(19) (10 DE 699 36 627 T2 2008.05.21

Bundesrepublik Deutschland
Deutsches Patent- und Markenamt

(12) Ubersetzung der europiischen Patentschrift

(97) EP 1 025 493 B1 s1yintct:: GO6F 9/44 (2006.01)
(21) Deutsches Aktenzeichen: 699 36 627.5
(86) PCT-Aktenzeichen: PCT/US99/18749
(96) Europaisches Aktenzeichen: 99 942 278.5
(87) PCT-Verdffentlichungs-Nr.: WO 2000/010080
(86) PCT-Anmeldetag: 17.08.1999
(87) Veroffentlichungstag
der PCT-Anmeldung: 24.02.2000
(97) Erstverdffentlichung durch das EPA: 09.08.2000
(97) Veroffentlichungstag
der Patenterteilung beim EPA: 25.07.2007
(47) Veroffentlichungstag im Patentblatt: 21.05.2008

(30) Unionsprioritat: (84) Benannte Vertragsstaaten:
135378 17.08.1998 us DE, FR, GB, NL, SE
(73) Patentinhaber: (72) Erfinder:
Microsoft Corp., Redmond, Wash., US DIEVENDORFF, Richard, Bellevue, WA 98007, US;
HELLAND, Patrick J., Bellevue, WA 98006, US;
(74) Vertreter: CHOPRA, Gagan, Redmond, WA 98052, US;
BOEHMERT & BOEHMERT, 28209 Bremen AL-GHOSEIN, Mohsen, Redmond, WA 98053, US

(54) Bezeichnung: IN EINER WARTESCHLANGE ANGEORDNETE AUFRUFE VON PROZEDUREN FUR VERTEILTE
AUF KOMPONENTEN BASIERTE ANWENDUNGEN

Anmerkung: Innerhalb von neun Monaten nach der Bekanntmachung des Hinweises auf die Erteilung des europa-
ischen Patents kann jedermann beim Europaischen Patentamt gegen das erteilte europédische Patent Einspruch
einlegen. Der Einspruch ist schriftlich einzureichen und zu begriinden. Er gilt erst als eingelegt, wenn die Ein-
spruchsgebihr entrichtet worden ist (Art. 99 (1) Europaisches Patentliibereinkommen).

Die Ubersetzung ist gemaR Artikel Il § 3 Abs. 1 IntPatUG 1991 vom Patentinhaber eingereicht worden. Sie wurde
vom Deutschen Patent- und Markenamt inhaltlich nicht gepruft.

DE 699 36 627 T2 2008.05.21

Beschreibung
Technisches Gebiet

[0001] Die vorliegende Erfindung betrifft verteilte komponentenbasierte Computersoftware-Anwendungen,
insbesondere in einer Warteschlange angeordnete Aufrufe von Prozeduren flr solche Anwendungen.

Stand der Technik

[0002] In zahlreichen Informationsverarbeitungsanwendungen stellt eine auf einem Host- oder Server-Com-
puter in einem verteilten Netzwerk laufende Server-Anwendung Verarbeitungsdienste fur von einer Vielzahl
von Benutzern betriebene, auf Terminal- oder Arbeitsstationscomputern des Netzwerks laufende Client-An-
wendungen bereit. Bekannte Beispiele fir entsprechende Serveranwendungen umfassen Software zum Ver-
arbeiten von Kursanmeldungen an einer Universitat, Reisereservierungen, Geldtransfers und anderen Bank-
dienstleistungen sowie Verkaufen in Unternehmen. In diesen Beispielen kénnen die von der Serveranwendung
bereitgestellten Verarbeitungsdienste Datenbanken von Stundenplanen, Hotelreservierungen, Kontostanden,
Lieferauftragen, Zahlungen oder Bestandsaufnahmen fiir von den Einzelbenutzern an den jeweiligen Standor-
ten initiierte Aktionen aktualisieren. Dies wird gelegentlich als Client/Server-Datenverarbeitung bezeichnet.

[0003] In einer Art der Client/Server-Datenverarbeitung, die mitunter als "Verteilte Objekte" bekannt ist, wird
die Serveranwendung als eine Zusammenstellung von Komponenten entwickelt, die einem Objektorientierten
Programmierungsmodell (OOP-Modell), wie beispielsweise dem Komponenten-Objekt-Modell (Microsoft
Component Objekt Model (COM)) und dem Verteilte Komponenten-Objekt-Modell (Distributed Component Ob-
ject Model (DCOM)) von Microsoft, dem System-Objekt-Modell (IBM System Object Model (SOM)) von IBM,
der Architektur fur Vermittler der Abrufe von gemeinsamen Objekten (Object Management Group's Common
Object Request Broker Architecture (CORBA)) der Object Management Group und anderen, entsprechen. Die
Vorteile der objektorientierten Programmierung liegen im Allgemeinen in der Einfachheit der Programmierung,
der Erweiterbarkeit, der Wiederverwendbarkeit von Code sowie der Mdglichkeit der Integration von Software
verschiedener Hersteller und (bei einigen objektorientierten Programmierungsmodellen) in verschiedenen Pro-
grammiersprachen.

[0004] In der objektorientierten Programmierung werden Programme als eine Zusammenstellung von Objekt-
klassen geschrieben, welche jeweils reale oder abstrakte Elemente durch Kombinieren von Daten zur Abbil-
dung von Eigenschaften des Gegenstands mit Prozeduren (z.B. Programmfunktionen oder -prozeduren) zur
Abbildung der Funktionalitdt des Elements modellieren. Genauer gesagt ist ein Objekt eine als Klasse bezeich-
nete Instanz eines programmiererdefinierten Typs, welche die Eigenschaften Datenkapselung, Polymorphie
und Vererbung darstellt.

[0005] Datenkapselung bezieht sich auf das Kombinieren von Daten (auch als Objekteigenschaften bezeich-
net) und Prozeduren, die auf den Daten operieren (auch als Memberfunktionen eines Objekts bezeichnet), zu
einer einheitlichen Softwarekomponente (d.h. dem Objekt), so da® das Objekt seine interne Zusammenset-
zung, Struktur und Operation verbirgt und seine Funktion den das Objekt nutzenden Client-Programmen ge-
genuber ausschlielich Uber eine oder mehrere Schnittstellen offenbart. Eine Schnittstelle des Objekts ist eine
Gruppe semantisch verwandter Prozeduren des Objekts. Anders formuliert, greifen die Client-Programme
nicht direkt auf die Objektdaten zu, sondern sie missen vielmehr Prozeduren an den Objektschnittstellen ab-
rufen, um auf den Daten operieren zu kénnen.

[0006] Polymorphie bezieht sich auf die Fahigkeit, zwei gleichartige Objekte Gber eine gemeinsame Schnitt-
stelle zu betrachten (d.h. damit zu interagieren), wodurch sich die Notwendigkeit, zwischen zwei Objekten zu
differenzieren, erubrigt. Vererbung bezieht sich auf das Ableiten verschiedener Objektklassen von einer Basis-
klasse, wobei die abgeleiteten Klassen die Eigenschaften und Besonderheiten der Basisklasse erben.

[0007] Bei Client/Server-Datenverarbeitung mit "verteilten Objekten" nutzt das Client-Programm auf dem Be-
nutzercomputer in der Regel "Echtzeit"- oder synchrone Verarbeitungsmechanismen zum Fernaufrufen von
Prozeduren auf den Server-Anwendungs-Objekten, die sich auf dem Server-Computer befinden, wie beispiels-
weise der Prozedur-Fernaufruf ("RPC"). Bei einem typischen Prozedur-Fernaufruf erstellen Objektdienste des
Betriebssystems eine Schnittstellendefinitionssprachbeschreibung eines Serveranwendungsobjekts, um einen
lokalen "Proxy" fir das Serveranwendungsobjekt auf dem Client-Computer zu generieren. Die Client-Software
ruft Prozeduren des entfernten Serveranwendungsobjekts auf, indem sie gewdhnliche lokale Aufrufe von Pro-
zeduren direkt an den Proxy ausgibt. Der Proxy nutzt seinerseits RPC-Dienste, um den Prozedur-Aufruf an das

2/29

DE 699 36 627 T2 2008.05.21

aktuelle Serveranwendungsobjekt auf dem entfernten Server-Computer weiterzuleiten. Die RPC-Dienste ar-
rangieren Werte fir Aufruf-Parameter zu einer Netzwerk-Nachricht und senden die Nachricht tiber Netzwerk-
protokolle an den Server-Computer. Auf dem Server-Computer machen die RPC-Dienste das Arrangieren der
Aufruf-Parameter riickgangig und geben den Aufruf an die richtige Serveranwendungsobjekt-Prozedur aus.
Auflerdem ubernehmen die RPC-Dienste das Arrangieren und Rickgangigmachen des Arrangierens von
Ruckgabewerten von der Serveranwendungsobjekt-Prozedur zurliick zum Client-Programm Uber eine Netz-
werk-Nachricht.

[0008] Dementsprechend verarbeiten die RPC-Dienste alle Feinheiten der Netzwerkkommunikation gewis-
sermalfien "hinter den Kulissen", so dal} das Client-Programm die entfernte Prozedur auf die gleiche Weise wie
einen lokalen Prozedur-Aufruf aufruft. Wie bei einem lokalen Prozedur-Aufruf wird die Ausfuhrung des Cli-
ent-Programms wahrend des RPC-Prozedur-Aufrufs bis zum Abschluf® und zur Riickkehr der Prozedur unter-
brochen (auch bekannt als "Blockieren"). Dies bewirkt einen synchronen Ausfuhrungsflul zwischen dem Cli-
ent-Programm und den Serveranwendungsobjekten.

[0009] Obzwar sich Echtzeit-Prozedur-Aufruf-Modelle, wie beispielsweise RPC, fir viele Anwendungen eig-
nen, kdnnen sie den Anforderungen anderer Anwendungen aufgrund einer Anzahl von Einschrankungen in
Bezug auf Verflgbarkeit, Netzibertragungskosten, fehlende Méglichkeit der Priorisierung, Lebensdauer des
Objekts und Referenzlokalitat nicht adaquat entsprechen.

[0010] Bezuglich der Verfugbarkeit fordern Echtzeit-Prozedur-Aufruf-Modelle, dal das Serveranwendungs-
objekt zum Zeitpunkt verfiigbar ist, zu welchem das Client-Programm einen Aufruf an eine der Prozeduren des
Objekts ausgibt. Ist dies nicht der Fall, kann der Echtzeit-Prozedur-Aufruf nicht erfolgen. In der Praxis kbnnen
Serveranwendungsobjekte jedoch aufgrund von Netzwerkfehlern oder durch eine Arbeitsiiberlastung des Ser-
ver-Computers nicht verflgbar sein. In einigen Fallen kann der Server-Computer Gber einen bestimmten Zeit-
raum offline (beispielsweise aufgrund von Aktualisierungs- oder Wartungsmafinahmen) oder nur zu bestimm-
ten Tageszeiten online sein. AuRerdem kann, wenn ein beliebiges Serveranwendungsobjekt nicht in "Echtzeit"
verfugbar ist, kein Teil der Arbeit abgeschlossen werden (einschlieRlich der von verfigbaren Serveranwen-
dungsobjekten). Dieses Problem verstarkt sich bei komplexen Operationen mit multiplen Knoten (z.B. Compu-
ter in einem Netzwerk). So ist beispielsweise ein Prozel3, der Zugang zu vier unabhangigen Objekten an se-
paraten Knoten erfordert, wovon jeder ca. 90% der Zeit verfligbar ist, tatsachlich nur etwa 66% der Zeit ver-
flugbar (da 90%* = 65,61%).

[0011] Auferdem sind einige Client-Computer nur gelegentlich mit einem Netzwerk verbunden und somit ei-
nen Grol¥teil der Zeit Uber nicht in der Lage, Echtzeit-Aufrufe von Prozeduren auszugeben. Ein treffendes Bei-
spiels fir solche gelegentlich verbundenen Client-Computer sind Laptops, Notebooks und Handheld-Compu-
ter mobiler Benutzer, deren Anteil bei Computerneuanschaffungen heute auf Gber 50% geschatzt wird.

[0012] Zur Verfligbarkeitsanforderung des Echtzeit-Prozedur-Aufruf-Modells gehért auch, dall der/die Ser-
ver-Computer mit ausreichender Kapazitat konfiguriert sein mu3/missen, um die Anfragen interaktiver Benut-
zer der Server-Anwendung zu Spitzenzeiten bewaltigen zu kénnen. Demzufolge ist das typische System mit
Server-Computern konfiguriert, welche die meiste Zeit Gber nicht ausgelastet, zu bestimmten Zeiten allerdings
Uberlastet sind (wenn z.B. die tatsachliche Belastung die Erwartungen Uberschreitet).

[0013] Aus den genannten Grinden ist das Echtzeit-Prozedur-Aufruf-Modell fir Datenverarbeitungsumge-
bungen mit eingeschrankter Verfligbarkeit, mobilen Benutzern, hohen Knotenzahlen oder stark variierenden
Lasten durch interaktive Benutzer ungeeignet.

[0014] Was die Netzliibertragungskosten betrifft, so erfordert jeder Echtzeit-Prozedur-Aufruf Gber einen RPC
eine Hin-und-Rick-Netzwerkkommunikation, die zu beachtlichen Netzibertragungskosten flhrt, beispielswei-
se durch die Bearbeitungszeit fir das Arrangieren der Aufruf-Parameter und das Rickgangigmachen des Ar-
rangierens, das Verarbeiten im Netzwerkprotokoll-Stack sowie Ubertragungszeit. Uberdies kann es sein, daR
der Client mehrere Prozeduren einer Serveranwendungskomponente aufrufen muf3, um verwendbare Arbeit
zu leisten, wodurch sich die Netzibertragungskosten wiederum erhéhen. Insbesondere moderne objektorien-
tierte Designtechniken neigen zu einer Vielzahl von Aufrufen von Prozeduren mit relativ wenigen Parametern
pro Aufruf. Ein typisches derartiges Objekt ist beispielsweise so gestaltet, dal ein Client zunachst zur Vorbe-
reitung einer Operation verschiedene Eigenschaftsprozeduren ("Property-Set"-Prozeduren) und anschliefend
eine Prozedur zum Verarbeiten der Operation aufruft. Folglich kann viel Zeit durch Netzwerk-Overhead ver-
wendet werden. Aufgrund dieser Netziibertragungskosten kénnen Echtzeit-Prozedur-Aufruf-Modelle fir einige
Anwendungen weniger geeignet sein.

3/29

DE 699 36 627 T2 2008.05.21

[0015] In Bezug auf Prioritat werden Aufrufe bei typischen Echtzeit-Prozedur-Aufruf-Modellen nach dem
"First-come, first-served"-Prinzip dann bearbeitet, wenn sie eintreffen, ohne jegliche Beriicksichtigung von Pri-
oritat.

[0016] In Bezug auf die Lebensdauer des Objekts besitzen Serveranwendungsobjekte in Echtzeit-Proze-
dur-Aufruf-Modellen eine tendenziell lange Lebensdauer. Bei der typischen Client/Server-Datenverarbeitung
durch ein verteiltes Objekt existiert das Serveranwendungsobjekt auf dem Server-Computer ab dem Zeitpunkt
der Erzeugung durch den Client solange, bis das Objekt freigegeben wird. Vor einem nachsten Prozedur-Auf-
ruf durch den Client verwendet das Objekt einen Grofteil dieser Zeit einfach auf das Warten auf den Aufruf der
Prozeduren des Objekts durch den Client und auf die Netziibertragungskosten fir das Zurtckliefern von Pro-
zedurergebnissen. Wahrenddessen verbraucht das Objekt Ressourcen des Server-Computers, einschlielich
Speicher- und Verarbeitungs-Overhead der Ausfiihrungsumgebung. Das Serveranwendungsobjekt "erwacht"
und ,schlaft" gewissermalien mindestens ein Mal pro Prozedur-Aufruf. Diese "Belegungszeit" des Serveran-
wendungsobjekts stellt ein Hemmnis fiir schnelles Durchlaufen von Serverobjekten dar und flihrt zur Beschran-
kung von Serveranwendungsskalierbarkeit.

