METHODS AND COMPOSITIONS FOR TREATING CELIAC DISEASE

Inventors: Detlef Schuppan, Mainz (DE); Yvonne Junker, Kiel (DE); Tonia Libermann, Chestnut Hill, MA (US); Simon T. Dillon, Danvers, MA (US)

Appl. No.: 13/695,349
PCT Filed: Apr. 29, 2011
PCT No.: PCT/US11/34516
§ 371 (c)(1), (2), (4) Date: Jun. 17, 2013

Related U.S. Application Data

Provisional application No. 61/330,043, filed on Apr. 30, 2010, provisional application No. 61/417,613, filed on Nov. 29, 2010.

Publication Classification

Int. Cl.
C07K 16/18 (2006.01)

U.S. Cl.
CPC C07K 16/18 (2013.01)
USPC 424/172.1; 530/389.8; 530/388.2; 530/387.3

ABSTRACT

The invention features the treatment of gastrointestinal disorders associated with an innate immune response triggered by alpha amylase inhibitor CM3, alpha amylase inhibitor 0.19 (0.19), CM1, CM2, CMa, CMd, CM16, CBm, CMX1/CMX3, CMX2, and/or alpha amylase inhibitor 0.53 (0.53). To this end, the invention features pharmaceutical compositions including neutralizing antibodies to CM3, 0.19, CM1, CM2, CMa, CMd, CM16, CBm, CMX1/CMX3, CMX2, and/or 0.53, food products containing reduced levels of CM3, 0.19, CM1, CM2, CMa, CMd, CM16, CBm, CMX1/CMX3, CMX2, and/or 0.53 protein, the use of oral TLR4 inhibitors to block the effect of said alpha-amylase inhibitors, assays for identifying CM3, 0.19, CM1, CM2, CMa, CMd, CM16, CBm, CMX1/CMX3, CMX2, and/or 0.53 content in food products, and assays for diagnosing subjects with a disorder related to CM3, 0.19, CM1, CM2, CMa, CMd, CM16, CBm, CMX1/CMX3, CMX2, and/or 0.53 triggered innate immune responses.
Fig 5

A

IL-8 (ng/ml)

Medium
LPS 10ng/ml
PT gliadin 250µg/ml
we gliadin 250µg/ml
we gliadin 100µg/ml
we zin 50µg/ml
we zin 100µg/ml

B

IL-8 (pg/ml)

Medium
LPS 10ng/ml
PT gliadin 100µg/ml
ATI 1µg/ml
ATI 2µg/ml
ATI 5µg/ml
ATI 10µg/ml
ATI 20µg/ml

C

IL-8 (ng/ml)

Medium
LPS 1ng/ml
ATI 10µg/ml

D

KC (pg/ml)

Medium
LPS 10ng/ml
ATI 100µg/ml
we gliadin 100µg/ml
we zin 100µg/ml

E

IL-8 (pg/ml)

Medium
LPS 100ng/ml
PT gliadin 100µg/ml
PT zin 100µg/ml
ATI 100µg/ml

F

IL-8 (pg/ml)

Medium
LPS 100ng/ml
PT gliadin 100µg/ml
PT zin 100µg/ml
ATI 100µg/ml
Fig 7

A

(kDa)

25

20

15

10

20

15

10

Flag-CM3

B

IL-8 (pg/ml)

50

30

10

5

Medium

LPS 100μg/ml

AT 50μg/ml

CM 50μg/ml

C

HEK-TLR4

Mock

CM3

p-NF-κB/p65 (S536)

p-IRF3 (S396)

β-actin

D

HEK293

HEK293/CM3

HEK-TLR4

HEK-TLR4/CM3
Fig. 9

A

<table>
<thead>
<tr>
<th></th>
<th>Cell</th>
<th>Pallet</th>
<th>Sup</th>
<th>Media</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mock</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CM3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

WB: α-FLAG

B

Coomassie WB: α-FLAG

C

Interleukin-8 (ng/ml)

<table>
<thead>
<tr>
<th></th>
<th>Unstirred</th>
<th>Mock-treated</th>
<th>CM3</th>
<th>0.19</th>
<th>Ctrl AT1</th>
<th>Flag peptide</th>
<th>PT Glutathin</th>
<th>LPS</th>
</tr>
</thead>
</table>

D

HEK-TLR4

- p-NF-κB/p65 (S536)
- NF-κB/p65
- p-IRF3 (S398)
- IRF3
- β-actin
METHODS AND COMPOSITIONS FOR TREATING CELIAC DISEASE

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This application claims benefit of U.S. Provisional Application Nos. 61/330,043, filed Apr. 30, 2010 and 61/417, 613 filed Nov. 29, 2010, each of which is hereby incorporated by reference.

STATEMENT AS TO FEDERALLY FUNDED RESEARCH

[0002] This work was supported by grant number NIH 1R21AI078385-01 from the United States National Institutes of Health. The Government has certain rights in the invention.

BACKGROUND OF THE INVENTION

[0003] This invention relates to the treatment of celiac disease with compounds that decrease inflammation resulting from contact with wheat alpha Amylase inhibitors, including CM3 or 0.19.

[0004] Celiac disease (CD) is an inflammatory small intestinal disorder, often accompanied by a malabsorptive syndrome which is caused in part by an uncontrolled immune reaction to ingested gluten proteins. The prevalence of this disease in affected populations such as the US, the Middle East, or Europe is 0.5-2.5%. Untreated CD patients can develop severe secondary morbidity, such as T cell lymphoma and autoimmune diseases. The disorder is considered to be the result of a complex interplay of intrinsic (genetic) and variable extrinsic (environmental) factors that explain the wide spectrum of clinical manifestations ranging from asymptomatic to severe malabsorption. Gluten peptides are efficiently presented by celiac disease-specific HLA-DQ2- and HLA-DQ8-positive antigen-presenting cells, and thus drive the adaptive immune response, predominantly in the connective tissue of the lamina propria. Tissue transglutaminase (Tg), which has been identified as the highly specific endomysial autoantigen, is increasingly released from cells during inflammation. It usually potentiates antigen presentation by HLA-DQ2 and HLA-DQ8 by deamidating and cross-linking gluten peptides. The result is lamina propria T-cell activation and mucosal transformation by activated intestinal mononuclear cells and fibroblasts.

[0005] Currently, celiac disease is typically treated with a strict gluten free diet. However, a gluten free diet is difficult to maintain and non-dietary treatment alternatives are urgently needed. Moreover, even a gluten free diet may not lead to remission in patients with refractory celiac disease.

SUMMARY OF THE INVENTION

[0006] The invention features a pharmaceutical composition including an antibody (e.g., a polyclonal, monoclonal, or humanized antibody) against alpha amylosi inhibitor CM3, alpha amylase inhibitor 0.19 (0.19), CM1, CM2, CMa, Cm0, CM16, CMb, CMX1/CMX3, CMX2, alpha amylase inhibitor 0.53 (0.53), and structurally and functionally related molecules (collectively termed AAI). The antibody can be formulated for, e.g., oral administration (e.g., in milk or colostrum). Furthermore, the antibody can be produced in the milk or colostrum of a mammal (e.g., goat or cow). Also, the antibody can be formulated to be active in the intestine.

[0007] In another aspect, the invention features a method of treating a gastrointestinal disorder (e.g., celiac disease, ulcerative colitis, Crohn’s disease, or irritable bowel syndrome) by administering any of the pharmaceutical compositions described above or an oral or systemic TLR4 inhibitor (e.g., as described below). The pharmaceutical composition can be administered immediately prior to, during or after a meal, or can be administered, e.g., once, twice, or three times daily.

[0008] In another aspect, the invention features a method of determining a substance’s potency in inducing a negative gastrointestinal reaction by measuring the AAI content of the substance, where the measurement is indicative of the potency of the substance in inducing a negative gastrointestinal reaction. This method can include dispersing all or a fraction of the substance in an aqueous solution, contacting the solution with an antigen specific for an AAI (e.g., an antibody bound to a substrate) under conditions conducive to specific binding, and measuring the amount of the antibody bound to the AAI. In one embodiment, this method features an ELISA assay.

[0009] In another aspect, the invention features a method of testing the sensitivity of a subject to ingestion of AAI containing substances by measuring the levels (e.g., with an ELISA assay) of anti-AAI antibody in sample isolated from the subject (e.g., a blood or stool sample) where the levels are indicative of the sensitivity of the subject to ingestion of AAI containing substances.

[0010] In yet another aspect, the invention features a method of reducing the potency of a substance in inducing a negative gastrointestinal reaction by reducing the AAI content of the substance (e.g., through enzymatic degradation, disulfide reduction, or separation of AAI).

[0011] In a related aspect, the invention features a cereal product (e.g., wheat, rye, barley, oats, corn or rice) including reduced levels of AAI protein (e.g., through enzymatic degradation, disulfide reduction, separation, or by derivation from cereals engineered to express AAI at decreased levels) compared to levels of AAI in naturally occurring cereal products.

[0012] In another aspect, the invention features a nucleic acid construct encoding an RNAi molecule against AAI and a vector including a nucleic acid construct encoding an RNAi molecule against AAI. The invention also features a transgenic plant including any of the above nucleic acid constructs or vectors. These transgenic plants can be processed into food products with decreased AAI content thereby resulting in less potent induction of a negative gastrointestinal reaction in a subject with a gastrointestinal disorder (e.g., celiac disease, ulcerative colitis, and Crohn’s disease).

