
*DE69936627T220080521*
(19)
Bundesrepublik Deutschland 
Deutsches Patent- und Markenamt
(10) DE 699 36 627 T2 2008.05.21
 

(12) Übersetzung der europäischen Patentschrift

(97) EP 1 025 493 B1
(21) Deutsches Aktenzeichen: 699 36 627.5
(86) PCT-Aktenzeichen: PCT/US99/18749
(96) Europäisches Aktenzeichen: 99 942 278.5
(87) PCT-Veröffentlichungs-Nr.: WO 2000/010080
(86) PCT-Anmeldetag: 17.08.1999
(87) Veröffentlichungstag

der PCT-Anmeldung: 24.02.2000
(97) Erstveröffentlichung durch das EPA: 09.08.2000
(97) Veröffentlichungstag

der Patenterteilung beim EPA: 25.07.2007
(47) Veröffentlichungstag im Patentblatt: 21.05.2008

(51) Int Cl.8: G06F 9/44 (2006.01)

(54) Bezeichnung: IN EINER WARTESCHLANGE ANGEORDNETE AUFRUFE VON PROZEDUREN FÜR VERTEILTE 
AUF KOMPONENTEN BASIERTE ANWENDUNGEN

(30) Unionspriorität:
135378 17.08.1998 US

(73) Patentinhaber: 
Microsoft Corp., Redmond, Wash., US

(74) Vertreter: 
BOEHMERT & BOEHMERT, 28209 Bremen

(84) Benannte Vertragsstaaten:
DE, FR, GB, NL, SE

(72) Erfinder: 
DIEVENDORFF, Richard, Bellevue, WA 98007, US; 
HELLAND, Patrick J., Bellevue, WA 98006, US; 
CHOPRA, Gagan, Redmond, WA 98052, US; 
AL-GHOSEIN, Mohsen, Redmond, WA 98053, US

Anmerkung: Innerhalb von neun Monaten nach der Bekanntmachung des Hinweises auf die Erteilung des europä-
ischen Patents kann jedermann beim Europäischen Patentamt gegen das erteilte europäische Patent Einspruch 
einlegen. Der Einspruch ist schriftlich einzureichen und zu begründen. Er gilt erst als eingelegt, wenn die Ein-
spruchsgebühr entrichtet worden ist (Art. 99 (1) Europäisches Patentübereinkommen).

Die Übersetzung ist gemäß Artikel II § 3 Abs. 1 IntPatÜG 1991 vom Patentinhaber eingereicht worden. Sie wurde 
vom Deutschen Patent- und Markenamt inhaltlich nicht geprüft.
1/29



DE 699 36 627 T2    2008.05.21
Beschreibung

Technisches Gebiet

[0001] Die vorliegende Erfindung betrifft verteilte komponentenbasierte Computersoftware-Anwendungen, 
insbesondere in einer Warteschlange angeordnete Aufrufe von Prozeduren für solche Anwendungen.

Stand der Technik

[0002] In zahlreichen Informationsverarbeitungsanwendungen stellt eine auf einem Host- oder Server-Com-
puter in einem verteilten Netzwerk laufende Server-Anwendung Verarbeitungsdienste für von einer Vielzahl 
von Benutzern betriebene, auf Terminal- oder Arbeitsstationscomputern des Netzwerks laufende Client-An-
wendungen bereit. Bekannte Beispiele für entsprechende Serveranwendungen umfassen Software zum Ver-
arbeiten von Kursanmeldungen an einer Universität, Reisereservierungen, Geldtransfers und anderen Bank-
dienstleistungen sowie Verkäufen in Unternehmen. In diesen Beispielen können die von der Serveranwendung 
bereitgestellten Verarbeitungsdienste Datenbanken von Stundenplänen, Hotelreservierungen, Kontoständen, 
Lieferaufträgen, Zahlungen oder Bestandsaufnahmen für von den Einzelbenutzern an den jeweiligen Standor-
ten initiierte Aktionen aktualisieren. Dies wird gelegentlich als Client/Server-Datenverarbeitung bezeichnet.

[0003] In einer Art der Client/Server-Datenverarbeitung, die mitunter als "Verteilte Objekte" bekannt ist, wird 
die Serveranwendung als eine Zusammenstellung von Komponenten entwickelt, die einem Objektorientierten 
Programmierungsmodell (OOP-Modell), wie beispielsweise dem Komponenten-Objekt-Modell (Microsoft 
Component Objekt Model (COM)) und dem Verteilte Komponenten-Objekt-Modell (Distributed Component Ob-
ject Model (DCOM)) von Microsoft, dem System-Objekt-Modell (IBM System Object Model (SOM)) von IBM, 
der Architektur für Vermittler der Abrufe von gemeinsamen Objekten (Object Management Group's Common 
Object Request Broker Architecture (CORBA)) der Object Management Group und anderen, entsprechen. Die 
Vorteile der objektorientierten Programmierung liegen im Allgemeinen in der Einfachheit der Programmierung, 
der Erweiterbarkeit, der Wiederverwendbarkeit von Code sowie der Möglichkeit der Integration von Software 
verschiedener Hersteller und (bei einigen objektorientierten Programmierungsmodellen) in verschiedenen Pro-
grammiersprachen.

[0004] In der objektorientierten Programmierung werden Programme als eine Zusammenstellung von Objekt-
klassen geschrieben, welche jeweils reale oder abstrakte Elemente durch Kombinieren von Daten zur Abbil-
dung von Eigenschaften des Gegenstands mit Prozeduren (z.B. Programmfunktionen oder -prozeduren) zur 
Abbildung der Funktionalität des Elements modellieren. Genauer gesagt ist ein Objekt eine als Klasse bezeich-
nete Instanz eines programmiererdefinierten Typs, welche die Eigenschaften Datenkapselung, Polymorphie 
und Vererbung darstellt.

[0005] Datenkapselung bezieht sich auf das Kombinieren von Daten (auch als Objekteigenschaften bezeich-
net) und Prozeduren, die auf den Daten operieren (auch als Memberfunktionen eines Objekts bezeichnet), zu 
einer einheitlichen Softwarekomponente (d.h. dem Objekt), so daß das Objekt seine interne Zusammenset-
zung, Struktur und Operation verbirgt und seine Funktion den das Objekt nutzenden Client-Programmen ge-
genüber ausschließlich über eine oder mehrere Schnittstellen offenbart. Eine Schnittstelle des Objekts ist eine 
Gruppe semantisch verwandter Prozeduren des Objekts. Anders formuliert, greifen die Client-Programme 
nicht direkt auf die Objektdaten zu, sondern sie müssen vielmehr Prozeduren an den Objektschnittstellen ab-
rufen, um auf den Daten operieren zu können.

[0006] Polymorphie bezieht sich auf die Fähigkeit, zwei gleichartige Objekte über eine gemeinsame Schnitt-
stelle zu betrachten (d.h. damit zu interagieren), wodurch sich die Notwendigkeit, zwischen zwei Objekten zu 
differenzieren, erübrigt. Vererbung bezieht sich auf das Ableiten verschiedener Objektklassen von einer Basis-
klasse, wobei die abgeleiteten Klassen die Eigenschaften und Besonderheiten der Basisklasse erben.

[0007] Bei Client/Server-Datenverarbeitung mit "verteilten Objekten" nutzt das Client-Programm auf dem Be-
nutzercomputer in der Regel "Echtzeit"- oder synchrone Verarbeitungsmechanismen zum Fernaufrufen von 
Prozeduren auf den Server-Anwendungs-Objekten, die sich auf dem Server-Computer befinden, wie beispiels-
weise der Prozedur-Fernaufruf ("RPC"). Bei einem typischen Prozedur-Fernaufruf erstellen Objektdienste des 
Betriebssystems eine Schnittstellendefinitionssprachbeschreibung eines Serveranwendungsobjekts, um einen 
lokalen "Proxy" für das Serveranwendungsobjekt auf dem Client-Computer zu generieren. Die Client-Software 
ruft Prozeduren des entfernten Serveranwendungsobjekts auf, indem sie gewöhnliche lokale Aufrufe von Pro-
zeduren direkt an den Proxy ausgibt. Der Proxy nutzt seinerseits RPC-Dienste, um den Prozedur-Aufruf an das 
2/29



DE 699 36 627 T2    2008.05.21
aktuelle Serveranwendungsobjekt auf dem entfernten Server-Computer weiterzuleiten. Die RPC-Dienste ar-
rangieren Werte für Aufruf-Parameter zu einer Netzwerk-Nachricht und senden die Nachricht über Netzwerk-
protokolle an den Server-Computer. Auf dem Server-Computer machen die RPC-Dienste das Arrangieren der 
Aufruf-Parameter rückgängig und geben den Aufruf an die richtige Serveranwendungsobjekt-Prozedur aus. 
Außerdem übernehmen die RPC-Dienste das Arrangieren und Rückgängigmachen des Arrangierens von 
Rückgabewerten von der Serveranwendungsobjekt-Prozedur zurück zum Client-Programm über eine Netz-
werk-Nachricht.

[0008] Dementsprechend verarbeiten die RPC-Dienste alle Feinheiten der Netzwerkkommunikation gewis-
sermaßen "hinter den Kulissen", so daß das Client-Programm die entfernte Prozedur auf die gleiche Weise wie 
einen lokalen Prozedur-Aufruf aufruft. Wie bei einem lokalen Prozedur-Aufruf wird die Ausführung des Cli-
ent-Programms während des RPC-Prozedur-Aufrufs bis zum Abschluß und zur Rückkehr der Prozedur unter-
brochen (auch bekannt als "Blockieren"). Dies bewirkt einen synchronen Ausführungsfluß zwischen dem Cli-
ent-Programm und den Serveranwendungsobjekten.

[0009] Obzwar sich Echtzeit-Prozedur-Aufruf-Modelle, wie beispielsweise RPC, für viele Anwendungen eig-
nen, können sie den Anforderungen anderer Anwendungen aufgrund einer Anzahl von Einschränkungen in 
Bezug auf Verfügbarkeit, Netzübertragungskosten, fehlende Möglichkeit der Priorisierung, Lebensdauer des 
Objekts und Referenzlokalität nicht adäquat entsprechen.

[0010] Bezüglich der Verfügbarkeit fordern Echtzeit-Prozedur-Aufruf-Modelle, daß das Serveranwendungs-
objekt zum Zeitpunkt verfügbar ist, zu welchem das Client-Programm einen Aufruf an eine der Prozeduren des 
Objekts ausgibt. Ist dies nicht der Fall, kann der Echtzeit-Prozedur-Aufruf nicht erfolgen. In der Praxis können 
Serveranwendungsobjekte jedoch aufgrund von Netzwerkfehlern oder durch eine Arbeitsüberlastung des Ser-
ver-Computers nicht verfügbar sein. In einigen Fällen kann der Server-Computer über einen bestimmten Zeit-
raum offline (beispielsweise aufgrund von Aktualisierungs- oder Wartungsmaßnahmen) oder nur zu bestimm-
ten Tageszeiten online sein. Außerdem kann, wenn ein beliebiges Serveranwendungsobjekt nicht in "Echtzeit"
verfügbar ist, kein Teil der Arbeit abgeschlossen werden (einschließlich der von verfügbaren Serveranwen-
dungsobjekten). Dieses Problem verstärkt sich bei komplexen Operationen mit multiplen Knoten (z.B. Compu-
ter in einem Netzwerk). So ist beispielsweise ein Prozeß, der Zugang zu vier unabhängigen Objekten an se-
paraten Knoten erfordert, wovon jeder ca. 90% der Zeit verfügbar ist, tatsächlich nur etwa 66% der Zeit ver-
fügbar (da 90%4 = 65,61%).

[0011] Außerdem sind einige Client-Computer nur gelegentlich mit einem Netzwerk verbunden und somit ei-
nen Großteil der Zeit über nicht in der Lage, Echtzeit-Aufrufe von Prozeduren auszugeben. Ein treffendes Bei-
spiels für solche gelegentlich verbundenen Client-Computer sind Laptops, Notebooks und Handheld-Compu-
ter mobiler Benutzer, deren Anteil bei Computerneuanschaffungen heute auf über 50% geschätzt wird.

[0012] Zur Verfügbarkeitsanforderung des Echtzeit-Prozedur-Aufruf-Modells gehört auch, daß der/die Ser-
ver-Computer mit ausreichender Kapazität konfiguriert sein muß/müssen, um die Anfragen interaktiver Benut-
zer der Server-Anwendung zu Spitzenzeiten bewältigen zu können. Demzufolge ist das typische System mit 
Server-Computern konfiguriert, welche die meiste Zeit über nicht ausgelastet, zu bestimmten Zeiten allerdings 
überlastet sind (wenn z.B. die tatsächliche Belastung die Erwartungen überschreitet).

[0013] Aus den genannten Gründen ist das Echtzeit-Prozedur-Aufruf-Modell für Datenverarbeitungsumge-
bungen mit eingeschränkter Verfügbarkeit, mobilen Benutzern, hohen Knotenzahlen oder stark variierenden 
Lasten durch interaktive Benutzer ungeeignet.

[0014] Was die Netzübertragungskosten betrifft, so erfordert jeder Echtzeit-Prozedur-Aufruf über einen RPC 
eine Hin-und-Rück-Netzwerkkommunikation, die zu beachtlichen Netzübertragungskosten führt, beispielswei-
se durch die Bearbeitungszeit für das Arrangieren der Aufruf-Parameter und das Rückgängigmachen des Ar-
rangierens, das Verarbeiten im Netzwerkprotokoll-Stack sowie Übertragungszeit. Überdies kann es sein, daß
der Client mehrere Prozeduren einer Serveranwendungskomponente aufrufen muß, um verwendbare Arbeit 
zu leisten, wodurch sich die Netzübertragungskosten wiederum erhöhen. Insbesondere moderne objektorien-
tierte Designtechniken neigen zu einer Vielzahl von Aufrufen von Prozeduren mit relativ wenigen Parametern 
pro Aufruf. Ein typisches derartiges Objekt ist beispielsweise so gestaltet, daß ein Client zunächst zur Vorbe-
reitung einer Operation verschiedene Eigenschaftsprozeduren ("Property-Set"-Prozeduren) und anschließend 
eine Prozedur zum Verarbeiten der Operation aufruft. Folglich kann viel Zeit durch Netzwerk-Overhead ver-
wendet werden. Aufgrund dieser Netzübertragungskosten können Echtzeit-Prozedur-Aufruf-Modelle für einige 
Anwendungen weniger geeignet sein.
3/29



DE 699 36 627 T2    2008.05.21
[0015] In Bezug auf Priorität werden Aufrufe bei typischen Echtzeit-Prozedur-Aufruf-Modellen nach dem 
"First-come, first-served"-Prinzip dann bearbeitet, wenn sie eintreffen, ohne jegliche Berücksichtigung von Pri-
orität.

[0016] In Bezug auf die Lebensdauer des Objekts besitzen Serveranwendungsobjekte in Echtzeit-Proze-
dur-Aufruf-Modellen eine tendenziell lange Lebensdauer. Bei der typischen Client/Server-Datenverarbeitung 
durch ein verteiltes Objekt existiert das Serveranwendungsobjekt auf dem Server-Computer ab dem Zeitpunkt 
der Erzeugung durch den Client solange, bis das Objekt freigegeben wird. Vor einem nächsten Prozedur-Auf-
ruf durch den Client verwendet das Objekt einen Großteil dieser Zeit einfach auf das Warten auf den Aufruf der 
Prozeduren des Objekts durch den Client und auf die Netzübertragungskosten für das Zurückliefern von Pro-
zedurergebnissen. Währenddessen verbraucht das Objekt Ressourcen des Server-Computers, einschließlich 
Speicher- und Verarbeitungs-Overhead der Ausführungsumgebung. Das Serveranwendungsobjekt "erwacht"
und „schläft" gewissermaßen mindestens ein Mal pro Prozedur-Aufruf. Diese "Belegungszeit" des Serveran-
wendungsobjekts stellt ein Hemmnis für schnelles Durchlaufen von Serverobjekten dar und führt zur Beschrän-
kung von Serveranwendungsskalierbarkeit.