[0017] In Bezug auf Referenzlokalitat greifen viele Teile von Computersystemen (z.B. der Prozessor-Cache
und der Arbeitsbereich des virtuellen Speichers) auf Referenzlokalitat zurtick, um Leistungszuwachse zu er-
reichen. Stark lokale Anwendungen, z.B. Objekte oder Anwendungscode, die/der direkt unter Nutzung lokal
verfugbarer Daten ausfuhren/ausfihrt, verfligen hierfur Gber Referenzmuster, die besser Leistungen erzielen.
Im Gegensatz dazu besitzen Anwendungen mit Gber mehrere Server-Computer verteilten Objekten, die Echt-
zeit-Prozedur-Aufrufe wie das RPC nutzen, nur geringe Referenzlokalitat. Beispielsweise wird ein Serverobjekt
durch den ersten Echtzeit-Prozedur-Aufruf erzeugt und verbringt haufig einen GroRteil seiner Lebensdauer da-
mit, auf nachfolgende Echtzeit-Aufrufe von Prozeduren zu warten. Nach der Verarbeitung jedes Prozedur-Auf-
rufs wird das Serverobjekt in der Regel aus dem Prozessor-Cache entfernt und fallt manchmal zwischen Auf-
rufen aus dem Arbeitsbereich des virtuellen Speichers heraus. Auf diese Weise verringern die Echtzeit-Aufrufe
von Prozeduren den Transaktions-Verarbeitungsumfang der Anwendung.

[0018] Eine Alternative zu ,verteilten Objekten", die das Problem der eingeschrankten Verfligbarkeit eines
RPC-Echtzeit-Prozedur-Aufrufs zum Teil bewaltigt, ist eine mitunter als "nachrichtenorientierte Middleware"
(Message Oriented Middleware) (MOM)) bezeichnete Art der Client/Server-Datenverarbeitung. Bei MOM kom-
muniziert eine Client-Anwendung mit einer entfernten Server-Anwendung durch Senden von Nachrichten an
eine Nachrichtenwarteschlange. Die Server-Anwendung, die zu einem spéateren Zeitpunkt als die Client-An-
wendung laufen kann, ruft die Nachrichten von ihrer Nachrichtenwarteschlange ab und verarbeitet diese. Die
Serveranwendung kann Ergebnisse dieser Verarbeitung an die Client-Anwendung zurticksenden, indem sie
Nachrichten an eine gleiche oder separate Nachrichtenwarteschlange zur Verarbeitung durch die Client-An-
wendung sendet. Solcher Datentransfer unter Verwendung von Nachrichtenwarteschlangen hat den Vorteil,
daR die Client- und die Server-Anwendungen nicht gleichzeitig verfligbar sein und keine Ubereinstimmenden
Lebensdauern haben mussen.

[0019] Herkdmmliche MOM-Produkte weisen allerdings auch Anzahl von Einschrankungen auf. Eine Ein-
schrankung besteht darin, dall die Client- und die Serveranwendung die Nachricht selbst als einen linearen
Stream formatieren. Genauer gesagt, missen die Client- und die Serveranwendungen die Daten dieses
Streams selbst arrangieren und das Arrangieren selbst rlickgangig machen. Die Nachrichtenwarteschlan-
gen-Infrastruktur umfaf3t keinen Support fir das Arrangieren.

[0020] Eine weitere Einschrankung von MOM besteht darin, da® die Client- und die Server-Anwendung fur
die Kommunikation mit der Nachrichtenwarteschlangen-Infrastruktur eine herstellerspezifische Programmier-
schnittstelle (Application Programming Interface (API)) fir Nachrichtenwarten-schlangenbildungsanwendun-
gen nutzen. Anders formuliert, senden die Client- und die Serveranwendung Nachrichten an eine Nachrichten-
warteschlange Uber explizite Aufrufe an die Nachrichtenwarteschlangen bildende API. Fir die Entwickler von
Client/Serveranwendungen gilt es, noch ein weiteres API-Set zu lernen. So ist beispielsweise die Nachrichten-
warteschlangen bildende Schnittstelle (MQI) (fir MQSeries API) die API des nachrichtenorientierten Middle-
wareprodukts der MQSeries von IBM. Andere Hersteller von MOM-Produkten, wie beispielsweise Microsoft
(Microsoft Message Queue (MSMQ), Covia (Communications Integrator), Peerlogic (PIPES), Horizon Strate-
gies (Message Express) oder System Strategies (ezBridge) haben unterschiedliche Nachrichtenwarteschlan-
gen bildende APlIs.

[0021] Auferdem erstellen Abnehmer eines MOM-Produkts (wie beispielsweise eine Informationstechnolo-
gie-Organisation (IT-Organisation)) aus unterschiedlichen Beweggriinden eine separate API-Schicht tUber die

4/29

DE 699 36 627 T2 2008.05.21

vom Hersteller bereitgestellte Nachrichtenwarteschlangen bildende API. Ein Beweggrund ist, daf die IT-Orga-
nisation verhindert mdchte, dal® ihre Anwendungsentwickler entscheiden kdnnen, welche Teile der Nachrich-
tenwarteschlangen bildenden API sie nutzen und auf welche Weise sie die API nutzen. Ein zweiter Beweg-
grund kann sein, daf® die Nachrichtenwarteschlangen bildende APl zu umfangreich, zu komplex ist oder den
Anwendungsentwicklern zu viele Optionen bietet. Die IT-Organisationen erstellen somit ihre eigene
API-Schicht in der Absicht, die API fir ihre Anwendungsentwickler zu vereinfachen. Folglich missen die meis-
ten Entwickler sowohl die Nachrichtenwarteschlangen bildende API des Herstellers als auch die von der IT-Or-
ganisation bereitgestellte API lernen. Ein dritter Beweggrund kann sein, da® die IT-Organisation vermeiden
mdchte, dalk ihre Anwendungen von einer jeglichen Nachrichtenwarteschlangen bildenden API eines Herstel-
lers oder einem jeglichen MOM-Produkt anhangig sind, und sich die Méglichkeit offenhalten méchte, die Her-
steller zu einem spateren Zeitpunkt zu wechseln. Dies hindert haufig die IT-Organisation daran, die Funktionen
des MOM-Produkts voll auszuschépfen. Dieses Phanomen verzdgert die Implementierung von Anwendungen
mit einem MOM-Produkt und erschwert der IT-Organisation bisweilen die Nutzung neueingefihrter Funktionen
des MOM-Produkts.

[0022] Eine weitere Einschrankung herkdmmlicher MOM-Produkte besteht in der suboptimalen Leistungsfa-
higkeit in einigen Konfigurationen. Insbesondere kénnen Anwendungen und Anwendungsobjekte lokal Uber
Aufrufe von Prozeduren zu extrem niedrigen Verarbeitungszeitkosten kommunizieren, insbesondere wenn sie
in einem gleichen Prozef sind. Anwendungen und Anwendungsobjekte, die Uber eine Nachrichtenwarte-
schlangen bildende APl kommunizieren, erfordern die Verarbeitung Uber einen Warteschlangenmanager,
selbst wenn sich die Anwendungen oder Objekte in derselben oder einer ahnlichen Umgebung, wie beispiels-
weise einem gleichen ProzeR, befinden.

[0023] Inihrem Aufsatz "Design of a Remote Procedure Call System for Object-Oriented Distributed Program-
ming" beschreiben die Autoren Anand R. Tripathi und Terence Noonan das Design eines RPC-Systems zur
Bildung objektorientierter verteilter Softwaresysteme. Bei Nutzung dieses Systems kann eine eine Prozedur
darstellende Anfragenachricht an einen Server Gbermittelt werden, auf dem ein Objekt unter Verwendung einer
Kernel-Funktion verwaltet wird. Der Kernel sendet den einzigen Identifikator fir den Aufruf an die RPC-Laufzeit
zurick. Um die Antwort des Aufrufs zu empfangen, fuhrt der Client-Prozef3 RPC-Laufzeit-Funktion aus und
Uberprift anschliefend den Status des Aufrufs in einer Aufruftabelle. Wurde der Aufruf aufgrund eines Zeitl-
berschreitungs- oder eines jeglichen anderen Fehlerzustands abgebrochen, sendet er diesen Status an den
Client-ProzeR zuriick und entfernt den Eintrag fir diesen Auftrag aus der Aufruftabelle. Ist der Aufruf noch zu
erledigen, flihrt er eine Funktion zum Empfangen einer Antwortnachricht vom Kernel aus. Er wartet wahrend
der in einer Sync-Funktion vorgegebenen Zeitiberschreitungsperiode auf den Eingang der Antwortnachricht,
und wenn wahrend dieser Zeittiberschreitungsperiode keine Nachricht eingeht und der Aufruf im Kernel immer
noch anhangig ist, wird ein Zeituberschreitungsstatus an den Client-Prozel3 zuriickgesandt. Der Client-Prozel
muB dann die Synchronisierung zu einem spateren Zeitpunkt nochmals versuchen.

Zusammenfassung der Erfindung

[0024] Die vorliegende Erfindung befahigt einen Client eines Objekts zur Ausgabe und das Objekt zum Emp-
fang von Aufrufen von Prozeduren auf der Grundlage einer Warteschlange unter Nutzung normaler Aufrufse-
mantik eines Objektmodells ohne Verwendung einer Nachrichtenwarteschlangen bildenden API. Genauer ge-
sagt nutzt der Client die normale Semantik des Objektmodells, um das Objekts zu erstellen, die Prozeduren
des Objekts aufzurufen und das Objekt freizugeben. Der Rahmen oder die Ausfihrungsumgebung des Objekts
stellt Dienste zum automatischen Anordnen der Aufrufe von Prozeduren in einer Warteschlange und zum még-
licherweise spateren Ausgeben der in einer Warteschlange angeordneten Aufrufe von Prozeduren an das Ob-
jekt bereit. Unterdessen kann der Client asynchron zu der aufgerufenen Prozedur die Ausfihrung fortsetzen.
Das Objekt wiederum hat die an seine Schnittstelle(n) Gber normale Aufrufsemantik ausgegebenen, in einer
Warteschlange angeordneten Aufrufe von Prozeduren, verarbeitet diese und sendet anschlieend einen Wert
der Prozedur unter erneuter Nutzung normaler Aufrufsemantik zurtick. Auf diese Weise mussen die Anwen-
dungsentwickler den Client und das Objekt nicht fiir die Nutzung einer Nachrichtenwarteschlangen bildenden
API zur Warteschlangenverarbeitung programmieren, wie es bei herkdmmlicher nachrichtenorientierter Midd-
leware der Fall ist, und das Erlernen solcher APlIs ist nicht erforderlich.

[0025] Gemal einem Aspekt der Erfindung kann ein Objekt sowohl Echtzeit- als auch in einer Wartschlange
angeordnete Aufrufe von Prozeduren Uber eine gemeinsame Schnittstelle empfangen. Echtzeit-Aufrufe von
Prozeduren werden an das Objekt tiber einen lokalen Prozedur-Aufruf oder einen entfernten Prozedur-Aufruf
an die Schnittstelle ausgegeben. In einer Warteschlange angeordnete Aufrufe von Prozeduren werden in einer
Vorrichtung fir in einer Warteschlange angeordnete Aufrufe von Prozeduren in einer Warteschlange angeord-

5/29

DE 699 36 627 T2 2008.05.21

net und anschlief3end Uber einen lokalen Prozedur-Aufruf von der Vorrichtung an die Objektschnittstelle aus-
gegeben. Das Objekt unterscheidet nicht zwischen den Echtzeit- und den in einer Warteschlange angeordne-
ten Aufrufen von Prozeduren. Daher kann das Objekt ohne Veranderung sowohl in einer synchronen Echt-
zeit-Umgebung als auch in einer asynchronen Warteschlangen-Umgebung laufen gelassen werden. In gewis-
ser Weise weild das Objekt weder, ob es sich in einer Echtzeit- oder in einer Warteschlangen-Umgebung be-
findet, noch, in welcher Weise die Prozeduren auf seiner Schnittstelle aufgerufen werden.

[0026] Gemal einem weiteren Aspekt der Erfindung stellt der Rahmen oder die Umgebung des Objekts au-
Rerdem Support zum automatischen Arrangieren fiir in einer Warteschlange angeordnete Aufrufe von Proze-
duren bereit. Ein Client gibt in einer Warteschlange angeordnete Aufrufe von Prozeduren an ein Objekt tber
einen vom System bereitgestellten Proxy und Stub oder Adapter (Wrapper) aus, der aus der Beschreibung ei-
ner Schnittstellendefinitionssprache der Schnittstelle des Objekts Ubersetzt ist, um das geeignete Arrangieren
von Aufrufparametern und zugehdrigen Daten zu und von in einer Warteschlange angeordneten Nachrichten
zu implementieren.

[0027] Gemal einem weiteren Aspekt der Erfindung umfaldt die Vorrichtung zum Anordnen von Aufrufen von
Prozeduren in einer Warteschlange eine Aufzeichnungseinrichtung fir Aufrufe von Prozeduren auf einer Cli-
ent-Seite und eine Abspieleinrichtung fur Aufrufe von Prozeduren auf der Objekt-Seite der Client-Objekt-Inter-
aktion. Die Aufzeichnungseinrichtung fir Prozedur-Aufrufe empfangt eine Anzahl von mdglicherweise mehr als
einem Prozedur-Aufruf eines Clients, die als ein Stapel an die Abspieleinrichtung fir Prozedur-Aufrufe weiter-
geleitet werden soll. Beispielsweise kann die Aufzeichnungseinrichtung eine Menge von in einer Warteschlan-
ge angeordneten, vom Client an das Objekt als Teil einer Transaktion ausgegebenen Prozedur-Aufrufen sam-
meln und die Prozedur-Aufrufe erst nach Abschlufd der Transaktion weitergeben. Die Abspieleinrichtung fur
Prozedur-Aufrufe ruft die in einer Warteschlange angeordneten Prozedur-Aufrufe nacheinander von einer War-
teschlange fir Prozedur-Aufrufe ab und gibt die Aufrufe von Prozeduren — moglicherweise als Teil einer ande-
ren, das Objekt umfassenden Transaktion — an das Objekt aus.

[0028] Gemal einem weiteren Aspekt der Erfindung entspricht ein Objekt, das in einer Warteschlange ange-
ordnete Aufrufe von Prozeduren unterstitzt, der Einschrankung, da® dessen Prozeduren ausschlielich Ein-
gabeparameter aufweisen kdnnen und keine anwendungsspezifischen Informationen zurticksenden kénnen.
Die in einer Warteschlange angeordneten Aufrufe von Prozeduren kénnen dann als unidirektionale Kommuni-
kationen vom Client zum Objekt ausgegeben werden, bei denen der Client nicht in Echtzeit- oder synchroner
Ausfiuhrung auf Ergebnisse des Prozedur-Aufrufs warten muf3. Das Objekt kann Ergebnisse der Verarbeitung
der in einer Warteschlange angeordneten Prozedur-Aufrufe durch Ausgabe von Echtzeit-Prozedur-Aufrufen
oder von in einer Warteschlange angeordneten Prozedur-Aufrufen an ein durch einen Eingabeparameter vom
Client beschriebenes Ergebnisobjekt liefern.

[0029] Weitere Eigenschaften und Vorteile der Erfindung werden anhand der nachfolgenden detaillierten Be-
schreibung einer Ausfuhrungsform unter Bezugnahme auf die beigefiigten Zeichnungen ersichtlich.

Kurze Beschreibung der Zeichnungen
[0030] Fig. 1 ist ein Blockdiagramm eines Computersystems, das zur Implementierung eines Verfahrens und
einer Vorrichtung genutzt werden kann, welche die Erfindung fiir in einer Warteschlange angeordnete Aufrufe
von Prozeduren verkorpern.
[0031] Fig. 2 ist ein Blockdiagramm einer Ausfiihrungsumgebung und einer Laufzeitarchitektur fur in einer
Warteschlange angeordnete Aufrufe von Prozeduren gemaR der dargestellten Ausfiihrungsform der Erfin-
dung.

[0032] Fig. 3 ist ein Blockdiagramm einer Struktur einer in einer Warteschlange angeordneten Komponente
in der Ausfihrungsumgebung von Fig. 2.

[0033] Fig. 4 ist ein Blockdiagramm einer Aufzeichnungseinrichtung und eines Proxy in der Laufzeitarchitek-
tur von Fig. 2.

[0034] Fig. 5 ist ein Blockdiagramm einer Abspieleinrichtung und eines Stub in der Laufzeitarchitektur von
Fig. 2.

[0035] Fig. 6 ist ein Blockdiagramm einer Vorrichtung zur Uberwachung von Warteschlangen fiir unzustellba-

6/29

DE 699 36 627 T2 2008.05.21

re Nachrichten (Dead-Letter-Queue) und eines Ausnahmezustandsbehandlers in der Laufzeitarchitektur von
Fig. 2.

[0036] Fig. 7 ist eine Programmliste von beispielhaften Objekt-Instanziierungs-Aufrufen zur Aktivierung der in
einer Warteschlange angeordneten Komponente in der Laufzeitarchitektur von Fig. 2.

[0037] Fig. 8 ist eine Programmliste einer ,IPlaybackControl"-Schnittstelle eines Ausnahmezustandsbehand-
lers in Fig. 5 und Fig. 6.

[0038] Fig. 9 ist eine Programmliste eines Formats einer Nachricht von in einer Warteschlange angeordneten
Aufrufen von Prozeduren in der Laufzeitarchitektur von Fig. 2.

