C_6 \) alkyl or acyl; or a pharmaceutically acceptable salt thereof.

[0009] In accordance with a preferred embodiment, the present invention provides compounds of formula (I), wherein \(R_1 \) is selected from the group consisting of hydrogen, \(C_1-C_6 \) alkyl, carboxyl, formyl, \(C_1-C_6 \) hydroxyalkyl, \(C_1-C_6 \) carboxyalkyl, \(C_1-C_6 \) formyl alkyl, and a group of formula (II) and \(R_2 \) is hydrogen or \(C_1-C_6 \) alkyl; and \(R_3 \) is phenyl or a substituted phenyl, wherein the substituents on phenyl are described above; or a pharmaceutically acceptable salt thereof.

[0010] In a more preferred embodiment, the present invention provides compounds of formula (I), wherein \(R_1 \) is selected from the group consisting of hydrogen, \(C_1-C_6 \) alkyl, \(C_1-C_6 \) hydroxyalkyl, carboxyl, formyl, and a group of formula (II), \(R_2 \) is hydrogen or \(C_1-C_6 \) alkyl, and \(R_3 \) is phenyl; or a pharmaceutically acceptable salt thereof. Particular embodiments of the compounds include those wherein \(R_1 \) is hydroxymethyl, carboxyl, formyl, or a group of formula (II), \(R_2 \) is hydrogen, and \(R_3 \) is phenyl; or a pharmaceutically acceptable salt thereof. Specific embodiments of the compounds of the present invention include compounds of formula (I), wherein \(R_1 \) is a group of formula (II), \(R_2 \) is hydrogen; and \(R_3 \) is phenyl; or a pharmaceutically acceptable salt thereof.

[0011] In certain embodiments, \(R_3 \) is a 5-membered ring containing \(N, S \) or \(O \), with or without a second ring fused thereto; for example, \(R_3 \) is a heterocyclic ring having at least one \(S \) atom; e.g., a thiophene ring or a substituted derivative thereof. Alternatively, \(R_3 \) may be a heterocyclic ring having at least one \(O \) atom, particularly, a 5-membered heterocyclic ring having at least one \(O \) atom and more particularly \(R_3 \) may be a furan ring or a substituted derivative thereof. As another alternative, \(R_3 \) may be a heterocyclic ring having at least one \(N \) atom, particularly \(R_3 \) may be a 6-membered heterocyclic ring having at least one \(N \) atom
and in particular, R₃ may be a pyridine ring. Examples of R₃ include halothiophenyl, i.e., chloro, bromo, fluoro, or iodo thiophene; the halo group can be at any suitable position, e.g., the 4-chloro or 4-bromo thiophene derivative. In embodiments, the carbocyclic or heterocyclic ring fused to the heterocyclic ring in R₃ may itself be bicyclic, e.g., naphthalene.

The present invention further provides pharmaceutical compositions comprising at least one of the compounds of the invention and a pharmaceutically acceptable carrier.

The present invention also provides a method of enhancing the chemotherapeutic treatment of tumor cells in a mammal with an antineoplastic alkylating agent that causes cytotoxic lesions at the O₆-position of guanine, which method comprises administering to the mammal an effective amount of a compound of formula (I):

![Chemical Structure Image]

wherein R₁ and R₂ are independently selected from the group consisting hydrogen, C₁-C₆ alkyl, carboxyl, formyl, C₁-C₆ hydroxyalkyl, C₁-C₆ carboxyalkyl, C₁-C₆ formyl alkyl, C₁-C₆ alkoxy, acyloxy, acyloxy C₁-C₆ alkyl, halo, hydroxy, aryl, amino, monoalkylamino wherein the alkyl is C₁-C₆, dialkylamino wherein the alkyl is C₁-C₆, acylamino, C₁-C₆ alkyl substituted aryl, nitro, C₃-C₆ cycloalkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl and a group of formula (II):

![Chemical Structure Image]

R₃ is (a) phenyl; (b) a cyclic group having at least one 5 or 6-membered heterocyclic ring, optionally with a carbocyclic or heterocyclic ring fused thereto, wherein each heterocyclic ring has at least one hetero atom chosen from O, N, or S; or (c) a phenyl group or a cyclic
group, the cyclic group optionally with a carbocyclic or heterocyclic ring fused thereto, which is substituted with 1 to 5 substituents selected from the group consisting of halo, hydroxy, aryl, C₁-C₆ alkyl substituted aryl, nitro, polycyclic aryl alkyl containing 2 to 4 aromatic rings wherein the alkyl is a C₁-C₆, C₃-C₈ cycloalkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ hydroxyalkyl, C₁-C₆ alkoxy, C₁-C₆ alkoxy C₁-C₆ alkyl, aryloxy, acyloxy, acyloxy C₁-C₆ alkyl, amino, monoalkylamino wherein the alkyl is C₁-C₆, dialkylamino wherein the alkyl is C₁-C₆, amino or alkyl amino, ureido, thioureido, carboxy, carboxy C₁-C₆ alkyl, azido, cyano, cyano C₁-C₆ alkyl, formyl, acyl, dialkoxo alkyl wherein the alkoxy and alkyl are independently C₁-C₆, aminoalkyl wherein the alkyl is C₁-C₆, and SO₂R' wherein n=0, 1, 2 or 3, R' is H, a C₁-C₆ alkyl or aryl; or a pharmaceutically acceptable salt thereof,

with the proviso that R₁ and R₂ are not simultaneously hydrogen;

and administering to the mammal an effective amount of an antineoplastic alkylating agent which causes cytotoxic lesions at the O₆-position of guanine

[0014] The present invention further provides a method for treating tumor cells in a mammal comprising administering to the mammal an amount effective to reduce the AGT activity in the mammal of a compound of formula (I):

![Chemical Structure Image]

(Ⅰ);

wherein R₁ and R₂ are independently selected from the group consisting of hydrogen, C₁-C₆ alkyl, carboxyl, formyl, C₁-C₆ hydroxyalkyl, C₁-C₆ carboxyalkyl, C₁-C₆ formyl alkyl, C₁-C₆ alkoxy, acyloxy, acyloxy C₁-C₆ alkyl, halo, hydroxy, aryl, amino, monoalkylamino wherein the alkyl is C₁-C₆, dialkylamino wherein the alkyl is C₁-C₆, acylamino, C₁-C₆ alkyl substituted aryl, nitro, C₃-C₈ cycloalkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, and a group of formula (II):

![Chemical Structure Image]
R₃ is (a) phenyl or (b) a cyclic group having at least one 5 or 6-membered heterocyclic ring, optionally with a carbocyclic or heterocyclic ring fused thereto, wherein each heterocyclic ring has at least one hetero atom chosen from O, N, or S; or (c) a phenyl group or a cyclic group, the cyclic group optionally with a carbocyclic or heterocyclic ring fused thereto, which is substituted with 1 to 5 substituents selected from the group consisting of halo, hydroxy, aryl, C₁-C₆ alkyl substituted aryl, nitro, polycyclic aryl alkyl containing 2 to 4 aromatic rings wherein the alkyl is a C₁-C₆, C₃-C₅ cycloalkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ hydroxyalkyl, C₁-C₆ alkoxy, C₁-C₆ alkyl, aryloxy, acyloxy, acyloxy C₁-C₆ alkyl, amino, monoalkylamino wherein the alkyl is C₁-C₆, dialkylamino wherein the alkyl is C₁-C₆, acylamino, ureido, thioureido, carboxy, carboxy C₁-C₆ alkyl, azido, cyano, cyano C₁-C₆ alkyl, formyl, acyl, dialkoxoy alkyl wherein the alkoxy and alkyl are independently C₁-C₆, aminoalkyl wherein the alkyl is C₁-C₆, and SO₂R', wherein n=0, 1, 2 or 3, R' is H, a C₁-C₆ alkyl or aryl; or a pharmaceutically acceptable salt thereof, with the proviso that R₁ and R₂ are not simultaneously hydrogen; and administering to the mammal an effective amount of an antineoplastic alkylating agent which causes cytotoxic lesions at the O₆-position of guanine.

[0015] The compounds of the present invention can be administered in any suitable manner to a mammal for the purpose of enhancing the chemotherapeutic treatment of a particular cancer. Although more than one route can be used to administer a particular compound, a particular route can provide a more immediate and more effective reaction than another route. Accordingly, the described methods provided herein are merely exemplary and are in no way limiting.

[0016] Generally, the compounds of the present invention as described above will be administered in a pharmaceutical composition to an individual afflicted with a cancer. Those undergoing or about to undergo chemotherapy can be treated with the compounds separately, sequentially, simultaneously, or in conjunction with other treatments, as appropriate. In therapeutic applications, compositions are administered to a patient in an amount sufficient to elicit an effective depression of AGT activity thereby potentiating the cytotoxicity of the aforedescribed chemotherapeutic treatment. An amount adequate to accomplish this is defined as a "therapeutically effective dose," which is also an "AGT inactivating effective amount." Amounts effective for a therapeutic or prophylactic use will depend on, e.g., the stage and severity of the disease being treated, the age, weight, and general state of health of the patient, and the judgment of the prescribing physician. The size of the dose will also be
determined by the compound selected, method of administration, timing and frequency of
administration as well as the existence, nature, and extent of any adverse side-effects that
might accompany the administration of a particular compound and the desired physiological
effect. It will be appreciated by one of skill in the art that various disease states may require
prolonged treatment involving multiple administrations, perhaps using a series of different
AGT inactivators and/or chemotherapeutic agents in each or various rounds of
administration.

[0017] Suitable chemotherapeutic agents usefully administered in coordination with the
compounds of the present invention include alkylating agents, such as chloroethylating and
methylation agents. Such agents may be administered using conventional techniques such as
those described in Wasserman et al., Cancer, 36, pp. 1258-1268 (1975), and Physicians' Desk
Reference, 48th ed., Edward R. Barnhart publisher (1994). For example, 1,3-bis(2-
chloroethyl)-1-nitosourea (carmustine or BCNU, Bristol-Myers, Evansville, Ind.) may be
administered intravenously at a dosage of from about 150 to 200 mg/m² every six weeks.
Another alkylating agent, 1-(2-chloroethyl)-3-cyclohexyl-1-nitosourea (lomustine or CCNU,
Bristol-Myers), may be administered orally at a dosage of about 130 mg/m² every six weeks.
Other alkylating agents may be administered in appropriate dosages via appropriate routes of
administration known to skilled medical practitioners.