[0017] In Bezug auf Referenzlokalität greifen viele Teile von Computersystemen (z.B. der Prozessor-Cache 
und der Arbeitsbereich des virtuellen Speichers) auf Referenzlokalität zurück, um Leistungszuwächse zu er-
reichen. Stark lokale Anwendungen, z.B. Objekte oder Anwendungscode, die/der direkt unter Nutzung lokal 
verfügbarer Daten ausführen/ausführt, verfügen hierfür über Referenzmuster, die besser Leistungen erzielen. 
Im Gegensatz dazu besitzen Anwendungen mit über mehrere Server-Computer verteilten Objekten, die Echt-
zeit-Prozedur-Aufrufe wie das RPC nutzen, nur geringe Referenzlokalität. Beispielsweise wird ein Serverobjekt 
durch den ersten Echtzeit-Prozedur-Aufruf erzeugt und verbringt häufig einen Großteil seiner Lebensdauer da-
mit, auf nachfolgende Echtzeit-Aufrufe von Prozeduren zu warten. Nach der Verarbeitung jedes Prozedur-Auf-
rufs wird das Serverobjekt in der Regel aus dem Prozessor-Cache entfernt und fällt manchmal zwischen Auf-
rufen aus dem Arbeitsbereich des virtuellen Speichers heraus. Auf diese Weise verringern die Echtzeit-Aufrufe 
von Prozeduren den Transaktions-Verarbeitungsumfang der Anwendung.

[0018] Eine Alternative zu „verteilten Objekten", die das Problem der eingeschränkten Verfügbarkeit eines 
RPC-Echtzeit-Prozedur-Aufrufs zum Teil bewältigt, ist eine mitunter als "nachrichtenorientierte Middleware"
(Message Oriented Middleware) (MOM)) bezeichnete Art der Client/Server-Datenverarbeitung. Bei MOM kom-
muniziert eine Client-Anwendung mit einer entfernten Server-Anwendung durch Senden von Nachrichten an 
eine Nachrichtenwarteschlange. Die Server-Anwendung, die zu einem späteren Zeitpunkt als die Client-An-
wendung laufen kann, ruft die Nachrichten von ihrer Nachrichtenwarteschlange ab und verarbeitet diese. Die 
Serveranwendung kann Ergebnisse dieser Verarbeitung an die Client-Anwendung zurücksenden, indem sie 
Nachrichten an eine gleiche oder separate Nachrichtenwarteschlange zur Verarbeitung durch die Client-An-
wendung sendet. Solcher Datentransfer unter Verwendung von Nachrichtenwarteschlangen hat den Vorteil, 
daß die Client- und die Server-Anwendungen nicht gleichzeitig verfügbar sein und keine übereinstimmenden 
Lebensdauern haben müssen.

[0019] Herkömmliche MOM-Produkte weisen allerdings auch Anzahl von Einschränkungen auf. Eine Ein-
schränkung besteht darin, daß die Client- und die Serveranwendung die Nachricht selbst als einen linearen 
Stream formatieren. Genauer gesagt, müssen die Client- und die Serveranwendungen die Daten dieses 
Streams selbst arrangieren und das Arrangieren selbst rückgängig machen. Die Nachrichtenwarteschlan-
gen-Infrastruktur umfaßt keinen Support für das Arrangieren.

[0020] Eine weitere Einschränkung von MOM besteht darin, daß die Client- und die Server-Anwendung für 
die Kommunikation mit der Nachrichtenwarteschlangen-Infrastruktur eine herstellerspezifische Programmier-
schnittstelle (Application Programming Interface (API)) für Nachrichtenwarten-schlangenbildungsanwendun-
gen nutzen. Anders formuliert, senden die Client- und die Serveranwendung Nachrichten an eine Nachrichten-
warteschlange über explizite Aufrufe an die Nachrichtenwarteschlangen bildende API. Für die Entwickler von 
Client/Serveranwendungen gilt es, noch ein weiteres API-Set zu lernen. So ist beispielsweise die Nachrichten-
warteschlangen bildende Schnittstelle (MQI) (für MQSeries API) die API des nachrichtenorientierten Middle-
wareprodukts der MQSeries von IBM. Andere Hersteller von MOM-Produkten, wie beispielsweise Microsoft 
(Microsoft Message Queue (MSMQ), Covia (Communications Integrator), Peerlogic (PIPES), Horizon Strate-
gies (Message Express) oder System Strategies (ezBridge) haben unterschiedliche Nachrichtenwarteschlan-
gen bildende APIs.

[0021] Außerdem erstellen Abnehmer eines MOM-Produkts (wie beispielsweise eine Informationstechnolo-
gie-Organisation (IT-Organisation)) aus unterschiedlichen Beweggründen eine separate API-Schicht über die 
4/29



DE 699 36 627 T2    2008.05.21
vom Hersteller bereitgestellte Nachrichtenwarteschlangen bildende API. Ein Beweggrund ist, daß die IT-Orga-
nisation verhindert möchte, daß ihre Anwendungsentwickler entscheiden können, welche Teile der Nachrich-
tenwarteschlangen bildenden API sie nutzen und auf welche Weise sie die API nutzen. Ein zweiter Beweg-
grund kann sein, daß die Nachrichtenwarteschlangen bildende API zu umfangreich, zu komplex ist oder den 
Anwendungsentwicklern zu viele Optionen bietet. Die IT-Organisationen erstellen somit ihre eigene 
API-Schicht in der Absicht, die API für ihre Anwendungsentwickler zu vereinfachen. Folglich müssen die meis-
ten Entwickler sowohl die Nachrichtenwarteschlangen bildende API des Herstellers als auch die von der IT-Or-
ganisation bereitgestellte API lernen. Ein dritter Beweggrund kann sein, daß die IT-Organisation vermeiden 
möchte, daß ihre Anwendungen von einer jeglichen Nachrichtenwarteschlangen bildenden API eines Herstel-
lers oder einem jeglichen MOM-Produkt anhängig sind, und sich die Möglichkeit offenhalten möchte, die Her-
steller zu einem späteren Zeitpunkt zu wechseln. Dies hindert häufig die IT-Organisation daran, die Funktionen 
des MOM-Produkts voll auszuschöpfen. Dieses Phänomen verzögert die Implementierung von Anwendungen 
mit einem MOM-Produkt und erschwert der IT-Organisation bisweilen die Nutzung neueingeführter Funktionen 
des MOM-Produkts.

[0022] Eine weitere Einschränkung herkömmlicher MOM-Produkte besteht in der suboptimalen Leistungsfä-
higkeit in einigen Konfigurationen. Insbesondere können Anwendungen und Anwendungsobjekte lokal über 
Aufrufe von Prozeduren zu extrem niedrigen Verarbeitungszeitkosten kommunizieren, insbesondere wenn sie 
in einem gleichen Prozeß sind. Anwendungen und Anwendungsobjekte, die über eine Nachrichtenwarte-
schlangen bildende API kommunizieren, erfordern die Verarbeitung über einen Warteschlangenmanager, 
selbst wenn sich die Anwendungen oder Objekte in derselben oder einer ähnlichen Umgebung, wie beispiels-
weise einem gleichen Prozeß, befinden.

[0023] In ihrem Aufsatz "Design of a Remote Procedure Call System for Object-Oriented Distributed Program-
ming" beschreiben die Autoren Anand R. Tripathi und Terence Noonan das Design eines RPC-Systems zur 
Bildung objektorientierter verteilter Softwaresysteme. Bei Nutzung dieses Systems kann eine eine Prozedur 
darstellende Anfragenachricht an einen Server übermittelt werden, auf dem ein Objekt unter Verwendung einer 
Kernel-Funktion verwaltet wird. Der Kernel sendet den einzigen Identifikator für den Aufruf an die RPC-Laufzeit 
zurück. Um die Antwort des Aufrufs zu empfangen, führt der Client-Prozeß RPC-Laufzeit-Funktion aus und 
überprüft anschließend den Status des Aufrufs in einer Aufruftabelle. Wurde der Aufruf aufgrund eines Zeitü-
berschreitungs- oder eines jeglichen anderen Fehlerzustands abgebrochen, sendet er diesen Status an den 
Client-Prozeß zurück und entfernt den Eintrag für diesen Auftrag aus der Aufruftabelle. Ist der Aufruf noch zu 
erledigen, führt er eine Funktion zum Empfangen einer Antwortnachricht vom Kernel aus. Er wartet während 
der in einer Sync-Funktion vorgegebenen Zeitüberschreitungsperiode auf den Eingang der Antwortnachricht, 
und wenn während dieser Zeitüberschreitungsperiode keine Nachricht eingeht und der Aufruf im Kernel immer 
noch anhängig ist, wird ein Zeitüberschreitungsstatus an den Client-Prozeß zurückgesandt. Der Client-Prozeß
muß dann die Synchronisierung zu einem späteren Zeitpunkt nochmals versuchen.

Zusammenfassung der Erfindung

[0024] Die vorliegende Erfindung befähigt einen Client eines Objekts zur Ausgabe und das Objekt zum Emp-
fang von Aufrufen von Prozeduren auf der Grundlage einer Warteschlange unter Nutzung normaler Aufrufse-
mantik eines Objektmodells ohne Verwendung einer Nachrichtenwarteschlangen bildenden API. Genauer ge-
sagt nutzt der Client die normale Semantik des Objektmodells, um das Objekts zu erstellen, die Prozeduren 
des Objekts aufzurufen und das Objekt freizugeben. Der Rahmen oder die Ausführungsumgebung des Objekts 
stellt Dienste zum automatischen Anordnen der Aufrufe von Prozeduren in einer Warteschlange und zum mög-
licherweise späteren Ausgeben der in einer Warteschlange angeordneten Aufrufe von Prozeduren an das Ob-
jekt bereit. Unterdessen kann der Client asynchron zu der aufgerufenen Prozedur die Ausführung fortsetzen. 
Das Objekt wiederum hat die an seine Schnittstelle(n) über normale Aufrufsemantik ausgegebenen, in einer 
Warteschlange angeordneten Aufrufe von Prozeduren, verarbeitet diese und sendet anschließend einen Wert 
der Prozedur unter erneuter Nutzung normaler Aufrufsemantik zurück. Auf diese Weise müssen die Anwen-
dungsentwickler den Client und das Objekt nicht für die Nutzung einer Nachrichtenwarteschlangen bildenden 
API zur Warteschlangenverarbeitung programmieren, wie es bei herkömmlicher nachrichtenorientierter Midd-
leware der Fall ist, und das Erlernen solcher APIs ist nicht erforderlich.

[0025] Gemäß einem Aspekt der Erfindung kann ein Objekt sowohl Echtzeit- als auch in einer Wartschlange 
angeordnete Aufrufe von Prozeduren über eine gemeinsame Schnittstelle empfangen. Echtzeit-Aufrufe von 
Prozeduren werden an das Objekt über einen lokalen Prozedur-Aufruf oder einen entfernten Prozedur-Aufruf 
an die Schnittstelle ausgegeben. In einer Warteschlange angeordnete Aufrufe von Prozeduren werden in einer 
Vorrichtung für in einer Warteschlange angeordnete Aufrufe von Prozeduren in einer Warteschlange angeord-
5/29



DE 699 36 627 T2    2008.05.21
net und anschließend über einen lokalen Prozedur-Aufruf von der Vorrichtung an die Objektschnittstelle aus-
gegeben. Das Objekt unterscheidet nicht zwischen den Echtzeit- und den in einer Warteschlange angeordne-
ten Aufrufen von Prozeduren. Daher kann das Objekt ohne Veränderung sowohl in einer synchronen Echt-
zeit-Umgebung als auch in einer asynchronen Warteschlangen-Umgebung laufen gelassen werden. In gewis-
ser Weise weiß das Objekt weder, ob es sich in einer Echtzeit- oder in einer Warteschlangen-Umgebung be-
findet, noch, in welcher Weise die Prozeduren auf seiner Schnittstelle aufgerufen werden.

[0026] Gemäß einem weiteren Aspekt der Erfindung stellt der Rahmen oder die Umgebung des Objekts au-
ßerdem Support zum automatischen Arrangieren für in einer Warteschlange angeordnete Aufrufe von Proze-
duren bereit. Ein Client gibt in einer Warteschlange angeordnete Aufrufe von Prozeduren an ein Objekt über 
einen vom System bereitgestellten Proxy und Stub oder Adapter (Wrapper) aus, der aus der Beschreibung ei-
ner Schnittstellendefinitionssprache der Schnittstelle des Objekts übersetzt ist, um das geeignete Arrangieren 
von Aufrufparametern und zugehörigen Daten zu und von in einer Warteschlange angeordneten Nachrichten 
zu implementieren.

[0027] Gemäß einem weiteren Aspekt der Erfindung umfaßt die Vorrichtung zum Anordnen von Aufrufen von 
Prozeduren in einer Warteschlange eine Aufzeichnungseinrichtung für Aufrufe von Prozeduren auf einer Cli-
ent-Seite und eine Abspieleinrichtung für Aufrufe von Prozeduren auf der Objekt-Seite der Client-Objekt-Inter-
aktion. Die Aufzeichnungseinrichtung für Prozedur-Aufrufe empfängt eine Anzahl von möglicherweise mehr als 
einem Prozedur-Aufruf eines Clients, die als ein Stapel an die Abspieleinrichtung für Prozedur-Aufrufe weiter-
geleitet werden soll. Beispielsweise kann die Aufzeichnungseinrichtung eine Menge von in einer Warteschlan-
ge angeordneten, vom Client an das Objekt als Teil einer Transaktion ausgegebenen Prozedur-Aufrufen sam-
meln und die Prozedur-Aufrufe erst nach Abschluß der Transaktion weitergeben. Die Abspieleinrichtung für 
Prozedur-Aufrufe ruft die in einer Warteschlange angeordneten Prozedur-Aufrufe nacheinander von einer War-
teschlange für Prozedur-Aufrufe ab und gibt die Aufrufe von Prozeduren – möglicherweise als Teil einer ande-
ren, das Objekt umfassenden Transaktion – an das Objekt aus.

[0028] Gemäß einem weiteren Aspekt der Erfindung entspricht ein Objekt, das in einer Warteschlange ange-
ordnete Aufrufe von Prozeduren unterstützt, der Einschränkung, daß dessen Prozeduren ausschließlich Ein-
gabeparameter aufweisen können und keine anwendungsspezifischen Informationen zurücksenden können. 
Die in einer Warteschlange angeordneten Aufrufe von Prozeduren können dann als unidirektionale Kommuni-
kationen vom Client zum Objekt ausgegeben werden, bei denen der Client nicht in Echtzeit- oder synchroner 
Ausführung auf Ergebnisse des Prozedur-Aufrufs warten muß. Das Objekt kann Ergebnisse der Verarbeitung 
der in einer Warteschlange angeordneten Prozedur-Aufrufe durch Ausgabe von Echtzeit-Prozedur-Aufrufen 
oder von in einer Warteschlange angeordneten Prozedur-Aufrufen an ein durch einen Eingabeparameter vom 
Client beschriebenes Ergebnisobjekt liefern.

[0029] Weitere Eigenschaften und Vorteile der Erfindung werden anhand der nachfolgenden detaillierten Be-
schreibung einer Ausführungsform unter Bezugnahme auf die beigefügten Zeichnungen ersichtlich.

Kurze Beschreibung der Zeichnungen

[0030] Fig. 1 ist ein Blockdiagramm eines Computersystems, das zur Implementierung eines Verfahrens und 
einer Vorrichtung genutzt werden kann, welche die Erfindung für in einer Warteschlange angeordnete Aufrufe 
von Prozeduren verkörpern.

[0031] Fig. 2 ist ein Blockdiagramm einer Ausführungsumgebung und einer Laufzeitarchitektur für in einer 
Warteschlange angeordnete Aufrufe von Prozeduren gemäß der dargestellten Ausführungsform der Erfin-
dung.