[0039] Fig. 10 ist ein Blockdiagramm des Formats einer in einer Warteschlange angeordnete Prozedur-Auf-
rufe enthaltenden Nachricht in der Laufzeitarchitektur von Fig. 2.

DETAILLIERTE BESCHREIBUNG DER ERFINDUNG

[0040] Die vorliegende Erfindung betrifft ein Verfahren und ein System fiir in einer Warteschlange angeord-
nete Aufrufe von Komponentenprozeduren. In einer hier erlauterten Ausflihrungsform wird die Erfindung in
eine als ,COM+" bezeichnete Objektdienste-Komponente eines als ,Microsoft Windows NT Server 5.0" be-
zeichneten, durch die Microsoft Corporation in Redmond, Washington vertriebenen Betriebssystems integriert.
Kurz beschrieben ist diese Software ein skalierbares Hochleistungsnetzwerk- und Computerbetriebssystem,
das verteilte Client/Server-Datenverarbeitung unterstitzt und eine Objekt-Ausfihrungsumgebung fir dem
Komponentenobjektmodell (COM) von Microsoft entsprechende Komponentenanwendungen bereitstellt. Die
COM+-Komponente umfafdt Objektdienste von vorbekannten Objektsystemen, einschlieBlich des Micro-
soft-Komponentenobjektmodells (COM), der Microsoft-Objektverlinkung und -einbettung (Microsoft Object Lin-
king and Embedding (OLE)), des Verteilten Komponentenmodells (DCOM) von Microsoft und des Micro-
soft-Transaktionsservers (Microsoft Transaction Server (MTS)).

Beispielhafte Betriebsumgebung

[0041] FEia. 1 und die folgende Darstellung dienen einer kurzen, allgemeinen Beschreibung einer geeigneten
Datenverarbeitungsumgebung, in welcher die Erfindung implementiert werden kann. Obwohl die Erfindung im
allgemeinen Kontext computerausfiihrbarer Anweisungen eines auf einem Computer laufenden Computerpro-
gramms beschrieben wird, wird der Fachmann feststellen, daf} die Erfindung gleichfalls in Kombination mit an-
deren Programmmodulen implementiert werden kann. Programmmodule umfassen im Allgemeinen Routinen,
Programme, Komponenten, Datenstrukturen usw., die bestimmte Aufgaben ausfiihren oder bestimmte abs-
trakte Datentypen implementieren. Aufderdem wird der Fachmann erkennen, da® die Erfindung mit anderen
Computersystemkonfigurationen, wie beispielsweise Handheld-Vorrichtungen, Multiprozessorsystemen, Mi-
kroprozessor-basierter oder programmierbarer Unterhaltungselektronik, Minicomputer, GroRrechenanlagen u.
a., betrieben werden kann. Die dargestellte Ausfihrungsform der Erfindung wird ebenfalls in verteilten Daten-
verarbeitungsumgebungen betrieben, wo Aufgaben Uber entfernte, durch ein Kommunikationsnetzwerk ver-
bundene Verarbeitungsvorrichtungen ausgefiihrt werden. Einige Ausfiihrungsformen der Erfindung kénnen al-
lerdings auch auf Einzelrechnern betrieben werden. In einer verteilten Datenverarbeitungsumgebung kénnen
sich Programmmodule sowohl in lokalen als auch in entfernten Speichervorrichtungen befinden.

[0042] Bezugnehmend auf Fig. 1 umfalit ein beispielhaftes System zur Implementierung der Erfindung einen
konventionellen Computer 20 (wie beispielsweise Personalcomputer, Laptops, Palmtops, Set-Tops, Server,
Grolrechenanlagen und andere Computerarten) mit einer Verarbeitungseinheit 21, einem Systemspeicher 22
und einem Systembus 23, der verschiedene Systemkomponenten einschliellich des Systemspeichers mit der
Verarbeitungseinheit 21 verbindet. Die Verarbeitungseinheit kann ein jeglicher von verschiedenen im Handel
erhaltlichen Prozessoren sein, wie beispielsweise Intel x86-, Pentium- und kompatible Mikroprozessoren von
Intel und anderen Herstellern, wie beispielsweise Cyrix, AMD und Nexgen; Alpha von Digital, MIPS von MIPS
Technology, NEC, IDT, Siemens u. a. sowie der PowerPC von IBM und Motorola. Duale Mikroprozessoren und
andere Multiprozessor-Architekturen kdnnen ebenfalls als Verarbeitungseinheit 21 genutzt werden.

[0043] Der Systembus kann ein jeglicher von verschiedenen, einen Speicherbus oder eine Speicher-Steuer-
einheit, einen Peripheriebus und einen lokalen Bus umfassenden Busstruktur-Typen sein, die eine von unter-
schiedlichen konventionellen Bus-Architekturen nutzen, wie beispielsweise PCIl, VESA, AGP, Microchannel,
ISA und EISA, um nur einige zu nennen. Der Systemspeicher umfaf3t Nur-Lese-Speicher (ROM) 24 und Spei-

7/29

DE 699 36 627 T2 2008.05.21

cher mit wahlfreiem Zugriff (RAM) 25. In ROM 24 befindet sich ein einfaches Eingabe/Ausgabe-System
(BIOS), welches die Basisprogramme zur Ubertragung von Informationen zwischen Elementen innerhalb des
Computers 20, wie beispielsweise wahrend des Hochfahrens, umfaft.

[0044] Der Computer 20 umfallt weiterhin ein Festplattenlaufwerk 27, ein Magnetplattenlaufwerk 28 bei-
spielsweise zum Lesen einer oder zum Schreiben auf eine Wechselplatte 29 und ein Optische-Medien-Lauf-
werk 30 beispielsweise zum Lesen einer CD-ROM-Platte 31 oder zum Lesen eines oder zum Schreiben auf
ein anderes optisches Medium. Das Festplattenlaufwerk 27, das Magnetplattenlaufwerk 28 und das Opti-
sche-Medien-Laufwerk 30 sind jeweils Gber eine Festplattenlaufwerk-Schnittstelle 32, eine Magnetplattenlauf-
werk-Schnittstelle 33 bzw. eine Schnittstelle fir ein Optische-Medien-Laufwerk 24 mit dem Systembus 23 ver-
bunden. Die Laufwerke und ihre dazugehoérigen computerlesbaren Medien stellen nichtfliichtigen Speicher von
Daten, Datenstrukturen, Computer-ausfiihrbaren Anweisungen usw. fir den Computer 20 bereit. Obwohl sich
die obige Beschreibung computerlesbarer Medien auf eine Festplatte, eine magnetische Wechselplatte und
eine CD bezieht, sollte der Fachmann feststellen, dal auch andere computerlesbaren Medientypen, wie bei-
spielsweise Magnetbandkassetten, Flash-Speicherkarten, digitale Videodisks, Bernoulli-Laufwerke u. a., in der
beispielhaften Betriebsumgebung eingesetzt werden kénnen.

[0045] In den Laufwerken und dem RAM 25 kann eine Anzahl von Programmmodulen, einschlielich des Be-
triebssystems 35, eines oder mehrerer Anwendungsprogramme 36, weiterer Programmmodule 37 und Pro-
grammdaten 38, gespeichert werden.

[0046] Ein Benutzer kann Uber eine Tastatur 40, und eine Steuervorrichtung, wie beispielsweise eine Maus
42, Befehle und Informationen in den Computer 20 eingeben. Weitere (nicht abgebildete) Eingabevorrichtun-
gen kénnen ein Mikrophon, ein Joystick, ein Gamepad, eine Parabolantenne, ein Scanner oder ahnliches sein.
Diese und andere Eingabevorrichtungen sind an die Verarbeitungseinheit 21 haufig Gber einen seriellen
Schnittstellenport 46 angeschlossen, der mit dem Systembus verbunden ist, aber auch an andere Schnittstel-
len, wie beispielsweise einen Parallel-Port, einen Game-Port oder einen universellen seriellen Bus (USB) an-
geschlossen sein kann. AuBerdem ist ein Bildschirm 47 oder eine andere Anzeigevorrichtung Uber eine
Schnittstelle, wie beispielsweise einen Video-Adapter 48, an den Systembus 23 angeschlossen. Zusatzlich
zum Bildschirm umfassen Computer in der Regel andere periphere (nicht abgebildete) Ausgabevorrichtungen,
wie beispielsweise Lautsprecher und Drucker.

[0047] Der Computer 20 kann in einer vernetzten, logische Verbindungen zu einem oder mehreren entfernten
Computer, wie beispielsweise einem entfernten Computer 49, nutzenden Umgebung operieren. Der entfernte
Computer 49 kann ein Server, ein Router, eine Peer-Vorrichtung oder ein anderer gemeinsamer Netzknoten
sein und umfal}t in der Regel viele oder alle der in Bezug auf den Computer 20 beschriebenen Elemente, auch
wenn in Eig. 1 nur eine Speichervorrichtung 50 dargestellt ist. Die in Eig. 1 dargestellten logischen Verbindun-
gen umfassen ein lokales Netz (LAN) 51 und ein Weitbereichsnetz (WAN) 52. Entsprechende vernetzende
Umgebungen sind gewohnlich in Biiros, Computer-Netzwerken in Unternehmen, internen Netzwerken und im
Internet anzutreffen.

[0048] Bei Einsatz in einer LAN-vernetzenden Umgebung wird der Computer 20 Gber eine Netzwerkschnitt-
stelle oder einen -adapter 53 mit dem lokalen Netz 51 verbunden. Bei Einsatz in einer WAN-vernetzenden Um-
gebung umfaldt der Computer 20 in der Regel ein Modem 54 oder andere Mittel zum Aufbau von Kommunika-
tion (z. B. mittels LAN, eines Gateway- oder eines Proxy-Servers 55) liber das Weitbereichsnetz 52, wie bei-
spielsweise das Internet. Das Modem 54, das ein internes oder externes sein kann, wird ber den seriellen
Schnittstellenport 46 an den Systembus 23 angeschlossen. In einer vernetzten Umgebung kdnnen in Bezug
auf den Computer 20 dargestellte Programmodule oder Teile davon in einer entfernten Speichervorrichtung ge-
speichert werden. Man erkennt, dal die dargestellten Netzwerkverbindungen Beispiele sind und andere Mittel
zum Aufbau einer Kommunikationsverbindung zwischen Computern verwendet werden kénnen.

[0049] In Ubereinstimmung mit den Gepflogenheiten von Fachleuten aus dem Bereich der Computerpro-
grammierung erfolgt die nachstehende Beschreibung der vorliegenden Erfindung, falls nicht anders angege-
ben, unter Bezugnahme auf durch den Computer 20 ausgefiihrte Handlungen und symbolische Darstellungen
von Operationen. Entsprechende Handlungen und Operationen werden gelegentlich als ,durch einen Compu-
ter ausgefiihrt" bezeichnet. Man erkennt, daf® die Handlungen und symbolisch dargestellten Operationen die
durch die Verarbeitungseinheit 21 erfolgende, Datentbits darstellende Bearbeitung von elektrischen Signalen,
welche eine resultierende Transformation oder Reduktion der Darstellung elektrischer Signale hervorruft, so-
wie die Verwaltung der Datenbits an im Speichersystem (mit Systemspeicher 22, Festplattenlaufwerk 27, Ma-
gnetplatten-Speicher 29 und CD-ROM 31) befindlichen Speicherorten umfassen, um so die Operation des

8/29

DE 699 36 627 T2 2008.05.21

Computersystems sowie andere Signalverarbeitung zu rekonfigurieren oder anderweitig zu andern. Bei den
Speicherorten, an denen Datenbits verwaltet werden, handelt es sich um physische Speicherplatze, die be-
stimmte elektrische, magnetische oder optische, den Datenbits entsprechende Eigenschaften aufweisen.

Ausfiihrungsumgebung der Komponentenanwendung

[0050] Wie aus Fig. 2 ersichtlich, liefert die oben erwahnte COM+-Komponente des Microsoft Windows NT
5.0 Betriebssystems Laufzeit- oder Systemdienste zur Erstellung einer Ausfihrungsumgebung fir Laufzeitob-
jekte 80 auf einem Server-Computer 84, welche in einer Warteschlange angeordnete Aufrufe von Prozeduren
an ein Objekt 86 (nachstehend als ,Warteschlangenkomponente" bezeichnet) automatisch bereitstellt. Die
COM+-Komponente ist als dynamische Linkbibliothek (Dynamic Link Library (DLL)) implementiert. (Eine DLL
ist ein bekanntes ausfuhrbares Dateiformat, welches dynamische Verlinkung oder Laufzeitverlinkung von aus-
fuhrbarem Code in den Prozel3 eines Anwendungsprogramms ermdglicht). Die COM+-DLL wird direkt in An-
wendungsserverprozesse (z. B. ,ASP" 90) geladen, die Komponentenanwendungsobjekte hosten, und lauft
transparent im Hintergrund dieser Prozesse.

[0051] Der dargestellte ASP 90 ist ein Systemprozel, der die Ausfihrung von Komponentenanwendungsob-
jekten einschlief3lich der Warteschlangenkomponente 86 hostet. Jeder ASP 90 kann mehrere Komponenten-
anwendungsobjekte hosten, die zu einer als ,COM+-Anwendung" bezeichneten Sammlung (in der Objektaus-
fuhrungsumgebung des vorbekannten Microsoft-Transaktionsservers auch als ,Package" bezeichnet) grup-
piert werden. Ferner kbnnen mehrere ASP 90 auf dem Server-Computer 84 unter einem Multithreaded-, Mul-
titasking-Betriebssystem (z. B. Microsoft Windows NT in der dargestellten Ausfliihrungsform) ablaufen. Jeder
ASP 90 stellt eine separate Vertrauensgrenze (separate trust boundary) und einen separaten Fehlereingren-
zungsbereich (fault isolation domain) fir die Serveranwendungsobjekte bereit. Anders formuliert, kann sich bei
getrennten ASPs ein durch ein Serveranwendungsobjekt hervorgerufener Fehler, der eine Beendigung seines
ASP bewirkt, in der Regel nicht auf die Serveranwendungsobjekte in einem anderen ASP auswirken. In der
dargestellten Ausfihrungsform sind die Komponentenanwendungsobjekte als eine COM+-Anwendung grup-
piert, um mit Hilfe eines als ,,COM+-Explorer" bezeichneten Verwaltungsprogramms gemeinsam in einem ASP
zu laufen. Dieses Programm stellt eine grafische Benutzerschnittstelle zur Steuerung von mit den Komponen-
tenanwendungsobjekten verbundenen Attributen einschlielRlich der Gruppierung von Objekten in COM+-An-
wendungen bereit.

[0052] In einer typischen, in Fig. 2 dargestellten Installation befindet sich die Ausfihrungsumgebung 80 auf
dem Server-Computer 84 (der ein Beispiel des oben beschriebenen Computers 20 sein kann), der in einem
verteilten Computernetzwerk angeschlossen ist, welches eine groRe Menge an auf die Komponentenanwen-
dungsobjekte in der Ausfliihrungsumgebung 80 zugreifenden Client-Computern 92 umfalt. Alternativ kann sich
die Ausfihrungsumgebung 80 auf einem Einzelcomputer befinden und Komponentenanwendungsobjekte
hosten, auf die ebenfalls auf diesem Computer befindliche Client-Prozesse zugreifen.

Uberblick iber Komponentenanwendungsobjekte

[0053] Unter Bezugnahme auf Fig. 2 fihrt der Computer 84 als eine COM+-Anwendung entwickelte, eine
Gruppe von Komponentenanwendungsobjekte umfassende Komponentenanwendungen aus. Beispielsweise
koénnen die in der Ausfihrungsumgebung 80 des ASP 90 gehosteten Komponentenanwendungsobjekte (wie
z. B. die Warteschlangenkomponente 86) die Geschéftslogik einer Client/Server-Anwendung, wie z. B. den
Code zur Steuerung von Einschreibungen in einer Registrierungsanwendung einer Universitat oder von Auf-
tragen in einer Online-Verkaufsanwendung, implementieren. In der Regel umfalt jede Komponentenanwen-
dung eine Mehrzahl von Komponenten, wovon jede Programmcode flr einen Teil der Anwendungsarbeit ent-
halt.