[0018] Suitable doses and dosage regimens can be determined by conventional range-
finding techniques known to those of ordinary skill in the art. Generally, treatment is
initiated with smaller dosages that are less than the optimum dose of the compound.
Thereafter, the dosage is increased by small increments until the optimum effect under the
circumstances is reached. The present inventive method typically will involve the
administration of about 1 mg to about 50 mg of one or more of the compounds described
above per kg body weight of the individual. For a 70 kg patient, dosages of from about 10
mg to about 200 mg of the compound would be more commonly used, possibly followed by
further lesser dosages from about 1 mg to about 50 mg of the compound over weeks to
months, depending on a patient's physiological response, as determined by measuring cancer-
specific antigens or other measurable parameters related to the tumor load of a patient.

[0019] It must be kept in mind that the compounds and compositions of the present
invention generally are employed in serious disease states, that is, life-threatening or
potentially life-threatening situations. In such cases, in view of the minimization of
extraneous substances and the relative nontoxic nature of the compounds, it is possible and
may be felt desirable by the treating physician to administer substantial excesses of these
compounds.
[0020] Single or multiple administrations of the compounds can be carried out with dose levels and pattern being selected by the treating physician. In any event, the pharmaceutical formulations should provide a quantity of AGT-inactivating compounds of the invention sufficient to effectively enhance the cytotoxic impact of the chemotherapy.

[0021] The pharmaceutical compositions for therapeutic treatment are intended for parental, topical, oral or local administration and generally comprise a pharmaceutically acceptable carrier and an amount of the active ingredient sufficient to reduce, and preferably prevent, the activity of the AGT protein. The carrier may be any of those conventionally used and is limited only by chemico-physical considerations, such as solubility and lack of reactivity with the compound, and by the route of administration.

[0022] Examples of pharmaceutically-acceptable acid addition salts for use in the present inventive pharmaceutical composition include those derived from mineral acids, such as hydrochloric, hydrobromic, phosphoric, metaphosphoric, nitric and sulfuric acids, and organic acids, such as tartaric, acetic, citric, malic, lactic, fumaric, benzoic, glycolic, gluonic, succinic, p-toluenesulphonic acids, and arylsulphanic, for example.

[0023] The pharmaceutically acceptable carriers described herein, for example, vehicles, adjuvants, excipients, or diluents, are well known to those who are skilled in the art and are readily available to the public. It is preferred that the pharmaceutically acceptable carrier be one that is chemically inert to the active compounds and one that has no detrimental side effects or toxicity under the conditions of use. Such pharmaceutically acceptable carriers preferably include water USP, saline (e.g., 0.9% saline), Cremophor EL (which is a derivative of castor oil and ethylene oxide available from Sigma Chemical Co., St. Louis, Mo.) (e.g., 5% Cremophor EL/5% ethanol/90% saline, 10% Cremophor EL/90% saline, or 50% Cremophor EL/50% ethanol), propylene glycol (e.g., 40% propylene glycol/10% ethanol/50% water), polyethylene glycol (e.g., 40% PEG 400/60% saline), and alcohol (e.g., 40% ethanol/60% water). A preferred pharmaceutically acceptable carrier for use in conjunction with the present invention is polyethylene glycol, such as PEG 400, and particularly a composition comprising 40% PEG 400 and 60% water or saline.

[0024] The choice of carrier will be determined in part by the particular compound chosen, as well as by the particular method used to administer the composition. Accordingly, there is a wide variety of suitable formulations of the pharmaceutical composition of the present invention.

[0025] The following formulations for oral, aerosol, parenteral, subcutaneous, intravenous, intraarterial, intramuscular, interperitoneal, rectal, and vaginal administration are merely exemplary and are in no way limiting.
The pharmaceutical compositions can be administered parenterally, e.g., intravenously, intraarterially, intrathecally, subcutaneously, intradermally, or intramuscularly. Thus, the invention provides compositions for parenteral administration that comprise a solution of the compound dissolved or suspended in an acceptable carrier suitable for parenteral administration, including aqueous and non-aqueous, isotonic sterile injection solutions.

Overall, the requirements for effective pharmaceutical carriers for parenteral compositions are well known to those of ordinary skill in the art. See Pharmaceutics and Pharmacy Practice, J. B. Lippincott Company, Philadelphia, Pa., Banker and Chalmers, eds., pages 238-250 (1982), and ASHP Handbook on Injectable Drugs, Toissel, 4th ed., pages 622-630 (1986). Such solutions can contain antioxidants, buffers, bacteriostats, and solutes that render the formulation isotonic with the blood of the intended recipient, and aqueous and non-aqueous sterile suspensions that can include suspending agents, solubilizers, thickening agents, stabilizers, and preservatives. The compound may be administered in a physiologically acceptable diluent or a pharmaceutically acceptable carrier, such as a sterile liquid or mixture of liquids, including water, saline, aqueous dextrose and related sugar solutions, an alcohol, such as ethanol, isopropanol, or hexadecyl alcohol, glycols, such as propylene glycol or polyethylene glycol, dimethylsulfoxide, glycerol ketsals, such as 2,2-dimethyl-1,3-dioxolane-4-methanol, ethers, such as poly(ethyleneglycol) 400, an oil, a fatty acid, a fatty acid ester or glyceride, or an acetylated fatty acid glyceride with or without the addition of a pharmaceutically acceptable surfactant, such as a soap or a detergent, suspending agent, such as pectin, carbomers, methylcellulose, hydroxypropylmethylcellulose, or carboxymethylcellulose, or emulsifying agents and other pharmaceutical adjuvants.

Oils useful in parenteral formulations include petroleum, animal, vegetable, or synthetic oils. Specific examples of oils useful in such formulations include peanut, soybean, sesame, cottonseed, corn, olive, petrolatum, and mineral. Suitable fatty acids for use in parenteral formulations include oleic acid, stearic acid, and isostearic acid. Ethyl oleate and isopropyl myristate are examples of suitable fatty acid esters. Suitable soaps for use in parenteral formulations include fatty alkali metal, ammonium, and triethanolamine salts, and suitable detergents include (a) cationic detergents such as, for example, dimethyl dialkyl ammonium halides, and alkyl pyridinium halides, (b) anionic detergents such as, for example, alkyl, aryl, and olefin sulfonates, alkyl, olefin, ether, and monoglyceride sulfates, and sulfosuccinates, (c) nonionic detergents such as, for example, fatty amine oxides, fatty acid alkanolamides, and polyoxyethylene polypropylene copolymers, (d) amphoteric detergents
such as, for example, alkyl-β-aminopropionates, and 2-alkyl-imidazoline quaternary ammonium salts, and (e) combinations thereof.

[0029] The parenteral formulations typically will contain from about 0.5% to about 25% by weight of the active ingredient in solution. Preservatives and buffers may be used. In order to minimize or eliminate irritation at the site of injection, such compositions may contain one or more nonionic surfactants having a hydrophile-lipophile balance (HLB) of from about 12 to about 17. The quantity of surfactant in such formulations will typically range from about 5% to about 15% by weight. Suitable surfactants include polyethylene sorbitan fatty acid esters, such as sorbitan monooleate and the high molecular weight adducts of ethylene oxide with a hydrophobic base, formed by the condensation of propylene oxide with propylene glycol. The parenteral formulations can be presented in unit-dose or multidose sealed containers, such as ampoules and vials, and can be stored in a freeze-dried (lyophilized) condition requiring only the addition of the sterile liquid excipient, for example, water, for injections, immediately prior to use. Extemporaneous injection solutions and suspensions can be prepared from sterile powders, granules, and tablets.

[0030] Topical formulations, including those that are useful for transdermal drug release, are well known to those of skill in the art and are suitable in the context of the present invention for application to skin.

[0031] Formulations suitable for oral administration require extra considerations considering the nature of some of the compounds of the present invention and the likely breakdown thereof if such compounds are administered orally without protecting them from the digestive secretions of the gastrointestinal tract. Such a formulation can consist of (a) liquid solutions, such as an effective amount of the compound dissolved in diluents, such as water, saline, or orange juice; (b) capsules, sachets, tablets, lozenges, and troches, each containing a predetermined amount of the active ingredient, as solids or granules; (c) powders; (d) suspensions in an appropriate liquid; and (e) suitable emulsions. Liquid formulations may include diluents, such as water and alcohols, for example, ethanol, benzyl alcohol, and the polyethylene alcohols, either with or without the addition of a pharmaceutically acceptable surfactant, suspending agent, or emulsifying agent. Capsule forms can be of the ordinary hard- or soft-shelled gelatin type containing, for example, surfactants, lubricants, and inert fillers, such as lactose, sucrose, calcium phosphate, and corn starch. Tablet forms can include one or more of lactose, sucrose, mannitol, corn starch, potato starch, alginic acid, microcrystalline cellulose, acacia, gelatin, guar gum, colloidal silicon dioxide, croscarmellose sodium, talc, magnesium stearate, calcium stearate, zinc stearate, stearic acid, and other excipients, colorants, diluents, buffering agents, disintegrating
agents, moistening agents, preservatives, flavoring agents, and pharmacologically compatible excipients. Lozenge forms can comprise the active ingredient in a flavor, usually sucrose and acacia or tragacanth, as well as pastilles comprising the active ingredient in an inert base, such as gelatin and glycerin, or sucrose and acacia, emulsions, gels, and the like containing, in addition to the active ingredient, such excipients as are known in the art.