[0032] Fig. 3 ist ein Blockdiagramm einer Struktur einer in einer Warteschlange angeordneten Komponente 
in der Ausführungsumgebung von Fig. 2.

[0033] Fig. 4 ist ein Blockdiagramm einer Aufzeichnungseinrichtung und eines Proxy in der Laufzeitarchitek-
tur von Fig. 2.

[0034] Fig. 5 ist ein Blockdiagramm einer Abspieleinrichtung und eines Stub in der Laufzeitarchitektur von 
Fig. 2.

[0035] Fig. 6 ist ein Blockdiagramm einer Vorrichtung zur Überwachung von Warteschlangen für unzustellba-
6/29



DE 699 36 627 T2    2008.05.21
re Nachrichten (Dead-Letter-Queue) und eines Ausnahmezustandsbehandlers in der Laufzeitarchitektur von 
Fig. 2.

[0036] Fig. 7 ist eine Programmliste von beispielhaften Objekt-Instanziierungs-Aufrufen zur Aktivierung der in 
einer Warteschlange angeordneten Komponente in der Laufzeitarchitektur von Fig. 2.

[0037] Fig. 8 ist eine Programmliste einer „IPlaybackControl"-Schnittstelle eines Ausnahmezustandsbehand-
lers in Fig. 5 und Fig. 6.

[0038] Fig. 9 ist eine Programmliste eines Formats einer Nachricht von in einer Warteschlange angeordneten 
Aufrufen von Prozeduren in der Laufzeitarchitektur von Fig. 2.

[0039] Fig. 10 ist ein Blockdiagramm des Formats einer in einer Warteschlange angeordnete Prozedur-Auf-
rufe enthaltenden Nachricht in der Laufzeitarchitektur von Fig. 2.

DETAILLIERTE BESCHREIBUNG DER ERFINDUNG

[0040] Die vorliegende Erfindung betrifft ein Verfahren und ein System für in einer Warteschlange angeord-
nete Aufrufe von Komponentenprozeduren. In einer hier erläuterten Ausführungsform wird die Erfindung in 
eine als „COM+" bezeichnete Objektdienste-Komponente eines als „Microsoft Windows NT Server 5.0" be-
zeichneten, durch die Microsoft Corporation in Redmond, Washington vertriebenen Betriebssystems integriert. 
Kurz beschrieben ist diese Software ein skalierbares Hochleistungsnetzwerk- und Computerbetriebssystem, 
das verteilte Client/Server-Datenverarbeitung unterstützt und eine Objekt-Ausführungsumgebung für dem 
Komponentenobjektmodell (COM) von Microsoft entsprechende Komponentenanwendungen bereitstellt. Die 
COM+-Komponente umfaßt Objektdienste von vorbekannten Objektsystemen, einschließlich des Micro-
soft-Komponentenobjektmodells (COM), der Microsoft-Objektverlinkung und -einbettung (Microsoft Object Lin-
king and Embedding (OLE)), des Verteilten Komponentenmodells (DCOM) von Microsoft und des Micro-
soft-Transaktionsservers (Microsoft Transaction Server (MTS)).

Beispielhafte Betriebsumgebung

[0041] Fig. 1 und die folgende Darstellung dienen einer kurzen, allgemeinen Beschreibung einer geeigneten 
Datenverarbeitungsumgebung, in welcher die Erfindung implementiert werden kann. Obwohl die Erfindung im 
allgemeinen Kontext computerausführbarer Anweisungen eines auf einem Computer laufenden Computerpro-
gramms beschrieben wird, wird der Fachmann feststellen, daß die Erfindung gleichfalls in Kombination mit an-
deren Programmmodulen implementiert werden kann. Programmmodule umfassen im Allgemeinen Routinen, 
Programme, Komponenten, Datenstrukturen usw., die bestimmte Aufgaben ausführen oder bestimmte abs-
trakte Datentypen implementieren. Außerdem wird der Fachmann erkennen, daß die Erfindung mit anderen 
Computersystemkonfigurationen, wie beispielsweise Handheld-Vorrichtungen, Multiprozessorsystemen, Mi-
kroprozessor-basierter oder programmierbarer Unterhaltungselektronik, Minicomputer, Großrechenanlagen u. 
a., betrieben werden kann. Die dargestellte Ausführungsform der Erfindung wird ebenfalls in verteilten Daten-
verarbeitungsumgebungen betrieben, wo Aufgaben über entfernte, durch ein Kommunikationsnetzwerk ver-
bundene Verarbeitungsvorrichtungen ausgeführt werden. Einige Ausführungsformen der Erfindung können al-
lerdings auch auf Einzelrechnern betrieben werden. In einer verteilten Datenverarbeitungsumgebung können 
sich Programmmodule sowohl in lokalen als auch in entfernten Speichervorrichtungen befinden.

[0042] Bezugnehmend auf Fig. 1 umfaßt ein beispielhaftes System zur Implementierung der Erfindung einen 
konventionellen Computer 20 (wie beispielsweise Personalcomputer, Laptops, Palmtops, Set-Tops, Server, 
Großrechenanlagen und andere Computerarten) mit einer Verarbeitungseinheit 21, einem Systemspeicher 22
und einem Systembus 23, der verschiedene Systemkomponenten einschließlich des Systemspeichers mit der 
Verarbeitungseinheit 21 verbindet. Die Verarbeitungseinheit kann ein jeglicher von verschiedenen im Handel 
erhältlichen Prozessoren sein, wie beispielsweise Intel x86-, Pentium- und kompatible Mikroprozessoren von 
Intel und anderen Herstellern, wie beispielsweise Cyrix, AMD und Nexgen; Alpha von Digital, MIPS von MIPS 
Technology, NEC, IDT, Siemens u. a. sowie der PowerPC von IBM und Motorola. Duale Mikroprozessoren und 
andere Multiprozessor-Architekturen können ebenfalls als Verarbeitungseinheit 21 genutzt werden.

[0043] Der Systembus kann ein jeglicher von verschiedenen, einen Speicherbus oder eine Speicher-Steuer-
einheit, einen Peripheriebus und einen lokalen Bus umfassenden Busstruktur-Typen sein, die eine von unter-
schiedlichen konventionellen Bus-Architekturen nutzen, wie beispielsweise PCI, VESA, AGP, Microchannel, 
ISA und EISA, um nur einige zu nennen. Der Systemspeicher umfaßt Nur-Lese-Speicher (ROM) 24 und Spei-
7/29



DE 699 36 627 T2    2008.05.21
cher mit wahlfreiem Zugriff (RAM) 25. In ROM 24 befindet sich ein einfaches Eingabe/Ausgabe-System 
(BIOS), welches die Basisprogramme zur Übertragung von Informationen zwischen Elementen innerhalb des 
Computers 20, wie beispielsweise während des Hochfahrens, umfaßt.

[0044] Der Computer 20 umfaßt weiterhin ein Festplattenlaufwerk 27, ein Magnetplattenlaufwerk 28 bei-
spielsweise zum Lesen einer oder zum Schreiben auf eine Wechselplatte 29 und ein Optische-Medien-Lauf-
werk 30 beispielsweise zum Lesen einer CD-ROM-Platte 31 oder zum Lesen eines oder zum Schreiben auf 
ein anderes optisches Medium. Das Festplattenlaufwerk 27, das Magnetplattenlaufwerk 28 und das Opti-
sche-Medien-Laufwerk 30 sind jeweils über eine Festplattenlaufwerk-Schnittstelle 32, eine Magnetplattenlauf-
werk-Schnittstelle 33 bzw. eine Schnittstelle für ein Optische-Medien-Laufwerk 24 mit dem Systembus 23 ver-
bunden. Die Laufwerke und ihre dazugehörigen computerlesbaren Medien stellen nichtflüchtigen Speicher von 
Daten, Datenstrukturen, Computer-ausführbaren Anweisungen usw. für den Computer 20 bereit. Obwohl sich 
die obige Beschreibung computerlesbarer Medien auf eine Festplatte, eine magnetische Wechselplatte und 
eine CD bezieht, sollte der Fachmann feststellen, daß auch andere computerlesbaren Medientypen, wie bei-
spielsweise Magnetbandkassetten, Flash-Speicherkarten, digitale Videodisks, Bernoulli-Laufwerke u. a., in der 
beispielhaften Betriebsumgebung eingesetzt werden können.

[0045] In den Laufwerken und dem RAM 25 kann eine Anzahl von Programmmodulen, einschließlich des Be-
triebssystems 35, eines oder mehrerer Anwendungsprogramme 36, weiterer Programmmodule 37 und Pro-
grammdaten 38, gespeichert werden.

[0046] Ein Benutzer kann über eine Tastatur 40, und eine Steuervorrichtung, wie beispielsweise eine Maus 
42, Befehle und Informationen in den Computer 20 eingeben. Weitere (nicht abgebildete) Eingabevorrichtun-
gen können ein Mikrophon, ein Joystick, ein Gamepad, eine Parabolantenne, ein Scanner oder ähnliches sein. 
Diese und andere Eingabevorrichtungen sind an die Verarbeitungseinheit 21 häufig über einen seriellen 
Schnittstellenport 46 angeschlossen, der mit dem Systembus verbunden ist, aber auch an andere Schnittstel-
len, wie beispielsweise einen Parallel-Port, einen Game-Port oder einen universellen seriellen Bus (USB) an-
geschlossen sein kann. Außerdem ist ein Bildschirm 47 oder eine andere Anzeigevorrichtung über eine 
Schnittstelle, wie beispielsweise einen Video-Adapter 48, an den Systembus 23 angeschlossen. Zusätzlich 
zum Bildschirm umfassen Computer in der Regel andere periphere (nicht abgebildete) Ausgabevorrichtungen, 
wie beispielsweise Lautsprecher und Drucker.

[0047] Der Computer 20 kann in einer vernetzten, logische Verbindungen zu einem oder mehreren entfernten 
Computer, wie beispielsweise einem entfernten Computer 49, nutzenden Umgebung operieren. Der entfernte 
Computer 49 kann ein Server, ein Router, eine Peer-Vorrichtung oder ein anderer gemeinsamer Netzknoten 
sein und umfaßt in der Regel viele oder alle der in Bezug auf den Computer 20 beschriebenen Elemente, auch 
wenn in Fig. 1 nur eine Speichervorrichtung 50 dargestellt ist. Die in Fig. 1 dargestellten logischen Verbindun-
gen umfassen ein lokales Netz (LAN) 51 und ein Weitbereichsnetz (WAN) 52. Entsprechende vernetzende 
Umgebungen sind gewöhnlich in Büros, Computer-Netzwerken in Unternehmen, internen Netzwerken und im 
Internet anzutreffen.

[0048] Bei Einsatz in einer LAN-vernetzenden Umgebung wird der Computer 20 über eine Netzwerkschnitt-
stelle oder einen -adapter 53 mit dem lokalen Netz 51 verbunden. Bei Einsatz in einer WAN-vernetzenden Um-
gebung umfaßt der Computer 20 in der Regel ein Modem 54 oder andere Mittel zum Aufbau von Kommunika-
tion (z. B. mittels LAN, eines Gateway- oder eines Proxy-Servers 55) über das Weitbereichsnetz 52, wie bei-
spielsweise das Internet. Das Modem 54, das ein internes oder externes sein kann, wird über den seriellen 
Schnittstellenport 46 an den Systembus 23 angeschlossen. In einer vernetzten Umgebung können in Bezug 
auf den Computer 20 dargestellte Programmodule oder Teile davon in einer entfernten Speichervorrichtung ge-
speichert werden. Man erkennt, daß die dargestellten Netzwerkverbindungen Beispiele sind und andere Mittel 
zum Aufbau einer Kommunikationsverbindung zwischen Computern verwendet werden können.

[0049] In Übereinstimmung mit den Gepflogenheiten von Fachleuten aus dem Bereich der Computerpro-
grammierung erfolgt die nachstehende Beschreibung der vorliegenden Erfindung, falls nicht anders angege-
ben, unter Bezugnahme auf durch den Computer 20 ausgeführte Handlungen und symbolische Darstellungen 
von Operationen. Entsprechende Handlungen und Operationen werden gelegentlich als „durch einen Compu-
ter ausgeführt" bezeichnet. Man erkennt, daß die Handlungen und symbolisch dargestellten Operationen die 
durch die Verarbeitungseinheit 21 erfolgende, Datentbits darstellende Bearbeitung von elektrischen Signalen, 
welche eine resultierende Transformation oder Reduktion der Darstellung elektrischer Signale hervorruft, so-
wie die Verwaltung der Datenbits an im Speichersystem (mit Systemspeicher 22, Festplattenlaufwerk 27, Ma-
gnetplatten-Speicher 29 und CD-ROM 31) befindlichen Speicherorten umfassen, um so die Operation des 
8/29



DE 699 36 627 T2    2008.05.21
Computersystems sowie andere Signalverarbeitung zu rekonfigurieren oder anderweitig zu ändern. Bei den 
Speicherorten, an denen Datenbits verwaltet werden, handelt es sich um physische Speicherplätze, die be-
stimmte elektrische, magnetische oder optische, den Datenbits entsprechende Eigenschaften aufweisen.

Ausführungsumgebung der Komponentenanwendung

[0050] Wie aus Fig. 2 ersichtlich, liefert die oben erwähnte COM+-Komponente des Microsoft Windows NT 
5.0 Betriebssystems Laufzeit- oder Systemdienste zur Erstellung einer Ausführungsumgebung für Laufzeitob-
jekte 80 auf einem Server-Computer 84, welche in einer Warteschlange angeordnete Aufrufe von Prozeduren 
an ein Objekt 86 (nachstehend als „Warteschlangenkomponente" bezeichnet) automatisch bereitstellt. Die 
COM+-Komponente ist als dynamische Linkbibliothek (Dynamic Link Library (DLL)) implementiert. (Eine DLL 
ist ein bekanntes ausführbares Dateiformat, welches dynamische Verlinkung oder Laufzeitverlinkung von aus-
führbarem Code in den Prozeß eines Anwendungsprogramms ermöglicht). Die COM+-DLL wird direkt in An-
wendungsserverprozesse (z. B. „ASP" 90) geladen, die Komponentenanwendungsobjekte hosten, und läuft 
transparent im Hintergrund dieser Prozesse.

[0051] Der dargestellte ASP 90 ist ein Systemprozeß, der die Ausführung von Komponentenanwendungsob-
jekten einschließlich der Warteschlangenkomponente 86 hostet. Jeder ASP 90 kann mehrere Komponenten-
anwendungsobjekte hosten, die zu einer als „COM+-Anwendung" bezeichneten Sammlung (in der Objektaus-
führungsumgebung des vorbekannten Microsoft-Transaktionsservers auch als „Package" bezeichnet) grup-
piert werden. Ferner können mehrere ASP 90 auf dem Server-Computer 84 unter einem Multithreaded-, Mul-
titasking-Betriebssystem (z. B. Microsoft Windows NT in der dargestellten Ausführungsform) ablaufen. Jeder 
ASP 90 stellt eine separate Vertrauensgrenze (separate trust boundary) und einen separaten Fehlereingren-
zungsbereich (fault isolation domain) für die Serveranwendungsobjekte bereit. Anders formuliert, kann sich bei 
getrennten ASPs ein durch ein Serveranwendungsobjekt hervorgerufener Fehler, der eine Beendigung seines 
ASP bewirkt, in der Regel nicht auf die Serveranwendungsobjekte in einem anderen ASP auswirken. In der 
dargestellten Ausführungsform sind die Komponentenanwendungsobjekte als eine COM+-Anwendung grup-
piert, um mit Hilfe eines als „COM+-Explorer" bezeichneten Verwaltungsprogramms gemeinsam in einem ASP 
zu laufen. Dieses Programm stellt eine grafische Benutzerschnittstelle zur Steuerung von mit den Komponen-
tenanwendungsobjekten verbundenen Attributen einschließlich der Gruppierung von Objekten in COM+-An-
wendungen bereit.