[0013] By “wheat alpha Amylase inhibitor AAI”, and specifically “CM3” and “0.19,” is meant any polypeptide having the activity of full-length CM3 or 0.19 protein:

\[
\text{CM3:} \quad \text{(SEQ ID NO:1)}
\]

\[
\text{MACKSCSSLALLAVLELVLAAASAGGCSCVPQVRTHFHPYDVL}
\]

\[
\text{QQTCCGTPPGSLPENWRTSASITIPGKFLAVLXYCCOELAEISQGCRCEA}
\]

\[
\text{LRYFPALVPSQPDPSISNOSLGLIDLPFCPENQHDVFVLLVAPOQ}
\]

\[
\text{CNLATHNVRVPQVEQPLYWIDYEDDDK}
\]
0.19: (SEQ ID NO: 2)
SGPWMCYPGQAFOWPALPACRPLLRLOCNGSOVPEAWLRDCCQQLAHIS
EMCRCGALISXMDSMYKHAGQSBQAGTFQPCREREVYKLTASTAV
CRFLVEOSGQGAYCVDDAAYPD

[0014] The terms "wheat alpha Amylase inhibitor CM3," or "CM3," "wheat alpha Amylase inhibitor 0.19," or "0.19," also are used herein to refer to CM3 or 0.19 fragments, which may be, e.g., functional, antigenic, and/or immunogenic. Further, these terms also encompass CM3 or 0.19 polypeptides or fragments including additional terminal amino acids, e.g., an amino terminal methionine.

[0015] By the “activity of full-length CM3 protein”, or the “activity of full-length 0.19 protein” is meant binding to TLR4 and induction of IL-8 secretion in monocytes, macrophages, or dendritic cells as described herein.

[0016] The terms “wheat alpha Amylase inhibitor CM3,” “CM3,” “wheat alpha Amylase inhibitor 0.19," or “0.19" are also used herein to refer to proteins or peptides having at least 20%, e.g., at least 25%, 30%, 40%, 50%, 60%, 70%, 75%, 80%, or 90% (e.g., at least 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99%) amino acid sequence identity to the sequence of SEQ ID NO:1 or SEQ ID NO:2. Proteins having such amino acid sequence identity can, e.g., have cysteine residues at positions corresponding to the amino acid residue located in the CM3 protein at residue numbers 29, 43, 83, 84, 94, 96, 130, and 159.

[0017] The terms “CM1,” “CM2,” “CMa,” “CM16,” “CMb,” “CMX1/CMX3,” “CMX2,” and “alpha amylose inhibitor 0.53” (0.53) are used herein to refer to protein fragments, which may be, e.g., functional, antigenic, and/or immunogenic. Further, these terms also encompass CM1, CM2, CMa, 5 CMd, CM16, CMb, CMX1/CMX3, CMX2, and 0.53 polypeptides or fragments including additional terminal amino acids, e.g., an amino terminal methionine.

[0018] The terms “CM1,” “CM2,” “CMa,” “CM16,” “CMb,” “CMX1/CMX3,” “CMX2,” and 0.53 are also used herein to refer to proteins or peptides having at least 20%, e.g., at least 25%, 30%, 40%, 50%, 60%, 70%, 75%, 80%, or 90% (e.g., at least 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99%) amino acid sequence identity to the sequence of SEQ ID NOs: 6-11, respectively having the activity of binding to TLR4 and induction of IL-8 secretion in monocytes, macrophages, or dendritic cells as described herein. Proteins having such amino acid sequence identity can, e.g., have cysteine residues at positions corresponding to the amino acid residue located in the CM3 protein at residue numbers 29, 43, 83, 84, 94, 96, 130, and 159.

[0019] By “polypeptide,” “polypeptide fragment,” or “peptide” is meant a chain of two or more (e.g., 10, 15, 20, 30, 50, 100, or 175, or more) amino acids, regardless of any post-translational modification (e.g., glycosylation or phosphorylation), constituting all or part of a naturally or non-naturally occurring polypeptide, fragment, or peptide. By “post-translational modification” is meant any change to a polypeptide or polypeptide fragment made during or after synthesis. Post-translational modifications can be produced naturally (such as during synthesis within a cell) or generated artificially (such as by recombinant or chemical means). A “protein” can be made up of one or more polypeptides.

[0020] The term “identity” is used herein to describe the relationship of the sequence of a particular nucleic acid molecule or polypeptide (or a fragment thereof) to the sequence of a reference molecule of the same type (or a fragment thereof). For example, if a nucleic acid or amino acid molecule has the same nucleotide or amino acid residue at a given position, as compared to a reference molecule to which it is aligned, there is said to be “identity” at that position. The level of sequence identity of a nucleic acid molecule or a polypeptide to a reference molecule is typically measured using sequence analysis software with the default parameters specified therein, such as the introduction of gaps to achieve an optimal alignment (e.g., Sequence Analysis Software Package of the Genetics Computer Group, University of Wisconsin Biotechnology Center, 1710 University Avenue, Madison, Wis. 53705, BLAST, or PILUP/PRETTYBOX programs). These software programs match identical or similar sequences by assigning degrees of identity to various substitutions, deletions, or other modifications.

[0021] The sequence of a nucleic acid molecule or polypeptide is said to be “substantially identical” to that of a reference molecule if it exhibits, over its entire length, at least 51%, e.g., at least 55%, 60%, 65%, 70%, 75%, 80%, 90% (e.g., at least 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99%) identity to the sequence of the reference molecule. For polypeptides, the length of comparison sequences may be, for example, at least 10, 15, 20, 30, 50, 100, or 175, or more amino acids.

[0022] A molecule, e.g., an oligonucleotide probe or primer, a gene or fragment thereof, a cDNA molecule, a polypeptide, or an antibody, can be said to be “detectably-labeled” if it is marked in such a way that its presence can be directly identified in a sample. Methods for detectably labeling molecules are well known in the art and include, without limitation, radioactive labeling (e.g., with an isotope, such as 32P or 35S) and nonradioactive labeling (e.g., with a fluorescent label, such as fluorescein).

[0023] By a “substantially pure” polypeptide (e.g., antibody) is meant a polypeptide (or a fragment thereof) that has been separated from proteins and organic molecules that naturally accompany it. Typically, a polypeptide is substantially pure when it is at least 60%, by weight, free from the proteins and naturally occurring organic molecules with which it is naturally associated. For example, the polypeptide can be a polypeptide that is at least 75%, 90%, or 99%, by weight, pure. A substantially pure polypeptide can be obtained, for example, by extraction from a natural source, by expression of a recombinant nucleic acid molecule encoding a polypeptide, or by chemical synthesis. Purity can be measured by any appropriate method, e.g., by column chromatography, polyacrylamide gel electrophoresis, or HPLC analysis.

[0024] A polypeptide is substantially free of naturally associated components when it is separated from those proteins and organic molecules that accompany it in its natural state. Thus, a protein that is chemically synthesized or produced in a cellular system that is different from the cell in which it is naturally produced is substantially free from its naturally associated components. Accordingly, substantially pure polypeptides not only include those that are derived from eukaryotic organisms, but also those synthetized in E. coli, other prokaryotes, or in other such systems.

[0025] An antibody is said to “specifically bind” to a polypeptide or fragment if it recognizes and binds to the
polypeptide (e.g., CM3 or 0.19), but does not substantially recognize and bind to other molecules (e.g., non-CM3- or non-0.19-related polypeptides) in a sample, e.g., a biological sample that includes the polypeptide.

[0026] By “neutralization” and “neutralizing” is meant partial or complete attenuation of the biological effects of an AA1 (e.g., CM3 and/or 0.19) (e.g., a negative gastrointestinal reaction). Such partial or complete attenuation of the biological effects of AA1 results from modification, interruption, and/or abrogation of AA1 stimulation of the innate immune response (e.g., as exhibited in celiac disease). As one of skill in the art understands, there exist multiple modes of determining whether an agent, for example an antibody is to be classified as neutralizing. Neutralizing antibodies would, for example, block stimulation of monocytes or dendritic cells by AA1 (e.g., CM3 and/or 0.19) in the assays described herein (e.g., by decreasing secretion of IL-8 by 70%, 80%, 90%, 95%, 99%, or greater compared to control). Neutralizing antibodies can also block AAI (e.g., CM3 and/or 0.19) binding to TLR4 (e.g., by decreasing binding by 70%, 80%, 90%, 95%, 99%, or greater compared to control).

[0027] By “sample” is meant a tissue biopsy, amniotic fluid, cell, blood, serum, urine, stool, or other specimen obtained from a patient or a test subject. For example, ELISA and other immunoassays can be used to measure levels of AA1 (e.g., CM3 and 0.19); and PCR or RT/PCR can be used to measure the level of AA1 (e.g., CM3 and 0.19) nucleic acid molecules.

[0028] By “negative gastrointestinal reaction” is meant an innate immune response triggered by AA1 (e.g., CM3 and/or 0.19) that results in undesirable symptoms (e.g., associated with celiac disease).

[0029] By “potency” is meant the degree to which a substance induces an innate immune response against AA1 protein (e.g., CM3 and/or 0.19 protein).

[0030] By “treating” is meant administering a pharmaceutical composition for prophylactic and/or therapeutic purposes or administering treatment to a subject already suffering from a disease to improve the subject’s condition or to a subject who is at risk of developing a disease. As it pertains to gastrointestinal disorders, treating can include improving or ameliorating the symptoms of an undesired immune response triggered by AA1 (e.g., CM3 and/or 0.19), and prophylactic treatment can include preventing the progression of a mild gastrointestinal disorder to a more serious form. Treating may also mean to prevent the onset of an negative gastrointestinal reaction.