[0032] The compounds of the present invention, alone or in combination with other suitable components, can be made into aerosol formulations to be administered via inhalation. The compounds are preferably supplied in finely divided form along with a surfactant and propellant. Typical percentages of active compound are 0.01-20% by weight, preferably 1%-10%. The surfactant must, of course, be nontoxic, and preferably soluble in the propellant. Representative of such surfactants are the esters or partial esters of fatty acids containing from 6 to 22 carbon atoms, such as caproic, octanoic, lauric, palmitic, stearic, linoleic, linolenic, oleric and oleic acids with an aliphatic polyhydric alcohol or its cyclic anhydride. Mixed esters, such as mixed or natural glycerides may be employed. The surfactant may constitute 0.1%-20% by weight of the composition, preferably 0.25-5%. The balance of the composition is ordinarily propellant. A carrier can also be included as desired, e.g., lecithin for intranasal delivery. These aerosol formulations can be placed into acceptable pressurized propellants, such as dichlorodifluoromethane, propane, nitrogen, and the like. They also may be formulated as pharmaceuticals for non-pressurized preparations, such as in a nebulizer or an atomizer. Such spray formulations may be used to spray mucosa.

[0033] Additionally, the compounds and polymers useful in the present inventive methods may be made into suppositories by mixing with a variety of bases, such as emulsifying bases or water-soluble bases. Formulations suitable for vaginal administration may be presented as pessaries, tampons, creams, gels, pastes, foams, or spray formulas containing, in addition to the active ingredient, such carriers as are known in the art to be appropriate.

[0034] The concentration of the compounds of the present invention in the pharmaceutical formulations can vary widely, i.e., from less than about 1%, usually at or at least about 10%, to as much as 20% to 50% or more by weight, and will be selected primarily by fluid volumes, or viscosities, in accordance with the particular mode of administration selected.

[0035] Thus, a typical pharmaceutical composition for intravenous infusion could be made up to contain 250 ml of sterile Ringer's solution, and 100 mg of the compound. Actual methods for preparing parenterally administrable compounds will be known or apparent to those skilled in the art and are described in more detail in, for example, Remington's Pharmaceutical Science (17th ed., Mack Publishing Company, Easton, Pa., 1985).
[0036] It will be appreciated by one of ordinary skill in the art that, in addition to the aforedescribed pharmaceutical compositions, the compounds of the present inventive method may be formulated as inclusion complexes, such as cyclodextrin inclusion complexes, or liposomes. Liposomes serve to target the compounds to a particular tissue, such as lymphoid tissue or cancerous hepatic cells. Liposomes can also be used to increase the half-life of the compound. Liposomes useful in the present invention include emulsions, foams, micelles, insoluble monolayers, liquid crystals, phospholipid dispersions, lamellar layers and the like. In these preparations, the compound to be delivered is incorporated as part of a liposome, alone or in conjunction with a suitable chemotherapeutic agent. Thus, liposomes filled with a desired compound of the invention can be directed to the site of a specific tissue type, hepatic cells, for example, where the liposomes then deliver the selected chemotherapeutic-enhancement compositions. Liposomes for use in the invention are formed from standard vesicle-forming lipids, which generally include neutral and negatively charged phospholipids and a sterol, such as cholesterol. The selection of lipids is generally guided by consideration of, for example, liposome size and stability of the liposomes in the blood stream. A variety of methods are available for preparing liposomes, as described in, for example, Szoka et al., Ann. Rev. Biophys. Bioeng., 9, 467 (1980), and U.S. Pat. Nos. 4,235,871; 4,501,728; 4,837,028; and 5,019,369. For targeting to the cells of a particular tissue type, a ligand to be incorporated into the liposome can include, for example, antibodies or fragments thereof specific for cell surface determinants of the targeted tissue type. A liposome suspension containing a compound may be administered intravenously, locally, topically, etc. in a dose that varies according to the mode of administration, the compound being delivered, or the stage of disease being treated.

[0037] The present invention has applicability to the treatment of any type of cancer capable of being treated with an antineoplastic alkylating agent which causes cytotoxic lesions at the O\(^6\)-position of guanine. Such cancers include, for example, colon tumors, prostrate tumors, brain tumors, lymphomas, leukemias, breast tumors, ovarian tumors, lung tumors, Wilms' tumor, rhabdomyosarcoma, multiple myeloma, stomach tumors, soft-tissue sarcomas, Hodgkin's disease, and non-Hodgkin's lymphomas. In view of the mode of action of the compounds of the present invention, such compounds can be used in conjunction with any type of antineoplastic alkylating agent which causes cytotoxic lesions at the O\(^6\)-position of guanine. In an embodiment, the antineoplastic alkylating agent is a chloroethylating agent or a methylating agent. Thus, for example, the alkylating agent is selected from the group consisting of lomustine, carmustine, semustine, nimustine, fotemustine, mitozolomide, clomoseone, temozolomide, dacarbazine, procarbazine, streptozocin, and combinations thereof.
In accordance with the invention, antineoplastic alkylating agents include, for example, chloroethylating agents (e.g. chloroethylnitrosoureas and chloroethyltriazines) and monofunctional alkylating agents such as streptozotocin, procarbazine, dacarbazine, and temozolomide.

Among the chloroethylating agents, the most frequently used chemotherapeutic drugs are 1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea (CCNU, lomustine), 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU, carmustine), 1-(2-chloroethyl)-3-(4-methylcyclohexyl)-1-nitrosourea (MeCCNU, semustine), and 1-(2-chloroethyl)-3-(4-amino-2-methyl-5-pyrimidinyl)methyl-1-nitrosourea (nomustine, ACNU). These agents have been used clinically against tumors of the central nervous system, multiple myeloma, melanoma, lymphoma, gastrointestinal tumors, and other solid tumors (Colvin and Chabner, Alkylating Agents. In: Cancer Chemotherapy: Principles and Practice, Chabner and Collins, eds., Lippincott, Philadelphia, pp. 276-313 (1990); McCormick and McElhinney, Eur. J. Cancer, 26, 207-221 (1990)). Chloroethylating agents currently under development with fewer side effects are 1-(2-chloroethyl)-3-(2-hydroxyethyl)-1-nitrosourea (HECNU), 2-chloroethyl-methylsulfonylmethanesulfonate (clomesone), and 1-[N-(2-chloroethyl)-N-nitrosoureido]ethylphosphonic acid diethyl ester (fotemustine) (Colvin and Chabner, Alkylating Agents. In: Cancer Chemotherapy: Principles and Practice, Chabner and Collins, eds., Lippincott, Philadelphia, pp. 276-313 (1990); McCormick and McElhinney, Eur. J. Cancer, 26, 207-221 (1990)). Methylation chemotherapeutic agents include streptozotocin (2-deoxy-2-(3-methyl-3-nitrosoureido)-D-glucopyranose), procarbazine (N-(1-methylthethyl)-4-[(2-methylhydrazino)methyl]benzamide), dacarbazine or DTIC (5-(3,3-dimethyl-1-triazeny1)-1H-imidazole-4-carboxamide), and temozolomide (8-carbamoyl-3-methylimidazo[5,1-d]-1,2,3,5-tetrazine-4-(3H)-one). Temozolomide is active against malignant melanomas, brain tumors, and mycosis fungoides. Streptozotocin is effective against pancreatic tumors. Procarbazine is used to treat Hodgkin's disease and brain tumors, and DTIC is used in treatment of melanoma and lymphomas (Colvin and Cabner, Alkylating Agents. In: Cancer Chemotherapy: Principles and Practice, Chabner and Collins, eds., Lippincott, Philadelphia, pp. 276-313 (1990); Longo, Semin. Concol., 17, 716-735 (1990)). The pharmaceutical composition of the present invention can include an antineoplastic alkylating agent.

Certain of the compounds of the present invention have selectivity for certain types of tumor cells. In an embodiment, the tumor cells to be treated by the compounds of the present invention express a folate receptor; particularly the α-folate receptor. In accordance with an embodiment of the present invention, the tumor cells are selected from the group
consisting of nasopharyngeal carcinomas, adenocarcinomas, ovarian carcinomas, endometrial carcinomas, bronchioloalveolar carcinomas, non-small cell lung carcinomas, small cell lung carcinomas, squamous carcinomas, colorectal carcinomas, gastric carcinomas, and kidney carcinomas.

[0040] The present invention further provides a method of inhibiting the reaction of AGT with an alkylated DNA comprising reacting the AGT with a compound of formula (I):

![Chemical structure image]

(I);

wherein R₁ and R₂ are independently selected from the group consisting of hydrogen, C₁-C₆ alkyl, carboxyl, formyl, C₁-C₆ hydroxyalkyl, C₁-C₆ carboxyalkyl, C₁-C₆ formyl alkyl, C₁-C₆ alkoxy, acyloxy, acyloxyalkyl wherein the alkyl is C₁-C₆, halo, hydroxy, aryl, amino, monoalkylamino wherein the alkyl is C₁-C₆, dialkylamino wherein the alkyl is C₁-C₆, acylamino, C₁-C₆ alkyl substituted aryl, nitro, C₃-C₈ cycloalkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, and a group of formula (II):

![Chemical structure image]

(II);

R₃ is (a) phenyl or (b) a cyclic group having at least one 5 or 6-membered heterocyclic ring, optionally with a carbocyclic or heterocyclic ring fused thereto, wherein each heterocyclic ring has at least one hetero atom chosen from O, N, or S; or (c) a phenyl group or a cyclic group, the cyclic group optionally with a carbocyclic or heterocyclic ring fused thereto, which is substituted with 1 to 5 substituents selected from the group consisting of halo, hydroxy, aryl, C₁-C₆ alkyl substituted aryl, nitro, polycyclic aryl alkyl containing 2 to 4 aromatic rings wherein the alkyl is a C₁-C₆, C₃-C₈ cycloalkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ hydroxyalkyl, C₁-C₆ alkoxy, C₁-C₆ alkoxy C₁-C₆ alkyl, aryloxy, acyloxy, acyloxy
C₁-C₅ alkyl, amino, monoalkylamino wherein the alkyl is C₁-C₅, dialkylamino wherein the alkyl is C₁-C₅, acylamino, ureido, thiourea, carboxy, carboxy C₁-C₆ alkyl, azido, cyano, cyano C₁-C₆ alkyl, formyl, acyl, dialkoxo alkyl wherein the alkoxy and alkyl are independently C₁-C₆, aminokethyl wherein the alkyl is C₁-C₆, and SO₃R' wherein n=0, 1, 2 or 3, R' is H, a C₁-C₆ alkyl or aryl; or a pharmaceutically acceptable salt thereof, with the proviso that R₁ and R₂ are not simultaneously hydrogen. The reaction can be in vitro or in vivo.