[0052] In einer typischen, in Fig. 2 dargestellten Installation befindet sich die Ausführungsumgebung 80 auf 
dem Server-Computer 84 (der ein Beispiel des oben beschriebenen Computers 20 sein kann), der in einem 
verteilten Computernetzwerk angeschlossen ist, welches eine große Menge an auf die Komponentenanwen-
dungsobjekte in der Ausführungsumgebung 80 zugreifenden Client-Computern 92 umfaßt. Alternativ kann sich 
die Ausführungsumgebung 80 auf einem Einzelcomputer befinden und Komponentenanwendungsobjekte 
hosten, auf die ebenfalls auf diesem Computer befindliche Client-Prozesse zugreifen.

Überblick über Komponentenanwendungsobjekte

[0053] Unter Bezugnahme auf Fig. 2 führt der Computer 84 als eine COM+-Anwendung entwickelte, eine 
Gruppe von Komponentenanwendungsobjekte umfassende Komponentenanwendungen aus. Beispielsweise 
können die in der Ausführungsumgebung 80 des ASP 90 gehosteten Komponentenanwendungsobjekte (wie 
z. B. die Warteschlangenkomponente 86) die Geschäftslogik einer Client/Server-Anwendung, wie z. B. den 
Code zur Steuerung von Einschreibungen in einer Registrierungsanwendung einer Universität oder von Auf-
trägen in einer Online-Verkaufsanwendung, implementieren. In der Regel umfaßt jede Komponentenanwen-
dung eine Mehrzahl von Komponenten, wovon jede Programmcode für einen Teil der Anwendungsarbeit ent-
hält.

[0054] Bezugnehmend auf Fig. 3 entsprechen die Komponentenanwendungsobjekte in der dargestellten 
Ausführungsumgebung 80 (Fig. 2) der Anforderung des Microsoft-Komponentenobjektmodells ("COM") (d.h., 
daß sie als ein "COM-Objekt" 100 implementiert sind) und werden, wie oben beschrieben, unter Nutzung der 
COM+-Dienste des Microsoft Windows NT Server 5.0 Betriebssystems ausgeführt; alternativ können sie aller-
dings auch nach anderen Objektstandards implementiert werden (wie beispielsweise den Anforderungen der 
CORBA (Common Objekt Request Broker Architecture (Architektur für Vermittler der Abrufe von gemeinsamen 
Objekten)) der Object Management Group oder Java Beans von der Sun Microsystems Inc.) und unter Objekt-
diensten eines anderen Betriebssystems ausgeführt werden. Die COM-Anforderung definiert binäre Standards 
für Objekte und deren Interfaces, welche die Integration von Softwarekomponenten in Anwendungen erleich-
tern. (Für eine detaillierte Erörterung von COM und OLE siehe Kraig Brockschmidt: "Inside OLE", 2. Auflage, 
9/29



DE 699 36 627 T2    2008.05.21
Microsoft Press, Redmond, Washington 1995).

[0055] Gemäß COM wird das COM-Objekt 100 im Computer 84 (Fig. 2) durch eine Instanzdatenstruktur 102, 
eine Tabelle 104 der virtuellen Funktionen und Prozeduren oder Memberfunktionen 106–108 dargestellt. Die 
Instanzdatenstruktur 102 umfaßt einen Zeiger 110 auf die Tabelle 104 der virtuellen Funktionen und Daten 112
(auch als Datenmember oder Eigenschaften des Objekts bezeichnet). Ein Zeiger ist ein Datenwert, der die 
Adresse eines Gegenstands im Speicher hält. Die Tabelle 104 der virtuellen Funktionen umfaßt Einträge 
116–118 für die Prozeduren 106–108. Jeder dieser Einträge 116–118 umfaßt einen Verweis auf den die ent-
sprechende Prozedur implementierenden Code 106–108.

[0056] Der Zeiger 110, die Tabelle 104 der virtuellen Funktionen und die Prozeduren 106–108 implementieren 
eine Schnittstelle des COM-Objekts 100. Üblicherweise werden die Schnittstellen eines COM-Objekts grafisch 
als eine Steckbuchse dargestellt, wie für die Warteschlangenkomponente 86 in Fig. 2 gezeigt. Außerdem er-
halten Schnittstellen üblicherweise Bezeichnungen, die mit dem Großbuchstaben "I" beginnen. Gemäß COM 
kann das COM-Objekt 100 mehrere Schnittstellen umfassen, die mit einer oder mehreren Tabellen der virtuel-
len Funktionen implementiert werden. Die Prozedur einer Schnittstelle wird mit „IInterfaceName::FunctionNa-
me" bezeichnet.

[0057] Die Tabelle 104 der virtuellen Funktionen und die Prozeduren 106–108 des COM-Objekts 100 werden 
von einem Objektserverprogramm 120 (nachstehend als „Objektserver-DLL" bezeichnet) bereitgestellt, wel-
ches in dem Computer 20 (Fig. 1) als eine Datei einer dynamischen Linkbibliothek (mit der Dateinamenerwei-
terung ".dll" versehen) gespeichert ist. Gemäß COM umfaßt die Objektserver-DLL 120 Code für die Tabelle 
104 der virtuellen Funktionen und die Prozeduren 106–108 der Klassen, die sie unterstützt, sowie weiterhin 
eine Klassenfabrik 122, welche die Instanzdatenstruktur 102 für ein Objekt der Klasse generiert.

[0058] Andere Objekte und Programme (als „Client" des COM-Objekts 100 bezeichnet) greifen auf die Funk-
tionalität des COM-Objekts durch Aufrufen der Prozeduren über die Schnittstellen des COM-Objekts zu. Zu-
nächst muß das COM-Objekt jedoch instanziiert werden (z. B. indem die Klassenfabrik zur Erstellung der In-
stanzdatenstruktur 102 des Objekts veranlaßt wird), und der Client muß einen Schnittstellenzeiger auf das 
COM-Objekt erhalten.

[0059] Bevor das COM-Objekt 100 instanziiert werden kann, wird das Objekt zunächst auf dem Computer 20
installiert. In der Regel umfaßt die Installation das Installieren einer Gruppe verwandter, in einer COM+-Anwen-
dung enthaltener Objekte. Die Installation des COM-Objekts 100 erfolgt durch das Speichern der Objektser-
ver-DLL-Datei(en), welche das Objekt in dem Computer 20 zugänglichem Datenspeicher (in der Regel die in 
Fig. 1 dargestellte Festplatte) bereitstellt/bereitstellen, und das Registrieren von COM-Attributen (z. B. Klasse-
nidentifikatoren, Pfad und Bezeichnung der Objektserver-DLL-Datei 120 usw.) des COM-Objekts in einem Sys-
temregister, einem Katalog oder einer ähnlichen Konfigurationsdatenbank.

[0060] Ein Client fordert die Instanziierung des COM-Objekts unter Einsatz vom System bereitgestellter 
Dienste und einer Menge systemdefinierter Standard-Komponentenschnittstellen, die auf den Klassen und 
Schnittstellen des COM-Objekts zugewiesenen Klassen- und Schnittstellenidentifikatoren basieren, an. Ge-
nauer gesagt sind die Dienste für die Client-Programme als Funktionen von Schnittstellen zur Anwendungs-
programmierung (API) verfügbar, die in der COM+-Bibliothek bereitgestellt werden, welche eine Komponente 
des Microsoft Windows NT Server 5.0 Betriebssystems in einer Datei mit dem Namen „OLE32.DLL." ist. Au-
ßerdem werden in COM+ Klassen von COM-Objekten ausschließlich mit Klassenidentifikatoren („CLSIDs") as-
soziiert und von ihrem CLSID in einer als „Registry" bezeichneten Systemkonfigurationsdatenbank registriert.

[0061] Der Registrierungseintrag für eine Klasse von COM-Objekten assoziiert den CLSID der Klasse mit In-
formationen, die eine ausführbare, die Klasse bereitstellende Datei (z.B. eine DLL-Datei, die eine Klassenfab-
rik zur Erstellung einer Instanz der Klasse aufweist) identifizieren. Klassenidentifikatoren sind 128-Bit global 
eindeutige Identifikatoren (Globally Unique Identifiers ("GUIDs")), die der Programmierer mittels eines als "Co-
CreateGUID" bezeichneten COM+-Dienstes (oder einer/einem von verschiedenen anderen APIs und Pro-
grammen zur Erstellung universeller eindeutiger Identifikatoren) programmiert und den entsprechenden Klas-
sen zuweist. Zusätzlich werden die Schnittstellen einer Komponente mit Schnittstellenidentifikatoren ("IIDs") 
verbunden.

[0062] Insbesondere stellt die COM+-Bibliothek API-Funktionen, z.B. "CoCreateInstance()" und "CoGetOb-
ject()" bereit, die das Client-Programm aufrufen kann, um die Erstellung einer seine zugewiesene CLSID und 
einen IID einer gewünschten Schnittstelle nutzenden Komponente anzufordern. Als Reaktion auf eine Instan-
10/29



DE 699 36 627 T2    2008.05.21
ziierungsanforderung des Clients sucht die "CoCreatelnstance()"-API den Registrierungseintrag der angefor-
derten CLSID im Register, um die ausführbare Datei für die Klasse zu identifizieren. Die "CoCreateln-
stance()"-API-Funktion lädt anschließend die ausführbare Datei der Klasse und nutzt die Klassenfabrik in der 
ausführbaren Datei, um eine Instanz des COM-Objekts 100 zu erstellen. Abschließend sendet die "CoCrea-
telnstance()"-API-Funktion einen Zeiger der angeforderten Schnittstelle an das Client-Programm zurück. Die 
"CoCreatelnstance()"-API-Funktion kann die ausführbare Datei entweder in den Prozeß des Client-Programms 
oder in einen Serverprozeß laden, der, je nach den für das COM-Objekt 100 in der System-Registrierdaten-
bank registrierten Attributen, lokal oder entfernt sein kann (z.B. auf dem selben Computer oder auf einem ent-
fernten Computer in einem verteilten Computernetzwerk). Die "CoGetObject()"-API andererseits nutzt die 
COM-Moniker-Architektur, um eine die Serverobjektklasse identifizierende Zeichenkette zu analysieren und 
ein Moniker-Objekt zu erstellen, welches anschließend zur Erstellung einer Instanz der Serverobjektklasse ge-
nutzt wird.

[0063] Sobald der Client des COM-Objekts 100 diesen ersten Schnittstellen-Zeiger des COM-Objekts erhal-
ten hat, kann der Client Zeiger anderer gewünschter Schnittstellen der Komponente durch Nutzung des mit der 
gewünschten Schnittstelle verbundenen Schnittstellenidentifikators erhalten. COM+ definiert verschiedene, 
üblicherweise von COM-Objekten unterstützte Standardschnittstellen einschließlich der "IUnknown"-Schnitt-
stelle. Diese Schnittstelle umfaßt eine Prozedur namens "Querylnterface()". Die "Querylnterface()"-Funktion 
kann mit einem Schnittstellenidentifikator als ein Argument aufgerufen werden und sendet einen Zeiger an die 
mit diesem Schnittstellenidentifikator verbundene Schnittstelle zurück. Die "IUnknown"-Schnittstelle jedes 
COM-Objekts umfaßt außerdem Prozeduren, "AddRef()" und "Release()", zum Verwalten einer Zahl von Cli-
entprogrammen, die einen Verweis (z.B. einen Schnittstellenzeiger) auf das COM-Objekt halten. Üblicherweise 
sind die Prozeduren der "IUnknown"-Schnittstelle als Teil jeder Schnittstelle auf einem COM-Objekt enthalten. 
Dementsprechend kann jeder Schnittstellenzeiger, den der Client auf eine Schnittstelle des COM-Objekts 100
erhält, zum Aufruf der "Querylnterface"-Funktion genutzt werden.

Überblick über Transaktionsverarbeitung

[0064] Nochmals bezugnehmend auf Fig. 2, implementiert die COM+-Komponente außerdem eine automa-
tische Transaktionsverarbeitung für die Komponentenanwendungsobjekte in der dargestellten Ausführungs-
umgebung 80. Eine ausführlichere Offenbarung der automatischen Transaktionsverarbeitung von komponen-
tenbasierten Serveranwendungen findet sich in dem US-Patent Nr. 5,890,161 von Helland et al. über "Auto-
matic Transaction Processing Of Component-Based Server Applications", eingereicht am 28.10.1997 und ver-
öffentlicht am 30.03.1999 (nachfolgend als "Patentanmeldung für Automatische Transaktionen" bezeichnet). 
Kurz beschrieben, koordiniert die automatische Transaktionsverarbeitung die Verarbeitungsaktivitäten von 
Komponentenanwendungs-Objekten in der Ausführungsumgebung 80, die Teile einer Operation bilden, um als 
eine einzelne, unteilbare Arbeitseinheit, die im Allgemeinen als Transaktion bezeichnet wird, wirksam zu wer-
den.

[0065] Transaktionen in der Ausführungsumgebung 80 werden über einen Transaktionsmanager 128 gesteu-
ert. Der Transaktionsmanager 128 ist ein Systemdienst, der mehrere gesteuerte Transaktionsressourcen, wie 
beispielsweise Datenbanken, Dateisysteme usw., umfassende Transaktionen koordiniert. Der Transaktions-
manager 128 gewährleistet, daß die gesamte in eine Transaktion eingebundene Verarbeitungsarbeit (z.B. Up-
dates von Datenbanken) in Übereinstimmung mit den ACID-Eigenschaften (Atomarität (Atomicity), Konsistenz 
(Consistency), Isolation (Isolation), Dauerhaftigkeit (Durability)) unter Nutzung des vorbekannten Two-Pha-
se-Commit-Protokolls und ungeachtet von Fehlern (z.B. Computer-, Netzwerk-, Hardware- oder Softwarefehler 
oder Fehler durch Fehlverhalten von Ressourcenmanager oder -anwendung), Wettlaufsituationen (z.B. eine 
Transaktion beginnt mit der Übergabe, während ein Ressourcenmanager einen Abbruch initiiert) oder Verfüg-
barkeit (ein Ressourcenmanager bereitet eine Transaktion vor, kehrt aber nicht zurück) erfolgt. Der dargestellte 
Transaktionsmanager 148 ist der als Teil des Microsoft SQL Servers 6.5 veröffentlichte Microsoft-Koordinator 
von verteilten Transaktionen (Microsoft Distributed Transaction Coordinator) (MSDTC)). Für zusätzliche Hin-
tergrundinformationen über Transaktionsverarbeitung siehe u.a. Jim Gray und Andreas Reuter: "Transaction 
Processing Concepts and Techniques", Morgan Kaufmann, 1993.

Laufzeitarchitektur von in einer Warteschlange angeordneten Komponenten

[0066] Weiterhin bezugnehmend auf Fig. 2 stellt eine Laufzeitarchitektur 130 von in einer Warteschlange an-
geordneten Komponenten (nachfolgend als "QC-Architektur" bezeichnet) Support für in einer Warteschlange 
angeordnete Aufrufe von Prozeduren unter Nutzung normaler COM-Aufrufsemantik bereit. Genauer gesagt, 
ruft ein Client 132 in einem Prozeß 134 auf dem Client-Computer 92 Prozeduren auf Schnittstellen 87 der War-
11/29



DE 699 36 627 T2    2008.05.21
teschlangenkomponente 86 unter Nutzung der üblichen COM-Konventionen für synchrone Echtzeitinteraktion 
auf, einschließlich folgender Schritte: Erstellen des Objekts, beispielsweise über einen "CoGetObject()"-Aufruf 
oder einen "CoCreateInstance()"-Aufruf; Empfang eines Schnittstellenzeigers, beispielsweise durch Spezifi-
zieren eines Schnittstellenidentifikators (IID) in einem "CoCreatelnstance()"-API-Aufruf oder einem "Queryln-
terface()"-Aufruf; die Ausgabe von Aufrufen an das Objekt über dessen Tabelle der virtuellen Funktionen oder 
eine Dispatch-Schnittstelle (für dynamische Bindung) und schließlich die Freigabe des Objekts beispielsweise 
durch Aufrufen der "Release"-Prozedur des Objekts. (In einigen Implementierungen der Erfindung, wie bei-
spielsweise in der hier dargestellten QC-Architektur 130, kann der Client einen anderen Objekterstellungsme-
chanismus für in einer Warteschlange angeordnete Prozedur-Aufrufe (z. B. die oben beschriebene "CoGetOb-
ject()"-API und einen Warteschlangen-Moniker (unten beschrieben)) als für Aufrufe von Echtzeit-Prozeduren 
nutzen, wobei er allerdings Prozeduren des Objekts nach wie vor mittels normaler Aufrufsemantik aufruft.) Die 
Warteschlangenkomponente 86 andererseits ruft ihre Prozeduren über ihre Tabelle der virtuellen Funktionen 
oder eine Dispatch-Schnittstelle wie bei einem lokalen Prozedur-Aufruf auf. Anders formuliert, müssen der Cli-
ent 132 und die Warteschlangenkomponente 86 nicht so geschrieben werden, daß sie jegliche Nachrichten 
einreihende API nutzen, um in einer Warteschlange angeordnete Aufrufe von Prozeduren der Warteschlan-
genkomponente auszugeben oder zu empfangen.