[0054] Bezugnehmend auf Fig. 3 entsprechen die Komponentenanwendungsobjekte in der dargestellten
Ausfuhrungsumgebung 80 (Fig. 2) der Anforderung des Microsoft-Komponentenobjektmodells ("COM") (d.h.,
dafd sie als ein "COM-Objekt" 100 implementiert sind) und werden, wie oben beschrieben, unter Nutzung der
COM+-Dienste des Microsoft Windows NT Server 5.0 Betriebssystems ausgefiihrt; alternativ kdnnen sie aller-
dings auch nach anderen Objektstandards implementiert werden (wie beispielsweise den Anforderungen der
CORBA (Common Objekt Request Broker Architecture (Architektur fir Vermittler der Abrufe von gemeinsamen
Objekten)) der Object Management Group oder Java Beans von der Sun Microsystems Inc.) und unter Objekt-
diensten eines anderen Betriebssystems ausgefiihrt werden. Die COM-Anforderung definiert binare Standards
fur Objekte und deren Interfaces, welche die Integration von Softwarekomponenten in Anwendungen erleich-
tern. (Fur eine detaillierte Erérterung von COM und OLE siehe Kraig Brockschmidt: "Inside OLE", 2. Auflage,

9/29

DE 699 36 627 T2 2008.05.21

Microsoft Press, Redmond, Washington 1995).

[0055] Gemafll COM wird das COM-Objekt 100 im Computer 84 (Fig. 2) durch eine Instanzdatenstruktur 102,
eine Tabelle 104 der virtuellen Funktionen und Prozeduren oder Memberfunktionen 106—108 dargestellt. Die
Instanzdatenstruktur 102 umfaldt einen Zeiger 110 auf die Tabelle 104 der virtuellen Funktionen und Daten 112
(auch als Datenmember oder Eigenschaften des Objekts bezeichnet). Ein Zeiger ist ein Datenwert, der die
Adresse eines Gegenstands im Speicher halt. Die Tabelle 104 der virtuellen Funktionen umfal3t Eintrage
116-118 fir die Prozeduren 106—108. Jeder dieser Eintrage 116-118 umfalit einen Verweis auf den die ent-
sprechende Prozedur implementierenden Code 106-108.

[0056] Der Zeiger 110, die Tabelle 104 der virtuellen Funktionen und die Prozeduren 106—108 implementieren
eine Schnittstelle des COM-Objekts 100. Ublicherweise werden die Schnittstellen eines COM-Objekts grafisch
als eine Steckbuchse dargestellt, wie fiir die Warteschlangenkomponente 86 in Fig. 2 gezeigt. Au3erdem er-
halten Schnittstellen tblicherweise Bezeichnungen, die mit dem GroRRbuchstaben "I" beginnen. Gemat COM
kann das COM-Objekt 100 mehrere Schnittstellen umfassen, die mit einer oder mehreren Tabellen der virtuel-
len Funktionen implementiert werden. Die Prozedur einer Schnittstelle wird mit ,linterfaceName::FunctionNa-
me" bezeichnet.

[0057] Die Tabelle 104 der virtuellen Funktionen und die Prozeduren 106-108 des COM-Objekts 100 werden
von einem Objektserverprogramm 120 (nachstehend als ,Objektserver-DLL" bezeichnet) bereitgestellt, wel-
ches in dem Computer 20 (Fig. 1) als eine Datei einer dynamischen Linkbibliothek (mit der Dateinamenerwei-
terung ".dIl" versehen) gespeichert ist. Gemall COM umfal’t die Objektserver-DLL 120 Code fiir die Tabelle
104 der virtuellen Funktionen und die Prozeduren 106-108 der Klassen, die sie unterstiitzt, sowie weiterhin
eine Klassenfabrik 122, welche die Instanzdatenstruktur 102 fir ein Objekt der Klasse generiert.

[0058] Andere Objekte und Programme (als ,Client" des COM-Objekts 100 bezeichnet) greifen auf die Funk-
tionalitdt des COM-Objekts durch Aufrufen der Prozeduren uber die Schnittstellen des COM-Objekts zu. Zu-
nachst mull das COM-Objekt jedoch instanziiert werden (z. B. indem die Klassenfabrik zur Erstellung der In-
stanzdatenstruktur 102 des Objekts veranlalt wird), und der Client muf} einen Schnittstellenzeiger auf das
COM-Objekt erhalten.

[0059] Bevor das COM-Objekt 100 instanziiert werden kann, wird das Objekt zunachst auf dem Computer 20
installiert. In der Regel umfaf3t die Installation das Installieren einer Gruppe verwandter, in einer COM+-Anwen-
dung enthaltener Objekte. Die Installation des COM-Objekts 100 erfolgt durch das Speichern der Objektser-
ver-DLL-Datei(en), welche das Objekt in dem Computer 20 zuganglichem Datenspeicher (in der Regel die in
Fig. 1 dargestellte Festplatte) bereitstellt/bereitstellen, und das Registrieren von COM-Attributen (z. B. Klasse-
nidentifikatoren, Pfad und Bezeichnung der Objektserver-DLL-Datei 120 usw.) des COM-Objekts in einem Sys-
temregister, einem Katalog oder einer ahnlichen Konfigurationsdatenbank.

[0060] Ein Client fordert die Instanziierung des COM-Objekts unter Einsatz vom System bereitgestellter
Dienste und einer Menge systemdefinierter Standard-Komponentenschnittstellen, die auf den Klassen und
Schnittstellen des COM-Objekts zugewiesenen Klassen- und Schnittstellenidentifikatoren basieren, an. Ge-
nauer gesagt sind die Dienste fur die Client-Programme als Funktionen von Schnittstellen zur Anwendungs-
programmierung (API) verfugbar, die in der COM+-Bibliothek bereitgestellt werden, welche eine Komponente
des Microsoft Windows NT Server 5.0 Betriebssystems in einer Datei mit dem Namen ,OLE32.DLL." ist. Au-
Rerdem werden in COM+ Klassen von COM-Objekten ausschlieRlich mit Klassenidentifikatoren (,CLSIDs") as-
soziiert und von ihrem CLSID in einer als ,Registry" bezeichneten Systemkonfigurationsdatenbank registriert.

[0061] Der Registrierungseintrag fiir eine Klasse von COM-Objekten assoziiert den CLSID der Klasse mit In-
formationen, die eine ausflihrbare, die Klasse bereitstellende Datei (z.B. eine DLL-Datei, die eine Klassenfab-
rik zur Erstellung einer Instanz der Klasse aufweist) identifizieren. Klassenidentifikatoren sind 128-Bit global
eindeutige Identifikatoren (Globally Unique Identifiers ("GUIDs")), die der Programmierer mittels eines als "Co-
CreateGUID" bezeichneten COM+-Dienstes (oder einer/einem von verschiedenen anderen APIs und Pro-
grammen zur Erstellung universeller eindeutiger Identifikatoren) programmiert und den entsprechenden Klas-
sen zuweist. Zusatzlich werden die Schnittstellen einer Komponente mit Schnittstellenidentifikatoren ("lIDs")
verbunden.

[0062] Insbesondere stellt die COM+-Bibliothek API-Funktionen, z.B. "CoCreatelnstance()" und "CoGetOb-

ject()" bereit, die das Client-Programm aufrufen kann, um die Erstellung einer seine zugewiesene CLSID und
einen IID einer gewlinschten Schnittstelle nutzenden Komponente anzufordern. Als Reaktion auf eine Instan-

10/29

DE 699 36 627 T2 2008.05.21

ziierungsanforderung des Clients sucht die "CoCreatelnstance()"-API den Registrierungseintrag der angefor-
derten CLSID im Register, um die ausfiihrbare Datei fir die Klasse zu identifizieren. Die "CoCreateln-
stance()"-API-Funktion ladt anschlieRend die ausfihrbare Datei der Klasse und nutzt die Klassenfabrik in der
ausflihrbaren Datei, um eine Instanz des COM-Objekts 100 zu erstellen. AbschlieRend sendet die "CoCrea-
telnstance()"-API-Funktion einen Zeiger der angeforderten Schnittstelle an das Client-Programm zurtick. Die
"CoCreatelnstance()"-API-Funktion kann die ausfiihrbare Datei entweder in den Prozef} des Client-Programms
oder in einen Serverprozel laden, der, je nach den fiir das COM-Objekt 100 in der System-Registrierdaten-
bank registrierten Attributen, lokal oder entfernt sein kann (z.B. auf dem selben Computer oder auf einem ent-
fernten Computer in einem verteilten Computernetzwerk). Die "CoGetObject()"-API andererseits nutzt die
COM-Moniker-Architektur, um eine die Serverobjektklasse identifizierende Zeichenkette zu analysieren und
ein Moniker-Objekt zu erstellen, welches anschliel3end zur Erstellung einer Instanz der Serverobjektklasse ge-
nutzt wird.

[0063] Sobald der Client des COM-Objekts 100 diesen ersten Schnittstellen-Zeiger des COM-Objekts erhal-
ten hat, kann der Client Zeiger anderer gewtinschter Schnittstellen der Komponente durch Nutzung des mit der
gewinschten Schnittstelle verbundenen Schnittstellenidentifikators erhalten. COM+ definiert verschiedene,
Ublicherweise von COM-Objekten unterstiitzte Standardschnittstellen einschliellich der "lUnknown"-Schnitt-
stelle. Diese Schnittstelle umfalit eine Prozedur namens "Querylnterface()". Die "Querylnterface()"-Funktion
kann mit einem Schnittstellenidentifikator als ein Argument aufgerufen werden und sendet einen Zeiger an die
mit diesem Schnittstellenidentifikator verbundene Schnittstelle zurtick. Die "lUnknown"-Schnittstelle jedes
COM-Objekts umfalRt auflerdem Prozeduren, "AddRef()" und "Release()", zum Verwalten einer Zahl von Cli-
entprogrammen, die einen Verweis (z.B. einen Schnittstellenzeiger) auf das COM-Objekt halten. Ublicherweise
sind die Prozeduren der "lUnknown"-Schnittstelle als Teil jeder Schnittstelle auf einem COM-Objekt enthalten.
Dementsprechend kann jeder Schnittstellenzeiger, den der Client auf eine Schnittstelle des COM-Objekts 100
erhalt, zum Aufruf der "Querylnterface"-Funktion genutzt werden.

Uberblick tiber Transaktionsverarbeitung

[0064] Nochmals bezugnehmend auf Eig. 2, implementiert die COM+-Komponente aulerdem eine automa-
tische Transaktionsverarbeitung fiir die Komponentenanwendungsobjekte in der dargestellten Ausfiihrungs-
umgebung 80. Eine ausfiihrlichere Offenbarung der automatischen Transaktionsverarbeitung von komponen-
tenbasierten Serveranwendungen findet sich in dem US-Patent Nr. 5,890,161 von Helland et al. tber "Auto-
matic Transaction Processing Of Component-Based Server Applications", eingereicht am 28.10.1997 und ver-
offentlicht am 30.03.1999 (nachfolgend als "Patentanmeldung fur Automatische Transaktionen" bezeichnet).
Kurz beschrieben, koordiniert die automatische Transaktionsverarbeitung die Verarbeitungsaktivitdten von
Komponentenanwendungs-Objekten in der Ausfiihrungsumgebung 80, die Teile einer Operation bilden, um als
eine einzelne, unteilbare Arbeitseinheit, die im Allgemeinen als Transaktion bezeichnet wird, wirksam zu wer-
den.

[0065] Transaktionen in der Ausfiihrungsumgebung 80 werden Uber einen Transaktionsmanager 128 gesteu-
ert. Der Transaktionsmanager 128 ist ein Systemdienst, der mehrere gesteuerte Transaktionsressourcen, wie
beispielsweise Datenbanken, Dateisysteme usw., umfassende Transaktionen koordiniert. Der Transaktions-
manager 128 gewahrleistet, dall die gesamte in eine Transaktion eingebundene Verarbeitungsarbeit (z.B. Up-
dates von Datenbanken) in Ubereinstimmung mit den ACID-Eigenschaften (Atomaritat (Atomicity), Konsistenz
(Consistency), Isolation (Isolation), Dauerhaftigkeit (Durability)) unter Nutzung des vorbekannten Two-Pha-
se-Commit-Protokolls und ungeachtet von Fehlern (z.B. Computer-, Netzwerk-, Hardware- oder Softwarefehler
oder Fehler durch Fehlverhalten von Ressourcenmanager oder -anwendung), Wettlaufsituationen (z.B. eine
Transaktion beginnt mit der Ubergabe, wahrend ein Ressourcenmanager einen Abbruch initiiert) oder Verfiig-
barkeit (ein Ressourcenmanager bereitet eine Transaktion vor, kehrt aber nicht zuriick) erfolgt. Der dargestellte
Transaktionsmanager 148 ist der als Teil des Microsoft SQL Servers 6.5 veroffentlichte Microsoft-Koordinator
von verteilten Transaktionen (Microsoft Distributed Transaction Coordinator) (MSDTC)). Fir zusatzliche Hin-
tergrundinformationen Gber Transaktionsverarbeitung siehe u.a. Jim Gray und Andreas Reuter: "Transaction
Processing Concepts and Techniques", Morgan Kaufmann, 1993.

Laufzeitarchitektur von in einer Warteschlange angeordneten Komponenten
[0066] Weiterhin bezugnehmend auf Fig. 2 stellt eine Laufzeitarchitektur 130 von in einer Warteschlange an-
geordneten Komponenten (nachfolgend als "QC-Architektur" bezeichnet) Support fir in einer Warteschlange

angeordnete Aufrufe von Prozeduren unter Nutzung normaler COM-Aufrufsemantik bereit. Genauer gesagt,
ruft ein Client 132 in einem Prozel} 134 auf dem Client-Computer 92 Prozeduren auf Schnittstellen 87 der War-

11/29

DE 699 36 627 T2 2008.05.21

teschlangenkomponente 86 unter Nutzung der Gblichen COM-Konventionen flir synchrone Echtzeitinteraktion
auf, einschlieRlich folgender Schritte: Erstellen des Objekts, beispielsweise Uber einen "CoGetObject()"-Aufruf
oder einen "CoCreatelnstance()"-Aufruf, Empfang eines Schnittstellenzeigers, beispielsweise durch Spezifi-
zieren eines Schnittstellenidentifikators (lID) in einem "CoCreatelnstance()"-API-Aufruf oder einem "Queryin-
terface()"-Aufruf; die Ausgabe von Aufrufen an das Objekt Gber dessen Tabelle der virtuellen Funktionen oder
eine Dispatch-Schnittstelle (fir dynamische Bindung) und schlief3lich die Freigabe des Objekts beispielsweise
durch Aufrufen der "Release"-Prozedur des Objekts. (In einigen Implementierungen der Erfindung, wie bei-
spielsweise in der hier dargestellten QC-Architektur 130, kann der Client einen anderen Objekterstellungsme-
chanismus fiir in einer Warteschlange angeordnete Prozedur-Aufrufe (z. B. die oben beschriebene "CoGetOb-
ject()"-API und einen Warteschlangen-Moniker (unten beschrieben)) als fir Aufrufe von Echtzeit-Prozeduren
nutzen, wobei er allerdings Prozeduren des Objekts nach wie vor mittels normaler Aufrufsemantik aufruft.) Die
Warteschlangenkomponente 86 andererseits ruft ihre Prozeduren Uber ihre Tabelle der virtuellen Funktionen
oder eine Dispatch-Schnittstelle wie bei einem lokalen Prozedur-Aufruf auf. Anders formuliert, missen der Cli-
ent 132 und die Warteschlangenkomponente 86 nicht so geschrieben werden, daf} sie jegliche Nachrichten
einreihende API nutzen, um in einer Warteschlange angeordnete Aufrufe von Prozeduren der Warteschlan-
genkomponente auszugeben oder zu empfangen.

[0067] Die Aufrufe von Prozeduren des Clients auf die Warteschlangenkomponente 86 werden auf einer Cli-
ent-Seite 140 der Client-zu-Objekt-Interaktion aufgezeichnet und zu einem spateren Zeitpunkt wieder abge-
spielt und an die Warteschlangenkomponente 86 auf einer Server-Seite 142 der Interaktion ausgegeben. Die
dargestellte QC-Architektur 130 zeichnet alle Prozedur-Aufrufe des Clients auf der Warteschlangenkomponen-
te 86 auf und spielt die Prozedur-Aufrufe erst dann wieder ab, wenn der Client 132 seine Nutzung der Warte-
schlangenkomponente 86 abgeschlossen hat (d. h. nach Freigabe der Warteschlangenkomponente durch den
Client). Falls der Client 132 an einer Transaktion beteiligt ist, gilt des Weiteren, dal} die Prozedur-Aufrufe erst
nach reguldrem Abschlufd der Transaktion wieder abgespielt werden.