The compounds of the present invention can be prepared by any suitable method. For example, compounds wherein R₃ is phenyl can be prepared as follows. Pteridines 1 (R₁, R₂ = H, R₃ = phenyl) and 2 (R₁, R₂ = CH₃, R₃ = phenyl) were prepared by the method of Pfleiderer and Lohmann from 2,4,5-triamino-O⁶-benzylpyrimidine (3) (Fig. 1) and glyoxal or diacetyl, respectively.¹¹ Pteridines 4-7 were prepared as illustrated in Fig. 1. Thus, treatment of the triaminopyrimidine (3) with dihydroxyacetone in dimethylacetamide (DMA)/H₂O (1:1) in the presence of sodium ascorbate and air afforded the hydroxymethylpteridine (4), which was oxidized to the 6-carboxyl derivative (5) with permanganate in acetone water solution. Alternatively, 4 was oxidized to the 6-formylpteridine derivative 6 by treatment with iodoxybenzoic acid (IBX) in dimethylsulfoxide. Treatment of 6 with p-aminobenzoyleglutamate (pAB-glu) followed by reduction with sodium cyanoborohydride in dimethylformamide led to formation of O⁶-benzylfolic acid (7).

Compounds of the present invention wherein R₃ is a heterocyclic ring can be prepared by methods known to those skilled in the art; see, for example, U.S. Patent 6,096,724.

The ability of these various compounds to inactivate the human alkyltransferase protein in the presence and absence of calf thymus DNA is summarized Table 1. Data for O⁶-benzylguanine are included for comparison. The data are expressed as concentration of inactivator required to reduce the activity of the alkyltransferase protein by 50% (i.e. ED₅₀). As indicated, in the absence of calf thymus DNA, pteridine derivatives 2 and 4 exhibit activity similar to that of O⁶-benzylguanine although derivatives 1 and 5-7 are superior to O⁶-benzylguanine as alkyltransferase inactivators. In particular, O⁶-benzylfolic acid (7) is roughly thirty times more effective than O⁶-benzylguanine against the wild-type human alkyltransferase and displays an ED₅₀ in the nM range. Interestingly, this same compound is also effective against the P140K mutant alkyltransferase (although at significantly higher concentrations). This protein is essentially resistant to inactivation by O⁶-benzylguanine and related derivatives.¹⁰ Previously, only oligodeoxyribonucleotides containing O⁶-
benzylguanine residues were known to inactivate the P140K and other mutant alkyltransferase proteins. In the presence of calf thymus DNA, the ED₅₀ values for alkyltransferase inactivation increase significantly suggesting that DNA binding of the protein hinders access of these 2-amino-Ο¹-benzylpteridines to the protein’s active site. This contrasts with the situation for Ο⁶-benzylguanine (Table 1) which exhibits an enhanced ED₅₀ in the presence of calf thymus DNA. Nevertheless, all the derivatives 1, 2 and 4-7 exhibit significant alkyltransferase inactivating ability even in the presence of calf thymus DNA and could therefore be useful against the DNA bound form of the protein as well. Although Ο¹-benzylfolic acid was capable of inactivating the P140K mutant in the absence of calf thymus DNA, it is inactive against this protein at concentrations as high as 1 mM in the presence of calf thymus DNA. DNA clearly prevents access of 7 to the mutant protein’s active site.

The 2-amino-Ο¹-benzylpteridine derivatives 1, 2, 4, 6 and 7 are all capable of enhancing HT 29 cell killing by BCNU (Table 2). 2-Amino-Ο¹-benzyl-6-carboxypteridine (5) is not effective probably because the negative charge on the molecule at physiological pH prevents its easy entry into cells. However, even though Ο¹-benzylfolic acid is also anionic at physiological pH, it does enhance cell killing by BCNU. Furthermore, its effectiveness as an adjuvant is a function of the cells’ ability to express the α-form of the folic acid receptor. This is illustrated in Figure 2 which shows A549 lung tumor, HT29 colon tumor and KB nasopharyngeal tumor cell killing by 40 μM BCNU following a two hour exposure to 7 in folate free growth medium. KB cell killing by 80 μM BCNU in combination with 7 is also illustrated. For these experiments (Figure 2) cells were grown in RPMI medium, were incubated with 7 for 2 hr and were then treated with either 40 μM BCNU (A549, HT29 and KB cells) or 80 μM BCNU (KB cells) for 2 hr. The medium was then replaced with fresh medium containing no 7. Cells were kept for 16-18 hr before being replated. As shown, the effectiveness of 7 as an adjuvant was lowest in A549 cells, was somewhat greater in HT29 cells, and was greatest in KB cells. A549 cells express little, if any α folate receptor, HT29 cells express low levels of the receptor, and KB cells express high levels of the receptor. Thus, Ο¹-benzylfolic acid may be a useful agent for selectively inactivating alkyltransferase in tumors that over-express the α folate receptor. These tumors are numerous and include adenocarcinomas; ovarian, endometrial and bronchioloalveolar carcinomas; some non-small cell lung carcinomas, small cell lung carcinomas, squamous cell carcinomas, colorectal carcinomas, gastric carcinomas and kidney tumors. Such tumor selectivity would be very advantageous since the side effects associated with systemic alkyltransferase inactivation could be significantly reduced.
Table 1. Inactivation of human O^6-alkylguanine-DNA alkyltransferase *in vitro* in the absence and presence of calf thymus (ct) DNA

<table>
<thead>
<tr>
<th>Inactivator</th>
<th>- ctDNA ED$_{50}$ (µM) (n)</th>
<th>+ctDNA ED$_{50}$ (µM) (n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>O^6-benzylguanine</td>
<td>0.32 ± 0.08 (4)</td>
<td>0.12 ± 0.02 (3)</td>
</tr>
<tr>
<td>2-amino-O^4-benzylpteridine (1)</td>
<td>0.045 ± 0.01 (4)</td>
<td>0.45 ± 0.05 (6)</td>
</tr>
<tr>
<td>2-amino-O^4-benzyl-6,7-dimethylpteridine (2)</td>
<td>0.4 (1)</td>
<td>0.5 (1)</td>
</tr>
<tr>
<td>2-amino-O^4-benzyl-6-hydroxymethylpteridine (4)</td>
<td>0.2 (1)</td>
<td>0.4 (1)</td>
</tr>
<tr>
<td>2-amino-O^4-benzyl-6-carboxypteridine (5)</td>
<td>0.09 (2)</td>
<td>1.83 ± 0.62 (3)</td>
</tr>
<tr>
<td>2-amino-O^4-benzyl-6-formylpteridine (6)</td>
<td>0.19 ± 0.01 (2)</td>
<td>1.05 ± 0.3 (2)</td>
</tr>
<tr>
<td>O^4-benzytfolic acid (7)d</td>
<td>0.01 ± 0.001 (3)</td>
<td>0.47 ± 0.05 (3)</td>
</tr>
</tbody>
</table>

aED$_{50}$ against the P140K mutant alkyltransferase in the absence of ctDNA = 12 µM. In the presence of ctDNA the compound is inactive at concentrations ≤ 1 mM.

Table 2. Concentration of 2-amino-O^4-benzylpteridine derivatives required to kill 90% of HT29 cells (ED$_{50}$) with BCNU (40 µM).a

<table>
<thead>
<tr>
<th>Inactivator</th>
<th>ED$_{50}$ (µM)</th>
<th>Culture Medium</th>
</tr>
</thead>
<tbody>
<tr>
<td>O^6-benzylguanine</td>
<td>0.4b</td>
<td>0.7c</td>
</tr>
<tr>
<td>2-amino-O^4-benzylpteridine (1)</td>
<td>0.2b</td>
<td></td>
</tr>
<tr>
<td>2-amino-O^4-benzyl-6,7-dimethylpteridine (2)</td>
<td>0.6b</td>
<td></td>
</tr>
<tr>
<td>2-amino-O^4-benzyl-6-hydroxymethylpteridine (4)</td>
<td>0.7b</td>
<td></td>
</tr>
<tr>
<td>2-amino-O^4-benzyl-6-carboxypteridine (5)</td>
<td>inactive at 30 µMb</td>
<td></td>
</tr>
<tr>
<td>2-amino-O^4-benzyl-6-formylpteridine (6)</td>
<td>0.7c</td>
<td></td>
</tr>
<tr>
<td>O^4-benzytfolic acid (7)</td>
<td></td>
<td>24c,d</td>
</tr>
</tbody>
</table>
Cells were completely resistant to 40 μM BCNU treatment in the absence of alkyltransferase inactivator. Alkyltransferase inactivator was present before, during and after treatment with BCNU for 16-18 hours before replating (see Experimental Section). Alkyltransferase inactivator was present before and during BCNU treatment only. $^{d}ED_{90} = 15 \mu M$ in RPMI folate-free medium.

[0046] The following example further illustrates the invention but, of course, should not be construed as in any way limiting its scope.

EXAMPLE

[0047] This example demonstrates a method of preparing some of the compounds of the present invention.