BRIEF DESCRIPTION OF THE DRAWINGS

[0031] FIGS. 1A-1D are a series of graphs showing IL–8, TNF–α, and MCP–1 release in cells treated with the indicated compounds. The experiments of FIGS. 1A and 1C were conducted in monocyte THP-1 cells and the experiments of FIGS. 1B and 1D were conducted in monocyte U937 cells.

[0032] FIG. 1E is a graph showing expression of IL–8 in HT29 (intestinal epithelial), U937, and THP-1 cells treated with alpha-gliadin peptide p31-43 and a scrambled control peptide.

[0033] FIG. 1F is a graph showing expression of IL–8 in THP-1 cells treated with the indicated compounds and treated and untreated with proteinase K.

[0034] FIG. 2A is a graph showing IL-8 expression in monocyte derived dendritic cells of healthy control patients or of celiac disease patients on the indicated diet treated with the indicated compound.

[0035] FIG. 2B is a graph showing IL-8 expression of monocyte derived dendritic cells from a healthy control in response to various doses of pepsin/trypsin digested (PT) gliadin. Stimulation with LPS and PT ztein served as positive and negative controls, respectively.

[0036] FIG. 2C is a series of graphs showing a flow cytometric analysis of dendritic cells of healthy controls stimulated with PT gliadin. Uprotection of dendritic cell surface maturation markers can be observed in the grey filled and the dotted histogram that represent PT gliadin and LPS stimulation, respectively, whereas PT ztein stimulation (non filled) overlaps with the non stimulated control.

[0037] FIGS. 3A and 3B are graphs showing KC (rodent IL–8) and TNF–α expression in peritoneal macrophages isolated from TLR4 deficient C3H/HeJ mice compared to C3H/ HOUJ wildtype mice stimulated with LPS or PT gliadin. The TLR2 agonist Pam3CSK4 served as positive control.

[0038] FIGS. 3C and 3D are graphs showing expression of IL–8 secretion upon PT gliadin and LPS stimulation in 293 cells transfected with the TLR4-MD2-CD14 complex (3D) and in non transfected cells (3C). LPS and PMA served as positive, the TLR2 agonist Pam3CSK4 as negative controls.

[0039] FIG. 3E is a graph showing IL–8 secretion in monocyte derived dendritic cells stimulated with PT gliadin and LPS with peritoneal macrophages preincubated with anti-TLR4 and anti-CD14 antibodies. TLR2 agonist Pam3CSK4 and TLR3 agonist Poly I:C served as positive controls.

[0040] FIG. 4A is a graph showing TNF–alpha secretion in peritoneal macrophages isolated from MyD88–/– mice compared to C57BL/6 wildtype mice upon PT gliadin stimulation. LPS served as positive control for the MyD88 knockdown, TLR3 agonist Poly I:C served as cell viability control.

[0041] FIG. 4B is a graph showing RANTES secretion in peritoneal macrophages isolated from C57BL/6J mice upon PT gliadin stimulation.

[0042] FIG. 4C is a graph showing stimulation of THP-1 cells with α, γ, 0.12, and α5-gliadin fractions isolated from the pure wheat strain ‘Rektor’. Co-incubation of α- and γ-gliadin with regular PT gliadin from Sigma served as cell viability control.

[0043] FIGS. 4D and 4E are graphs showing IL–8 secretion in TLR4 transfected (4D) and untransfected (4E) HEK-293 cells treated with α-gliadins.

[0044] FIG. 4F is a graph showing IL–8 secretion in TLR4 transfected HEK-293 cells treated with synthetic overlapping 20 mers of α5-gliadin. For illustration purposes, nine fractions each were pooled in the stimulation experiments, as well as all 43 fractions. LPS served as positive and Pam3CSK4 or PT ztein as negative controls.

[0045] FIGS. 5A and 5B are graphs showing KC expression by monocyte derived dendritic cells stimulated with water-soluble (ws) gliadin (5A) or alpha amylase trypsin inhibitor (ATI, 5B).

[0046] FIG. 5C is a graph showing IL–8 secretion in dendritic cells treated with a proteinase K digestion of ATI and LPS.

[0047] FIG. 5D is a graph showing KC secretion in peritoneal macrophages isolated from MyD88–/– mice compared to C57BL/6J wildtype mice upon ATI or ws gliadin stimulation.
FIGS. 5E and 5F are graphs showing IL-8 secretion upon PT gliadin, ATI, or LPS stimulation in 293 cells transfected with the TLR4-MD2-CD14 complex (5E) and in non-transfected cells (5F). LPS and water-soluble zein served as positive and negative controls, respectively.

FIG. 6A is a graph showing IL-8 secretion in monocyte-derived dendritic cells stimulated with ATI and LPS and preincubated with anti-TLR4 or anti-CD14 antibodies. TLR2 agonist Pam3CSK4 served as positive control.

FIGS. 6D and 6C are graphs showing serum cytokine levels in C57BL/6J, MyD88−/− (6D), and Rag1−/− mice (6C) (n=4 animals per group) showing undergone intraperitoneal injection of LPS (1 μg/mouse), ws gliadin (500 μg/mouse), or ws zein (500 μg/mouse). Serum was taken 2 hrs after injection and serum cytokine levels were measured by ELISA.

FIGS. 6D, 6E, and 6F are graphs showing cytokine mRNA expression levels in mice gavaged with LPS (20 μg/mouse weight), ws gliadin (2 mg/g mouse weight), ATI (0.075 mg/g mouse weight), ws zein (2 mg/g mouse weight), or PBS. 4 hrs after gavage the C57BL/6J, C3H/HeJ, and C3H/HeN mice were euthanized and duodenal samples were snap frozen in liquid nitrogen. Duodenal cytokine mRNA levels were measured by quantitative RT PCR. (n=3 animals per group).

FIG. 7A is a western blot showing the major ATI variant CM3 was expressed in eukaryotic 293 cells and purified as Flag-tagged molecule, yielding the expected molecular weights of 16 KD.

FIG. 7B is a graph showing IL-8 secretion in human dendritic cells upon stimulation with ATI and the recombinant CM3 variant.

FIG. 7C is a western blot showing expression of NF-κB and the alternative (IRF3) pathways in CM3 and TLR4-transfected HEK cells.

FIG. 7D is a photomicrograph showing apoptosis in TLR4− and CM3-transfected and untransfected HEK cells.

FIGS. 8A-8C are supplementary graphs showing expression of IL-8 (8A), TNF-α (8B), and RANTEES (8C) in gliadin stimulated human monocyte derived DC from healthy controls.

FIG. 9A is a western blot showing CM3 and 0.19 expression in HEK-293 cells and purification as Flag-tagged molecules. Western analysis yielded the expected molecular weights of 15 and 17 KDa, respectively, after 15% SDS-PAGE and Western blotting with Flag antibody. No expression in mock (vector only) transfected cells. 0.19 was not secreted into media, but could be recovered in SDS/DTT buffer (Cell), deoxycholate and Triton X-100 buffer (Sup), or the remaining cell pellet.

FIG. 9B is a Coomassie blue stain (left panel) or western blot using Flag antibody (right panel) showing purity of CM3 and 0.19 ATI after affinity purification on Flag-agarose (15% SDS-PAGE).

FIG. 9C is a graph showing IL-8 secretion by TLR4-CD14-MD2 expressing HEK-293 cells treated with recombinant ATI. Cells were left untreated, or stimulated with affinity purified detergent extracts from mock-transfected cells, from recombinant CM3, 0.19, or with ATI isolated from wheat (all 5 μg/ml). Controls were Flag peptide (5 μg/ml), PI-gliadin (100 μg/ml), and LPS (10 ng/ml). Representative experiments performed in triplicate.

FIG. 9D is a western blot showing expression of CM3 and 0.19 in TLR4-CD14-MD2 expressing HEK-293 cells (HEK-TLR4) induces downstream signaling of the canonical (p-NF-κB/p65) and the alternative (p-IRF3) pathways. Western blots of whole cell lysates (50 μg protein).

FIGS. 10A and 10B are a sequence alignments. FIG. 10A shows an alignment between CM3 and 0.19. FIG. 10B shows an alignment between CM3 or 0.19 and other ATIs from wheat and barley (CMa, CMb, CMd) (SEQ ID NOs, in order listed are SEQ ID NOs: 3-5, 1, 6-10, 2, and 11). The sequence alignment was prepared using the ClustalW program (2.0.12 version). The highly conserved cysteine residues are boxed. (*), (.), and (.) denote identity, high homology, and low homology, of amino acid residues, respectively. Similarities are much higher among individual ATIs.

DETAILED DESCRIPTION OF THE INVENTION

In general, the invention features the treatment of gastrointestinal disorders associated with an innate immune response triggered by alpha amylase inhibitor CM3, alpha amylase inhibitor 0.19 (0.19), CM1, CM2, CMa, CMd, CM16, CMb, CMX1/CMX3, CMX2, alpha Amylase Inhibitor 0.53 (0.53) (collectively termed AA1), and other structurally and functionally related molecules. To this end, the invention provides pharmaceutical compositions including neutralizing antibodies to alpha amylase inhibitor CM3, alpha amylase inhibitor 0.19 (0.19), CM1, CM2, CMa, CMd, CM16, CMb, CMX1/CMX3, CMX2, alpha Amylase Inhibitor 0.53 (0.53), and other structurally and functionally related molecules, food products containing reduced levels of AA1 proteins, assays for identifying AA1 protein content in food products, and assays for diagnosing subjects with a disorder related to AA1-triggered innate immune responses. The invention also features methods of treating gastrointestinal disorders associated with an innate immune response to these molecules with preferably, but not exclusively orally active TLR4 inhibitors.