[0067] Die Aufrufe von Prozeduren des Clients auf die Warteschlangenkomponente 86 werden auf einer Cli-
ent-Seite 140 der Client-zu-Objekt-Interaktion aufgezeichnet und zu einem späteren Zeitpunkt wieder abge-
spielt und an die Warteschlangenkomponente 86 auf einer Server-Seite 142 der Interaktion ausgegeben. Die 
dargestellte QC-Architektur 130 zeichnet alle Prozedur-Aufrufe des Clients auf der Warteschlangenkomponen-
te 86 auf und spielt die Prozedur-Aufrufe erst dann wieder ab, wenn der Client 132 seine Nutzung der Warte-
schlangenkomponente 86 abgeschlossen hat (d. h. nach Freigabe der Warteschlangenkomponente durch den 
Client). Falls der Client 132 an einer Transaktion beteiligt ist, gilt des Weiteren, daß die Prozedur-Aufrufe erst 
nach regulärem Abschluß der Transaktion wieder abgespielt werden.

[0068] Die dargestellte QC-Architektur 130 wird in der COM+-Komponente des Microsoft Windows NT 5.0 
Betriebssystems implementiert. Die COM+-Komponente stellt verschiedene Laufzeitobjekt-Dienste für auf 
dem Computersystem 20 laufende COM-Objekte bereit. Die Laufzeitdienste stellen eine Aufzeichnungsein-
richtung 150, eine Empfangseinrichtung 152 und eine Abspieleinrichtung 154 bereit, die in einer Warteschlan-
ge angeordnete Aufrufe von Prozeduren über normale Aufrufsemantik durch den Client 132 auf die Warte-
schlangenkomponente 86 ausführen. Die Aufzeichnungseinrichtung 150 fungiert als ein Proxy für die Warte-
schlangenkomponente, um das Arrangieren der Prozedur-Aufrufe des Clients mit deren Aufrufparametern und 
zugehörigen Daten in Nachrichten auszuführen, und nutzt außerdem eine Nachrichtenwarteschlangen bilden-
de API (wie beispielsweise die "Microsoft Message Queue" oder "MSMQ"), um die Nachrichten in eine der 
Warteschlangenkomponente 86 zugehörige Nachrichtenwarteschlange für Prozedur-Aufrufe 158 einzureihen. 
(Für weitere Details zu MSMQ siehe Microsoft Developer Network (MSDN) Library Edition – Juli 1998, SDK 
Documentation, Platform SDK, Networking and Distributed Services, Microsoft Message Queue Server 
(MSMQ).) Die Empfangseinrichtung 152 wartet darauf, daß Nachrichten an der Warteschlange 158 eintreffen, 
und sendet die Nachrichten, sobald sie eingetroffen sind, an die Abspieleinrichtung 154. Die Abspieleinrichtung 
154 macht das Arrangieren der Prozedur-Aufrufe rückgängig und gibt die Prozedur-Aufrufe an die Warte-
schlangenkomponente 86 aus.

[0069] Diese verschiedenen, zur QC-Architektur 130 gehörigen Teile werden nachfolgend genauer beschrie-
ben.

Warteschlangenkomponenten

[0070] Die Warteschlangenkomponente 86 in der dargestellten QC-Architektur 130 ist ein COM-Objekt, wel-
ches die oben beschriebe Struktur aufweist und in Fig. 3 dargestellt ist. Die Warteschlangenkomponente 86
ist dadurch gekennzeichnet, daß sie in einer Warteschlange angeordnete Aufrufe von Prozeduren unterstützt, 
indem sie den Schnittstellen der Komponente ein Attribut (das "QUEUEABLE"-Attribut) zuordnet. Der Entwick-
ler einer Komponente weist den Schnittstellen der Komponente das "QUEUEABLE"-Attribut durch Hinzufügen 
eines Schnittstellenattribut-Makros (d.h. des Wortes "QUEUEABLE") zur Schnittstellensektion der 
Schnittstellendefinitionssprachbeschreibung der Komponentenklasse zu. Alternativ kann der Entwickler das 
"QUEUEABLE"-Attribut mittels des oben beschriebenen "COM+-Explorer" setzen, welcher graphische Bedie-
nelemente in Objekteigenschaftfenstern ("sheet dialogs") zum Setzen der den Objekten in der dargestellten 
Ausführungsumgebung 80 zugewiesenen Attribute bereitstellt. In einigen erfindungsgemäßen Ausführungsfor-
men kann das "QUEUEABLE"-Attribut in einem Katalog 165, einer Registrierdatenbank des Betriebssystems 
oder einer anderen, mit dem Betriebssystem oder der spezifischen Anwendungssoftware assoziierten Konfi-
12/29



DE 699 36 627 T2    2008.05.21
gurationsdatenbank gespeichert sein.

[0071] Einige Attribute werden außerdem mit der COM+-Anwendung assoziiert, in welche die Warteschlan-
genkomponente 86 gepackt ist. Ein "Queued App"-Attribut zeigt an, ob die Objekte der COM+-Anwendung 
über in einer Warteschlange angeordnete Aufrufe von Prozeduren aufgerufen werden können. Ein "Queue Lis-
tener"-Attribut zeigt an, ob die COM+-Anwendung eine Warteschlangen-Empfangseinrichtung, wie beispiels-
weise die Empfangseinrichtung 152 (Fig. 2), starten sollte. Ebenso umfaßt ein "Queue BLOB"-Attribut 
MSMQ-Namen (als GUID-Formatnamen (GUID = global eindeutiger Identifikator) einer Menge von der 
COM+-Anwendung zugeordneten Warteschlangen. ("BLOB" ist ein Akronym für "Binary Large Object" (binäres 
großes Objekt)). In der dargestellten Architektur 130 sind die "Queued App"- und die "Queue Listener"-Attribute 
als Boolesche Marken gespeichert, die "on" oder "off" gesetzt werden können. Das "Queue BLOB"-Marken 
speichert MSMQ-Namen von fünf verschiedenen Warteschlangen. Das "Queued App"-Attribut und das 
"Queue Listener"-Attribut können von einem Anwendungsintegrator mittels eines COM+-Explorer-Werkzeugs, 
welches Kontrollkästchen-Elemente zum Setzen der "Queued App"- und "Queued Listener"-Attribute in einem 
COM+-Anwendungs-Eigenschaftsfenster bereitstellt, betrachtet und gekennzeichnet werden. Wenn die 
"Queued App"- und "Queue Listener"-Attribute auf "on" gesetzt wurden, generiert das Programm als Reaktion 
darauf das "Queue BLOB"-Attribut.

[0072] Wenn die COM+-Anwendung erstmalig erstellt wird, werden die "Queued App"- und "Queue Liste-
ner"-Attribute auf "off" gesetzt und das "Queue BLOB"-Attribut ist nicht vorhanden.

[0073] Wenn das "Queued App"-Attribut auf "on" gesetzt wird (z.B. durch Auswählen eines Kontrollkästchens 
im COM+-Explorer), initiiert der COM+-Explorer eine API-Funktion in den COM+-Laufzeitdiensten, die eine 
Menge von MSMQ-Warteschlangen für die COM+-Anwendung erstellt und deren MSMQ-Namen im "Queue 
BLOB"-Attribut speichert. Zusätzlich werden sowohl das "Queued App"- als auch das "Queue Listener"-Attribut 
auf "on" gesetzt. Der Anwendungsintegrator hat dann die Möglichkeit, die Kontrollkästchen eines dieser Attri-
bute im COM+-Explorer zu deaktivieren, um die Attribute auf "off" zu setzen. Das bedeutet, daß die COM+-An-
wendung nur Echtzeit-Prozedur-Aufrufe nutzen soll, obwohl sie ein Objekt enthält, das eine Warteschlangen-
komponente sein kann.

[0074] In der dargestellten QC-Architektur 130 werden die Schnittstellen der Warteschlangenkomponente 
vom Entwickler direkt mit dem "QUEUEABLE"-Attribut gekennzeichnet. Ein COM-Objekt gilt als eine in einer 
Warteschlange anordbare Komponente, wenn es mindestens eine als "QUEUEABLE" gekennzeichnete 
Schnittstelle besitzt. Befindet sich das Objekt in einer als eine "Queued App" gekennzeichneten COM+ Anwen-
dung, gilt es als Warteschlangenkomponente. Allerdings kann die Komponente in alternativen Ausführungsfor-
men der Erfindung auch selbst mit dem "QUEUEABLE"-Attribut gekennzeichnet werden. Alle Schnittstellen der 
gekennzeichneten Komponente, deren Prozeduren nur [in]-Parameter besitzen, würden dann als "QUEUEAB-
LE" gelten.

Aktivierung einer Warteschlangenkomponente

[0075] Wie oben beschrieben, erstellt der Client 132 die Warteschlangenkomponente 86 unter Nutzung nor-
maler COM-Aufrufsemantik, die auch für Echtzeit-Prozedur-Aufrufe genutzt wird. Genauer gesagt, erstellt der 
Client in der dargestellten QC-Architektur 130 die Warteschlangenkomponente 86 in einem Aufruf an die "Co-
GetObject()"-API (oder an die äquivalente "GetObject-"-API entsprechend der Programmiersprachensemantik 
von Visual Basic oder Visual Java), die eine gewöhnliche Objektinstanziierungs-API von COM ist. Der Client 
legt fest, daß die zu erstellende Warteschlangenkomponente mit in einer Warteschlange angeordneten Proze-
dur-Aufrufen genutzt wird, indem er "queue:/new" und anschließend die Programm-ID oder den Zeichenket-
ten-GUID (Global eindeutiger Identifikator) der Warteschlangenkomponente als "displayname"-Parameter des 
"CoGetObject()"-API-Aufrufs festlegt. Als Reaktion darauf parst die "CoGetObject()"-API diese Zeichenkette in 
einen neuen Moniker ("new"-Moniker) und einen Warteschlangen-Moniker ("queue"-Moniker), welche die "Co-
GetObject()"-API anschließend veranlaßt, sich an die Warteschlangenkomponente zu binden. Der neue Moni-
ker führt, wie auch die "CoCreatelnstance()"-API, die Verarbeitung zur Erstellung einer Instanz des Serverob-
jekts durch. Der Warteschlangen-Moniker führt die Verarbeitung zum Vorbereiten der in Fig. 4 dargestellten 
Aufzeichnungseinrichtung aus, damit der Client die in einer Warteschlange angeordneten Aufrufe von Proze-
duren für die Warteschlangenkomponente nutzen kann.

[0076] In alternativen Ausführungsformen kann der Client die Warteschlangenkomponente 86 erstellen, ohne 
in einer Warteschlange angeordnete Aufrufe von Prozeduren in der Instanziierungsanforderung explizit festzu-
legen, wenn die Warteschlangenkomponente die geeigneten Attribute aufweist (d.h. das mit seinen Schnittstel-
13/29



DE 699 36 627 T2    2008.05.21
len oder Klasse verbundene QUEUEABLE-Attribut). Der Client fordert einfach die Erstellung der Warteschlan-
genkomponenten-Instanz über die "CoGetObject()"- oder die "CoCreatelnstance()"-API an, und diese erstellen 
anschließend das Objekt als eine auf diesem Attribut basierende Warteschlangenkomponente.

[0077] Beispielhafte Objekt-Instanziierungsaufrufe sind in einer Programmliste 159 in Fig. 7 dargestellt.

Aufzeichnungseinrichtung

[0078] Unter genauerer Bezugnahme auf Fig. 4 ist die Aufzeichnungseinrichtung 130 in der dargestellten 
QC-Architektur 150 ein in einer COM+-DLL bereitgestelltes COM-Objekt. Die DLL der Aufzeichnungseinrich-
tung wird mit Hilfe eines Setup-Programms in ein COM+-bezogenes Verzeichnis auf dem Computer 20, wie 
beispielsweise "d:.\Program Files\Microsoft\COM+", installiert. Die Installation veranlaßt außerdem die DLL 
der Aufzeichnungseinrichtung, sich selbst zu registrieren, was das Speichern von die Aufzeichnungseinrich-
tung 150 identifizierenden Konfigurationsinformationen (wie beispielsweise des Klassenidentifikators, des 
DLL-Pfadnamens, von Attributen usw.) im Katalog oder einer anderen Konfigurationsdatenbank umfaßt.

[0079] In der dargestellten QC-Architektur umfaßt das Proxy-Objekt 160 eine als Proxy-Manager handelnde 
Aufzeichnungseinrichtung 150. Die Aufzeichnungseinrichtung steuert einen oder mehrere Schnittstellenpro-
xies 166 und 167, die eine Implementierung der Schnittstellen 87 der Warteschlangenkomponente 86 bereit-
stellen, um stellvertretend für die Warteschlangenkomponente 86 im Client-Prozeß 134 zu handeln und Aufrufe 
von Prozeduren des Clients 132 auf die Warteschlangenkomponente als direkte Aufrufe an die Proxy-Schnitt-
stellen zu empfangen. Die Generierung der Schnittstellenproxies 166–167 erfolgt gemäß der Standard-Mar-
shaling-Architektur des Microsoft COM RPC (d.h. sie werden aus Microsoft Schnittstellendefinitionssprachbe-
schreibungen(Microsoft Interface Definition Language)(MIDL))-Beschreibungen) der Warteschlangenkompo-
nente 86 generiert) oder gemäß dem Marshaler der Microsoft Automation Type Bibliothek. (Für eine umfang-
reichere und detailliertere Erörterung des Microsoft COM RPC siehe Brockschmidt: "Inside OLE", 2. Auflage, 
277–338 (Microsoft Press 1995)).

[0080] Genauer gesagt implementiert die als Proxy-Manager fungierende Aufzeichnungseinrichtung 150 eine 
"IUnknown"-Schnittstelle 162. Wie im vorstehenden Abschnitt über Komponentenanwendungsobjekte be-
schrieben, fordert der Client 132 einen Schnittstellenzeiger an, indem er in einem Aufruf an die "Querylnter-
face()"-Prozedur der "IUnknown"-Schnittstelle 162 einen Schnittstellenidentifikator (IID) der Schnittstelle fest-
legt. Unter der Voraussetzung, daß die festgelegte IID Teil einer in einem Katalog 165 (Fig. 2) aufgeführten 
unveränderlichen IID-Gruppe ist, lädt und aggregiert die Aufzeichnungseinrichtung 150 einen Schnittstel-
len-Proxy 166–167 (mitunter auch als „Facelet" bezeichnet), der von einem MIDL-Übersetzer der Stan-
dard-Marshaling-Architektur generiert ist, um eine Proxy-Schnittstelle 168–169 für die entsprechende Schnitt-
stelle der Warteschlangenkomponente, deren IID im Aufruf des Clients festgelegt ist, zu implementieren. Die 
Proxy-Schnittstellen 168–169 stimmen mit den Schnittstellen der Warteschlangenkomponente überein, welche 
abschließend instanziiert wird, um die in einer Warteschlange angeordneten Aufrufe von Prozeduren zu emp-
fangen.