[0048] Materials and Methods. Unless otherwise stated, chemicals were obtained from Aldrich, Milwaukee, WI or Sigma, St. Louis, MO and were used without further purification. UV spectra were determined on a Beckman Coulter DU 7400 spectrophotometer. 1H and 13C NMR spectra were recorded in DMSO-d$_{6}$ with a Varian INOVA 400 MHz spectrometer. Chemical shifts are reported as δ values in parts per million relative to TMS as internal standard. The splitting pattern abbreviations are as follows: s = singlet, d= doublet, dd = double doublet, t = triplet, m = multiplet. Elemental analyses, performed by Atlantic Microlab, Inc., Norcross, GA were within 0.4% of the theoretical values calculated for C, H, and N. Thin layer chromatographic analyses were performed using precoated, aluminum-backed silica gel plates and the spots were visualized with UV light. All silica gel column chromatography was carried out using Davisil grade 633, 200-425 mesh, 60 O. Compounds 1, 2, and 3 were prepared by the method of Pfleiderer and Lohmann.11

[0049] 2-Amino-6-benzyl-6-hydroxymethylpteridine (4). 2,4,5-Triamino-6-benzylpyrimidine (3) (3.26 g, 14.1 mmol) was dissolved in DMA/H$_{2}$O (1:1, 28 mL) and stirred at room temperature. Sodium ascorbate (2.85 g, 14.4 mmol) was added, followed by dihydroxyacetone dimer (2.57 g, 14.3 mmol). The reaction mixture was stirred at 40°C, and air was bubbled into the reaction flask through a Pasteur pipet. The reaction was monitored by TLC (10:1 CH$_{2}$Cl$_{2}$:MeOH). After 4 hr all the starting material was consumed, and the reaction mixture was poured into H$_{2}$O (250 mL) producing a yellow-orange solid. The yellow-orange solid was collected by filtration, was dissolved in CH$_{2}$Cl$_{2}$:MeOH (3:1, 500 mL) and was dried over MgSO$_{4}$. The solution was filtered and evaporated onto silica gel (100 mL). Product was eluted from a silica gel column with CH$_{2}$Cl$_{2}$:MeOH (20:1) and fractions containing product were pooled and evaporated to produce 2-amino-6-benzyl-6-hydroxymethylpteridine (4) (1.12 g, 28.1%). UV (MeOH/0.05M phosphate, pH=6.8, 5:95)
\[\lambda_{\text{max}} 234 \text{ nm} \ (\varepsilon = 18800), \ 264 \text{ nm} \ (\varepsilon = 9200), \ 366 \ (\varepsilon = 6900); \ ^1\text{H} \ NMR \delta 8.88 \ (1H, s, H-7), \ 7.56 \ (2H, m, ArH), \ 7.40 \ (3H, m, ArH), \ 7.28 \ (2H, s, N^2H_2, \ exchange \ with \ D_2O), \ 5.58 \ (1H, t, J = 5.9 \text{ Hz}, \ 6-\text{CH}_2\text{OH}, \ exchanges \ with \ D_2O), \ 5.55 \ (2H, s, ArCH_2), \ 4.62 \ (2H, d, J = 5.9 \text{ Hz}, \ 6-\text{CH}_3\text{OH} \ changes \ to \ a \ singlet \ in \ D_2O); \ ^{13}\text{C} \ NMR \ (100 \text{ MHz}) \delta 166.4, \ 161.2, \ 156.5, \ 151.1, \ 150.0, \ 135.8, \ 128.9, \ 128.5, \ 128.3, \ 121.2, \ 68.4, \ 62.7; \ \text{Anal. Calcd. for C}_{14}H_{13}N_2O_2\cdot0.5H_2O: C, \ 57.53; H, \ 4.83; N, \ 23.96. \ \text{Found: C,} \ 57.52; H, \ 4.72; N, \ 23.76. \]

[0050] 2-Amino-\(O^1\)-benzylpteridine-6-carboxylic acid (5). 2-Amino-\(O^4\)-benzyl-6-hydroxymethylpteridine (4) (0.24 g, 0.84 mmol) was suspended in acetone:0.5 M phosphate buffer, pH = 7 (1:1, 14mL) and stirred at room temperature. Potassium permanganate (0.34 g, 2.18 mmol) was added in 4 portions at 30 minute intervals. The resulting suspension was then stirred at room temperature for an additional 3 hours. The reaction mixture was diluted with H_2O (50 mL). Sodium sulfite was added until all of the permanganate was consumed, producing a brown-black precipitate, which was removed by filtration, leaving a clear, yellow solution. The pH was adjusted to 2.5 by the addition of 2 M HCl producing a yellow solid, which was collected by filtration. The solid was dissolved in H_2O (50 mL) by adjusting the pH to 7.0 through the addition of 0.1 M NaOH until the pH remained constant for 30 minutes. Any suspended solid material was filtered and the solution was evaporated to give the sodium salt. This product was purified on a 3 x 80 cm Sephadex LH-20 column eluted with H_2O (1 mL/min). UV absorption was monitored continuously at 280 nm. Fractions (10 mL) 34-44 containing the product were combined, the pH was adjusted to 2.5 with HCl to precipitate the product, which was collected by filtration, and dried under vacuum to afford (5) (0.17 g, 67%). \(^1\text{H} \ NMR \delta 13.52 \ (1H, s, CO_2H, \ exchanges \ with \ D_2O), \ 9.25 \ (1H, s, H-7), \ 7.83 \ (1H, N^2H_2, \ exchanges \ with \ D_2O), \ 7.70 \ (1H, N^3H_2, \ exchanges \ with \ D_2O), \ 7.58 \ (2H, m, ArH), \ 7.41 \ (3H, m, ArH), \ 5.60 \ (2H, s, ArCH_2); \ ^{13}\text{C} \ NMR \ (100 \text{ MHz}) \delta 166.9, \ 164.8, \ 162.6, \ 158.1, \ 151.3, \ 137.4, \ 135.5, \ 129.0, \ 128.5, \ 128.45, \ 122.5, \ 68.75; \ \text{Anal. Calcd. for C}_{14}H_{13}N_2O_2\cdot H_2O: C, \ 53.33; H, \ 4.16; N, \ 22.21. \ \text{Found: C,} \ 53.67; H, \ 3.98; N, \ 22.40. \]

[0051] 2-Amino-\(O^4\)-benzyl-6-formylpteridine (6). Iodoxybenzoic acid (IBX) (1.7 g, 6.1 mmol) was stirred in DMSO (16 mL) until dissolved. 2-Amino-\(O^4\)-benzyl-6-hydroxymethylpteridine (4) (1.16 g, 4.1 mmol) was added with constant stirring at room temperature to produce a dark orange solution. The reaction was complete in 2 hr as monitored by TLC (CH_2Cl_2:MeOH, 10:1). The reaction mixture was poured into H_2O (150 mL) to produce a pale yellow precipitate, which was collected by filtration. This solid was stirred at 40 °C in CH_2Cl_2:acetone (1:1, 250 mL) for approximately 30 min and was filtered to remove the iodosobenzoic acid byproduct. This process was repeated twice. The dissolved product was evaporated onto silica (50 mL) and was eluted from a silica gel
column with CH₂Cl₂:CH₃CN (7:3). Solvent was evaporated to give 2-amino-Ö⁴-benzyl-6-formylpteridine (6) (0.26 g, 0.92 mmol, 22.4 %). UV (MeOH/0.05 M phosphate, pH=6.8, 5:95) λ_max 236 nm (ε = 13600), 261 (sh) (ε = 9600) 309 nm (ε = 5200), 370 (ε = 9300); ¹H NMR δ 9.96 (1H, s, 6-CHO) 9.19 (1H, s, H-7), 8.03 (1H, s, N₂H₄, exchanges with D₂O), 7.89 (1H, s, N₂H₅, exchanges with D₂O) 7.60 (2H, m, ArH), 7.42 (3H, m, ArH), 5.62 (2H, s, ArCH₂); ¹³C NMR (100 MHz) δ 191.2, 166.9, 163.1, 159.0, 149.2, 141.0, 135.4, 129.1, 128.51, 128.49, 122.8, 69.0; Anal. Calcd. for C₁₄H₁₁N₃O₂: C, 59.78; H, 3.94; N, 24.90. Found: C, 59.80; H, 4.03; N, 24.86.

[0052] ⁴-Benzylfolic acid (7). 2-Amino-Ö⁴-benzyl-6-formylpteridine (6) (0.26 g, 0.92 mmol) and p-aminobenzoylglutamate (pAB-glu) (0.29 g, 1.1 mmol) were stirred in DMF (4.4 mL) until completely dissolved. Acetic acid (0.04 mL) was added, followed by NaBH₄CN (0.08 g, 1.3 mmol). After approximately 5 min, the reaction color changed from yellow-orange to red. TLC (CH₂Cl₂:MeOH:AcOH, 90:5:5) showed complete loss of 6. The reaction mixture was poured into vigorously stirred water (50 mL), producing a yellow precipitate that dissolved when the pH of the suspension was adjusted to 7.2 by the addition of 2 M NaOH. Activated charcoal (20 mg) was added and the mixture was filtered. The solution pH was then adjusted to 3.0 by the addition of 2 M HCl, producing a yellow precipitate, which was collected by filtration. The solid was dissolved in CH₂Cl₂:MeOH (3:1) and evaporated onto silica (30 mL). The product was eluted from the silica gel column with CH₂Cl₂:MeOH:AcOH (90:5:5). The solvent was evaporated and the product was suspended in vigorously stirred H₂O to produce a fine solid (7) which was filtered and dried under vacuum (87 mg, 0.16 mmol, 17.7%). UV (0.05 M phosphate, pH=6.8) λ_max 277 nm (ε = 19000), 289 nm (sh) (ε = 18100) 368 nm (ε = 8200); ¹H NMR δ 12.31 (2H, br-s, 2CO₂H), 8.79 (1H, s, 7-H), 8.12 (1H, d, J = 7.7 Hz, glu-CH₂, exchanges with D₂O), 7.64 (2H, d, J = 8.7 Hz pABArH), 7.57 (2H, m, BnArH), 7.41 (3H, m, BnArH), 7.29 (2H, br-s, N₂H₂, exchange with D₂O), 6.95 (1H, t, J = 6.1 Hz, 6-CH₂NH, exchanges with D₂O), 6.64 (2H, d, J = 8.8 Hz, pABArH), 5.58 (2H, s, BnCH₂), 4.50 (2H, d, J = 5.7 Hz, 6-CH₂NH, singlet in D₂O), 4.33 (1H, m, glu-CH, dd in D₂O), 2.32 (2H, t, J = 7.5 Hz glu-CH₂), 2.04 (1H, m, gluβ-CH₂a₁), 1.90 (1H, m, gluβ-CH₂b₁); ¹³C NMR (100 MHz) δ 173.9, 173.7, 166.4, 166.3, 161.3, 156.5, 150.8, 150.3, 149.1, 135.9, 129.0, 128.8, 128.5, 128.3, 121.6, 121.3, 111.2, 68.4, 51.7, 46.1, 30.4, 24.0; Anal. Calcd. for C₂₆H₂₅N₅O₅•0.5H₂O: C, 57.77; H, 4.85; N, 18.14. Found: C, 57.72; H, 4.71; N, 18.29.