[0068] Die dargestellte QC-Architektur 130 wird in der COM+-Komponente des Microsoft Windows NT 5.0
Betriebssystems implementiert. Die COM+-Komponente stellt verschiedene Laufzeitobjekt-Dienste fur auf
dem Computersystem 20 laufende COM-Objekte bereit. Die Laufzeitdienste stellen eine Aufzeichnungsein-
richtung 150, eine Empfangseinrichtung 152 und eine Abspieleinrichtung 154 bereit, die in einer Warteschlan-
ge angeordnete Aufrufe von Prozeduren tber normale Aufrufsemantik durch den Client 132 auf die Warte-
schlangenkomponente 86 ausfihren. Die Aufzeichnungseinrichtung 150 fungiert als ein Proxy fiir die Warte-
schlangenkomponente, um das Arrangieren der Prozedur-Aufrufe des Clients mit deren Aufrufparametern und
zugehdrigen Daten in Nachrichten auszufiihren, und nutzt auflerdem eine Nachrichtenwarteschlangen bilden-
de API (wie beispielsweise die "Microsoft Message Queue" oder "MSMQ"), um die Nachrichten in eine der
Warteschlangenkomponente 86 zugehoérige Nachrichtenwarteschlange fiir Prozedur-Aufrufe 158 einzureihen.
(Fur weitere Details zu MSMQ siehe Microsoft Developer Network (MSDN) Library Edition — Juli 1998, SDK
Documentation, Platform SDK, Networking and Distributed Services, Microsoft Message Queue Server
(MSMQ).) Die Empfangseinrichtung 152 wartet darauf, dafd Nachrichten an der Warteschlange 158 eintreffen,
und sendet die Nachrichten, sobald sie eingetroffen sind, an die Abspieleinrichtung 154. Die Abspieleinrichtung
154 macht das Arrangieren der Prozedur-Aufrufe riickgangig und gibt die Prozedur-Aufrufe an die Warte-
schlangenkomponente 86 aus.

[0069] Diese verschiedenen, zur QC-Architektur 130 gehdrigen Teile werden nachfolgend genauer beschrie-
ben.

Warteschlangenkomponenten

[0070] Die Warteschlangenkomponente 86 in der dargestellten QC-Architektur 130 ist ein COM-Objekt, wel-
ches die oben beschriebe Struktur aufweist und in Fig. 3 dargestellt ist. Die Warteschlangenkomponente 86
ist dadurch gekennzeichnet, dal sie in einer Warteschlange angeordnete Aufrufe von Prozeduren unterstiitzt,
indem sie den Schnittstellen der Komponente ein Attribut (das "QUEUEABLE"-Attribut) zuordnet. Der Entwick-
ler einer Komponente weist den Schnittstellen der Komponente das "QUEUEABLE"-Attribut durch Hinzufligen
eines Schnittstellenattribut-Makros (d.h. des Wortes "QUEUEABLE") zur Schnittstellensektion der
Schnittstellendefinitionssprachbeschreibung der Komponentenklasse zu. Alternativ kann der Entwickler das
"QUEUEABLE"-Attribut mittels des oben beschriebenen "COM+-Explorer" setzen, welcher graphische Bedie-
nelemente in Objekteigenschaftfenstern ("sheet dialogs") zum Setzen der den Objekten in der dargestellten
Ausfuhrungsumgebung 80 zugewiesenen Attribute bereitstellt. In einigen erfindungsgemafien Ausfuhrungsfor-
men kann das "QUEUEABLE"-Attribut in einem Katalog 165, einer Registrierdatenbank des Betriebssystems
oder einer anderen, mit dem Betriebssystem oder der spezifischen Anwendungssoftware assoziierten Konfi-

12/29

DE 699 36 627 T2 2008.05.21

gurationsdatenbank gespeichert sein.

[0071] Einige Attribute werden au3erdem mit der COM+-Anwendung assoziiert, in welche die Warteschlan-
genkomponente 86 gepackt ist. Ein "Queued App"-Attribut zeigt an, ob die Objekte der COM+-Anwendung
Uber in einer Warteschlange angeordnete Aufrufe von Prozeduren aufgerufen werden kénnen. Ein "Queue Lis-
tener"-Attribut zeigt an, ob die COM+-Anwendung eine Warteschlangen-Empfangseinrichtung, wie beispiels-
weise die Empfangseinrichtung 152 (Fig. 2), starten sollte. Ebenso umfaflt ein "Queue BLOB"-Attribut
MSMQ-Namen (als GUID-Formatnamen (GUID = global eindeutiger lIdentifikator) einer Menge von der
COM+-Anwendung zugeordneten Warteschlangen. ("BLOB" ist ein Akronym fir "Binary Large Object" (binares
groRes Objekt)). In der dargestellten Architektur 130 sind die "Queued App"- und die "Queue Listener"-Attribute
als Boolesche Marken gespeichert, die "on" oder "off" gesetzt werden kénnen. Das "Queue BLOB"-Marken
speichert MSMQ-Namen von finf verschiedenen Warteschlangen. Das "Queued App"-Attribut und das
"Queue Listener"-Attribut kdnnen von einem Anwendungsintegrator mittels eines COM+-Explorer-Werkzeugs,
welches Kontrollkastchen-Elemente zum Setzen der "Queued App"- und "Queued Listener"-Attribute in einem
COM+-Anwendungs-Eigenschaftsfenster bereitstellt, betrachtet und gekennzeichnet werden. Wenn die
"Queued App"- und "Queue Listener"-Attribute auf "on" gesetzt wurden, generiert das Programm als Reaktion
darauf das "Queue BLOB"-Attribut.

[0072] Wenn die COM+-Anwendung erstmalig erstellt wird, werden die "Queued App"- und "Queue Liste-
ner"-Attribute auf "off" gesetzt und das "Queue BLOB"-Attribut ist nicht vorhanden.

[0073] Wenn das "Queued App"-Attribut auf "on" gesetzt wird (z.B. durch Auswahlen eines Kontrollkastchens
im COM+-Explorer), initiiert der COM+-Explorer eine API-Funktion in den COM+-Laufzeitdiensten, die eine
Menge von MSMQ-Warteschlangen fir die COM+-Anwendung erstellt und deren MSMQ-Namen im "Queue
BLOB"-Attribut speichert. Zusatzlich werden sowohl das "Queued App"- als auch das "Queue Listener"-Attribut
auf "on" gesetzt. Der Anwendungsintegrator hat dann die Mdglichkeit, die Kontrollkastchen eines dieser Attri-
bute im COM+-Explorer zu deaktivieren, um die Attribute auf "off" zu setzen. Das bedeutet, daf3 die COM+-An-
wendung nur Echtzeit-Prozedur-Aufrufe nutzen soll, obwohl sie ein Objekt enthalt, das eine Warteschlangen-
komponente sein kann.

[0074] In der dargestellten QC-Architektur 130 werden die Schnittstellen der Warteschlangenkomponente
vom Entwickler direkt mit dem "QUEUEABLE"-Attribut gekennzeichnet. Ein COM-Objekt gilt als eine in einer
Warteschlange anordbare Komponente, wenn es mindestens eine als "QUEUEABLE" gekennzeichnete
Schnittstelle besitzt. Befindet sich das Objekt in einer als eine "Queued App" gekennzeichneten COM+ Anwen-
dung, gilt es als Warteschlangenkomponente. Allerdings kann die Komponente in alternativen Ausfihrungsfor-
men der Erfindung auch selbst mit dem "QUEUEABLE"-Attribut gekennzeichnet werden. Alle Schnittstellen der
gekennzeichneten Komponente, deren Prozeduren nur [in]-Parameter besitzen, wirden dann als "QUEUEAB-
LE" gelten.

Aktivierung einer Warteschlangenkomponente

[0075] Wie oben beschrieben, erstellt der Client 132 die Warteschlangenkomponente 86 unter Nutzung nor-
maler COM-Aufrufsemantik, die auch fiir Echtzeit-Prozedur-Aufrufe genutzt wird. Genauer gesagt, erstellt der
Client in der dargestellten QC-Architektur 130 die Warteschlangenkomponente 86 in einem Aufruf an die "Co-
GetObject()"-API (oder an die aquivalente "GetObject-"-API entsprechend der Programmiersprachensemantik
von Visual Basic oder Visual Java), die eine gewodhnliche Objektinstanziierungs-API von COM ist. Der Client
legt fest, dal} die zu erstellende Warteschlangenkomponente mit in einer Warteschlange angeordneten Proze-
dur-Aufrufen genutzt wird, indem er "queue:/new" und anschliefend die Programm-ID oder den Zeichenket-
ten-GUID (Global eindeutiger Identifikator) der Warteschlangenkomponente als "displayname"-Parameter des
"CoGetObject()"-API-Aufrufs festlegt. Als Reaktion darauf parst die "CoGetObject()"-API diese Zeichenkette in
einen neuen Moniker ("new"-Moniker) und einen Warteschlangen-Moniker ("queue"-Moniker), welche die "Co-
GetObject()"-API anschlielend veranlaft, sich an die Warteschlangenkomponente zu binden. Der neue Moni-
ker fuhrt, wie auch die "CoCreatelnstance()"-API, die Verarbeitung zur Erstellung einer Instanz des Serverob-
jekts durch. Der Warteschlangen-Moniker fihrt die Verarbeitung zum Vorbereiten der in Fig. 4 dargestellten
Aufzeichnungseinrichtung aus, damit der Client die in einer Warteschlange angeordneten Aufrufe von Proze-
duren fur die Warteschlangenkomponente nutzen kann.

[0076] In alternativen Ausfiihrungsformen kann der Client die Warteschlangenkomponente 86 erstellen, ohne

in einer Warteschlange angeordnete Aufrufe von Prozeduren in der Instanziierungsanforderung explizit festzu-
legen, wenn die Warteschlangenkomponente die geeigneten Attribute aufweist (d.h. das mit seinen Schnittstel-

13/29

DE 699 36 627 T2 2008.05.21

len oder Klasse verbundene QUEUEABLE-Attribut). Der Client fordert einfach die Erstellung der Warteschlan-
genkomponenten-Instanz tiber die "CoGetObject()"- oder die "CoCreatelnstance()"-API an, und diese erstellen
anschlieBend das Objekt als eine auf diesem Attribut basierende Warteschlangenkomponente.

[0077] Beispielhafte Objekt-Instanziierungsaufrufe sind in einer Programmliste 159 in Fig. 7 dargestellt.
Aufzeichnungseinrichtung

[0078] Unter genauerer Bezugnahme auf Fig. 4 ist die Aufzeichnungseinrichtung 130 in der dargestellten
QC-Architektur 150 ein in einer COM+-DLL bereitgestelltes COM-Objekt. Die DLL der Aufzeichnungseinrich-
tung wird mit Hilfe eines Setup-Programms in ein COM+-bezogenes Verzeichnis auf dem Computer 20, wie
beispielsweise "d:.\Program Files\Microsof\COM+", installiert. Die Installation veranla3t auf’erdem die DLL
der Aufzeichnungseinrichtung, sich selbst zu registrieren, was das Speichern von die Aufzeichnungseinrich-
tung 150 identifizierenden Konfigurationsinformationen (wie beispielsweise des Klassenidentifikators, des
DLL-Pfadnamens, von Attributen usw.) im Katalog oder einer anderen Konfigurationsdatenbank umfaf3t.

[0079] In der dargestellten QC-Architektur umfalRt das Proxy-Objekt 160 eine als Proxy-Manager handelnde
Aufzeichnungseinrichtung 150. Die Aufzeichnungseinrichtung steuert einen oder mehrere Schnittstellenpro-
xies 166 und 167, die eine Implementierung der Schnittstellen 87 der Warteschlangenkomponente 86 bereit-
stellen, um stellvertretend fir die Warteschlangenkomponente 86 im Client-Prozel3 134 zu handeln und Aufrufe
von Prozeduren des Clients 132 auf die Warteschlangenkomponente als direkte Aufrufe an die Proxy-Schnitt-
stellen zu empfangen. Die Generierung der Schnittstellenproxies 166-167 erfolgt gemaR der Standard-Mar-
shaling-Architektur des Microsoft COM RPC (d.h. sie werden aus Microsoft Schnittstellendefinitionssprachbe-
schreibungen(Microsoft Interface Definition Language)(MIDL))-Beschreibungen) der Warteschlangenkompo-
nente 86 generiert) oder gemafl dem Marshaler der Microsoft Automation Type Bibliothek. (Fir eine umfang-
reichere und detailliertere Erdrterung des Microsoft COM RPC siehe Brockschmidt: "Inside OLE", 2. Auflage,
277-338 (Microsoft Press 1995)).

[0080] Genauer gesagtimplementiert die als Proxy-Manager fungierende Aufzeichnungseinrichtung 150 eine
"lUnknown"-Schnittstelle 162. Wie im vorstehenden Abschnitt iber Komponentenanwendungsobjekte be-
schrieben, fordert der Client 132 einen Schnittstellenzeiger an, indem er in einem Aufruf an die "Querylnter-
face()"-Prozedur der "lUnknown"-Schnittstelle 162 einen Schnittstellenidentifikator (1ID) der Schnittstelle fest-
legt. Unter der Voraussetzung, dal die festgelegte IID Teil einer in einem Katalog 165 (Eiq. 2) aufgeflhrten
unveranderlichen IID-Gruppe ist, 1adt und aggregiert die Aufzeichnungseinrichtung 150 einen Schnittstel-
len-Proxy 166-167 (mitunter auch als ,Facelet" bezeichnet), der von einem MIDL-Ubersetzer der Stan-
dard-Marshaling-Architektur generiert ist, um eine Proxy-Schnittstelle 168—169 fiir die entsprechende Schnitt-
stelle der Warteschlangenkomponente, deren 1ID im Aufruf des Clients festgelegt ist, zu implementieren. Die
Proxy-Schnittstellen 168—-169 stimmen mit den Schnittstellen der Warteschlangenkomponente tberein, welche
abschlieend instanziiert wird, um die in einer Warteschlange angeordneten Aufrufe von Prozeduren zu emp-
fangen.

[0081] Die Aufzeichnungseinrichtung 150 implementiert aulerdem eine "IRpcChannelBuffer"-Schnittstelle
170 und eine "I0ObjectControl"-Schnittstelle 172. Die "IObjectControl"-Schnittstelle 172 ist eine Schnittstelle, die
Uber den Microsoft Transaktionsserver (MTS) definiert und von der Aufzeichnungseinrichtung 150 genutzt
wird, um Benachrichtigungen Uber die Deaktivierung eines Objekts gemaR der "Just-In-Time"-Aktivierungs-
funktion von MTS (die in COM+ integriert ist) zu empfangen. Die "IRpcChannelBuffer"-Schnittstelle ist eine in
der COM RPC Standard Marshaling-Architektur definierte Schnittstelle.

[0082] Die Schnittstellenproxies 166-167 werden vom MIDL-Ubersetzer generiert, um die Prozeduraufrufe
des Clients mit geeigneten Aufruf-Parametern und entsprechenden Daten aus dem Speicher des Client-Pro-
zesses 134 in einen Puffer zu arrangieren. Entsprechend der Standard Marshaling-Architektur des Microsoft
COM RPC nutzen die Schnittstellenproxies 166-167 die "IRpcChannelBuffer"-Schnittstelle 170 (die eine in der
Standard-Marshaling Architektur definierte Standard-COM-Schnittstelle ist), um den Puffer an den ASP 90 der
Warteschlangenkomponente zu tbertragen. Statt allerdings den Prozedur-Aufruf Gber einen Echtzeit-RPC zu
Ubertragen, zeichnet die Implementierung der "IRpcChannelBuffer"-Schnittstelle 170 in der Aufzeichnungsein-
richtung 150 alle Prozeduraufrufe des Clients auf die Warteschlangenkomponente 86 (im Gegensatz zu den
Aufrufen an die Prozeduren der "lUnknown"-Schnittstelle) in einem fortlaufenden Puffer auf. Die Aufzeich-
nungseinrichtung implementiert diese "lUnknown"-Prozeduren lokal und zeichnet somit diese Prozedur-Aufru-
fe im Puffer auf.

14/29

DE 699 36 627 T2 2008.05.21

[0083] Nachdem der Client die Nutzung der Warteschlangenkomponente abgeschlossen hat (d.h., der Client
gibt seinen Verweis an die Warteschlangenkomponente frei), leitet der MSQM-Ressourcen-Dispenser 176 den
Puffer der Prozedur-Aufrufe an MSMQ weiter. Nach dem erfolgreichen Abschlufd der Transaktion des Clients
sendet MSMQ den die aufgezeichneten Prozedur-Aufrufe enthaltenden fortlaufenden Puffer als eine Nachricht
an die Nachrichtenwarteschlange 158 der COM+-Anwendung, welche die Warteschlangenkomponente 86 ent-
halt. Wird die Transaktion des Clients hingegen abgebrochen, verwirft der MSMQ den Puffer, sendet die Nach-
richt nicht, und die aufgezeichneten Prozedur-Aufrufe werden geldscht. (In einigen Fallen, in denen ein Ab-
bruch der Transaktion droht, leitet der MSMQ-Ressourcen-Dispenser den Puffer ganz einfach nicht an MSMQ
weiter, da der Puffer bei einem Prozef3-Abbruch ohnehin verworfen wirde.) Der MSMQ-Ressourcen-Dispen-
ser 176 weist eine Schnittstelle 178 auf, um die Anfrage der Aufzeichnungseinrichtung zum Senden des ge-
pufferten Prozedur-Aufrufs an die Nachrichtenwarteschlange zu empfangen. Der MSMQ-Ressourcen-Dispen-
ser 176 stellt einen Cache von offenen MSMQ-Warteschlangen bereit und nutzt MSMQ-APIs, um den Puffer
der Prozedur-Aufrufe tber MSMQ an die Nachrichtenwarteschlange 158 zu senden.