[0081] Die Aufzeichnungseinrichtung 150 implementiert außerdem eine "IRpcChannelBuffer"-Schnittstelle 
170 und eine "IObjectControl"-Schnittstelle 172. Die "IObjectControl"-Schnittstelle 172 ist eine Schnittstelle, die 
über den Microsoft Transaktionsserver (MTS) definiert und von der Aufzeichnungseinrichtung 150 genutzt 
wird, um Benachrichtigungen über die Deaktivierung eines Objekts gemäß der "Just-In-Time"-Aktivierungs-
funktion von MTS (die in COM+ integriert ist) zu empfangen. Die "IRpcChannelBuffer"-Schnittstelle ist eine in 
der COM RPC Standard Marshaling-Architektur definierte Schnittstelle.

[0082] Die Schnittstellenproxies 166–167 werden vom MIDL-Übersetzer generiert, um die Prozeduraufrufe 
des Clients mit geeigneten Aufruf-Parametern und entsprechenden Daten aus dem Speicher des Client-Pro-
zesses 134 in einen Puffer zu arrangieren. Entsprechend der Standard Marshaling-Architektur des Microsoft 
COM RPC nutzen die Schnittstellenproxies 166–167 die "IRpcChannelBuffer"-Schnittstelle 170 (die eine in der 
Standard-Marshaling Architektur definierte Standard-COM-Schnittstelle ist), um den Puffer an den ASP 90 der 
Warteschlangenkomponente zu übertragen. Statt allerdings den Prozedur-Aufruf über einen Echtzeit-RPC zu 
übertragen, zeichnet die Implementierung der "IRpcChannelBuffer"-Schnittstelle 170 in der Aufzeichnungsein-
richtung 150 alle Prozeduraufrufe des Clients auf die Warteschlangenkomponente 86 (im Gegensatz zu den 
Aufrufen an die Prozeduren der "IUnknown"-Schnittstelle) in einem fortlaufenden Puffer auf. Die Aufzeich-
nungseinrichtung implementiert diese "IUnknown"-Prozeduren lokal und zeichnet somit diese Prozedur-Aufru-
fe im Puffer auf.
14/29



DE 699 36 627 T2    2008.05.21
[0083] Nachdem der Client die Nutzung der Warteschlangenkomponente abgeschlossen hat (d.h., der Client 
gibt seinen Verweis an die Warteschlangenkomponente frei), leitet der MSQM-Ressourcen-Dispenser 176 den 
Puffer der Prozedur-Aufrufe an MSMQ weiter. Nach dem erfolgreichen Abschluß der Transaktion des Clients 
sendet MSMQ den die aufgezeichneten Prozedur-Aufrufe enthaltenden fortlaufenden Puffer als eine Nachricht 
an die Nachrichtenwarteschlange 158 der COM+-Anwendung, welche die Warteschlangenkomponente 86 ent-
hält. Wird die Transaktion des Clients hingegen abgebrochen, verwirft der MSMQ den Puffer, sendet die Nach-
richt nicht, und die aufgezeichneten Prozedur-Aufrufe werden gelöscht. (In einigen Fällen, in denen ein Ab-
bruch der Transaktion droht, leitet der MSMQ-Ressourcen-Dispenser den Puffer ganz einfach nicht an MSMQ 
weiter, da der Puffer bei einem Prozeß-Abbruch ohnehin verworfen würde.) Der MSMQ-Ressourcen-Dispen-
ser 176 weist eine Schnittstelle 178 auf, um die Anfrage der Aufzeichnungseinrichtung zum Senden des ge-
pufferten Prozedur-Aufrufs an die Nachrichtenwarteschlange zu empfangen. Der MSMQ-Ressourcen-Dispen-
ser 176 stellt einen Cache von offenen MSMQ-Warteschlangen bereit und nutzt MSMQ-APIs, um den Puffer 
der Prozedur-Aufrufe über MSMQ an die Nachrichtenwarteschlange 158 zu senden.

Empfangseinrichtung

[0084] Unter erneuter Bezugnahme auf Fig. 2 ist die Empfangseinrichtung 152 ein von COM+ bereitgestelltes 
Objekt, das die die Warteschlangenkomponente 86 enthaltende Nachrichtenwarteschlange 158 der 
COM+-Anwendung überwacht. Die Empfangseinrichtung 152 wird beim Starten der COM+-Anwendung er-
stellt, wenn die COM+-Anwendung die in ihrem "Queue BLOB"-Attribut festgelegte Nachrichtenwarteschlange 
aufweist und die Nachrichtenwarteschlangen-Empfangseinrichtung auf "on" gesetzt ist. Die Empfangseinrich-
tung 152 öffnet die Nachrichtenwarteschlange 158 der COM+-Anwendung. und wartet auf den Eingang von 
Nachrichten. Sobald Nachrichten eingehen, fertigt die Empfangseinrichtung 152 einen Aktivitätsträger 
(Thread) ab, um eine Instanz der Abspieleinrichtung 154, welche die Nachrichten aufnimmt und verarbeitet, 
auszuführen. In der dargestellten QC-Architektur 130 ist eine einzelne Empfangseinrichtung 152 pro ASP 90
gezeigt.

[0085] Beim Starten der Empfangseinrichtung 152 kann die Nachrichtenwarteschlange 158 möglicherweise 
eine große Menge an Nachrichten von in einer Warteschlange angeordneten Aufrufen von Prozeduren meh-
rerer Clients 132 enthalten. Darüber hinaus kann die Empfangseinrichtung 152 verschiedene Nachrichtenwar-
teschlangen für COM+-Anwendungen im ASP 90 überwachen. Die Empfangseinrichtung 152 nutzt dagegen 
vorzugsweise einen Thread-Pool von geringerer Größe, von welchem die Threads der Abspieleinrichtung so 
verteilt werden, daß der Nachrichtenverarbeitungsdurchsatz maximiert wird. Die geringe Menge der Threads 
verhindert eine Überlastung des Prozessors des Server-Computers. Da ferner die in einer Warteschlange an-
geordneten Aufrufe von Prozeduren keine Echtzeit-Antwort erfordern, besteht nicht die Notwendigkeit, neue 
Threads für die in einer Warteschlange angeordneten Nachrichten sofort zu planen. Alternativ kann das Sam-
meln von Objektinstanzen der Warteschlangenkomponente mit einer nach oben und unten beschränkten An-
zahl von gesammelten Objekten genutzt werden, um eine Überlastung zu verhindern. Bei mehreren Nachrich-
tenwarteschlangen verteilt die Empfangseinrichtung 152 die Abfertigung der Threads der Abspieleinrichtung 
vorzugsweise angemessen auf die Warteschlangen, so daß die Nachrichten einer Warteschlange noch nicht 
vollständig abgefertigt sind, bevor die Abfertigung an einer anderen Schlange beginnt.

Abspieleinrichtung

[0086] Wie in Fig. 5 dargestellt, ist die Abspieleinrichtung 154 in ein in einer COM+-Utility-Bibliothek (eben-
falls eine DLL-Datei im COM+-Verzeichnis) bereitgestelltes COM-Objekt implementiert. Wie oben beschrie-
ben, wird die Abspieleinrichtung 154 im ASP 90 der Empfangseinrichtung durch die Empfangseinrichtung 152
erstellt und aufgerufen, wenn eine Nachricht mit Prozeduraufrufen für die Warteschlangenkomponente 86 ein-
geht. Die Abspieleinrichtung 154 hat ein auf "Transaktion angefordert" gesetztes Transaktionsattribut-Set. Die-
ses veranlaßt die COM+-Ausführungsumgebung 80, automatisch eine Transaktion zu starten, im Zuge welcher 
die Abspieleinrichtung gemäß der in obengenannter Patentanmeldung für Automatische Transaktionen be-
schriebenen Automatischen Transaktionsarchitektur erstellt wird. Die von der Abspieleinrichtung 154 an die 
Warteschlangenkomponente 86 wieder abgespielten Prozedur-Aufrufe werden außerdem automatisch mit die-
ser Transaktion in Beziehung gesetzt.

[0087] Nach der Erstellung ruft die Abspieleinrichtung 154 in der Empfangseinrichtung 152 Routinen auf, um 
die in einer Warteschlange angeordnete Nachricht, welche Prozedur-Aufrufe auf die Warteschlangenkompo-
nente 86 enthält, abzurufen. Die Abspieleinrichtung 154 holt zunächst einen Puffer und nutzt anschließend die 
Routinen der Empfangseinrichtung, um die Nachrichten über eine "MQReceiveMessage"-API-Operation (ein 
Standard-MSMQ-API-Verfahren) in den Puffer zu laden. Die "MQReceiveMessage"-API-Operation wurde zum 
15/29



DE 699 36 627 T2    2008.05.21
Teil der Transaktion der Abspieleinrichtung gemacht.

[0088] Danach instanziiert die Abspieleinrichtung 154 die Warteschlangenkomponente 86 im ASP 90 und fun-
giert als ein Stub-Manager in einem Stub-Objekt 180, der Schnittstellen-Stubs 182–183 steuert, die entspre-
chend der Standard Marshaling Architektur des Microsoft COM RPC (d. h. aus den Microsoft Schnittstellende-
finitionssprachbeschreibungen (MIDL-Beschreibungen) der Warteschlangenkomponente 86) oder entspre-
chend dem Marshaler der Microsoft Automation Type Library generiert sind. Als Stub-Manager lädt die Abspie-
leinrichtung 154 die (mitunter auch als "Stublets" bezeichneten) Schnittstellen-Stubs 182–183 für die Schnitt-
stelle 87 der Warteschlangenkomponente, sobald deren entsprechende Schnittstellenidentifikatoren (IIDs) in 
der Nachricht auftreten. Die Abspieleinrichtung 154 nutzt die Stublets 182–183, um das Arrangieren der Pro-
zedur-Aufruf-Daten aus der Nachricht rückgängig zu machen und die rückumgewandelten Prozedur-Aufrufe 
an die Warteschlangenkomponente 86 auszugeben. Die Abspieleinrichtung 154 interpretiert außerdem von 
der Aufzeichnungseinrichtung 150 eingegebene Sicherheitsköpfe durch Aufrufen der geeigneten Sicherheits-
dienste.

Ständige Server-seitige Abbrüche

[0089] Die Empfangseinrichtung 152 und die Abspieleinrichtung 154 kooperieren, um "vergiftete Nachrichten"
oder "ständige Server-seitige Abbrüche" zu behandeln. (Eine "vergiftete Nachricht" ist im gegebenen Kontext 
eine Nachricht, die Prozedur-Aufrufe umfaßt, die ständig zu Transaktionsabbrüchen führen, wenn sie an die 
Warteschlangenkomponente wieder abgespielt werden). Genauer gesagt wird, wenn es beim Wiederabspie-
len einer Gruppe von Prozedur-Aufrufen an die Warteschlangenkomponente 86 zu einem Abbruch der Trans-
aktion der Abspieleinrichtung kommt, die Arbeit der Warteschlangenkomponente wiederholt. Der Transaktions-
abbruch bewirkt zudem, daß MSMQ als Teil seiner Verarbeitung des Transaktionsabbruchs die Prozedur-Auf-
ruf-Nachricht zurück in die Nachrichtenwarteschlange 158 der COM+-Anwendung für einen Wiederholungslauf 
verschiebt. In der dargestellten QC-Architektur 130 bricht die Abspieleinrichtung 154 die Transaktion bei Emp-
fang eines einen Fehler oder einen Ausfall anzeigenden Rückgabewerts (z. B. eines HRESULT-Fehlerwerts) 
von der Warteschlangenkomponente 86 ab. Falls die Verarbeitung eines Prozedur-Aufrufs in der Warteschlan-
genkomponente einen Abbruch gewährleistet, kann die Warteschlangenkomponente 86 außerdem die "SetAb-
ort()"-Prozedur (wie in der obengenannten Patentanmeldung für Automatische Transaktionen beschrieben) 
aufrufen, um die Transaktion abzubrechen.

[0090] In der dargestellten QC-Architektur 130 sind fünf der COM+-Anwendung zugewiesene Nachrichten-
warteschlangen gezeigt, und zwar eine normale Eingabewarteschlange, eine erste Wiederholungswarte-
schlange, eine zweite Wiederholungswarteschlange, eine dritte Wiederholungswarteschlange und eine End-
ablage-Warteschlange. Die QC-Architektur nutzt diese Warteschlangen zur Behandlung von ständigen Ser-
ver-seitigen Abbrüchen. Insbesondere durchläuft die QC-Architektur 130, falls das Wiederabspielen der Pro-
zedur-Aufrufe an die Warteschlangenkomponente 86 mehrmals zu einem Transaktionsabbruch führt, folgende 
Schritte: (1) die Abspieleinrichtung 154 empfängt die Prozedur-Aufruf-Nachricht von der Warteschlange der 
COM+-Anwendung; (2) die Abspieleinrichtung 154 instanziiert die Warteschlangenkomponente 86 und spielt 
die Prozedur-Aufrufe an die Warteschlangenkomponente ab; (3) die Transaktion wird abgebrochen und wie-
derholt und (4) MSMQ sendet die Nachricht an den Anfang der Warteschlange der COM+-Anwendung, von 
welcher sie abgerufen wurde.

[0091] Bei nachfolgenden Abbrüchen durchlauft die Abspieleinrichtung 154 mit der „vergifteten Nachricht" die 
Folge der Wiederholungswarteschlangen der COM+-Anwendung. Alternative Ausführungsformen der QC-Ar-
chitektur können eine andere Anzahl an Wiederholungen und Intervallen als die nachfolgend für die dargestell-
te Architektur beschriebenen nutzen. Insbesondere sendet die Abspieleinrichtung 154 eine nach einem Ab-
bruch an die normale Eingabewarteschlange zurückgesandte Nachricht an die erste Wiederholungswarte-
schlange. Die Empfangseinrichtung 152 bedient die erste Wiederholungswarteschlange ein Mal pro Minute, 
bis diese abgearbeitet ist, wobei diese die Nachricht über die Abspieleinrichtung 154 in einem Intervall von 
etwa einer Minute an die Warteschlangenkomponente abspielt.

[0092] Wurde die Nachricht zum dritten Mal an die erste Wiederholungswarteschlange zurückgesandt, sen-
det die Abspieleinrichtung 154 die Nachricht an die zweite Wiederholungswarteschlange. Die Empfangsein-
richtung 152 bedient die zweite Widerholungswarteschlange im Drei-Minuten-Takt, bis diese abgearbeitet ist. 
Diese wiederum spielt die Nachricht über die Abspieleinrichtung 154 in denselben Zeitabständen an die War-
teschlangenkomponente 86 ab.

[0093] Wurde die Nachricht zum dritten Mal an die zweite Wiederholungswarteschlange zurückgesandt, sen-
16/29



DE 699 36 627 T2    2008.05.21
det die Abspieleinrichtung 154 die Nachricht an die dritte Wiederholungswarteschlange. Die Empfangseinrich-
tung 152 bedient die dritte Wiederholungswarteschlange im Fünf-Minuten-Takt, bis diese abgearbeitet ist. Die-
se wiederum spielt die Nachricht über die Abspieleinrichtung 154 in denselben Zeitabständen an die Warte-
schlangenkomponente 86 ab.

[0094] Wurde die Nachricht zum fünften Mal an die dritte Wiederholungswarteschlange zurückgesandt, sen-
det die Abspieleinrichtung 154 die Nachricht an die Endablage-Warteschlange der COM+-Anwendung. Die En-
dablage-Warteschlange wird allerdings nicht von der Empfangseinrichtung 152 bedient. Die Nachricht ver-
bleibt in der Endablage-Warteschlange, bis sie (mit Hilfe des unten beschriebenen Programms zum Verschie-
ben von Warteschlangenkomponenten-Nachrichten) verschoben oder mittels des MSMQ-Explorers (einem 
Hilfsprogramm zur Steuerung von MSMQ) bereinigt wird.