Alternatively, the crude product before silica gel chromatography (see above) was dissolved in H₂O, the pH of which was adjusted to 7.0 by the addition of 2 M NaOH, and the solution was evaporated to give the sodium salt. This product was purified on a Sephadex LH-20 column (3 x 80 cm), eluted in pure H₂O (1 mL/min). UV absorption was monitored.
continuously at 280 nm. Fractions (10 mL) 24-33 containing the product were combined, the pH was adjusted to 2.5 with HCl to precipitate the product, which was collected by filtration and dried under vacuum.

In vitro AGT activity assay

[0053] Purified histag-hAGT was incubated with different concentrations of inactivator in 0.5 mL of reaction buffer (50 mM Tris-HCL, pH 7.6, 0.1 mM EDTA, 5.0 mM dithiothreitol) containing 50 μg hemocyanin for 30 min at 37 °C. The remaining AGT activity was determined after incubation with [3H]methylated calf thymus DNA substrate for 30 min at 37 °C by measuring the [3H]methylated protein formed, which was collected on nitrocellulose filters. The results were expressed as the percentage of the AGT activity remaining. The concentration of inhibitor which led to a 50% loss of AGT activity (ED50) was calculated from graphs of the percentage of remaining AGT activity against inactivator concentration. For assays in the presence of DNA, 10μg of calf thymus DNA was added before incubation with the inactivators.

Cell culture and cytotoxicity assays

[0054] Cells were grown either in Dulbecco’s modified Eagle’s medium supplemented with 10% fetal bovine serum plus 1.5 mM glutamine and 50 μg/mL gentamycin (HT29) or in RPMI 1640 medium in the presence of 10% fetal bovine serum (HT29, A549 and KB cells). The effect of AGT inactivators on the sensitivity of cells to BCNU was determined using a colony-forming assay. Cells were plated at a density of 10⁶ in 25-cm² flasks and 24 h later were incubated with different concentrations of AGT inactivator for 2 h before exposure to 40 μM (HT29 cells and A549 cells) or 80 μM (KB cells) of BCNU for 2 h. The BCNU was first dissolved in absolute ethanol at a concentration of 8 mM, was diluted with the same volume of ice-cold phosphate-buffered saline and was immediately used to treat the cells. The medium was replaced with fresh medium containing AGT inactivator (where indicated) and the cells were left to grow for an additional 16-18 h. The AGT inhibitor was added to the medium after the treatment with BCNU to ensure that the inhibitor was present during the entire period that DNA adducts are formed by BCNU. The cells were then replated at densities of 200-2000 cells/25-cm² flasks and grown for 8 days until discrete colonies were formed. The colonies were washed with 0.9% saline solution, were stained with 0.5% crystal violet in ethanol, and counted. The plating efficiency of cells not treated with drugs was about 50% for HT29 and A549 cells and 80% for KB cells.

In experiments to assess the effect of folate present in the medium on the sensitivity of cells to the AGT inhibitors and BCNU, the cells were incubated with drugs for 2 h and BCNU for
2 h in RPMI 1640 folate-free medium. After this period, the medium was replaced with fresh RPMI 1640 medium.

[0055] References

[0056] All references, including publications, patent applications, and patents, cited herein are hereby incorporated by reference to the same extent as if each reference were individually and specifically indicated to be incorporated by reference and were set forth in its entirety herein.

[0057] The use of the terms "a" and "an" and "the" and similar referents in the context of describing the invention (especially in the context of the following claims) are to be
construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. The terms “comprising,” “having,” “including,” and “containing” are to be construed as open-ended terms (i.e., meaning “including, but not limited to,”) unless otherwise noted. Recitation of ranges of values herein are merely intended to serve as a shorthand method of referring individually to each separate value falling within the range, unless otherwise indicated herein, and each separate value is incorporated into the specification as if it were individually recited herein. All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (e.g., “such as”) provided herein, is intended merely to better illuminate the invention and does not pose a limitation on the scope of the invention unless otherwise claimed. No language in the specification should be construed as indicating any non-claimed element as essential to the practice of the invention.

[0058] Preferred embodiments of this invention are described herein, including the best mode known to the inventors for carrying out the invention. Variations of those preferred embodiments may become apparent to those of ordinary skill in the art upon reading the foregoing description. The inventors expect skilled artisans to employ such variations as appropriate, and the inventors intend for the invention to be practiced otherwise than as specifically described herein. Accordingly, this invention includes all modifications and equivalents of the subject matter recited in the claims appended hereto as permitted by applicable law. Moreover, any combination of the above-described elements in all possible variations thereof is encompassed by the invention unless otherwise indicated herein or otherwise clearly contradicted by context.
WHAT IS CLAIMED IS:
1. A compound of formula (I):

![Chemical structure diagram](image)

wherein R₁ and R₂ are independently selected from the group consisting of hydrogen, C₁-C₆ alkyl, carboxyl, formyl, C₁-C₆ hydroxyalkyl, C₁-C₆ carboxyalkyl, C₁-C₆ formyl alkyl, C₁-C₆ alkoxy, acyloxy, acyloxy C₁-C₆ alkyl, halo, hydroxy, aryl, amino, monoalkylamino wherein the alkyl is C₁-C₆, dialkylamino wherein the alkyl is C₁-C₆, acylamino, C₁-C₆ alkyl substituted aryl, nitro, C₃-C₈ cycloalkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, and a group of formula (II):

![Chemical structure diagram](image)

R₃ is (a) phenyl; (b) a cyclic group having at least one 5 or 6-membered heterocyclic ring, optionally with a carbocyclic or heterocyclic ring fused thereto, wherein each heterocyclic ring has at least one hetero atom chosen from O, N, or S; or (c) a phenyl group or a cyclic group, said cyclic group optionally with a carbocyclic or heterocyclic ring fused thereto, which is substituted with 1 to 5 substituents selected from the group consisting of halogen, hydroxy, aryl, C₁-C₆ alkyl substituted aryl, nitro, polycyclic aryl alkyl containing 2 to 4 aromatic rings wherein the alkyl is a C₁-C₆, C₃-C₈ cycloalkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ hydroxyalkyl, C₁-C₆ alkoxy, C₁-C₆ alkoxy C₁-C₆ alkyl, aryloxy, acyloxy, acyloxy C₁-C₆ alkyl, amino, monoalkylamino wherein the alkyl is C₁-C₆, dialkylamino wherein the alkyl is C₁-C₆, acylamino, ureido, thioureido, carboxy, carboxy C₁-C₆ alkyl, azido, cyano,
cyano C₁-C₆ alkyl, formyl, acyl, dialkoxy alkyl wherein the alkoxy and alkyl are independently C₁-C₆, aminoalkyl wherein the alkyl is C₁-C₆, and SO_nR' wherein n=0, 1, 2 or 3, R' is H, a C₁-C₆ alkyl or aryl;
or a pharmaceutically acceptable salt thereof;
with the provisos that (1) R₁ and R₂ are not simultaneously hydrogen; and (2) when R₃ is unsubstituted phenyl, R₁ and R₂ are not simultaneously methyl.

2. The compound of claim 1, wherein R₃ is phenyl or a phenyl group substituted with 1 to 5 substituents selected from the group consisting of halo, hydroxy, aryl, C₁-C₆ alkyl substituted aryl, nitro, polycyclic aryl alkyl containing 2 to 4 aromatic rings wherein the alkyl is a C₁-C₆, C₃-C₈ cycloalkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ hydroxyalkyl, C₁-C₆ alkoxy, C₁-C₆ alkoxy C₁-C₆ alkyl, aryloxy, acyloxy, acyloxy C₁-C₆ alkyl, amino, monoalkylamino wherein the alkyl is C₁-C₆, dialkylamino wherein the alkyl is C₁-C₆, acylamino, ureido, thioureido, carboxy, carboxy C₁-C₆ alkyl, azido, cyano, cyano C₁-C₆ alkyl, formyl, acyl, dialkoxy alkyl wherein the alkoxy and alkyl are independently C₁-C₆, aminoalkyl wherein the alkyl is C₁-C₆, and SO_nR' wherein n=0, 1, 2 or 3, R' is H, a C₁-C₆ alkyl or aryl; or a pharmaceutically acceptable salt thereof.

3. The compound of claim 2, wherein R₁ is selected from the group consisting of hydrogen, C₁-C₆ alkyl, carboxyl, formyl, C₁-C₆ hydroxyalkyl, C₁-C₆ carboxyalkyl, C₁-C₆ formyl alkyl, and a group of formula (II) and R₂ is hydrogen or C₁-C₆ alkyl; and R₃ is phenyl; or a pharmaceutically acceptable salt thereof.

4. The compound of claim 3, wherein R₁ is selected from the group consisting of hydrogen, C₁-C₆ alkyl, C₁-C₆ hydroxyalkyl, carboxyl, formyl, and a group of formula (II) and R₂ is hydrogen or C₁-C₆ alkyl; or a pharmaceutically acceptable salt thereof.

5. The compound of claim 4, wherein R₁ is hydroxymethyl, carboxyl, formyl, or a group of formula (II) and R₂ is hydrogen; or a pharmaceutically acceptable salt thereof.