CM3

We discovered that CM3 and/or 0.19 (among other AAIs) contributes to the activation of innate immunity in patients with celiac disease. An exemplary wheat CM3 protein has the sequence of

```
MACKSSCSLLLLAVVLSVLAASASGGCVPGVAPTHLCPKRMKDVL
QQCTCUTTPSLPLBMTSASAYSPDGFLALYCCQLAQELAIASQCRKCEA
LRYFIALPVPSQVPDRSNGVSGELIDLPLOCPREMCDVPRLVAPQ
CMLATLTHLYRCPVEQLPLWYDIKDSDK.
```

An exemplary wheat 0.19 protein has the sequence of

```
SGPHKMCYFQAFQVFPALPACQRPLLEQLCNISQPVEAVLDCQCSQALHIS
ENRCXUALYSMLDSMYKBGQAQGATGAPPFFCREVVLTAASITAV
CLRPLVVIDSCGAYCVDVAPYDP
```

The invention provides methods for the treatment of negative gastrointestinal reactions to other cereal-based (e.g., barley, rye, oats, corn, and rice) CM3 or 0.19 proteins, or related molecules, e.g., those set forth in Tables 1 and 2.
TABLE 1

<table>
<thead>
<tr>
<th>Accession</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>P17314.1</td>
<td>Alpha-amylase/trypsin inhibitor CM3;</td>
</tr>
<tr>
<td>P11643.2</td>
<td>Alpha-amylase/trypsin inhibitor Cm3; [Hordeum vulgare]</td>
</tr>
<tr>
<td>CA46536.1</td>
<td>Cm3 subunit of tetrameric alpha-amylase inhibitor [Hordeum vulgare]</td>
</tr>
<tr>
<td>AAB63440.1</td>
<td>Cm3 protein [Hordeum vulgare]</td>
</tr>
<tr>
<td>CAA31585.1</td>
<td>Cm3 prepptein (AA -14 to 146) [Hordeum vulgare subsp. vulgare]</td>
</tr>
</tbody>
</table>

TABLE 2

<table>
<thead>
<tr>
<th>Accession</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HSSA</td>
<td>Alpha-amylase/trypsin inhibitor 0.19 [Triticum aestivum]</td>
</tr>
<tr>
<td>HSSB</td>
<td>Alpha-amylase/trypsin inhibitor 0.19 [Triticum aestivum]</td>
</tr>
<tr>
<td>HSSC</td>
<td>Alpha-amylase/trypsin inhibitor 0.19 [Triticum aestivum]</td>
</tr>
<tr>
<td>HSSD</td>
<td>Alpha-amylase/trypsin inhibitor 0.19 [Triticum aestivum]</td>
</tr>
<tr>
<td>PO11085.1</td>
<td>Alpha-amylase/trypsin inhibitor 0.19 [degluca taudini]</td>
</tr>
<tr>
<td>BAA20391.1</td>
<td>Alpha-amylase/trypsin inhibitor 0.19 [deglipea tauvinini]</td>
</tr>
</tbody>
</table>

A sequence comparison with a wide spectrum of other ATIs from wheat and barley (those sequences that are published in common sequence databases) show again largely conserved cysteine residues and neighbouring amino acid residues (FIG. 10B), indicating that these will also bind to and activate TLR4. Additional variants of CM3 and 0.19 and related molecules are known in the art and can be identified through standard means.

TLR4 Inhibitors

Any of the agents employed according to the present invention may be combined in any appropriate amount in any suitable carrier substance, and is generally present in an amount of 1-95% by weight of the total weight of the composition. The composition may be provided in a dosage form that is suitable for the oral, parenteral (e.g., intravenously, intramuscularly), rectal, cutaneous, nasal, vaginal, inhalant, skin (patch), or ocular administration route. Thus, the composition may be in the form of, e.g., tablets, capsules, pills, powders, granululates, suspensions, emulsions, solutions, gels including hydrogels, pastes, ointments, creams, plasters, drenches, osmetic delivery devices, suppositories, enemas, injectables, implants, sprays, or aerosols. The pharmaceutical compositions may be formulated according to conventional pharmaceutical practice (see, e.g., Remington: The Science and Practice of Pharmacy, 20th edition, 2000, ed. A. R. Gennaro, Lippincott Williams & Wilkins, Philadelphia, and Encyclopedia of Pharmaceutical Technology, eds. J. Swarbrick and J. C. Boylan, 1988-1999, Marcel Dekker, New York).

Indications

The invention provides methods for the treatment of AAI (e.g., CM3- and/or 0.19)-related gastrointestinal disorders by administering a subject (e.g., a human) in need thereof an effective amount of a composition that includes an antibody against an AAI protein (e.g., CM3), or a different antibody against the major AAI variants in cereals. Such disorders are related to the induction of an innate immune response against AAI proteins (e.g., against CM3 and/or 0.19) after the consumption of an AAI containing food product. These disorders include celiac disease, ulcerative colitis, Crohn’s disease, irritable bowel syndrome, gastrointestinal hypersensitivity to wheat, as well as other inflammatory disease of the GI tract and related immune and autoimmune disorders.

Anti-AAI Antibodies

The invention provides therapeutic antibodies (e.g., neutralizing antibodies) and diagnostic antibodies against AAI, e.g., against CM3 and/or 0.19.

The antibodies (e.g., monoclonal, polyclonal, polyspecific, or mono-specific antibodies) against AAI (e.g., against CM3 and/or 0.19) can be used for diagnostic, research, or therapeutic purposes. Numerous methods for making antibodies are known in the art and can be used in the invention to make such antibodies. In one example, a coding sequence for an AAI (e.g., a CM3 and/or 0.19) peptide or polypeptide is expressed as a C-terminal fusion with glutathione S-transferase (GST) (Smith et al., Gene 67:31, 1988). The fusion protein is purified on glutathione-Sepharose beads, eluted with glutathione, cleaved with thrombin (at an engineered cleavage site), and purified for immunization of rabbits. Primary immunizations are carried out with Freund’s complete adjuvant and subsequent immunizations with Freund’s incomplete adjuvant. Antibody titers are monitored by Western blot and immunoprecipitation analyses using the thrombin-cleaved protein fragment of the GST fusion protein. Immune sera are affinity purified using
CNBr-Sepharose-coupled protein. Antiserum specificity can be determined using a panel of unrelated GST proteins.

[0071] As an alternate or adjunct immunogen to GST fusion proteins, peptides corresponding to relatively unique immunogenic regions of a polypeptide of the invention can be generated and coupled to keyhole limpet hemocyanin (KLH) through an introduced C-terminal lysine. Antiserum to each of these peptides is similarly affinity purified on peptides conjugated to BSA, and specificity is tested by ELISA or Western blot analysis using peptide conjugates, or by Western blot or immunoprecipitation using the polypeptide expressed as a GST fusion protein. Alternatively, monoclonal antibodies that specifically bind an AA1 (e.g., CM3 or 0.19) can be prepared using standard hybridoma technology (see, e.g., Kohler et al., Nature 256:495, 1975; Kohler et al., Eur. J. Immunol. 6:511, 1976; Kohler et al., Eur. J. Immunol. 6:292, 1976; Hammerling et al., Monoclonal Antibodies and T Cell Hybridomas, Elsevier, N.Y., 1981). Once produced, monoclonal antibodies can also be tested for specific recognition by Western blot or immunoprecipitation analysis. Antibodies that specifically recognize an AA1 protein (e.g., CM3 or 0.19) can be used, for example, in immunoassays or as therapies. Alternatively monoclonal antibodies can be prepared using the polypeptide of the invention described above and a phage display library (Vaughan et al., Nature Biotech. 14:309, 1996).

[0072] Antibodies of the invention can be produced using fragments of the AA1 (e.g., a CM3 and/or 0.19) polypeptide that lie outside generally conserved regions and appear likely to be antigenic by criteria such as high frequency of charged residues. In one specific example, such fragments are generated by standard techniques of PCR and cloned into the pGEX expression vector. Fusion proteins are expressed in E. coli and purified using a glutathione agarose affinity matrix. To minimize potential problems of low affinity or specificity of antisera, two or three such fusions are generated for each protein, and each fusion is injected into at least two rabbits. Antisera are raised by injections in a series, and can include, for example, at least three booster injections.

[0073] In addition to intact monoclonal and polyclonal anti-AA1 (e.g., anti-CM3 and/or 0.19) antibodies, the invention also includes various genetically engineered antibodies, humanized antibodies, chimeric antibodies, and antibody fragments, including Fab, Fab', Fv, and sFv fragments. Truncated versions of monoclonal antibodies, for example, can be produced by recombinant methods in which plasmids are generated that express the desired monoclonal antibody fragment(s) in a suitable host. Antibodies can be humanized by methods known in the art, e.g., monoclonal antibodies with a desired binding specificity can be commercially humanized (Scotgene, Scotland; Oxford Molecular, Palo Alto, Calif.). Fully human antibodies, such as those expressed in transgenic animals, are also included in the invention (Green et al., Nature Genetics 7:13-21, 1994).