[0095] Bei jedem Abbruch erstellt die Abspieleinrichtung 154 eine Ereignislog-Nachricht. Die Abspieleinrich-
tung 154 erstellt eine zusätzliche Ereignislog-Nachricht, wenn eine Nachricht aus einer Warteschlange in eine 
andere Warteschlange verschoben wird. Sie erstellt außerdem eine weitere Nachricht, wenn die Nachricht in 
die Endablage-Warteschlange verschoben wird. Die Abspieleinrichtung 154 kann die Nachricht vor dem Ver-
schieben in eine andere Warteschlange zusätzlich so verändern, daß die Nachricht mehr Diagnoseinformation 
enthält.

[0096] Die Warteschlangenkomponente 86 kann optional einen zugeordneten Ausnahmezustandsbehandler 
188 umfassen, der durch einen für die Warteschlangenkomponente 86 im Katalog 165 eingetragenen 
„Exception_CLSID"-Eintrag festgelegt ist. Der Ausnahmezustandsbehandler ist ein COM-Objekt, das eine 
„IPlaybackControl"-Schnittstelle 190 unterstützt. Wenn der Ausnahmezustandsbehandler 188 für die Warte-
schlangenkomponente 86 registriert wird, ruft die Abspieleinrichtung 154 zunächst die "IPlaybackCont-
rol"-Schnittstelle 190 des Ausnahmezustandsbehandlers auf, bevor sie jegliche Prozedur-Aufrufe von der 
Nachricht wieder abspielt. Die Warteschlangenkomponente 86 kann die "IPlaybackControl"-Schnittstelle 190
selbst bereitstellen und sich selbst als Ausnahmezustandsbehandler im "Exception_CLSID"-Eintrag festlegen. 
Wird kein "Exception_CLSID"-Eintrag festgelegt, sucht die Abspieleinrichtung 154 außerdem nach diesem und 
ruft die "IPlaybackControl"-Schnittstelle 190 an der Warteschlangenkomponente 86 zur Ausnahmebehandlung 
auf.

[0097] Die "IPlaybackControl"-Schnittstelle 190 dient dazu, den Ausnahmezustandsbehandler 188 zu infor-
mieren, daß eine Nachricht kurz davor steht, in die Endablage-Warteschlange verschoben zu werden, um so 
eine alternative Behandlung des ständigen Abbruchs zu ermöglichen. Der Ausnahmezustandsbehandler kann 
die Sammlung von Problemdiagnose-Informationen oder die Erzeugung eines Objekts oder einer Nachricht, 
welches bzw. welche den Client über ein konsistentes und ernstes Problem als Reaktion auf die Aufrufe der 
Abspieleinrichtung an diese Schnittstelle informiert, implementieren. Besitzt die Warteschlangenkomponente 
86 keinen zugehörigen Ausnahmezustandsbehandler, wird die "vergiftete Nachricht" einfach in die Endabla-
ge-Wartschlange verschoben, wenn die Wiederholungen wie oben beschrieben abgearbeitet wurden. Existiert 
dagegen ein Ausnahmezustandsbehandler, ruft die Abspieleinrichtung 154 die Prozeduren der "IPlaybackCon-
trol"-Schnittstelle ein letztes Mal auf, bevor die Nachricht in die Endlage-Warteschlange verschoben werden 
würde. Führt das Wiederabspielen des Prozeduraufrufs an die Warteschlangenkomponente 86 bei diesem 
letzten Mal immer noch zu einem Abbruch, wird die „vergiftete Nachricht" in die Endablage-Warteschlange ver-
schoben.

[0098] Auf der Client-Seite kann es andererseits vorkommen, daß MSMQ die Nachricht nicht an die Einga-
bewarteschlange der COM+-Anwendung weiterleiten kann. Dies kann beispielsweise der Fall sein, wenn die 
Warteschlangen-Zugangskontrolle verhindert, daß die Nachricht vom Client an den Server gesandt wird. In ei-
nem solchen Fall sendet MSMQ die Nachricht an eine Client-seitige "Xact Dead Letter"-Warteschlange des 
Warteschlangenmanagers. Die QC-Architektur 130 stellt eine Vorrichtung zur Überwachung von Warteschlan-
gen für unzustellbare Nachrichten 194 bereit. Die Überwachungsvorrichtung 194 instanziiert den durch den 
"Exception_CLSID"-Katalog-Eintrag für die Warteschlangenkomponente 86 auf dem Client-Computer 92 fest-
gelegten Ausnahmezustandsbehandler 188 und gibt einen "Querylnterface()"-Aufruf mit dem IID der "IPlay-
backControl"-Schnittstelle 190 aus. Verläuft dies erfolgreich, ruft die Überwachungsvorrichtung die "IPlayback-
Control::FinalClientRetry()"-Prozedur auf und spielt die Prozedur-Aufrufe von der Nachricht an die Client-seiti-
ge Implementierung der Warteschlangenkomponente 86 wieder ab. Diese Client-seitige Warteschlangenkom-
ponente kann optional Diagnoseinformation bewahren oder Maßnahmen ergreifen, um die Wirkung einer vor-
angegangenen Transaktion umzukehren (auszugleichen). Wird das Wiederabspielen ausgeführt, dann wird 
die Nachricht aus der Warteschlange für unzustellbare Nachrichten entfernt. Wird das Wiederabspielen abge-
brochen oder sind der Ausnahmezustandsbehandler 188 und die "IplaybackControl"-Schnittstelle 190 nicht 
17/29



DE 699 36 627 T2    2008.05.21
verfügbar, verbleibt die Nachricht in der Warteschlange für unzustellbare Nachrichten zur manuellen Behand-
lung.

Programm zum Verschieben von Nachrichten von Warteschlangenkomponenten

[0099] Die QC-Architektur 130 stellt ein als „Programm zum Verschieben von Warteschlangenkomponenten"
bezeichnetes Verwaltungswerkzeug bereit, das es dem Systemverwalter oder einer anderen Person ermög-
licht, Nachrichten manuell aus einer Warteschlange der COM+-Anwendung in eine andere zu verschieben. 
Wie oben beschrieben, behandelt die QC-Architektur 130 ständige Server-seitige Abbrüche, indem sie die 
Nachricht in eine Endablage-Warteschlange verschiebt und so verhindert, daß die Empfangseinrichtung 152
und die Abspieleinrichtung 154 die Nachricht in einer „Endlosschleife" ununterbrochen wiederholen. In einigen 
Fällen läßt sich die Ursache der ständigen Abbrüche auf dem Server-Computer 84 beheben. So können Ab-
brüche beispielsweise dadurch hervorgerufen werden, daß eine Ressource (z. B. eine Datenbank) nicht ver-
fügbar ist. Nach einer manuellen Berichtigung dieser Situation kann die zuvor vergiftete Nachricht mit Hilfe des 
Programms zum Verschieben von Nachrichten von Warteschlangenkomponenten manuell zurück in die Ein-
gabewarteschlange der COM+-Anwendung verschoben werden, um so weitere Wiederholungen zu ermögli-
chen. Das Programm zum Verschieben Nachrichten von Warteschlangenkomponenten verschiebt die Nach-
richten vorzugsweise als eine Transaktion, so daß keine Nachrichten verloren gehen oder dupliziert werden, 
falls es während des Verschiebens zu einem Fehler kommt. Das Programm zum Verschieben von Nachrichten 
von Warteschlangenkomponenten kann programmäßig über OLE Automation, beispielsweise unter Nutzung 
einer Visual Basic Script, betrieben werden.

Schnittstellen

[0100] Fig. 8 zeigt eine Programmliste 200, welche die "IPlaybackControl"-Schnittstelle 190 definiert. Wie 
oben beschrieben, wird diese Schnittstelle durch den Ausnahmezustandsbehandler 188 implementiert, der im 
Katalog 165 für die Warteschlangenkomponente 86 registriert ist, um sich an der Nicht-Standard-Behandlung 
von ständigen Server-seitigen Abbrüchen und Client-seitigen MSMQ-Übermittlungsfehlern zu beteiligen. Die 
Schnittstelle 190 umfaßt eine "FinalClientRetry()"-Prozedur und eine "Final ServerRetry()"-Prozedur.

[0101] Die "FinalClientRetry()"-Prozedur informiert den Ausnahmezustandsbehandler 188 auf dem Cli-
ent-Computer 92 (falls dieser definiert ist), daß alle Versuche, die Nachricht über MSMQ an den Server-Com-
puter 84 zu übermitteln, abgelehnt wurden und die Nachricht in der "Xact Dead Letter"-Warteschlange 
(Xact-Warteschlange für unzustellbare Nachrichten) gelandet ist. So kann es möglicherweise sein, daß die Be-
rechtigungen der Warteschlange eine Übertragung der Nachricht an die Warteschlange nicht zulassen. Sobald 
Nachrichten in der "Xact Dead Letter"-Warteschlange eingehen, ruft die QC-Architektur 130 die "FinalClien-
tRetry()"-Prozedur auf, um so den Ausnahmezustandsbehandler zu informieren. Der Ausnahmezustandsbe-
handler kann dann eine auf die Warteschlangenkomponentenklasse bezogene Ausnahmemaßnahme, wie bei-
spielsweise das Aufzeichnen des Fehlers in anwendungsspezifischer Sprache oder das Senden einer 
Mail-Nachricht an den Endbenutzer oder Verwalter, oder sogar eine Client-seitige Kompensationsmaßnahme, 
wie beispielsweise das Umkehren der Wirkung einer vorangegangenen Transaktion, vornehmen. Falls der für 
die Warteschlangenkomponente identifizierte Ausnahmezustandsbehandler diese Schnittstelle nicht imple-
mentiert oder deren "FinalClientRetry()"-Prozedur-Aufruf ein Fehlerergebnis zurücksendet, verbleibt die Nach-
richt in der Xact-Warteschlange für unzustellbare Nachrichten.

[0102] Die "FinalServerRetry()"-Prozedur informiert den Ausnahmezustandsbehandler der Warteschlangen-
komponente auf dem Server-Computer 84, daß alle Versuche, die zurückgestellte Aktivierung an die Warte-
schlangenkomponente wieder abzuspielen, gescheitert sind (z. B. durch einen HRESULT-Fehler oder einen 
Transaktionsabbruch) und daß die Nachricht dabei ist, in die Endablage-Warteschlange der COM+-Anwen-
dung verschoben zu werden. Der Server-seitige Ausnahmezustandsbehandler kann eine auf die Warteschlan-
genkomponentenklasse bezogene Ausnahmemaßnahme, wie beispielsweise das Aufzeichnen des Fehlers in 
anwendungsspezifischer Sprache oder das Senden einer Mail-Nachricht an den Endbenutzer oder Verwalter, 
oder sogar eine Client-seitige Maßnahme, wie beispielsweise das Umkehren der Wirkung einer vorangegan-
genen Transaktion, vornehmen. Vorzugsweise sollte die Warteschlangenkomponente jede Anstrengung unter-
nehmen, um diese Transaktion erfolgreich abzuschließen, andernfalls ist für eine Wiederverarbeitung der 
Nachricht ein manueller Eingriff erforderlich. Falls der für die Warteschlangenkomponenten-Klasse registrierte 
Ausnahmezustandsbehandler die "PlaybackControl"-Schnittstelle nicht implementiert oder die Implementie-
rung des "FinalServerRetry()"-Aufrufs ein Fehlerergebnis zurücksendet oder die Transaktion abgebrochen 
wird, erfolgt die Verschiebung der Nachricht in die Endablage-Warteschlange.
18/29



DE 699 36 627 T2    2008.05.21
In einer Warteschlange angeordnete Prozedur-Aufrufe enthaltende Nachricht

[0103] Wie aus Fig. 9 und Fig. 10 ersichtlich, weist eine die Prozedur-Aufrufe des Clients umfassende Nach-
richt 220, die von der Aufzeichnungseinrichtung 130 in der QC-Architektur 130 aufgezeichnet wird, ein Format 
auf, das in Fig. 10 dargestellt ist und Datenstrukturen nutzt, die in der in Fig. 9 dargestellten Programmliste 
220 definiert sind. Gemäß diesem Nachrichtenformat umfaßt die Nachricht 220 einen Nachrichtenkopf 224 und 
einen Nachrichtenkörper 226. Der Nachrichtenkörper 226 umfaßt einen Behälter(container)-Abschnitt 228 und 
einen oder mehrere Prozedur-, Sicherheits- oder Diagnoseabschnitte 230. Die Behälter-, Prozedur-, Sicher-
heits- und Diagnoseabschnitte 228 und 230 beginnen mit einem geeigneten Abschnittstyp-Kopf 234, 236. Die 
Abschnittsköpfe 234, 236 umfassen weiterhin alle einen gemeinsamen Kopf (die "_CommonHeader"-Struktur 
in Fig. 9). Der Behälterabschnitt 228 besitzt einen Behälterabschnittskopf 234, wohingegen die Prozedurab-
schnitte jeweils einen langen oder kurzen Prozedurkopf 236 und Parameterdaten 238 umfassen.

[0104] Der Nachrichtenkopf 224 enthält eine Menge an entweder von der Aufzeichnungseinrichtung oder von 
MSMQ gesetzten Nachrichteneigenschaften, die mit dem Nachrichtenkörper übermittelt werden. Diese Nach-
richteneigenschaften umfassen eine Priorität, eine Nachrichten-ID, eine Korrelations-ID, einen MSMQ-Pfadna-
men und einen Antwortwarteschlangennamen. Die Priorität ist ein Wert, der gesetzt werden kann, um die Rei-
henfolge zu bestimmen, in welcher die Nachrichten von der Eingabewarteschlange der COM+-Anwendung 
wieder abgespielt werden. Ein höherer Prioritätswert kann von der Client-Anwendung zugewiesen werden, da-
mit bestimmte Operationen bevorzugt verarbeitet werden, wie beispielsweise bei einer Bankanwendung die 
Bevorzugung der Autorisierung von Kreditkarten vor der Verarbeitung von Schecks. Die Nachrichten-ID iden-
tifizert die einzelne Nachricht. Die Korrelations-ID wird in der QC-Architektur 130 genutzt, um eine Menge von 
in einer Warteschlange angeordnete Prozedur-Aufrufe enthaltenden Nachrichten in einem Arbeitsfluß zu grup-
pieren. Die ursprüngliche Nachricht, die den Arbeitsfluß beginnt, erstellt eine Nachricht mit einer nicht vorhan-
denen Korrelations-ID. Die Nachrichten-ID der ursprünglichen Nachricht wird zur Korrelations-ID aller inner-
halb des Arbeitsflusses nachfolgenden Nachrichten. Der MSMQ-Pfadname besteht aus dem Namen eines 
Zielcomputers, einem linksseitigen Schrägstrich (d.h. "\") und einem Namen einer Warteschlange auf dem Be-
stimmungscomputer, z.B. "MachineName\payroll". Ein Punkt als Maschinenname kennzeichnet "diesen Com-
puter", d.h. den Client-Computer. Der Name der Antwortwarteschlange kennzeichnet eine Warteschlange für 
Antwortnachrichten vom Server-Computer.

[0105] Der (in der Programmliste 206 von Fig. 9 durch die Strukturdeklaration "_CommonHeader" definierte) 
gemeinsame Kopf 232, 233 in jedem der Abschnitte 228, 230 umfaßt zwei Werte, und zwar einen Typ und eine 
Länge. Der Typwert identifiziert, wie in der nachstehenden Tabelle gezeigt, den Typ des Abschnitts. Der Län-
genwert bezieht sich auf die Länge des Abschnittkopfs und dessen Inhalte. Folglich wird durch das Hinzufügen 
der Länge an einen Zeiger auf den aktuellen "_CommonHeader" zum nächsten "_CommonHeader" überge-
gangen. 