6. The compound of claim 5, wherein R₁ is hydroxymethyl; or a pharmaceutically acceptable salt thereof.

7. The compound of claim 5, wherein R₁ is carboxyl; or a pharmaceutically acceptable salt thereof.
8. The compound of claim 5, wherein R₁ is formyl; or a pharmaceutically acceptable salt thereof.

9. The compound of claim 5, wherein R₁ is a group of formula (II); or a pharmaceutically acceptable salt thereof.

10. A pharmaceutical composition comprising a pharmaceutically acceptable carrier and a compound or salt of any one of claims 1 to 9.

11. The pharmaceutical composition of claim 10, further including an antineoplastic alkylating agent.

12. The pharmaceutical composition of claim 10 or 11, wherein the pharmaceutically acceptable carrier is polyethylene glycol.

13. The pharmaceutical composition of any one of claims 10 to 12, wherein the antineoplastic alkylating agent is a chloroethylating agent.

14. The pharmaceutical composition of any one of claims 10 to 12, wherein the antineoplastic alkylating agent is a methylating agent.

15. The pharmaceutical composition of any one of claims 10 to 12, wherein the antineoplastic alkylating agent is selected from the group consisting of lomustine, carmustine, semustine, nimustine, fotumustine, mitozolomide, clomesone, temozolomide, dacarbazine, procarbazine, streptzocin, and combinations thereof.

16. A method of enhancing the chemotherapeutic treatment of tumor cells in a mammal with an antineoplastic alkylating agent that causes cytotoxic lesions at the O⁶-position of guanine, which method comprises administering to the mammal an effective amount of a compound of formula (I):
wherein R₁ and R₂ are independently selected from the group consisting of hydrogen, C₁-C₆ alkyl, carboxyl, formyl, C₁-C₆ hydroxyalkyl, C₁-C₆ carboxyalkyl, C₁-C₆ formyl alkyl, C₁-C₆ alkoxy, acyloxy, acyloxy C₁-C₆ alkyl, halo, hydroxy, aryl, amino, monoalkylamino wherein the alkyl is C₁-C₆, dialkylamino wherein the alkyl is C₁-C₆, acylamino, C₁-C₆ alkyl substituted aryl, nitro, C₃-C₈ cycloalkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl and a group of formula (II):

R₃ is (a) phenyl; (b) a cyclic group having at least one 5 or 6-membered heterocyclic ring, optionally with a carbocyclic or heterocyclic ring fused thereto, wherein each heterocyclic ring has at least one hetero atom chosen from O, N, or S; or (c) a phenyl group or a cyclic group, said cyclic group optionally with a carbocyclic or heterocyclic ring fused thereto, which is substituted with 1 to 5 substituents selected from the group consisting of halo, hydroxy, aryl, C₁-C₆ alkyl substituted aryl, nitro, polycyclic aryl alkyl containing 2 to 4 aromatic rings wherein the alkyl is a C₁-C₆, C₃-C₈ cycloalkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ hydroxyalkyl, C₁-C₆ alkoxy, C₁-C₆ alkoxy C₁-C₆ alkyl, aryloxy, acyloxy, acyloxy C₁-C₆ alkyl, amino, monoalkylamino wherein the alkyl is C₁-C₆, dialkylamino wherein the alkyl is C₁-C₆, acylamino, ureido, thioureido, carboxy, carboxy C₁-C₆ alkyl, azido, cyano, cyano C₁-C₆ alkyl, formyl, acyl, dialkoxy alkyl wherein the alkoxy and alkyl are...
independently C₁-C₆, aminoalkyl wherein the alkyl is C₁-C₆, and SO₃R’ wherein n=0, 1, 2 or 3, R’ is H, a C₁-C₆ alkyl or aryl;
or a pharmaceutically acceptable salt thereof;
with the proviso that R₁ and R₂ are not simultaneously hydrogen;
and administering to the mammal an effective amount of an antineoplastic alkylating agent
which causes cytotoxic lesions at the O⁶-position of guanine.

17. The method of claim 16, wherein R₃ is phenyl or a phenyl group substituted with 1 to 5
substituents selected from the group consisting of halo, hydroxy, aryl, C₁-C₆ alkyl substituted
aryl, nitro, polycyclic aryl alkyl containing 2 to 4 aromatic rings wherein the alkyl is a C₁-C₆,
C₃-C₈ cycloalkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ hydroxyalkyl, C₁-C₆ alkoxy, C₁-C₆
alkoxy C₁-C₆ alkyl, aryloxy, acyloxy, acyloxy C₁-C₆ alkyl, amino, monoalkylamino wherein
the alkyl is C₁-C₆, dialkylamino wherein the alkyl is C₁-C₆, acylamino, ureido, thioureido,
carboxy, carboxy C₁-C₆ alkyl, azido, cyano, cyano C₁-C₆ alkyl, formyl, acyl, dialkoxy alkyl
wherein the alkoxy and alkyl are independently C₁-C₆, aminoalkyl wherein the alkyl is C₁-C₆,
and SO₃R’ wherein n=0, 1, 2 or 3, R’ is H, a C₁-C₆ alkyl or aryl; or a pharmaceutically
acceptable salt thereof.

18. The method of claim 17, wherein R₁ is selected from the group consisting of hydrogen,
C₁-C₆ alkyl, carboxyl, formyl, C₁-C₆ hydroxyalkyl, C₁-C₆ carboxyalkyl, C₁-C₆ formyl alkyl,
and a group of formula (II) and R₂ is hydrogen or C₁-C₆ alkyl; and R₃ is phenyl; or a
pharmaceutically acceptable salt thereof.

19. The method of claim 18, wherein R₁ is selected from the group consisting of hydrogen,
C₁-C₆ alkyl, C₁-C₆ hydroxyalkyl, carboxyl, formyl, and a group of formula (II) and R₂ is
hydrogen or C₁-C₆ alkyl; or a pharmaceutically acceptable salt thereof.

20. The method of claim 19, wherein R₁ is hydroxymethyl, carboxyl, formyl, or a group of
formula (II) and R₂ is hydrogen; or a pharmaceutically acceptable salt thereof.

21. The method of claim 20, wherein R₁ is hydroxymethyl; or a pharmaceutically acceptable
salt thereof.

22. The method of claim 20, wherein R₁ is carboxyl; or a pharmaceutically acceptable salt
thereof.
23. The method of claim 20, wherein R₁ is formyl; or a pharmaceutically acceptable salt thereof.

24. The method of claim 20, wherein R₁ is a group of formula (II); or a pharmaceutically acceptable salt thereof.

25. The method of any one of claims 16 to 24, wherein the antineoplastic alkylating agent is a chloroethylating agent.

26. The method of any one of claims 16 to 24, wherein the antineoplastic alkylating agent is a methylating agent.

27. The method of any one of claims 16 to 24, wherein the antineoplastic alkylating agent is selected from the group consisting of lomustine, carmustine, semustine, nimustine, fotomustine, mitozolomide, clomesone, temozolomide, dacarbazine, procarbazine, streptozocin, and combinations thereof.

28. The method of any one of claims 16 to 24, wherein the tumor cells express a folate receptor.

29. The method of claim 28, wherein the folate receptor is the α-folate receptor.

30. The method of claim 29, wherein the tumor cells are selected from the group consisting of nasopharyngeal carcinomas, adenocarcinomas, ovarian carcinomas, endometrial carcinomas, bronchioloalveolar carcinomas, non-small cell lung carcinomas, small cell lung carcinomas, squamous carcinomas, colorectal carcinomas, gastric carcinomas, and kidney carcinomas.

31. A method for treating tumor cells in a mammal comprising administering to the mammal an amount effective to reduce the \mathcal{O}^6-alkylguanine-DNA alkyltransferase activity in the mammal of a compound of formula (I):
wherein \(R_1 \) and \(R_2 \) are independently selected from the group consisting of hydrogen, \(C_1-C_6 \) alkyl, carboxyl, formyl, \(C_1-C_6 \) hydroxyalkyl, \(C_1-C_6 \) carboxyalkyl, \(C_1-C_6 \) formyl alkyl, \(C_1-C_6 \) alkoxy, acyloxy, acyloxy \(C_1-C_6 \) alkyl, halo, hydroxy, aryl, amino, monoalkylamino wherein the alkyl is \(C_1-C_6 \), dialkylamino wherein the alkyl is \(C_1-C_6 \), acylamino, \(C_1-C_6 \) alkyl substituted aryl, nitro, \(C_3-C_8 \) cycloalkyl, \(C_2-C_6 \) alkenyl, \(C_2-C_6 \) alkenyl, and a group of formula (II):

\[
\begin{align*}
\text{O} & \\
& \quad \text{CO}_{2}H \\
& \quad \text{H}_{2} \\
& \quad \text{C} \\
& \quad \text{CO}_{2}H \\
& \quad \text{H}_{2}
\end{align*}
\]

\(R_3 \) is (a) phenyl or (b) a cyclic group having at least one 5 or 6-membered heterocyclic ring, optionally with a carbocyclic or heterocyclic ring fused thereto, wherein each heterocyclic ring has at least one hetero atom chosen from O, N, or S; or (c) a phenyl group or a cyclic group, said cyclic group optionally with a carbocyclic or heterocyclic ring fused thereto, which is substituted with 1 to 5 substituents selected from the group consisting of halogen, hydroxy, aryl, \(C_1-C_6 \) alkyl substituted aryl, nitro, polycyclic aryl alkyl containing 2 to 4 aromatic rings wherein the alkyl is a \(C_1-C_6 \), \(C_2-C_6 \) cycloalkyl, \(C_2-C_6 \) alkenyl, \(C_2-C_6 \) alkynyl, \(C_1-C_6 \) hydroxyalkyl, \(C_1-C_6 \) alkoxy, \(C_1-C_6 \) alkoxy \(C_1-C_6 \) alkyl, aryloxy, acyloxy, acyloxy \(C_1-C_6 \) alkyl, amino, monoalkylamino wherein the alkyl is \(C_1-C_6 \), dialkylamino wherein the alkyl is \(C_1-C_6 \), acylamino, ureido, thioureido, carboxy, carboxy \(C_1-C_6 \) alkyl, azido, cyano, cyano \(C_1-C_6 \) alkyl, formyl, acyl, dialkoxy alkyl wherein the alkoxy and alkyl are
independently C₁-C₆ aminoalkyl wherein the alkyl is C₁-C₆, and SO₃R’ wherein n=0, 1, 2 or 3, R’ is H, a C₁-C₆ alkyl or aryl; or a pharmaceutically acceptable salt thereof; with the proviso that R₁ and R₂ are not simultaneously hydrogen; and administering to the mammal an effective amount of an antineoplastic alkylating agent which causes cytotoxic lesions at the O₆-position of guanine.