Empfangseinrichtung

[0084] Unter erneuter Bezugnahme auf Fig. 2 ist die Empfangseinrichtung 152 ein von COM+ bereitgestelltes
Objekt, das die die Warteschlangenkomponente 86 enthaltende Nachrichtenwarteschlange 158 der
COM+-Anwendung uberwacht. Die Empfangseinrichtung 152 wird beim Starten der COM+-Anwendung er-
stellt, wenn die COM+-Anwendung die in ihrem "Queue BLOB"-Attribut festgelegte Nachrichtenwarteschlange
aufweist und die Nachrichtenwarteschlangen-Empfangseinrichtung auf "on" gesetzt ist. Die Empfangseinrich-
tung 152 6ffnet die Nachrichtenwarteschlange 158 der COM+-Anwendung. und wartet auf den Eingang von
Nachrichten. Sobald Nachrichten eingehen, fertigt die Empfangseinrichtung 152 einen Aktivitatstrager
(Thread) ab, um eine Instanz der Abspieleinrichtung 154, welche die Nachrichten aufnimmt und verarbeitet,
auszufuhren. In der dargestellten QC-Architektur 130 ist eine einzelne Empfangseinrichtung 152 pro ASP 90
gezeigt.

[0085] Beim Starten der Empfangseinrichtung 152 kann die Nachrichtenwarteschlange 158 mdglicherweise
eine grof’e Menge an Nachrichten von in einer Warteschlange angeordneten Aufrufen von Prozeduren meh-
rerer Clients 132 enthalten. Dariber hinaus kann die Empfangseinrichtung 152 verschiedene Nachrichtenwar-
teschlangen fur COM+-Anwendungen im ASP 90 uberwachen. Die Empfangseinrichtung 152 nutzt dagegen
vorzugsweise einen Thread-Pool von geringerer Grofie, von welchem die Threads der Abspieleinrichtung so
verteilt werden, dal® der Nachrichtenverarbeitungsdurchsatz maximiert wird. Die geringe Menge der Threads
verhindert eine Uberlastung des Prozessors des Server-Computers. Da ferner die in einer Warteschlange an-
geordneten Aufrufe von Prozeduren keine Echtzeit-Antwort erfordern, besteht nicht die Notwendigkeit, neue
Threads flr die in einer Warteschlange angeordneten Nachrichten sofort zu planen. Alternativ kann das Sam-
meln von Objektinstanzen der Warteschlangenkomponente mit einer nach oben und unten beschrankten An-
zahl von gesammelten Objekten genutzt werden, um eine Uberlastung zu verhindern. Bei mehreren Nachrich-
tenwarteschlangen verteilt die Empfangseinrichtung 152 die Abfertigung der Threads der Abspieleinrichtung
vorzugsweise angemessen auf die Warteschlangen, so dal die Nachrichten einer Warteschlange noch nicht
vollstandig abgefertigt sind, bevor die Abfertigung an einer anderen Schlange beginnt.

Abspieleinrichtung

[0086] Wie in Fig. 5 dargestellt, ist die Abspieleinrichtung 154 in ein in einer COM+-Utility-Bibliothek (eben-
falls eine DLL-Datei im COM+-Verzeichnis) bereitgestelltes COM-Objekt implementiert. Wie oben beschrie-
ben, wird die Abspieleinrichtung 154 im ASP 90 der Empfangseinrichtung durch die Empfangseinrichtung 152
erstellt und aufgerufen, wenn eine Nachricht mit Prozeduraufrufen fiir die Warteschlangenkomponente 86 ein-
geht. Die Abspieleinrichtung 154 hat ein auf "Transaktion angefordert" gesetztes Transaktionsattribut-Set. Die-
ses veranlaft die COM+-Ausfihrungsumgebung 80, automatisch eine Transaktion zu starten, im Zuge welcher
die Abspieleinrichtung gemaR der in obengenannter Patentanmeldung fur Automatische Transaktionen be-
schriebenen Automatischen Transaktionsarchitektur erstellt wird. Die von der Abspieleinrichtung 154 an die
Warteschlangenkomponente 86 wieder abgespielten Prozedur-Aufrufe werden auRerdem automatisch mit die-
ser Transaktion in Beziehung gesetzt.

[0087] Nach der Erstellung ruft die Abspieleinrichtung 154 in der Empfangseinrichtung 152 Routinen auf, um
die in einer Warteschlange angeordnete Nachricht, welche Prozedur-Aufrufe auf die Warteschlangenkompo-
nente 86 enthalt, abzurufen. Die Abspieleinrichtung 154 holt zunachst einen Puffer und nutzt anschlielRend die
Routinen der Empfangseinrichtung, um die Nachrichten tber eine "MQReceiveMessage"-API-Operation (ein
Standard-MSMQ-API-Verfahren) in den Puffer zu laden. Die "MQReceiveMessage"-API-Operation wurde zum

15/29

DE 699 36 627 T2 2008.05.21

Teil der Transaktion der Abspieleinrichtung gemacht.

[0088] Danach instanziiert die Abspieleinrichtung 154 die Warteschlangenkomponente 86 im ASP 90 und fun-
giert als ein Stub-Manager in einem Stub-Objekt 180, der Schnittstellen-Stubs 182-183 steuert, die entspre-
chend der Standard Marshaling Architektur des Microsoft COM RPC (d. h. aus den Microsoft Schnittstellende-
finitionssprachbeschreibungen (MIDL-Beschreibungen) der Warteschlangenkomponente 86) oder entspre-
chend dem Marshaler der Microsoft Automation Type Library generiert sind. Als Stub-Manager |adt die Abspie-
leinrichtung 154 die (mitunter auch als "Stublets" bezeichneten) Schnittstellen-Stubs 182-183 fur die Schnitt-
stelle 87 der Warteschlangenkomponente, sobald deren entsprechende Schnittstellenidentifikatoren (1IDs) in
der Nachricht auftreten. Die Abspieleinrichtung 154 nutzt die Stublets 182-183, um das Arrangieren der Pro-
zedur-Aufruf-Daten aus der Nachricht rickgangig zu machen und die riickumgewandelten Prozedur-Aufrufe
an die Warteschlangenkomponente 86 auszugeben. Die Abspieleinrichtung 154 interpretiert aulerdem von
der Aufzeichnungseinrichtung 150 eingegebene Sicherheitskdpfe durch Aufrufen der geeigneten Sicherheits-
dienste.

Standige Server-seitige Abbriiche

[0089] Die Empfangseinrichtung 152 und die Abspieleinrichtung 154 kooperieren, um "vergiftete Nachrichten"
oder "standige Server-seitige Abbriiche" zu behandeln. (Eine "vergiftete Nachricht" ist im gegebenen Kontext
eine Nachricht, die Prozedur-Aufrufe umfafdt, die standig zu Transaktionsabbriichen flihren, wenn sie an die
Warteschlangenkomponente wieder abgespielt werden). Genauer gesagt wird, wenn es beim Wiederabspie-
len einer Gruppe von Prozedur-Aufrufen an die Warteschlangenkomponente 86 zu einem Abbruch der Trans-
aktion der Abspieleinrichtung kommt, die Arbeit der Warteschlangenkomponente wiederholt. Der Transaktions-
abbruch bewirkt zudem, da® MSMQ als Teil seiner Verarbeitung des Transaktionsabbruchs die Prozedur-Auf-
ruf-Nachricht zurtick in die Nachrichtenwarteschlange 158 der COM+-Anwendung fiir einen Wiederholungslauf
verschiebt. In der dargestellten QC-Architektur 130 bricht die Abspieleinrichtung 154 die Transaktion bei Emp-
fang eines einen Fehler oder einen Ausfall anzeigenden Riickgabewerts (z. B. eines HRESULT-Fehlerwerts)
von der Warteschlangenkomponente 86 ab. Falls die Verarbeitung eines Prozedur-Aufrufs in der Warteschlan-
genkomponente einen Abbruch gewabhrleistet, kann die Warteschlangenkomponente 86 auRerdem die "SetAb-
ort()"-Prozedur (wie in der obengenannten Patentanmeldung fir Automatische Transaktionen beschrieben)
aufrufen, um die Transaktion abzubrechen.

[0090] In der dargestellten QC-Architektur 130 sind finf der COM+-Anwendung zugewiesene Nachrichten-
warteschlangen gezeigt, und zwar eine normale Eingabewarteschlange, eine erste Wiederholungswarte-
schlange, eine zweite Wiederholungswarteschlange, eine dritte Wiederholungswarteschlange und eine End-
ablage-Warteschlange. Die QC-Architektur nutzt diese Warteschlangen zur Behandlung von standigen Ser-
ver-seitigen Abbrichen. Insbesondere durchlauft die QC-Architektur 130, falls das Wiederabspielen der Pro-
zedur-Aufrufe an die Warteschlangenkomponente 86 mehrmals zu einem Transaktionsabbruch flihrt, folgende
Schritte: (1) die Abspieleinrichtung 154 empfangt die Prozedur-Aufruf-Nachricht von der Warteschlange der
COM+-Anwendung; (2) die Abspieleinrichtung 154 instanziiert die Warteschlangenkomponente 86 und spielt
die Prozedur-Aufrufe an die Warteschlangenkomponente ab; (3) die Transaktion wird abgebrochen und wie-
derholt und (4) MSMQ sendet die Nachricht an den Anfang der Warteschlange der COM+-Anwendung, von
welcher sie abgerufen wurde.

[0091] Bei nachfolgenden Abbriichen durchlauft die Abspieleinrichtung 154 mit der ,vergifteten Nachricht" die
Folge der Wiederholungswarteschlangen der COM+-Anwendung. Alternative Ausfuhrungsformen der QC-Ar-
chitektur kdnnen eine andere Anzahl an Wiederholungen und Intervallen als die nachfolgend fur die dargestell-
te Architektur beschriebenen nutzen. Insbesondere sendet die Abspieleinrichtung 154 eine nach einem Ab-
bruch an die normale Eingabewarteschlange zurtickgesandte Nachricht an die erste Wiederholungswarte-
schlange. Die Empfangseinrichtung 152 bedient die erste Wiederholungswarteschlange ein Mal pro Minute,
bis diese abgearbeitet ist, wobei diese die Nachricht Uber die Abspieleinrichtung 154 in einem Intervall von
etwa einer Minute an die Warteschlangenkomponente abspielt.

[0092] Wurde die Nachricht zum dritten Mal an die erste Wiederholungswarteschlange zuriickgesandt, sen-
det die Abspieleinrichtung 154 die Nachricht an die zweite Wiederholungswarteschlange. Die Empfangsein-
richtung 152 bedient die zweite Widerholungswarteschlange im Drei-Minuten-Takt, bis diese abgearbeitet ist.
Diese wiederum spielt die Nachricht Gber die Abspieleinrichtung 154 in denselben Zeitabstadnden an die War-
teschlangenkomponente 86 ab.

[0093] Wurde die Nachricht zum dritten Mal an die zweite Wiederholungswarteschlange zurtickgesandt, sen-

16/29

DE 699 36 627 T2 2008.05.21

det die Abspieleinrichtung 154 die Nachricht an die dritte Wiederholungswarteschlange. Die Empfangseinrich-
tung 152 bedient die dritte Wiederholungswarteschlange im Finf-Minuten-Takt, bis diese abgearbeitet ist. Die-
se wiederum spielt die Nachricht Gber die Abspieleinrichtung 154 in denselben Zeitabstanden an die Warte-
schlangenkomponente 86 ab.

[0094] Wurde die Nachricht zum flinften Mal an die dritte Wiederholungswarteschlange zuriickgesandt, sen-
det die Abspieleinrichtung 154 die Nachricht an die Endablage-Warteschlange der COM+-Anwendung. Die En-
dablage-Warteschlange wird allerdings nicht von der Empfangseinrichtung 152 bedient. Die Nachricht ver-
bleibt in der Endablage-Warteschlange, bis sie (mit Hilfe des unten beschriebenen Programms zum Verschie-
ben von Warteschlangenkomponenten-Nachrichten) verschoben oder mittels des MSMQ-Explorers (einem
Hilfsprogramm zur Steuerung von MSMQ) bereinigt wird.

[0095] Beijedem Abbruch erstellt die Abspieleinrichtung 154 eine Ereignislog-Nachricht. Die Abspieleinrich-
tung 154 erstellt eine zusatzliche Ereignislog-Nachricht, wenn eine Nachricht aus einer Warteschlange in eine
andere Warteschlange verschoben wird. Sie erstellt aullerdem eine weitere Nachricht, wenn die Nachricht in
die Endablage-Warteschlange verschoben wird. Die Abspieleinrichtung 154 kann die Nachricht vor dem Ver-
schieben in eine andere Warteschlange zusatzlich so verandern, daf3 die Nachricht mehr Diagnoseinformation
enthalt.

[0096] Die Warteschlangenkomponente 86 kann optional einen zugeordneten Ausnahmezustandsbehandler
188 umfassen, der durch einen fir die Warteschlangenkomponente 86 im Katalog 165 eingetragenen
,Exception_CLSID"-Eintrag festgelegt ist. Der Ausnahmezustandsbehandler ist ein COM-Objekt, das eine
»PlaybackControl"-Schnittstelle 190 unterstitzt. Wenn der Ausnahmezustandsbehandler 188 fir die Warte-
schlangenkomponente 86 registriert wird, ruft die Abspieleinrichtung 154 zunachst die "IPlaybackCont-
rol"-Schnittstelle 190 des Ausnahmezustandsbehandlers auf, bevor sie jegliche Prozedur-Aufrufe von der
Nachricht wieder abspielt. Die Warteschlangenkomponente 86 kann die "IPlaybackControl"-Schnittstelle 190
selbst bereitstellen und sich selbst als Ausnahmezustandsbehandler im "Exception_CLSID"-Eintrag festlegen.
Wird kein "Exception_CLSID"-Eintrag festgelegt, sucht die Abspieleinrichtung 154 au3erdem nach diesem und
ruft die "IPlaybackControl"-Schnittstelle 190 an der Warteschlangenkomponente 86 zur Ausnahmebehandlung
auf.

[0097] Die "IPlaybackControl"-Schnittstelle 190 dient dazu, den Ausnahmezustandsbehandler 188 zu infor-
mieren, dall eine Nachricht kurz davor steht, in die Endablage-Warteschlange verschoben zu werden, um so
eine alternative Behandlung des standigen Abbruchs zu ermdéglichen. Der Ausnahmezustandsbehandler kann
die Sammlung von Problemdiagnose-Informationen oder die Erzeugung eines Objekts oder einer Nachricht,
welches bzw. welche den Client iber ein konsistentes und ernstes Problem als Reaktion auf die Aufrufe der
Abspieleinrichtung an diese Schnittstelle informiert, implementieren. Besitzt die Warteschlangenkomponente
86 keinen zugehdrigen Ausnahmezustandsbehandler, wird die "vergiftete Nachricht" einfach in die Endabla-
ge-Wartschlange verschoben, wenn die Wiederholungen wie oben beschrieben abgearbeitet wurden. Existiert
dagegen ein Ausnahmezustandsbehandler, ruft die Abspieleinrichtung 154 die Prozeduren der "IPlaybackCon-
trol"-Schnittstelle ein letztes Mal auf, bevor die Nachricht in die Endlage-Warteschlange verschoben werden
wirde. Fihrt das Wiederabspielen des Prozeduraufrufs an die Warteschlangenkomponente 86 bei diesem
letzten Mal immer noch zu einem Abbruch, wird die ,vergiftete Nachricht" in die Endablage-Warteschlange ver-
schoben.