[0074] Examples of approaches that can be used to generate antibodies of the invention include the following. Ladner (U.S. Pat. Nos. 4,946,778 and 4,704,692) describes methods for preparing single polypeptide chain antibodies. Ward et al., Nature 341:544-546, 1989, describes the preparation of heavy chain variable domains, which they term “single domain antibodies,” and which have high antigen-binding affinities. McCafferty et al., Nature 348:522-524, 1990, shows that complete antibody V domains can be displayed on the surface of fd bacteriophage, that the phage bind specifically to antigen, and that rare phage (one in a million) can be isolated after affinity chromatography. Boss et al., U.S. Pat. No. 4,816,397, describes various methods for producing immunoglobulins, and immunologically functional fragments thereof, that include at least the variable domains of the heavy and light chains in a single host cell. Cabelli et al., U.S. Pat. No. 4,816,567, describes methods for preparing chimeric antibodies.

[0075] Antibodies to AA1 (e.g., to CM3 or 0.19) can be used, as noted above, to detect AA1, or to inhibit the biological activities of AA1. In addition, the antibodies can be coupled to compounds, such as radionuclides and liposomes, for diagnostic uses.

[0076] In order to generate polyclonal antibodies on a large scale and at a low cost an appropriate animal species can be chosen. Polyclonal antibodies can be isolated from the milk or colostrum of, e.g., immunized cows. Bovine colostrum contains 28 g of IgG per liter, while bovine milk contains 1.5 g of IgG per liter (Ontouekta et al. J. Dairy Sci. 86:2005-2011, 2003). Polyclonal antibodies can also be isolated from the yolk of eggs from immunized chickens (Sarker et al. J. Ped. Gastro. Nutr. 32:19-25, 2001).

[0077] Multiple adjuvants are approved for use in dairy cows. Adjuvants useful in this invention include, but are not limited to, Emulsigen®, an oil-in-water emulsified adjuvant, Emulsigen®-D, an oil-in-water emulsified adjuvant with DDA immunostimulant, Emulsigen®-P, an oil-in-water emulsified adjuvant with co-polymer immunostimulant, Emulsigen®-BCL, an oil-in-water emulsified adjuvant with block co-polymer immunostimulant, Carbigen®, a carbomer base, and Polygen®, a co-polymer base. All of the listed adjuvants are commercially available from MVP Laboratories in Omaha, Nebr.

[0078] Antibodies useful in this invention can be identified in several different screening assays. First, antibodies are assayed by ELISA to determine whether they are specific for the immunizing antigen (e.g., CM3 and/or 0.19). Using standard techniques, ELISA plates are coated with immunogen, the antibody is added to the plate, washed, and the presence of antibody detected by using a second antibody specific for the IgG of the species in which the antibody was generated.

[0079] A functional in vitro assay can be used to screen antibodies e.g., an neutralizing assay based on monocye-derived dendritic cells, as described herein.

[0080] Direct measurements of bovine immunoglobulin in ileal fluid in human subjects has shown that significant amounts of immunoglobulin survive transit through the stomach and small intestine (Warny et al. Gut, 44:212-217, 1999). Methods have also been described to formulate avian immunoglobulin (IgY) for Gl delivery (Kovacs-Nolan and Mine Immunol. Methods. 296: 199-209, 2005).

[0081] The invention provides a therapeutic composition comprising anti-AA1 (e.g., anti-CM3 and/or anti-0.19) antibodies suitable for delivery, preferably oral delivery, to a patient in need thereof, preferably a human patient. The pharmaceutical composition may further comprise suitable carriers, adjuvants and other physiologically acceptable excipients.

[0082] The invention also features a therapeutic composition containing antibodies with specificity for both the CMS of SEQ ID NO:1 (or proteins substantially identical to the protein of SEQ ID NO:1) and/or the 0.19 of SEQ ID NO:2 (or proteins substantially identical to the protein of SEQ ID NO:2) as well as additional CM3- or 0.19-related proteins.
(e.g., CM3 or 0.19 analogs expressed in other species of cereals or other AAI proteins as disclosed herein). Such antibodies can be identified by testing specificity to all of the desired CM3- or 0.19-related proteins.

Furthermore, the invention also features pharmaceutical compositions containing a plurality of antibodies, where different antibodies in the composition are specific for different analogs of AAI (e.g., CM3 and/or 0.19). Additionally or alternatively, such compositions can contain antibodies against both AAI (e.g., CM3 and/or 0.19), as well as gluten (e.g., gliadin and glutenin fractions, see, e.g., WO 2007/056301, which is herein incorporated by reference in its entirety). Such pharmaceutical compositions can be achieved by mixing more than one source of antibodies, or, e.g., inoculating an antibody producing animal with more than one AAI (e.g., a cow can be inoculated with variants of CM3 and/or 0.19 with adjuvants as described above thereby creating a mixture of polyclonal antibodies with differing specificities).

The oral formulations can comprise enteric coatings, so that the active agent is delivered to the intestinal tract. Enteric formulations are often used to protect an active ingredient from the strongly acid contents of the stomach. Such formulations are created by coating a solid dosage form with a film of a polymer that is insoluble in acid environments and soluble in basic environments. Exemplary films are cellulose acetate phthalate, polyvinyl acetate phthalate, hydroxypropyl methylcellulose phthalate, and hydroxypropyl methylcellulose acetate succinate, methacrylate copolymers and cellulose acetate phthalate.

The pharmaceutical compositions can be administered in any orally acceptable dosage form including, but not limited to, capsules, tablets, aqueous suspensions or solutions.

Neutralizing antibodies can be administered to a patient prior to, or concurrently, or after the ingestion of a substance that may contain an AAI (e.g., CM3 and/or 0.19). The neutralizing antibodies of the invention can also be administered to the patient on a regular dosing schedule (e.g., one, two, three times a day, or more). The neutralizing antibodies can also be administered at a specific time of day, e.g., prior to sleep or upon waking.

Detection and measurement of indicators of efficacy may be measured by a number of available diagnostic tools, including but not limited to, for example, by physical examination including blood tests, biopsies of the small intestine, pulmonary function tests, and chest X-rays; CT scan; bronchoscopy; bronchoalveolar lavage; lung biopsy and CT scan. Suppression of the innate immunity can be measured, e.g., by quantifying the release of cytokines at the sites of lesions. Also, both the physician and patient can identify a reduction in symptoms of a disease.

The pharmaceutical compositions of this invention comprise any of the compounds of the present invention, or pharmaceutically acceptable derivatives thereof, together with any pharmaceutically acceptable carrier.

The dosage and dose rate of the compounds of this invention effective to produce the desired effects will depend on a variety of factors, such as the nature of the antibody, the size of the subject, the goal of the treatment, the nature of the pathology to be treated, the specific pharmaceutical composition used, and the judgment of the treating physician. Dosage levels of between about 0.1 and about 1000 mg/kg body weight per dose, preferably between about 1 and about 500 mg/kg body weight per dose of the active ingredient antibody are useful. The antibodies of the invention can also be administered at a dose ranging between about 1 mg/kg body weight/dose and about 200 mg/kg body weight/dose, and between about 5 mg/kg body weight/dose and about 50 mg/kg body weight/dose.

Detection Assays

The invention features assays for detecting AAI (e.g., CM3 and/or 0.19) in food products. The assays can contain, e.g., antibodies as described above. Such antibodies can be antibodies specific for AAI proteins (e.g., CM3 and/or 0.19), and can have neutralizing or non-neutralizing activities. Such antibodies can be detectably labeled to facilitate detection. Assays for detecting proteins in a sample (e.g., a food product) are known in the art (e.g., ELISA or RIA assays). Such assays can be readily adapted to detection of AAI (e.g., CM3 and/or 0.19).

The invention also features assays for detecting antibodies against AAI (e.g., CM3 or 0.19) in a patient sample (e.g., using an ELISA assay as described above). Such assays can be used, e.g., to diagnose a patient as being sensitive to AAI (e.g., sensitive to CM3 and/or 0.19, and as having celiac disease, ulcerative colitis, Crohn’s disease, or irritable bowel syndrome). The patient sample can be any sample likely to contain antibodies against AAI (e.g., a blood sample or stool sample). The presence or heightened levels of endogenously generated antibodies against AAI can be indicative of a subject as being sensitive to AAI containing food products.

AAI Depleted Food Products

The invention also features food products with decreased levels of AAI (e.g., CM3 and/or 0.19). Such food products can be prepared, e.g., by degrading or removing AAI prior to consumption. Such food products can also be prepared from transgenic cereals (e.g., wheat) containing nucleic acid constructs encoding RNAi molecules against AAI.

Decreased levels of AAI (e.g., CM3 and/or 0.19) protein can be achieved, e.g., through disulfide reduction of AAI. This can be achieved by agents such as diithiothreitol, or preferably by a NADP-thioredoxin system as described by Fardat et al. (J Agricultural Food Chem 56:7146-7150, 2008) for the improvement of digestability of soy flour. The latter and related methodologies have the advantage that disulfide reduction is non-toxic. The reduced AAIs are then easily degraded by gastric and duodenal proteases, leading to their “detoxification,” i.e., inability to elicit an innate immune response. To secure complete degradation before ingestion, the reduced AAIs can be predigested with common proteases such as pepsin, trypsin, or chymotrypsin, or with specialized enzyme preparations.

Decreased levels of AAI (e.g., CM3 and/or 0.19) can also be achieved by separating AAI from the food product by, e.g., exposing the food product to antibodies specific for AAI. Such antibodies can be used, e.g., in a purification column to remove AAI from a solution containing AAI.

Methods for silencing gene expression in plants is well understood in the art. The current invention features RNAi molecules specific for an AAI (e.g., against a nucleic acid sequence corresponding to the amino acid sequence of SEQ ID NO:1 and/or SEQ ID NO:2). Such RNAi molecules can be expressed from a nucleic acid construct introduced into a plant cell. Desirably, expression of the RNAi construct...
would result in a decrease of CM3 and/or 0.19 expression in the food product of 50%, 60%, 70%, 80%, 90%, 95%, 99%, or greater.