[0106] Der Behälter-Abschnitt 228 umfaßt einen Behälter-Kopf 234. Wie durch die "_ContainerHeader"-Struk-
turdeklaration in Fig. 9 definiert, umfaßt der Behälter-Kopf 234 eine GUID-Signatur, Versionsnummern und ei-
nen Moniker zur Erstellung des Server-Objekts. Die GUID-Signatur ("guidSignature") identifiziert die Nachricht 
als eine Nachricht von einer Aufzeichnungseinrichtung an eine Abspieleinrichtung in der QC-Architektur 130. 
Unterschiedliche GUID-Signatur-Werte können genutzt werden, um verschiedene Abspieleinrichtungs-Klas-
sen zu identifizieren. Der Moniker ist eine Streamform eines COM-Monikers zur Erstellung der Warteschlan-
genkomponente 86. In alternativen Architekturen kann der Behälter-Kopf zusätzliche Werte umfassen, wie bei-
spielsweise eine Nachrichtenprotokollversionsnummer und Client-seitige Version-Identifikatoren.

[0107] Der (in den Strukturdeklarationen "_ShortMethodheader" und "_MethodHeader" in Fig. 9 definierte) 
Prozedur-Kopf 236 stellt einen Prozedur-Aufruf auf die Warteschlangenkomponente 86 dar. Der Proze-

Tabelle 1. Abschnittstypen-Feld

Abschnittstyp Feldwert

Behälter "CHDR"

Prozedur "METH"

Kurzprozedur "SMTH"

Sicherheit "SECD"

Sicherheitsverweis "SECR"

Diagnose "DIAG"
19/29



DE 699 36 627 T2    2008.05.21
dur-Kopf kann ein langer oder ein kurzer Kopf sein, wobei der Unterschied darin besteht, daß der lange Pro-
zedur-Kopf einen Schnittstellenidentifikator (IID) festlegt. Der IID für den kurzen Prozedur-Kopf wird vom neu-
esten langen Prozedur-Kopf, der in einem Links-Nach-Rechts-Durchlauf der gesamten Nachricht aufgetreten 
ist, impliziert. Der Prozedur-Kopf 236 umfaßt einen Prozedur-Identifikator, eine Datenrepräsentation, ein Mar-
kierungsfeld, eine Länge, eine Unterbrechungsmarkierung und einen IID (für einen langen Prozedur-Kopf). Der 
Prozedur-Identifikator ("dwMethodld") ist ein Index der Tabelle 104 der virtuellen Funktionen (Fig. 3) der auf-
zurufenden Prozedur. Die Datenrepräsentation umfaßt den "RPCOLEDATREP"-Wert von einer "RPCOLE-
MESSAGE" gemäß der Vereinbarung der Standard Marshaling Architektur von COM RPC, der einer der durch 
den Schnittstellenproxy 166–167 an die "IRPCChannelBuffer"-Schnittstelle 170 der Aufzeichnungseinrichtung 
150 während des Arrangierens des Prozedur-Aufrufs (Fig. 4) gemäß der Vereinbarung der Standard Marsha-
ling-Architektur von COM RPC dargestellten Parameter ist. Das Markierungsfeld umfaßt das "RPCOLEMES-
SAGE rpcFlags"-Feld gemäß der Vereinbarung der Standard Marshaling-Architektur von COM RPC, das auch 
von den Schnittstellenproxies an die Aufzeichnungseinrichtung 150 während des Arrangierens des Proze-
dur-Aufrufs dargestellt wird. Das Längenfeld umfaßt das "RPCOLEMESSAGE cbBuffer"-Feld gemäß Verein-
barung der Standard Marshaling-Architektur von COM RPC, das auch durch die Schnittstellenproxies an die 
Aufzeichnungseinrichtung 150 während des Arrangierens des Prozedur-Aufrufs dargestellt wird. Die Unterbre-
chungsmarkierung umfaßt entweder 0 oder 1, um die verwendete Arrangier-Prozedur anzuzeigen. Eine 0 be-
deutet, daß ein MDL-generierter Schnittstellenproxy genutzt wurde. Der IID in einem langen Prozedur-Kopf 
zeigt die Schnittstelle derjenigen Warteschlangenkomponente 86 an, deren Prozedur aufgerufen wurde.

[0108] Die Parameterdaten 238 im Prozedur-Abschnitt sind die vom Schnittstellenproxy 166–167 des Proze-
dur-Aufrufs erzeugten, arrangierten Parameterdaten.

[0109] Der Nachrichtenkörper 226 kann außerdem Sicherheitskopf-Abschnitte, Sicherheitsverweis-Abschnit-
te und Diagnoseabschnitte umfassen, wie sie im Abschnittstyp des gemeinsamen Kopfs des Abschnitts iden-
tifiziert sind (die Werte sind in obenstehender Tabelle 1 abgebildet). Ein Sicherheitskopf-Abschnitt umfaßt ei-
nen Sicherheitskopf entsprechend der "_SecurityHeader"-Datenstrukturdeklaration von Fig. 9. Ein Sicher-
heitskopf-Abschnitt umfaßt an der Aufzeichnungseinrichtung extrahierte Sicherheitsinformation, die zur Über-
prüfung des Zugangsprivilegs beim Wiederabspielen von Prozeduraufrufen genutzt wird. Diese Sicherheitsin-
formationen können sich von Prozedur zu Prozedur unterscheiden. Der Sicherheitsverweis-Abschnitt umfaßt 
einen Sicherheitsverweiskopf, der auf einen vorherigen Sicherheitskopf-Abschnitt in der Nachricht verweist, 
um eine Wiederholung der Sicherheitsinformationen zu vermeiden, wenn dieselben Sicherheitsinformationen 
einen nachfolgenden Prozedur-Aufruf in der Nachricht betreffen. Der Diagnose-Abschnitt besteht aus Daten, 
die an den Nachrichtenkörper angefügt werden, wenn die Nachricht nach einem Server-seitigen Abbruch zwi-
schen Warteschlangen der COM+-Anwendung verschoben wird. Die Diagnosedaten können beispielsweise 
die Zeit und die Ursache für den Fehler umfassen. Die Diagnose-Abschnitte werden von der Abspieleinrichtung 
154 während des Wiederabspielens der Nachricht ignoriert, können allerdings zur Vereinfachung eines manu-
ellen Eingriffs genutzt werden (z.B. nachdem die Nachricht in der Endablage-Warteschlange der COM+-An-
wendung eingeht).

[0110] Nachdem Prinzipien unserer Erfindung unter Bezugnahme auf eine dargestellte Ausführungsform be-
schrieben und dargestellt wurden, ist festzuhalten, daß die dargestellte Ausführungsform hinsichtlich ihrer Ge-
staltung und Details geändert werden kann, ohne daß sie von diesen Prinzipien abweicht. Es versteht sich, 
daß, sofern nichts Anderweitiges angegeben ist, die vorstehend beschrieben Programme, Prozesse oder Ver-
fahren sich weder auf einen bestimmten Typ einer Computervorrichtung beziehen noch auf einen solchen be-
schränkt sind. Verschiedene Computervorrichtungstypen für allgemeine oder spezielle Anwendungen können 
in Verbindung mit der vorstehend beschriebenen Lehre genutzt werden oder dieser entsprechende Operatio-
nen ausführen. Bestandteile der dargestellten, in Software abgebildeten Ausführungsform können in Hardware 
implementiert werden und umgekehrt.

[0111] Angesichts der zahlreichen möglichen Ausführungsformen, auf welche sich die Prinzipien unserer Er-
findung anwenden lassen, ist festzuhalten, daß die dargelegten Ausführungsformen lediglich illustrativen Cha-
rakter besitzen und nicht als den Umfang unserer Erfindung einschränkend zu betrachten sind. Vielmehr be-
anspruchen wir als unsere Erfindung jedwede Ausführungsformen, die in den Bereich der nachfolgenden An-
sprüche fallen, sowie diesbezügliche Äquivalente.

Patentansprüche

1.  Objektlaufzeitdienste-System (130) in einem verteilten Computernetzwerk zum Laufenlassen von Ob-
jekten (86) auf einem Computer, wobei die Objekte auf objektseitigen Computer Schnittstellen (87) mit Proze-
20/29



DE 699 36 627 T2    2008.05.21
duren zum Aufrufen durch Clients (132) auf Client-seitigen Computer in dem verteilten Computernetzwerk auf-
weisen, wobei ein mit den Objektschnittstellen (87) verbundenes Attribut das Objekt als in einer Wartschlange 
angeordnete Aufrufe von Prozeduren unterstützend identifiziert, wobei das System umfaßt:  
eine Referenz zur Verwendung durch einen Client (132) auf einem Client-seitigen Computer zum asynchronen 
Aufrufen von Prozeduren eines Objekts;  
eine Aufzeichnungseinrichtung (150) auf einem Client-seitigen Computer, die betreibbar ist, um als ein Proxy 
zu fungieren und stellvertretend für das Objekt (86) zu handeln und Aufrufe von Prozeduren des Clients für das 
Objekt als direkte Aufrufe zum stellvertretenden Handeln für Schnittstellen zu empfangen, wodurch eine Un-
terbrechung einer Vielzahl von Aufrufen von Prozeduren bewirkt wird, die in einer ersten Transaktion durch ei-
nen Client (132) abgegeben wurden, um Prozeduren eines Objekts (86) auf einem Objekt-seitigen Computer 
aufzurufen, und die Aufrufe von Prozeduren als eine Nachricht aufzuzeichnen;  
eine Nachrichtenwarteschlange (158) zum Einreihen der Nachricht zu einem späteren Zeitpunkt, wobei die 
Nachricht bei erfolgreichem Abschluß der ersten Transaktion an die Nachrichtenwarteschlange übergeben 
wird; und  
eine Abspieleinrichtung (154) auf dem Objekt-seitigen Computer, die betreibbar ist, um die Aufrufe von Proze-
duren aus der Nachricht zu extrahieren und die Aufrufe von Prozeduren an das Objekt zu einem späteren Zeit-
punkt in einer zweiten Transaktion auszugeben.

2.  System nach einem vorangehenden Anspruch, dadurch gekennzeichnet, daß die Aufzeichnungseinrich-
tung (150) bewirkt, daß eine Datenstromdarstellung (230) der Vielzahl von Aufrufen von Prozeduren in einer 
Prozeduraufrufnachricht zur Eingabe in die Nachrichtenwarteschlange (158) arrangiert wird.

3.  System nach einem vorangehenden Anspruch, dadurch gekennzeichnet, daß die Abspieleinrichtung 
(154) als Antwort auf Empfangen einer Datenstromdarstellung der Vielzahl von Aufrufen von Prozeduren in ei-
ner Nachricht das Arrangieren der Datenstromdarstellung rückgängig macht und die Aufrufe von Prozeduren 
an die Objektklasseninstanz (86) ausgibt.

4.  System nach einem vorangehenden Anspruch, ferner umfassend:  
einen Objektkonfigurationsspeicher (165), der Informationen über Objekteigenschaften enthält, die Eigen-
schaften von in dem System ausführbaren Objektklassen repräsentieren, wobei die Informationen über Objek-
teigenschaften angeben, welche Objektklassen in einer Warteschlange angeordnete Aufrufe von Prozeduren 
unterstützen.

5.  System nach Anspruch 4, ferner umfassend:  
eine Einrichtung (150, 160) zur Aufzeichnung von Aufrufen von Prozeduren, die betreibbar ist, um besagte Auf-
zeichnungseinrichtungen (150) für Objektinstanzen von Objektklassen bereitzustellen, die zum Unterstützen 
von in einer Warteschlange angeordneten Aufrufen von Prozeduren vorgesehen sind.

6.  System nach einem vorangehenden Anspruch, ferner umfassend: eine Einrichtung (154, 180) zur Wi-
dergabe von Aufrufen von Prozeduren, die betreibbar ist, um genannte Abspieleinrichtungen (154) für Objek-
tinstanzen von Objektklassen bereitzustellen, die zum Unterstützen von in einer Warteschlange angeordneten 
Aufrufen von Prozeduren vorgesehen sind.

7.  System nach einem vorangehenden Anspruch, dadurch gekennzeichnet, daß die Aufzeichnungseinrich-
tung bei Abschluß der Transaktion die Nachricht an die Programmierschnittstelle für Nachrichtenwarteschlan-
genbildungsanwendungen übergibt.

8.  System nach Anspruch 7, dadurch gekennzeichnet, daß die Abspieleinrichtung die Aufrufe von Proze-
duren an das Objekt in einer separaten Transaktion ausgibt.

9.  System nach einem vorangehenden Anspruch, dadurch gekennzeichnet, daß die Aufzeichnungseinrich-
tung die Nachricht an die Programmierschnittstelle für Nachrichtenwarteschlangenbildungsanwendungen 
übergibt, nachdem der Client eine Referenz zu dem Objekt freigibt.

10.  Verfahren zum asynchronen Remoting von Aufrufen von Prozeduren eines Client-Programms (132) 
auf einem Client-seitigen Computer an ein Objekt (86) auf einem Objekt-seitigen Computer über eine Nach-
richtenwarteschlange (158), in Computer in einem verteilten Computernetzwerk (86, 92), wobei das Verfahren 
umfaßt:  
Bereitstellen einer Referenz zur Verwendung durch einen Client (132) auf einem Client-seitigen Computer zum 
asynchronen Aufrufen von Prozeduren eines Objekts (86);  
21/29



DE 699 36 627 T2    2008.05.21
als Antwort auf die Ausgabe eines Satzes von Aufrufen von Prozeduren für das Objekt in einer ersten Trans-
aktion eines Clients: Empfangen von Aufrufen von Prozeduren des Clients an dem Objekt als direkte Aufrufe 
an Proxy-Schnittstellen, wodurch der Satz von Aufrufen von Prozeduren unterbrochen wird, und Aufzeichnen 
der Aufrufe von Prozeduren des Satzes in einer Nachricht;  
Eingabe der Nachricht in eine mit dem Objekt verbundene Nachrichtenwarteschlange;  
Einreihen der Nachricht zu einem späteren Zeitpunkt, wobei die Nachricht bei erfolgreichem Abschluß der ers-
ten Transaktion in die Nachrichtenwarteschlange eingereiht wird; und  
Extrahieren der Aufrufe von Prozeduren aus der Nachricht; und  
Ausgeben der Aufrufe von Prozeduren an das Objekt auf dem Objekt-seitigen Computer zum späteren Zeit-
punkt in einer zweiten Transaktion.

11.  Computerprogramm mit computerlesbaren Codes, die geeignet sind, um alle Schritte von Anspruch 10 
durchzuführen, wenn das Programm auf einem Computer läuft.

12.  Computerprogramm nach Anspruch 11, ferner umfassend: eine Aufzeichnungskonstruktionseinrich-
tung, die eine Aufzeichnungseinrichtung als Antwort auf eine Anforderung einer Referenz zu einem Objekt (86) 
eines Clients (132) erzeugt.

13.  Computerprogramm nach Anspruch 11 oder 12, dadurch gekennzeichnet, daß die Aufzeichnungsein-
richtung Daten der Aufrufe von Prozeduren in einem Datenstrom einer Nachricht arrangiert und die Nachricht 
in eine mit dem Objekt verbundene Warteschlange eingibt.

14.  Computerprogramm nach einem der Ansprüche 11 bis 13, dadurch gekennzeichnet, daß die Abspiel-
einrichtungsextraktion Rückgängigmachen des Arrangierens des Datenstroms in der Nachricht umfaßt.

15.  Computerprogramm nach einem der Ansprüche 11 bis 14, verkörpert in einem computerlesbaren Me-
dium.

Es folgen 7 Blatt Zeichnungen
22/29



DE 699 36 627 T2    2008.05.21
Anhängende Zeichnungen
23/29



DE 699 36 627 T2    2008.05.21
24/29



DE 699 36 627 T2    2008.05.21
25/29



DE 699 36 627 T2    2008.05.21
26/29



DE 699 36 627 T2    2008.05.21
27/29



DE 699 36 627 T2    2008.05.21
28/29



DE 699 36 627 T2    2008.05.21
29/29


	Titelseite
	Beschreibung
	Patentansprüche
	Anhängende Zeichnungen