[0098] Auf der Client-Seite kann es andererseits vorkommen, da® MSMQ die Nachricht nicht an die Einga-
bewarteschlange der COM+-Anwendung weiterleiten kann. Dies kann beispielsweise der Fall sein, wenn die
Warteschlangen-Zugangskontrolle verhindert, daf3 die Nachricht vom Client an den Server gesandt wird. In ei-
nem solchen Fall sendet MSMQ die Nachricht an eine Client-seitige "Xact Dead Letter"-Warteschlange des
Warteschlangenmanagers. Die QC-Architektur 130 stellt eine Vorrichtung zur Uberwachung von Warteschlan-
gen fiir unzustellbare Nachrichten 194 bereit. Die Uberwachungsvorrichtung 194 instanziiert den durch den
"Exception_CLSID"-Katalog-Eintrag fur die Warteschlangenkomponente 86 auf dem Client-Computer 92 fest-
gelegten Ausnahmezustandsbehandler 188 und gibt einen "Querylnterface()"-Aufruf mit dem IID der "IPlay-
backControl"-Schnittstelle 190 aus. Verlauft dies erfolgreich, ruft die Uberwachungsvorrichtung die "IPlayback-
Control::FinalClientRetry()"-Prozedur auf und spielt die Prozedur-Aufrufe von der Nachricht an die Client-seiti-
ge Implementierung der Warteschlangenkomponente 86 wieder ab. Diese Client-seitige Warteschlangenkom-
ponente kann optional Diagnoseinformation bewahren oder MalRnahmen ergreifen, um die Wirkung einer vor-
angegangenen Transaktion umzukehren (auszugleichen). Wird das Wiederabspielen ausgefiihrt, dann wird
die Nachricht aus der Warteschlange fiir unzustellbare Nachrichten entfernt. Wird das Wiederabspielen abge-
brochen oder sind der Ausnahmezustandsbehandler 188 und die "IplaybackControl"-Schnittstelle 190 nicht

17/29

DE 699 36 627 T2 2008.05.21

verfugbar, verbleibt die Nachricht in der Warteschlange fiir unzustellbare Nachrichten zur manuellen Behand-
lung.

Programm zum Verschieben von Nachrichten von Warteschlangenkomponenten

[0099] Die QC-Architektur 130 stellt ein als ,Programm zum Verschieben von Warteschlangenkomponenten"
bezeichnetes Verwaltungswerkzeug bereit, das es dem Systemverwalter oder einer anderen Person ermog-
licht, Nachrichten manuell aus einer Warteschlange der COM+-Anwendung in eine andere zu verschieben.
Wie oben beschrieben, behandelt die QC-Architektur 130 standige Server-seitige Abbriiche, indem sie die
Nachricht in eine Endablage-Warteschlange verschiebt und so verhindert, da® die Empfangseinrichtung 152
und die Abspieleinrichtung 154 die Nachricht in einer ,Endlosschleife" ununterbrochen wiederholen. In einigen
Fallen 14t sich die Ursache der standigen Abbriiche auf dem Server-Computer 84 beheben. So kénnen Ab-
briche beispielsweise dadurch hervorgerufen werden, dal eine Ressource (z. B. eine Datenbank) nicht ver-
fugbar ist. Nach einer manuellen Berichtigung dieser Situation kann die zuvor vergiftete Nachricht mit Hilfe des
Programms zum Verschieben von Nachrichten von Warteschlangenkomponenten manuell zurlick in die Ein-
gabewarteschlange der COM+-Anwendung verschoben werden, um so weitere Wiederholungen zu ermaégli-
chen. Das Programm zum Verschieben Nachrichten von Warteschlangenkomponenten verschiebt die Nach-
richten vorzugsweise als eine Transaktion, so daf} keine Nachrichten verloren gehen oder dupliziert werden,
falls es wahrend des Verschiebens zu einem Fehler kommt. Das Programm zum Verschieben von Nachrichten
von Warteschlangenkomponenten kann programmafig iber OLE Automation, beispielsweise unter Nutzung
einer Visual Basic Script, betrieben werden.

Schnittstellen

[0100] Fig. 8 zeigt eine Programmliste 200, welche die "IPlaybackControl"-Schnittstelle 190 definiert. Wie
oben beschrieben, wird diese Schnittstelle durch den Ausnahmezustandsbehandler 188 implementiert, der im
Katalog 165 fiur die Warteschlangenkomponente 86 registriert ist, um sich an der Nicht-Standard-Behandlung
von standigen Server-seitigen Abbriichen und Client-seitigen MSMQ-Ubermittlungsfehlern zu beteiligen. Die
Schnittstelle 190 umfal3t eine "FinalClientRetry()"-Prozedur und eine "Final ServerRetry()"-Prozedur.

[0101] Die "FinalClientRetry()"-Prozedur informiert den Ausnahmezustandsbehandler 188 auf dem ClIi-
ent-Computer 92 (falls dieser definiert ist), daf} alle Versuche, die Nachricht tber MSMQ an den Server-Com-
puter 84 zu Ubermitteln, abgelehnt wurden und die Nachricht in der "Xact Dead Letter"-Warteschlange
(Xact-Warteschlange flir unzustellbare Nachrichten) gelandet ist. So kann es mdglicherweise sein, daf} die Be-
rechtigungen der Warteschlange eine Ubertragung der Nachricht an die Warteschlange nicht zulassen. Sobald
Nachrichten in der "Xact Dead Letter"-Warteschlange eingehen, ruft die QC-Architektur 130 die "FinalClien-
tRetry()"-Prozedur auf, um so den Ausnahmezustandsbehandler zu informieren. Der Ausnahmezustandsbe-
handler kann dann eine auf die Warteschlangenkomponentenklasse bezogene AusnahmemalRnahme, wie bei-
spielsweise das Aufzeichnen des Fehlers in anwendungsspezifischer Sprache oder das Senden einer
Mail-Nachricht an den Endbenutzer oder Verwalter, oder sogar eine Client-seitige KompensationsmalRnahme,
wie beispielsweise das Umkehren der Wirkung einer vorangegangenen Transaktion, vornehmen. Falls der fir
die Warteschlangenkomponente identifizierte Ausnahmezustandsbehandler diese Schnittstelle nicht imple-
mentiert oder deren "FinalClientRetry()"-Prozedur-Aufruf ein Fehlerergebnis zuriicksendet, verbleibt die Nach-
richt in der Xact-Warteschlange fir unzustellbare Nachrichten.

[0102] Die "FinalServerRetry()"-Prozedur informiert den Ausnahmezustandsbehandler der Warteschlangen-
komponente auf dem Server-Computer 84, dal} alle Versuche, die zurtickgestellte Aktivierung an die Warte-
schlangenkomponente wieder abzuspielen, gescheitert sind (z. B. durch einen HRESULT-Fehler oder einen
Transaktionsabbruch) und daf die Nachricht dabei ist, in die Endablage-Warteschlange der COM+-Anwen-
dung verschoben zu werden. Der Server-seitige Ausnahmezustandsbehandler kann eine auf die Warteschlan-
genkomponentenklasse bezogene Ausnahmemalnahme, wie beispielsweise das Aufzeichnen des Fehlers in
anwendungsspezifischer Sprache oder das Senden einer Mail-Nachricht an den Endbenutzer oder Verwalter,
oder sogar eine Client-seitige MalRnahme, wie beispielsweise das Umkehren der Wirkung einer vorangegan-
genen Transaktion, vornehmen. Vorzugsweise sollte die Warteschlangenkomponente jede Anstrengung unter-
nehmen, um diese Transaktion erfolgreich abzuschlieRen, andernfalls ist fir eine Wiederverarbeitung der
Nachricht ein manueller Eingriff erforderlich. Falls der fir die Warteschlangenkomponenten-Klasse registrierte
Ausnahmezustandsbehandler die "PlaybackControl"-Schnittstelle nicht implementiert oder die Implementie-
rung des "FinalServerRetry()"-Aufrufs ein Fehlerergebnis zuriicksendet oder die Transaktion abgebrochen
wird, erfolgt die Verschiebung der Nachricht in die Endablage-Warteschlange.

18/29

DE 699 36 627 T2 2008.05.21

In einer Warteschlange angeordnete Prozedur-Aufrufe enthaltende Nachricht

[0103] Wie aus Fig. 9 und Fig. 10 ersichtlich, weist eine die Prozedur-Aufrufe des Clients umfassende Nach-
richt 220, die von der Aufzeichnungseinrichtung 130 in der QC-Architektur 130 aufgezeichnet wird, ein Format
auf, das in Fig. 10 dargestellt ist und Datenstrukturen nutzt, die in der in Fig. 9 dargestellten Programmliste
220 definiert sind. Gemaf diesem Nachrichtenformat umfallt die Nachricht 220 einen Nachrichtenkopf 224 und
einen Nachrichtenkdrper 226. Der Nachrichtenkérper 226 umfalt einen Behalter(container)-Abschnitt 228 und
einen oder mehrere Prozedur-, Sicherheits- oder Diagnoseabschnitte 230. Die Behalter-, Prozedur-, Sicher-
heits- und Diagnoseabschnitte 228 und 230 beginnen mit einem geeigneten Abschnittstyp-Kopf 234, 236. Die
Abschnittskdpfe 234, 236 umfassen weiterhin alle einen gemeinsamen Kopf (die "_CommonHeader"-Struktur
in Fig. 9). Der Behalterabschnitt 228 besitzt einen Behalterabschnittskopf 234, wohingegen die Prozedurab-
schnitte jeweils einen langen oder kurzen Prozedurkopf 236 und Parameterdaten 238 umfassen.

[0104] Der Nachrichtenkopf 224 enthalt eine Menge an entweder von der Aufzeichnungseinrichtung oder von
MSMQ gesetzten Nachrichteneigenschaften, die mit dem Nachrichtenkdrper Gbermittelt werden. Diese Nach-
richteneigenschaften umfassen eine Prioritat, eine Nachrichten-ID, eine Korrelations-ID, einen MSMQ-Pfadna-
men und einen Antwortwarteschlangennamen. Die Prioritat ist ein Wert, der gesetzt werden kann, um die Rei-
henfolge zu bestimmen, in welcher die Nachrichten von der Eingabewarteschlange der COM+-Anwendung
wieder abgespielt werden. Ein hdherer Prioritatswert kann von der Client-Anwendung zugewiesen werden, da-
mit bestimmte Operationen bevorzugt verarbeitet werden, wie beispielsweise bei einer Bankanwendung die
Bevorzugung der Autorisierung von Kreditkarten vor der Verarbeitung von Schecks. Die Nachrichten-ID iden-
tifizert die einzelne Nachricht. Die Korrelations-ID wird in der QC-Architektur 130 genutzt, um eine Menge von
in einer Warteschlange angeordnete Prozedur-Aufrufe enthaltenden Nachrichten in einem Arbeitsflu zu grup-
pieren. Die urspringliche Nachricht, die den Arbeitsfluld beginnt, erstellt eine Nachricht mit einer nicht vorhan-
denen Korrelations-ID. Die Nachrichten-ID der urspriinglichen Nachricht wird zur Korrelations-ID aller inner-
halb des Arbeitsflusses nachfolgenden Nachrichten. Der MSMQ-Pfadname besteht aus dem Namen eines
Zielcomputers, einem linksseitigen Schragstrich (d.h. "\") und einem Namen einer Warteschlange auf dem Be-
stimmungscomputer, z.B. "MachineName\payroll". Ein Punkt als Maschinenname kennzeichnet "diesen Com-
puter", d.h. den Client-Computer. Der Name der Antwortwarteschlange kennzeichnet eine Warteschlange fur
Antwortnachrichten vom Server-Computer.

[0105] Der (in der Programmliste 206 von Fig. 9 durch die Strukturdeklaration "_CommonHeader" definierte)
gemeinsame Kopf 232, 233 in jedem der Abschnitte 228, 230 umfalit zwei Werte, und zwar einen Typ und eine
Lange. Der Typwert identifiziert, wie in der nachstehenden Tabelle gezeigt, den Typ des Abschnitts. Der Lan-
genwert bezieht sich auf die Lange des Abschnittkopfs und dessen Inhalte. Folglich wird durch das Hinzufligen
der Lange an einen Zeiger auf den aktuellen "_CommonHeader" zum nachsten "_CommonHeader" liberge-
gangen.

Tabelle 1. Abschnittstypen-Feld

Abschnittstyp Feldwert
Behalter "CHDR"
Prozedur "METH"
Kurzprozedur "SMTH"
Sicherheit "SECD"
Sicherheitsverweis "SECR"
Diagnose "DIAG"

[0106] Der Behalter-Abschnitt 228 umfallt einen Behalter-Kopf 234. Wie durch die "_ContainerHeader"-Struk-
turdeklaration in Fig. 9 definiert, umfalRt der Behalter-Kopf 234 eine GUID-Signatur, Versionsnummern und ei-
nen Moniker zur Erstellung des Server-Objekts. Die GUID-Signatur ("guidSignature") identifiziert die Nachricht
als eine Nachricht von einer Aufzeichnungseinrichtung an eine Abspieleinrichtung in der QC-Architektur 130.
Unterschiedliche GUID-Signatur-Werte kénnen genutzt werden, um verschiedene Abspieleinrichtungs-Klas-
sen zu identifizieren. Der Moniker ist eine Streamform eines COM-Monikers zur Erstellung der Warteschlan-
genkomponente 86. In alternativen Architekturen kann der Behalter-Kopf zusatzliche Werte umfassen, wie bei-
spielsweise eine Nachrichtenprotokollversionsnummer und Client-seitige Version-ldentifikatoren.

[0107] Der (in den Strukturdeklarationen "_ShortMethodheader" und "_MethodHeader" in Fig. 9 definierte)
Prozedur-Kopf 236 stellt einen Prozedur-Aufruf auf die Warteschlangenkomponente 86 dar. Der Proze-

19/29

DE 699 36 627 T2 2008.05.21

dur-Kopf kann ein langer oder ein kurzer Kopf sein, wobei der Unterschied darin besteht, dall der lange Pro-
zedur-Kopf einen Schnittstellenidentifikator (IID) festlegt. Der IID fir den kurzen Prozedur-Kopf wird vom neu-
esten langen Prozedur-Kopf, der in einem Links-Nach-Rechts-Durchlauf der gesamten Nachricht aufgetreten
ist, impliziert. Der Prozedur-Kopf 236 umfalit einen Prozedur-ldentifikator, eine Datenreprasentation, ein Mar-
kierungsfeld, eine Lange, eine Unterbrechungsmarkierung und einen IID (fir einen langen Prozedur-Kopf). Der
Prozedur-ldentifikator ("dwMethodld") ist ein Index der Tabelle 104 der virtuellen Funktionen (Fig. 3) der auf-
zurufenden Prozedur. Die Datenreprasentation umfat den "RPCOLEDATREP"-Wert von einer "RPCOLE-
MESSAGE" gemaR der Vereinbarung der Standard Marshaling Architektur von COM RPC, der einer der durch
den Schnittstellenproxy 166-167 an die "IRPCChannelBuffer"-Schnittstelle 170 der Aufzeichnungseinrichtung
150 wahrend des Arrangierens des Prozedur-Aufrufs (Fig. 4) gemaR der Vereinbarung der Standard Marsha-
ling-Architektur von COM RPC dargestellten Parameter ist. Das Markierungsfeld umfaf3t das "RPCOLEMES-
SAGE rpcFlags"-Feld gemal der Vereinbarung der Standard Marshaling-Architektur von COM RPC, das auch
von den Schnittstellenproxies an die Aufzeichnungseinrichtung 150 wahrend des Arrangierens des Proze-
dur-Aufrufs dargestellt wird. Das Langenfeld umfalit das "RPCOLEMESSAGE cbBuffer"-Feld gemaf Verein-
barung der Standard Marshaling-Architektur von COM RPC, das auch durch die Schnittstellenproxies an die
Aufzeichnungseinrichtung 150 wahrend des Arrangierens des Prozedur-Aufrufs dargestellt wird. Die Unterbre-
chungsmarkierung umfafit entweder 0 oder 1, um die verwendete Arrangier-Prozedur anzuzeigen. Eine 0 be-
deutet, da® ein MDL-generierter Schnittstellenproxy genutzt wurde. Der IID in einem langen Prozedur-Kopf
zeigt die Schnittstelle derjenigen Warteschlangenkomponente 86 an, deren Prozedur aufgerufen wurde.

[0108] Die Parameterdaten 238 im Prozedur-Abschnitt sind die vom Schnittstellenproxy 166-167 des Proze-
dur-Aufrufs erzeugten, arrangierten Parameterdaten.

[0109] Der Nachrichtenkérper 226 kann aul3erdem Sicherheitskopf-Abschnitte, Sicherheitsverweis-Abschnit-
te und Diagnoseabschnitte umfassen, wie sie im Abschnittstyp des gemeinsamen Kopfs des Abschnitts iden-
tifiziert sind (die Werte sind in obenstehender Tabelle 1 abgebildet). Ein Sicherheitskopf-Abschnitt umfalit ei-
nen Sicherheitskopf entsprechend der "_SecurityHeader"-Datenstrukturdeklaration von Fig. 9. Ein Sicher-
heitskopf-Abschnitt umfaRt an der Aufzeichnungseinrichtung extrahierte Sicherheitsinformation, die zur Uber-
prufung des Zugangsprivilegs beim Wiederabspielen von Prozeduraufrufen genutzt wird. Diese Sicherheitsin-
formationen kdnnen sich von Prozedur zu Prozedur unterscheiden. Der Sicherheitsverweis-Abschnitt umfafit
einen Sicherheitsverweiskopf, der auf einen vorherigen Sicherheitskopf-Abschnitt in der Nachricht verweist,
um eine Wiederholung der Sicherheitsinformationen zu vermeiden, wenn dieselben Sicherheitsinformationen
einen nachfolgenden Prozedur-Aufruf in der Nachricht betreffen. Der Diagnose-Abschnitt besteht aus Daten,
die an den Nachrichtenkérper angefiigt werden, wenn die Nachricht nach einem Server-seitigen Abbruch zwi-
schen Warteschlangen der COM+-Anwendung verschoben wird. Die Diagnosedaten kdnnen beispielsweise
die Zeit und die Ursache fur den Fehler umfassen. Die Diagnose-Abschnitte werden von der Abspieleinrichtung
154 wahrend des Wiederabspielens der Nachricht ignoriert, kdnnen allerdings zur Vereinfachung eines manu-
ellen Eingriffs genutzt werden (z.B. nachdem die Nachricht in der Endablage-Warteschlange der COM+-An-
wendung eingeht).