[0096] In a specific embodiment, virus induced gene silencing (VIGS) can be used to decrease CM3 (or other AAs) expression in, e.g., wheat or other cereals. In this embodiment, a plant virus (e.g., barley stripe mosaic virus) is engineered to contain a sequence with substantial identity to the genomic nucleic acid sequence corresponding to CM3 (or other AAs). This technology is reviewed, e.g., in Cakir et al. (Crop Sci. 50:S-1-S-8, 2010), which is hereby incorporated by reference in its entirety.

Experimental Results

[0097] To examine how far gliadin elicits innate immune responses, we stimulated the human monocyte cell lines THP-1 and U937 with different concentrations of gliadin digested with pepsin and trypsin (PT gliadin) and measured secretion of proinflammatory cytokines in the supernatant. A digest of zein, partly homologous storage proteins from corn that lack toxicity for patients with celiac disease, served as negative control. In accordance with other studies, only PT gliadin but not PT zein caused a dose dependent stimulation of IL-8, TNF-α, and MCP-1 secretion in both cell lines (Fig. 1). To rule out LPS contamination as trigger of innate responses, gliadin, LPS, and TNF-α were digested with protease K, completely digesting and abrogating all peptide-related activities. As expected, TNF-α lost its stimulatory capacity, while LPS was still able to induce IL-8. Importantly, PT gliadin was equally inactivated (Fig. 1), indicating that the stimulatory effects of gliadin were due to protein and not LPS contamination. Moreover, while IL-8 expression was comparable, human monocyte-derived dendritic cells (DC) stimulated with PT gliadin expressed TNF-α and RANTES to a much lesser extent than the LPS stimulated control (Fig. 8).

[0098] It was shown previously that the a-gliadin peptide p31-43 increases IL-15 secretion in celiac biopsies. However, this peptide did not elicit secretion of IL-8, TNF-α, or MCP-1 in our monocyte or intestinal epithelial cell lines (HT29, Caco-2 and T84), even at 40 μg/ml (Fig. 1). This suggested the presence of other potent peptide stimulators of innate immune responses in PT gliadin.

[0099] We then analyzed human DC derived from peripheral blood monocytes of celiac patients on gluten free diet (gfd, n=8), on regular diet (n=3) and healthy controls (n=10). Although there were considerable inter-individual variations, all cells strongly reacted to gliadin stimulation by IL-8 secretion. Of note, there were no significant differences in sensitivity towards PT gliadin between celiac patients on or off gluten free diet and healthy controls, confirming recent data that demonstrated comparable activation of PT gliadin-stimulated DC from controls and CD patients. Again, PT zein had no effect on cytokine production (Figs. 2A-2D).

[0100] When exposed to PT gliadin and LPS, DC also up-regulated the cell surface maturation markers CD25, CD80, CD83, and CD86 while zein showed no effect (Fig. 2E).

[0101] A recent study suggested that gliadin may signal via MyD88, a key adapter molecule in the toll-like receptor (TLR)/IL-10 pathway. Since MyD88 transmits signals from several TLRs, we studied peritoneal macrophages of C3H/HeJ mice that lack TLR4 responses due to a spontaneous point mutation in the TLR4 gene. In these mice KC (IL-8) and TNF-α secretion was reduced to baseline levels after gliadin or LPS stimulation compared to syngenic C3H/HeOuJ TLR4 competent mice. In macrophages from both mouse strains the specific TLR2 agonist Pam3CSK4 induced equally high amounts of KC and TNF-α, verifying otherwise intact MyD88 and TLR signaling and viability of the cells (Figs. 3A-3D).

[0102] To confirm a key role of TLR4 in the innate immune response to gliadin extract, we used HEK-293 cells that do not express TLR4 or TLR2) that were transfected with the human TLR4/CD14-MD2-complex. While non-transfected HEK-293 cells responded neither to gliadin nor to LPS stimulation, both stimulants induced an increase of IL-8 secretion in the transfected cells. Specificity of the transfection was demonstrated by the absence of IL-8 induction by the TLR2 agonist Pam3CSK4 (Fig. 3).

[0103] In order to examine whether gliadin also engages TLR4 in human dendritic cells, we preincubated monocyte derived DC with anti-TLR4 and CD14 blocking antibodies before adding the stimulants. This significantly reduced IL-8 production in DC stimulated with gliadin and LPS but not with the TLR2 and TLR3 agonists Pam3CSK4 and Poly-I:C, respectively, both in DC from healthy controls (Fig. 3E) and from celiac disease patients.

[0104] TLR4 is unique in its ability to mediate cellular activation via two pathways: the adapter molecule MyD88 or via interferon regulatory factor 3 (IRF3) pathway. Compared to C57BL/6J wildtype mice, peritoneal macrophages from MyD88 knockout mice displayed markedly reduced KC and TNF-α secretion after gliadin and LPS stimulation, indicating a major involvement of the MyD88 pathway. Since TLR3 does not use MyD88 as adapter protein for signaling, we used the TLR3 agonist Poly I:C as positive control (Fig. 4A).

[0105] To analyze potential activation of the alternate pathway, we measured the secretion of RANTES in supernatants of macrophages from C57BL/6J wildtype mice. RANTES secretion was increased, suggesting that both the MyD88 dependent and independent pathway are activated by the gliadin extract (Fig. 4B). Taken together, we can conclude that gliadin-induced signaling is mediated via TLR4, MyD88, TRIF, and is CD14 dependent.

[0106] We then proceeded to further define the gliadin fractions that harbored the stimulatory activity. Gliadins from the pure wheat strain “Rektor” were separated into their α-, γ- and ω-fractions via HPLC. The α-, γ-, ω1-2-, and ω5-gliadins, as well as whole gliadin were digested with pepsin and trypsin and first tested on THP-1 monocytes cell lines. Neither the α- nor the γ-gliadins which represent more than 90% of total gliadin harbored stimulatory activity, whereas IL-8 release was induced strongly by PT-digested ω1-2- and ω5-gliadins (Fig. 4C). The lack of stimulation by α- or γ-gliadin was not due to toxic by-products, since addition of LPS or whole PT gliadin fully restored stimulatory capacity (Fig. 4C). As shown for whole PT gliadin, ω1-2- and ω5-gliadin strongly induced IL-8 secretion in TLR4 transfected HEK-293 but not in untransfected HEK-293 cells (Figs. 4D and 4E).

[0107] Next, we used synthetic overlapping 20 mers of the ω5 gliadin chain to identify the TLR4-stimulating peptide sequence using TLR4-CD14-MD2-transfected HEK cells and IL-8 secretion for a readout. Surprisingly, none of the synthetic peptides triggered IL-8 secretion (Fig. 4F). This negative finding could have been due to posttranslational modifications of the gliadin or due to a particular secondary structure that might not have been captured by the synthetic peptides. However, since most gliadins are not significantly
modified posttranslationally and since their secondary structure is well reflected even by smaller peptides, we searched for other wheat proteins that might have co-purified with the α-gliadins. In comassie staining, one minor protein band with a molecular mass of 15 kD clearly distinguished the α- from the non-reactive α- and γ-gliadin fractions. When analyzed by mass spectrometry, it could be tentatively characterized as wheat alpha amylase inhibitor CM3 and/or 0.19. As part of the albumin fraction, wheat alpha amylase inhibitors (AALs) are highly disulfide-linked and water soluble proteins. It has been shown that they partly co-purify with gliadin and glutenin preparations. Notably, the fraction of the omega-gliadins appears to contain much of the low molecular weight albumins that contain AALs. Thus a water-soluble gliadin fraction showed the same properties as the PT (omega) gliadins but with an even higher stimulatory capacity than PT gliadin (FIG. 5E) and SDS-PAGE demonstrated a more prominent band with a molecular weight of 15 kD which again was confirmed as AAI by mass spectrometry.

Subsequently, we used AAL purified from wheat seed to stimulate human monocyte derived dendritic cells. HPLC analysis of this preparation showed one major peak confirming its purity. Both untreated and PT-digested AAL induced increased IL-8 secretion (FIG. 8), while protein K digestion abrogated its stimulatory capacity, ruling out LPS contamination (FIGS. 5D and 5E). AAL was then incubated with peritoneal macrophages from MyD88−/− and C57BL/6J wildtype mice, showing a lack of KC secretion in MyD88−/− compared to wild type cells. Moreover, AAL induced upregulation of IL-8 secretion in TLR4/MD2/CD14 transfected HEK-293 as compared to untransfected cells (FIGS. 5D and 5F), and incubation of human monocyte derived DC with blocking TLR4 and CD14 antibodies prior to addition of AAL reduced IL-8 secretion (FIG. 6C). Overall, these results confirmed the signaling pathways previously identified with cytokine or α-gliadin and demonstrated that it was indeed AAL that mediated the innate immune responses.

To examine whether the in vitro responses translated into physiologically relevant in vivo responses, we used water-soluble gliadin (which was available in larger quantities) in most experiments and AAL for select studies. When injected intraperitoneally, water-soluble gliadin lead to an increase in peripheral KC and TNF-α levels comparable to LPS, whereas water-soluble zein did not induce a response. No responses were found in MyD88−/− mice, neither with LPS nor with water-soluble gliadin (FIG. 6A). A recent study implicated the adaptive immune system in modulating the innate immune response. We therefore injected water-soluble gliadin into T and B cell deficient Rag1−/− mice. Rag1−/− mice showed cytokine levels similar to the ones elicited in C57BL/6J mice, indicating that the innate response was largely independent of adaptive immunity (FIG. 6B).