32. The method of claim 31, wherein R₃ is phenyl or a phenyl group substituted with 1 to 5 substituents selected from the group consisting of halo, hydroxy, aryl, C₁-C₆ alkyl substituted aryl, nitro, polycyclic aryl alkyl containing 2 to 4 aromatic rings wherein the alkyl is a C₁-C₆, C₃-C₆ cycloalkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ hydroxyalkyl, C₁-C₆ alkoxy, C₁-C₆ alkoxy C₁-C₆ alkyl, aryloxy, acyloxy, acyloxy C₁-C₆ alkyl, amino, monoalkylamino wherein the alkyl is C₁-C₆, dialkylamino wherein the alkyl is C₁-C₆, acylamino, ureido, thioureido, carboxy, carboxy C₁-C₆ alkyl, azido, cyano, cyano C₁-C₆ alkyl, formyl, acyl, dialkoxy alkyl wherein the alkoxy and alkyl are independently C₁-C₆, aminoalkyl wherein the alkyl is C₁-C₆, and SO₃R’ wherein n=0, 1, 2 or 3, R’ is H, a C₁-C₆ alkyl or aryl; or a pharmaceutically acceptable salt thereof.

33. The method of claim 32, wherein R₁ is selected from the group consisting of hydrogen, C₁-C₆ alkyl, carboxyl, formyl, C₁-C₆ hydroxyalkyl, C₁-C₆ carboxyalkyl, C₁-C₆ formyl alkyl, and a group of formula (II) and R₂ is hydrogen or C₁-C₆ alkyl; and R₃ is phenyl; or a pharmaceutically acceptable salt thereof.

34. The method of claim 33, wherein R₁ is selected from the group consisting of hydrogen, C₁-C₆ alkyl, C₁-C₆ hydroxyalkyl, carboxyl, formyl, and a group of formula (II) and R₂ is hydrogen or C₁-C₆ alkyl; or a pharmaceutically acceptable salt thereof.

35. The method of claim 34, wherein R₁ is hydroxymethyl, carboxyl, formyl, or a group of formula (II) and R₂ is hydrogen; or a pharmaceutically acceptable salt thereof.

36. The method of claim 35, wherein R₁ is hydroxymethyl; or a pharmaceutically acceptable salt thereof.

37. The method of claim 35, wherein R₁ is carboxyl; or a pharmaceutically acceptable salt thereof.
38. The method of claim 35, wherein R₁ is formyl; or a pharmaceutically acceptable salt thereof.

39. The method of claim 35, wherein R₁ is a group of formula (II); or a pharmaceutically acceptable salt thereof.

40. A method of inhibiting the reaction of \(O^6 \)-alkylguanine-DNA-alkyltransferase with an alkylated DNA comprising reacting the \(O^6 \)-alkylguanine-DNA-alkyltransferase with the compound of formula (I):

\[
\begin{align*}
OCH_2R_3 \\
H_2N \\
\end{align*}
\]

(I);

wherein R₁ and R₂ are independently selected from the group consisting of hydrogen, C₁-C₆ alkyl, carboxyl, formyl, C₁-C₆ hydroxyalkyl, C₁-C₆ carboxyalkyl, C₁-C₆ formyl alkyl, C₁-C₆ alkoxy, acyloxy, acyloxyalkyl wherein the alkyl is C₁-C₆, halo, hydroxy, aryl, amino, monoalkylamino wherein the alkyl is C₁-C₆, dialkylamino wherein the alkyl is C₁-C₆, acylamino, C₁-C₆ alkyl substituted aryl, nitro, C₃-C₈ cycloalkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, and a group of formula (II):

\[
\begin{align*}
\end{align*}
\]

(II);

R₃ is (a) phenyl or (b) a cyclic group having at least one 5 or 6-membered heterocyclic ring, optionally with a carbocyclic or heterocyclic ring fused thereto, wherein each heterocyclic ring has at least one hetero atom chosen from O, N, or S; or (c) a phenyl group or a cyclic group, said cyclic group optionally with a carbocyclic or heterocyclic ring fused thereto,
which is substituted with 1 to 5 substituents selected from the group consisting of halogen, hydroxy, aryl, C₁-C₆ alkyl substituted aryl, nitro, polycyclic aryl alkyl containing 2 to 4 aromatic rings wherein the alkyl is a C₁-C₆, C₃-C₈ cycloalkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ hydroxyalkyl, C₁-C₆ alkoxy, C₁-C₆ alkoxy C₁-C₆ alkyl, aroyloxy, aroyloxy, acyloxy C₁-C₆ alkyl, amino, monoalkylamino wherein the alkyl is C₁-C₆, dialkylamino wherein the alkyl is C₁-C₆, acylamino, ureido, thioureido, carboxy, carboxy C₁-C₆ alkyl, azido, cyano, cyano C₁-C₆ alkyl, formyl, acyl, dialkoxy alkyl wherein the alkoxy and alkyl are independently C₁-C₆, aminoalkyl wherein the alkyl is C₁-C₆, and SO₃R’ wherein n=0, 1, 2 or 3, R’ is H, a C₁-C₆ alkyl or aryl; or a pharmaceutically acceptable salt thereof; with the proviso that R₁ and R₂ are not simultaneously hydrogen;

41. The method of claim 40, wherein R₃ is phenyl or a phenyl group substituted with 1 to 5 substituents selected from the group consisting of halo, hydroxy, aryl, C₁-C₆ alkyl substituted aryl, nitro, polycyclic aryl alkyl containing 2 to 4 aromatic rings wherein the alkyl is a C₁-C₆, C₃-C₈ cycloalkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ hydroxyalkyl, C₁-C₆ alkoxy, C₁-C₆ alkoxy C₁-C₆ alkyl, aroyloxy, aroyloxy, acyloxy C₁-C₆ alkyl, amino, monoalkylamino wherein the alkyl is C₁-C₆, dialkylamino wherein the alkyl is C₁-C₆, acylamino, ureido, thioureido, carboxy, carboxy C₁-C₆ alkyl, azido, cyano, cyano C₁-C₆ alkyl, formyl, acyl, dialkoxy alkyl wherein the alkoxy and alkyl are independently C₁-C₆, aminoalkyl wherein the alkyl is C₁-C₆, and SO₃R’ wherein n=0, 1, 2 or 3, R’ is H, a C₁-C₆ alkyl or aryl; or a pharmaceutically acceptable salt thereof.

42. The method of claim 41, wherein R₁ is selected from the group consisting of hydrogen, C₁-C₆ alkyl, carboxyl, formyl, C₁-C₆ hydroxyalkyl, C₁-C₆ carboxyalkyl, C₁-C₆ formyl alkyl, and a group of formula (II) and R₂ is hydrogen or C₁-C₆ alkyl; and R₃ is phenyl; or a pharmaceutically acceptable salt thereof.

43. The method of claim 42, wherein R₁ is selected from the group consisting of hydrogen, C₁-C₆ alkyl, C₁-C₆ hydroxyalkyl, carboxyl, formyl, and a group of formula (II) and R₂ is hydrogen or C₁-C₆ alkyl; or a pharmaceutically acceptable salt thereof.

44. The method of claim 43, wherein R₁ is hydroxymethyl, carboxyl, formyl, or a group of formula (II) and R₂ is hydrogen; or a pharmaceutically acceptable salt thereof.
45. The method of claim 44, wherein \(R_1 \) is hydroxymethyl; or a pharmaceutically acceptable salt thereof.

46. The method of claim 44, wherein \(R_1 \) is carboxyl; or a pharmaceutically acceptable salt thereof.

47. The method of claim 44, wherein \(R_1 \) is formyl; or a pharmaceutically acceptable salt thereof.

48. The method of claim 44, wherein \(R_1 \) is a group of formula (II); or a pharmaceutically acceptable salt thereof.
FIGURE 1
FIGURE 2
A. CLASSIFICATION OF SUBJECT MATTER

IPC 7 C07D475/04 A61K31/519 A61P35/00

According to International Patent Classification (IPC) or to both national classification and IPC.

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 C07D

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>WO 97/20843 A (CANCER RESEARCH CAMPAIGN TECHNOLOGY LIMITED; McMURRY, THOMAS, BRIAN, H) 12 June 1997 (1997-06-12) page 6 - page 9</td>
<td>1-48</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of box C. Patent family members are listed in annex.

Date of the actual completion of the international search

1 June 2005

Date of mailing of the international search report

22/06/2005

Name and mailing address of the ISA

European Patent Office, P.B. 5816 Patentbibliothek 2 NL - 2280 HV Rijswijk
Tel. (+31-70) 940-9040, Tx 31 651 epc nl, Fax. (+31-70) 940-3016

Authorized officer

Steendijk, M
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of documents, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>DATABASE CA 'Online! CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; PFLEIDERER, WOLFGANG ET AL: "Pteridines. XXIII. On the synthesis and structure of isoxanthopterin-7-0-.beta.-D-glucopyranosides" XP002330241 retrieved from STN Database accession no. 1962:456532 abstract & BER., 95, 1621-8, 1962,</td>
<td>1,2</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>--</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 715016 B2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2014297 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2239968 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2000501415 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 6096724 A</td>
</tr>
</tbody>
</table>