[0110] Nachdem Prinzipien unserer Erfindung unter Bezugnahme auf eine dargestellte Ausfiihrungsform be-
schrieben und dargestellt wurden, ist festzuhalten, daf die dargestellte Ausflihrungsform hinsichtlich ihrer Ge-
staltung und Details geandert werden kann, ohne dal sie von diesen Prinzipien abweicht. Es versteht sich,
daf3, sofern nichts Anderweitiges angegeben ist, die vorstehend beschrieben Programme, Prozesse oder Ver-
fahren sich weder auf einen bestimmten Typ einer Computervorrichtung beziehen noch auf einen solchen be-
schrankt sind. Verschiedene Computervorrichtungstypen flir allgemeine oder spezielle Anwendungen kénnen
in Verbindung mit der vorstehend beschriebenen Lehre genutzt werden oder dieser entsprechende Operatio-
nen ausfihren. Bestandteile der dargestellten, in Software abgebildeten Ausfiihrungsform kénnen in Hardware
implementiert werden und umgekehrt.

[0111] Angesichts der zahlreichen mdglichen Ausfiihrungsformen, auf welche sich die Prinzipien unserer Er-
findung anwenden lassen, ist festzuhalten, dal die dargelegten Ausfiihrungsformen lediglich illustrativen Cha-
rakter besitzen und nicht als den Umfang unserer Erfindung einschrankend zu betrachten sind. Vielmehr be-
anspruchen wir als unsere Erfindung jedwede Ausfihrungsformen, die in den Bereich der nachfolgenden An-
spriiche fallen, sowie diesbeziigliche Aquivalente.

Patentanspriiche

1. Objektlaufzeitdienste-System (130) in einem verteilten Computernetzwerk zum Laufenlassen von Ob-
jekten (86) auf einem Computer, wobei die Objekte auf objektseitigen Computer Schnittstellen (87) mit Proze-

20/29

DE 699 36 627 T2 2008.05.21

duren zum Aufrufen durch Clients (132) auf Client-seitigen Computer in dem verteilten Computernetzwerk auf-
weisen, wobei ein mit den Objektschnittstellen (87) verbundenes Attribut das Objekt als in einer Wartschlange
angeordnete Aufrufe von Prozeduren unterstitzend identifiziert, wobei das System umfaf3t:

eine Referenz zur Verwendung durch einen Client (132) auf einem Client-seitigen Computer zum asynchronen
Aufrufen von Prozeduren eines Objekts;

eine Aufzeichnungseinrichtung (150) auf einem Client-seitigen Computer, die betreibbar ist, um als ein Proxy
zu fungieren und stellvertretend fir das Objekt (86) zu handeln und Aufrufe von Prozeduren des Clients fur das
Objekt als direkte Aufrufe zum stellvertretenden Handeln fur Schnittstellen zu empfangen, wodurch eine Un-
terbrechung einer Vielzahl von Aufrufen von Prozeduren bewirkt wird, die in einer ersten Transaktion durch ei-
nen Client (132) abgegeben wurden, um Prozeduren eines Objekts (86) auf einem Objekt-seitigen Computer
aufzurufen, und die Aufrufe von Prozeduren als eine Nachricht aufzuzeichnen;

eine Nachrichtenwarteschlange (158) zum Einreihen der Nachricht zu einem spateren Zeitpunkt, wobei die
Nachricht bei erfolgreichem Abschlufd der ersten Transaktion an die Nachrichtenwarteschlange Gbergeben
wird; und

eine Abspieleinrichtung (154) auf dem Objekt-seitigen Computer, die betreibbar ist, um die Aufrufe von Proze-
duren aus der Nachricht zu extrahieren und die Aufrufe von Prozeduren an das Objekt zu einem spéateren Zeit-
punkt in einer zweiten Transaktion auszugeben.

2. System nach einem vorangehenden Anspruch, dadurch gekennzeichnet, daf3 die Aufzeichnungseinrich-
tung (150) bewirkt, dal eine Datenstromdarstellung (230) der Vielzahl von Aufrufen von Prozeduren in einer
Prozeduraufrufnachricht zur Eingabe in die Nachrichtenwarteschlange (158) arrangiert wird.

3. System nach einem vorangehenden Anspruch, dadurch gekennzeichnet, dal® die Abspieleinrichtung
(154) als Antwort auf Empfangen einer Datenstromdarstellung der Vielzahl von Aufrufen von Prozeduren in ei-
ner Nachricht das Arrangieren der Datenstromdarstellung riickgangig macht und die Aufrufe von Prozeduren
an die Objektklasseninstanz (86) ausgibt.

4. System nach einem vorangehenden Anspruch, ferner umfassend:
einen Objektkonfigurationsspeicher (165), der Informationen Utber Objekteigenschaften enthalt, die Eigen-
schaften von in dem System ausfiihrbaren Objektklassen reprasentieren, wobei die Informationen Gber Objek-
teigenschaften angeben, welche Objektklassen in einer Warteschlange angeordnete Aufrufe von Prozeduren
unterstutzen.

5. System nach Anspruch 4, ferner umfassend:
eine Einrichtung (150, 160) zur Aufzeichnung von Aufrufen von Prozeduren, die betreibbar ist, um besagte Auf-
zeichnungseinrichtungen (150) fur Objektinstanzen von Objektklassen bereitzustellen, die zum Unterstitzen
von in einer Warteschlange angeordneten Aufrufen von Prozeduren vorgesehen sind.

6. System nach einem vorangehenden Anspruch, ferner umfassend: eine Einrichtung (154, 180) zur Wi-
dergabe von Aufrufen von Prozeduren, die betreibbar ist, um genannte Abspieleinrichtungen (154) fur Objek-
tinstanzen von Objektklassen bereitzustellen, die zum Unterstitzen von in einer Warteschlange angeordneten
Aufrufen von Prozeduren vorgesehen sind.

7. System nach einem vorangehenden Anspruch, dadurch gekennzeichnet, daf3 die Aufzeichnungseinrich-
tung bei Abschlufd der Transaktion die Nachricht an die Programmierschnittstelle fur Nachrichtenwarteschlan-
genbildungsanwendungen ubergibt.

8. System nach Anspruch 7, dadurch gekennzeichnet, dal} die Abspieleinrichtung die Aufrufe von Proze-
duren an das Objekt in einer separaten Transaktion ausgibt.

9. System nach einem vorangehenden Anspruch, dadurch gekennzeichnet, daf3 die Aufzeichnungseinrich-
tung die Nachricht an die Programmierschnittstelle flir Nachrichtenwarteschlangenbildungsanwendungen
Ubergibt, nachdem der Client eine Referenz zu dem Objekt freigibt.

10. Verfahren zum asynchronen Remoting von Aufrufen von Prozeduren eines Client-Programms (132)
auf einem Client-seitigen Computer an ein Objekt (86) auf einem Objekt-seitigen Computer tber eine Nach-
richtenwarteschlange (158), in Computer in einem verteilten Computernetzwerk (86, 92), wobei das Verfahren
umfafdt:

Bereitstellen einer Referenz zur Verwendung durch einen Client (132) auf einem Client-seitigen Computer zum
asynchronen Aufrufen von Prozeduren eines Objekts (86);

21/29

DE 699 36 627 T2 2008.05.21

als Antwort auf die Ausgabe eines Satzes von Aufrufen von Prozeduren flr das Objekt in einer ersten Trans-
aktion eines Clients: Empfangen von Aufrufen von Prozeduren des Clients an dem Objekt als direkte Aufrufe
an Proxy-Schnittstellen, wodurch der Satz von Aufrufen von Prozeduren unterbrochen wird, und Aufzeichnen
der Aufrufe von Prozeduren des Satzes in einer Nachricht;

Eingabe der Nachricht in eine mit dem Objekt verbundene Nachrichtenwarteschlange;

Einreihen der Nachricht zu einem spateren Zeitpunkt, wobei die Nachricht bei erfolgreichem Abschlul} der ers-
ten Transaktion in die Nachrichtenwarteschlange eingereiht wird; und

Extrahieren der Aufrufe von Prozeduren aus der Nachricht; und

Ausgeben der Aufrufe von Prozeduren an das Objekt auf dem Objekt-seitigen Computer zum spateren Zeit-
punkt in einer zweiten Transaktion.

11. Computerprogramm mit computerlesbaren Codes, die geeignet sind, um alle Schritte von Anspruch 10
durchzufiihren, wenn das Programm auf einem Computer lauft.

12. Computerprogramm nach Anspruch 11, ferner umfassend: eine Aufzeichnungskonstruktionseinrich-
tung, die eine Aufzeichnungseinrichtung als Antwort auf eine Anforderung einer Referenz zu einem Objekt (86)
eines Clients (132) erzeugt.

13. Computerprogramm nach Anspruch 11 oder 12, dadurch gekennzeichnet, dafl die Aufzeichnungsein-
richtung Daten der Aufrufe von Prozeduren in einem Datenstrom einer Nachricht arrangiert und die Nachricht
in eine mit dem Objekt verbundene Warteschlange eingibt.

14. Computerprogramm nach einem der Anspriiche 11 bis 13, dadurch gekennzeichnet, dal® die Abspiel-
einrichtungsextraktion Rickgangigmachen des Arrangierens des Datenstroms in der Nachricht umfafit.

15. Computerprogramm nach einem der Anspriche 11 bis 14, verkdrpert in einem computerlesbaren Me-
dium.

Es folgen 7 Blatt Zeichnungen

22/29

DE 699 36 627 T2 2008.05.21

Anhangende Zeichnungen

FIG. 1
PERSONALCOMPUTER 20
VERARBEITUNGS 21
EINHEIT | I et 1 35
BETRIEBS-
I} SYSTEM o
e v - — —— —— — o
22 gtk =
L~
/ SYSTEM- | | ANWENDUNGEN |—— 36
SPEICHER I O 4
23 g/25 ”—"—' /I - - 37
- /|| MODULE }—
RAM o ’ | — — e e J
’ l P————— -
A 38
DA —
ROM {— 24 7/ } TEN)
/ L] o o — — w— e oma
/
,/
/7\
P| SCHNITTSTELLE k9 FESTPLATTEN- T~
LAUFWERK
—
DISKETTEN- 28
33 LAUFWERK 1
SCHNITTSTELLE - 29
T g
BILDSCHIRM p—" 47
CD-ROM-
34— LAUFWERK hf
b SCHNITTSTELLE i 30 a0 .
DISKETTE N1 4 TASTATUR
48
VIDEO- P
ADAPTER MAUS
1
46 74 52\ 42 49
SERIELLE
PORT- /
SCHNITT- '
STELLE & MODEM WAN ENTFERNTER
3 COMPUTER
GATEWAY -
55 3 .
NETZWERK- 53 LA
ADAPTER N
/ L 49
51

23/29

DE 699 36 627 T2 2008.05.21

FIG. 2 f?O
AUSFUHRUNGSUMGEBUNG
ANWENDUNGSSERVERPROZESS .
130
154
ABSPIEL- | - WARTESCHLANGEN- z
EINRICHTUNG 86 KOMPONENTE
—71— 90
1527 EvprANGS.
EINRICHTUNG
A
= 84
TRANSAKTIONS- [~ 128 =]
MANAGER =2
158 = NACHRICHTEN- %
A TALOG 165 WARTESCHLANGE
— 0000000 ~,
SERVER-COMPUTER
134
/]
CLIENT-PROZESS ————
Y= VRPN
CLIENTCOMPUTER
158 —— NACHRICHTEN-
132 WARTESCHLANGE
CLIENT- . JAUFZEICHNUNGS- — 150
PROGRAMM EINRICHTUNG

24/29

e
NETZWERK

DE 699 36 627 T2 2008.05.21

FIG. 3

SERVERANWENDUNGS-DLL-DATEI
INSTANZ- TABELLE DER
DATEN- VIRTUELLEN
STRUKTUR FUNKTION PROZEDUR 0
110 —] . - >
116] | P
112 —~—] 117] Al 106
118 = h
f PROZEDUR 1
102 -
/' 104
100
107
PROZEDUR 2
—_]
108
120~ |
122 —] KLASSENFABRIK

25/29

DE 699 36 627 T2 2008.05.21

PI G A IUNKNOWN
- T o— 1862
180 ™ PROXY
150 ~~p——t 176
AUFZEICHNUNGS-
- EINRICHTUNG
IDISPATCH MSMQ
174 —~—0O— —O—RESSOURCEN-
o - DISPENSER
IOBJECTCONTROL IRPCCHANNEL-
BUFFER
| 170 : ‘
166 T
. SCHNITTSTELLEN- v
188 ™0 PROXY o
IQCAPP1 |
167 ™
169 ~O SCHNITTSTELLEN-
, PROXY
|QCAaPP2
188
120
152 [154 —~ ABSPIEL- /
EMPFANGS- 3 EINRICHTUNG AUSNAHME-
EINRICHTUNG] O~ " BEHANDLER
l IRPCSTUB-
1 [alad
85 ™0 5yurFER
482 —~— SCHNITTSTELLEN- v .
STUB O“l 1 BO
| 183 ~{SCHNITTSTELLEN-
STUB 85
WARTE-
87 SCHLANGEN-
= KOMPONENTE

26/29

DE 699 36 627 T2 2008.05.21

FIG. 6
188
194 ™ UBERWACHUNGSEIN- AUSNAHME.-
b
FIG. 7

159 =

/

CoGetObiject(L"queue:/new:Ship", 0, ID_IShip, (void **)&pShip);

CoGetObject(L"dueue:/new:8120F4OE-BD88-1 1D0-8A6D-
00C04FC340EE", O, IID_IShip, (void**)&pShip);

CoGetObject(L"queue:/new:{812DF40E-BD88-11D0-8A6D-
00CO04FC340EE}", 0, IID_IShip, (void**)&pShip);

CoGetObjsct(L°new:Ship”, 0, IID_IShip, (void **)&pShip);

CoCreatelnstance(CLSID_Ship, NULL, CLSCTX_ALL,
I1D_IShip, (void **)&pShip);

N\

FIG. 8

200 ~

/

interface IPlaybackControl : IlUnknown

{
HRESULT FinalClientRetry();

HRESULT FinalServerRetry();

27/29

DE 699 36 627 T2 2008.05.21

FIG. 9

206 ~

/

typedet struct _CommonHeader
{ INT TypeOfHeader; Il Type of header

INT SizeOfBiock; // size of the header +
// associated data
) COMMON_HEADER,;
typedef struct _ContainerHeader : COMMON_HEADER
{ /ithe fixed part of the container header
GUID guidSignature;
An IStream form of a moniker that can activate the server object.
} CONTAINER_HEADER,;
typedef struct _ShortMethodHeader : COMMON_HEADER
{ INT Methodid;
RPCOLEDATAREP dataRepresentation;
INT RpcFlags;
INT cbVariableData;
INT Usinginterceptor;
INT Padding;
} SHORTMETHOD_HEADER,;
typedef struct _MethodHeader : SHORTMETHOD_HEADER
{ IID iid; // interface to be invoked
} METHOD_HEADER,;
typedef struct _SecurityHeader : COMMON_HEADER
{ INT cbVariableData; // data length without padding
INT Padding; // pad to 8-byte boundary
} SECURITY_HEADER,;
typedet struct _SecurityRefHeader : COMMON_HEADER
{ INT SecurityHeaderOffset;
INT Padding; // pad to 8-byte boundary
} SECURITYREF_HEADER,;
N\

28/29

FIG. 10

NACHRICHTEN-
KORPER
226

DE 699 36 627 T2 2008.05.21
2()6\A
224 —~ NACHRICHTENKOPF
BEHALTER-
ABSCHNITT < 234 ~ BEHALTERKOPF
228
PROZEDUR-
ABSCHNITT | 236 ~ PROZEDURKOPF
230
238 ~ PARAMETERDATEN
—
®
®
®

29/29

	Titelseite
	Beschreibung
	Patentansprüche
	Anhängende Zeichnungen