Next we analyzed local intestinal effects of orally ingested AAL. To this end C57BL/6J mice were gavaged with LPS, water-soluble gliadin, or PBS, followed by measurement of transcript levels of inflammatory cytokines in the proximal duodenum. Only with water-soluble gliadin did we detect a significant upregulation of duodenal KC, MCP-1, and IL-1β (but not TNF-α) transcripts (FIG. 6D). Of note, LPS did not increase any of these cytokines, which is likely due to its inactivation by low pH in the stomach or by intestinal alkaline phosphatase during intestinal passage. When the same experiment was performed in TLR4 deficient C3H/HeJ mice and the corresponding wild type mice, an increase in duodenal KC transcripts was only observed in the wild type mice. Since water-soluble zein did not induce cytokine transcripts, an unspecific reaction to uncommon nutritional antigens could be ruled out (FIG. 6E).

Experiments were also performed with purified alpha amylase inhibitor, in order to confirm this protein antigen as trigger of wheat-induced innate immune response. When we gavaged C57BL/6J mice with LPS, AAL, and water-soluble zein, AAL was indeed able to increase transcript levels of KC, IL-1β, and IL-6 but not TNF-α in the duodenal mucosa (FIG. 6F). While initially the observed effects appeared less significant when purified AAL was used instead of water-soluble gliadin, this can be explained by the much lower AAL concentrations used in these experiments (0.075 mg of purified protein vs. 2 mg of gliadin extract per g mouse weight).

AAI CM3 and 0.19 were recombinantly expressed in eukaryotic HEK 293 cells, in order to exclude bacterial contaminants, to ensure correct folding, and to identify which of both molecules was the active compound. The affinity purified proteins were used to stimulate monocyte derived DCs. Here, CM3, and to a lesser degree 0.19, upregulated IL-8 secretion, suggesting that CM3 as well as 0.19 AAI were the active compound (FIG. 7).

CM3 and 0.19, the main ATl family members, were detected by mass spectrometry and were recombinantly expressed in eukaryotic HEK-293 cells to prevent bacterial contaminants (LPS) and to ensure correct protein folding (FIGS. 9A and B). Both affinity purified ATls stimulated TLR4/MD2/CD14 transfected but not untransfected HEK-293 cells confirming their TLR4-stimulating activity. In line with eukaryotic expression, the stimulatory activity of recombinant CM3 and 0.19 was maintained after additional purification using an endotoxin depletion column (FIG. 9C). In addition, overexpression of both CM3 and 0.19 in TLR4/MD2/CD14 expressing HEK-293 cells strongly induced the canonical and the alternative TLR4-pathway (FIG. 9D). Sequence comparison revealed that despite significant differences in primary sequence, both CM3 and 0.19 showed 5 stretches of highly conserved amino acid residues clustered around cysteines, indicative of a similar secondary structure of both ATls (FIG. 10A). Other ATl variants (i.e., AALs) that occur in wheat or barley showed similar homology, suggestive of comparable biological activity (FIG. 10B).

Materials

Purified cell culture tested LPS (E coli 055:B5) and in wheat alpha amylase inhibitor (AAI) type I were purchased from Sigma-Aldrich (St Louis, Mo.), the TLR2 agonist N-Palmitoyl-S-[2,3-bis(palmitoyloxy)-2RS-propyI]-[R]-cysteinyl-[S]-seryl-[S]-lysyl-[S]-lysyl-[S]-lysyl x3 HCl (Pam3CSK4) and the TLR3 agonist Polyinosine-polycytidylic acid (poly-I:C) were obtained from Invivogen (San Diego, Calif.). Other reagents were of the highest purity available and, if not mentioned otherwise, obtained from Sigma-Aldrich.
as phase B, and a gradient from 24% B to 56% B in 30 min. Detection was at 210 nm. Purity of the fractions was confirmed by SDS PAGE; aminoterminal sequence analysis and their characteristic amino acid composition.

Pepesi-trypsin-digested (PT)-gliadin was generated as originally described with minor modifications. Briefly, gliadin was digested with pepesi in 0.1 M HCl (pH 1.8) at 37° C. for 4 hrs, followed by pH adjustment to 7.8 and digestion with trypsin at 37° C. for 4 hrs (substrate:enzyme ratio of 1:200 for both reactions). Adjustment of the pH to 4.5 resulted in a precipitate which was removed by centrifugation at 2,500 rpm, and N-tosyl-chloromethyl ketone was added to inhibit residual trypsin activity. The supernatant containing the PT-gliadin was dialyzed against 10 mM ammonium carbonate, pH 7.8 (molecular weight exclusion 1000D, Spectra/Por®, Serva, Heidelberg, Germany), sterile-filtered and lyophilized. A parallel digest of zein from corn (Sigma-Aldrich) was used as negative control.

The water soluble fraction of gliadin was obtained by incubating 10 g of gliadin in 50 ml sterile water at 37° C. for 8 hrs under continuous stirring. Insolubles were removed by centrifugation and the supernatant was sterile filtered and lyophilized.

Synthetic Peptides

Peptide p31-43 of α-gliadin (sequence LGQQQPFPQQQPVY (SEQ ID NO: 3) and a scrambled control peptide (sequence GLQPPQFQPQVY (SEQ ID NO: 4)) were synthesized by Anaspec Inc. (San Jose, Calif.). Purity of the peptides was >80% according to HPLC and mass spectrometry analysis. Forty-three 20 mer peptides with an overlap of ten amino acids covering the 440 residue omega 5 gliadin were synthesized at 60-80% purity by Primm Biotechnology (Cambridge, Mass.).

Cell Culture and In Vitro Stimulation Experiments

ThP-1, U937, HEK-293 (all from ATCC, Manassas, Va.), and HEK-293 cells stably transfected with the TLR4-CD14-MD2 complex (Invivogen) were cultured in complete RPMI or DMEM (Cellgro, Manassas, Va.) supplemented with penicillin/streptomycin and 10% fetal calf serum at 37° C. in a 5% CO2 atmosphere.

For isolation of peripheral monocytes 40 ml blood was obtained from 11 patients with cellular disease during their diagnostic workup (median 37 years, range 18-59 years), after prior informed consent. Eight patients were on gluten free diet and in clinical remission, three patients were newly diagnosed and therefore on a regular gluten containing diet. Control monocytes were from the buffy coat of leukopheresis concentrates of anonymous blood donors. Whole EDTA blood or leukopheresis concentrates were subjected to density gradient centrifugation over Ficoll-Hypaque (GE Healthcare, Pittsburgh, Pa.) and CD 14-positive monocytes purified by MACS separation according to the manufacturer’s protocol (Miltenyi, Bergisch Gladbach, Germany). For generation of dendritic cells, monocytes were cultered in RPMI supplemented with 10% fetal calf serum, 200 U/ml IL-4 and 300 U/ml rGM-CSF (both from PeproTech, Rocky Hill, N.J.) for 6-8 days.

Murine resident peritoneal macrophages were isolated by peritoneal lavage using a 3 ml syringe and 18 G needles. Three 3 ml of sterile PBS was injected into the peritoneal cavity and reaspirated after gentle massage of the abdomen. For further purification MACS separation for CD11b positive cells was done according to the manufacturer’s protocol (Miltenyi).

For stimulation cells were seeded on polystyrene wells at a density of 1x10^5/ml. Unless otherwise stated supernatants were harvested after a 16 hr incubation with various stimuli.

Exclusion of LPS Contamination

To prove that stimulatory effects were due to protein, PT-gliadin, the wheat AT1, LPS, or TNFα were incubated with or without 20 μg/ml proteinase K (Promega, Madison, Wis.) for 4 hrs at 56° C. After proteinase K inactivation by boiling for 5 min the digests were used for cell stimulation.

Animals

C57BL/6J mice were obtained from The Jackson Laboratory (Bar Harbour, Me.). The MyD88−/− mice were a kind gift from S. Akira, (Osaka University, Osaka, Japan). Congenic C57BL/6J mice served as experimental controls and were bred under the same conditions in the same facility. All experiments were done with mice at age 5-7 weeks.

In Vivo Experiments

Mice were injected intraperitoneally with water soluble gliadin, zein (500 μg/g body weight) or LPS (1 μg/g) in 200 μl PBS, or PBS alone (negative control). 2 hrs after injection, mice were euthanized by ketamine/xylazine administration and blood was drawn by intraorbital bleeding.

For gavage experiments mice were either raised on gluten free diet (C57BL/6J and MyD88−/− mice) or put on gluten free diet for at least two weeks (C3H/HeJ, C3H/HeOuJ mice), and starved the night before the experiment. Gluten free feed was obtained from Research Diets (New Brunswick, N.J.). All stimulants were diluted in PBS. Mice were administered gliadin, zein (2 mg/g mouse weight), LPS (20 μg/mouse weight), AT1 (0.075 mg/g mouse weight) in 200 μl PBS. Mice were euthanized 4 hrs after gavage and the duodenum snap frozen in liquid nitrogen.

Cytokine/Chemokine Assays

The concentration of IL-8, TNF-α, MCP-1, RANTES, and mouse IL-8 (KC) in cell culture supernatants and serum samples was determined using validated ELISAs (IL-8, hTNFα: BD Pharmingen, San Jose, Calif.; MCP-1, hRANTES, mRANTES, KC: R&D Systems, Minneapolis, Minn.; mTNFα: eBioscience, San Diego, Calif.), according to the manufacturer’s protocols.

RNA Isolation and qRT-PCR

Samples from the small intestine (0.5 cm segment, 2 cm distal to the pylorus) were collected at sacrifice and snap-frozen for further analysis. Total RNA isolation was performed using Trizol reagent (Invitrogen) according to the manufacturer’s instructions. Exon-exon boundary spanning primer sequences were obtained from PrimerBank (http://pga.mgh.harvard.edu/primerbank/) and sequences are listed in Table [x]. Real-time PCR was performed using LightCycler 480 SYBR Green 1 mastermix (Roche, Indianapolis, Ind.) and a Roche LightCycler 480 system. Mouse GAPDH served as endogenous control. PCR was set up in triplicates and threshold cycle (Ct) values of the target genes were normalized to the endogenous control. Differential expression was calculated according to the 2 ΔΔCT method.

Blocking Experiments

Monocyte derived dendritic cells were seeded at a concentration of 1x10^6/ml in 96 well plates. Cells were pre-incubated with blocking antibodies (polyclonal rat anti-TLR4, Invivogen, 10 μg/ml), polyclonal goat anti-CD14, R&D, 20 μg/ml) for 3 hrs at 37° C. before stimulation.
Flow Cytometry

Human monocyte derived DC were stimulated with LPS, PT gliadin, and PT zein overnight. For flow cytometry analysis, cells were pre-incubated with FcR blocking reagent (Miltenyi) for 15 min at 4° C, before staining with monoclonal antibodies (final concentration 10 μg/ml, all from eBioscience) for 30 min at 4° C. Cells were then washed with staining buffer (PBS, 1% BSA), cell viability was assessed by DAPI exclusion (0.1 μg/ml, Roche) and only viable cells were analyzed by flow cytometry using a 4 laser LSR II (BD Biosciences) and Flowjo software (Tree Star, Inc.).

Recombinant Expression of AAI CM3 and 0.19 Proteins

Recombinant flag-tagged CM3 or 0.19 were generated in an eukaryotic system using the expression vector pCDNA (Invitrogen) and HEK 293 cells. cDNAs was optimized and synthesized by genscript (sequence number AV436554.1) and correct orientation was checked by sequencing analysis. The expressed protein was purified from supernatant with anti-flag agarose beads in batch technique according to the manufacturer’s protocol (Sigma).

Statistical Analysis

Differences were tested for statistical significance by the unpaired t-test. p<0.05 was considered significant. In all graphs, error bars depict standard errors of the mean.

Recombinant Expression of AT1 CM3 and 0.19 Proteins

In order to exclude bacterial contaminants, recombinant flag-tagged AT1 CM3 and 0.19 were generated in eukaryotic HEK-293 cells, using cDNAs optimized to fit eukaryotic codon usage (Genscript, Piscataway, N.J.; CM3 and 0.19 with NCBI GenBank sequence numbers AV436554.1 and AV729672.1, respectively). cDNAs were cloned into pcDNA3.1 (+) (Invitrogen). In order to increase expression level of AT1 CM3 0.19, the HindIII-Pal fragment of the PCR product was fused with the Flag-tag at the N- instead of the C-terminus using the forward primer 5'-CCCAAGCT-TAGCGGACCCCTGAAGC GGTATACCCCGG- GCCCGGCGC. The CM3 and 0.19 constructs were then subcloned into the pFLAG-CMV4 vector (Sigma-Aldrich) and the correct orientation was confirmed by sequencing with the N-terminal sequencing primer 5'-AATGTGTAATAAAC CCGGCCCCG4GTTGACGC.

Subconfluent HEK-293 cells cultured on 10 cm tissue culture dishes were transfected with 10 μg of plasmid DNA encoding CM3 and 0.19 using lipofectamine 2000 (Invitrogen), followed by incubation in DMEM (Mediatech) containing 1% fetal bovine serum and 100 IU penicillin/100 μg/ml streptomycin for 48 h. The media were obtained by centrifugation at 4,500 rpm for 10 min at 4° C. Cells were then washed with ice cold-PBS [pH 7.4], resuspended in buffer C (20 mM Tris-HCl [pH 7.4], 150 mM NaCl, 50 mM NaF, 1 mM Na4VO4, 1 mM EDTA, 0.5% TritonX-100, 0.5% sodium deoxycholate) supplemented with EDTA-free Complete protease inhibitors (Roche) for 15 min on ice, and then centrifuged at 14,000 rpm for 20 min at 4° C. Aliquots of the detergent-soluble and insoluble fractions were boiled at 100° C. (the pellet in SDS sample buffer), separated on a SDS-15% polyacrylamide gel, and subjected to Western blot analysis. Protein lysates were probed with rabbit anti-flag antibody (Sigma-Aldrich), followed by horseradish peroxidase-labeled anti-rabbit IgG (Vector Laboratories, Burlingame, Calif.). Protein bands were visualized using enhanced chemiluminescence (Thermo Scientific, Rockford, Ill.) and X-Oat 2000A processor (Kodak).

Purification of α-Amylase Inhibitors, CM3 and 0.19

While sufficient CM3 protein was secreted into the media, 0.19 ATI had to be isolated from the detergent-soluble fraction. Briefly, HEK-cells expressing 0.19 were washed with ice cold-PBS, resuspended in 50 ml of buffer C for 15 min on ice, and centrifuged at 14,000 rpm for 20 min at 4° C. Thus, the solubilized 0.19 and soluble CM3 were bound to Flag-M2 agarose (Sigma-Aldrich) pre-equilibrated with buffer C by gentle shaking for 3 h at 4° C, washed three times with buffer C, and further washed three times with buffer D (Buffer C without detergents). Bound ATIs were eluted with TBS [pH 7.4] containing Flag peptide (Sigma-Aldrich). In order to rigorously exclude endotoxin, eluted CM3 and 0.19 were also applied to an endotoxin removal column (Norgen Biotek corp., Thorold, ON, Canada). ATIs were the used at 5 μg/ml to stimulate HEK-293 cells stably transfected with the TLR4-CD14-MD2 complex, and IL-8 secretion was quantified after 24 h using the IL-8 ELISA as described above.

Downstream Signaling Pathways Induced by CM3 and 0.19 Overexpression

HEK-293 cells stably expressing TLR4-CD14-MD2 were induced to express CM3 or 0.19, respectively, followed by cell lysis in buffer C. Lysates were cleared by centrifugation at 14,000 rpm for 20 min at 4° C, and 50 μg of protein run on a 15% SDS-gel and subjected to Western blotting to analyze activation of the canonical and the alternative (p-IRF3) pathways using antibodies to phosphorylated and unphosphorylated (p-NF-κB/p65) and IRF3 (all from Cell Signaling Technology, Danvers, Mass.).

Other Embodiments

Various modifications and variations of the described methods and compositions of the invention will be apparent to those skilled in the art without departing from the scope and spirit of the invention. Although the invention has been described in connection with specific desired embodiments, it should be understood that the invention as claimed should not be unduly limited to such specific embodiments. Indeed, various modifications of the described modes for carrying out the invention are obvious to those skilled in the fields of medicine, immunology, pharmacology, endocrinology, or related fields are intended to be within the scope of the invention.

All publications mentioned in this specification are herein incorporated by reference to the same extent as if each independent publication was specifically and individually incorporated by reference.
SEQ ID NO: 1
LENGTH: 175
TYPE: PRT
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Description of Artificial Sequence: Synthetic polypeptide

<400> SEQUENCE: 1

Met Ala Cys Lys Ser Ser Cys Ser Leu Leu Leu Ala Ala Val Leu
1 5 10 15
Leu Ser Val Leu Ala Ala Ala Ser Ala Ser Gly Ser Cys Val Pro Gly
20 25 30
Val Ala Phe Arg Thr Asn Leu Pro His Cys Arg Asp Tyr Val Leu
35 40 45
Gln Gln Thr Cys Gly Thr Phe Thr Pro Gly Ser Leu Pro Glu Trp Met
50 55 60
Thr Ser Ala Ser Ile Tyr Ser Pro Gly Lys Pro Tyr Leu Ala Lys Leu
65 70 75 80
Tyr Cys Cys Gln Glu Leu Ala Ala Ser Gin Glu Gln Cys Arg Cys Glu
85 90 95
 Ala Leu Arg Tyr Phe Ile Ala Ala Pro Val Pro Ser Gin Pro Val Asp
100 105 110
 Pro Arg Ser Gly Asn Val Gly Glu Ser Gly Leu Ile Asp Leu Pro Gly
115 120 125
 Cys Pro Arg Glu Met Gin Trp Asp Phe Val Arg Leu Leu Val Ala Pro
130 135 140
 Gly Gin Cys Asn Leu Ala Thr Ile His Asn Val Arg Tyr Cys Pro Ala
145 150 155 160
 Val Glu Gin Pro Leu Trp Ile Asp Tyr Lys Asp Asp Asp Asp Lys
165 170 175

SEQ ID NO: 2
LENGTH: 123
TYPE: PRT
ORGANISM: Triticum aestivum

<400> SEQUENCE: 2

Ser Gly Pro Trp Met Cys Tyr Pro Gly Gin Ala Phe Gln Val Pro Ala
1 5 10 15
Leu Pro Ala Cys Arg Pro Leu Arg Leu Arg Leu Gin Cys Asn Gly Ser Gin
20 25 30
Val Pro Glu Ala Val Leu Arg Asp Cys Gin Gin Leu Ala His Ile
35 40 45
 Ser Glu Trp Cys Arg Cys Gly Ala Leu Tyr Ser Met Leu Asp Ser Met
50 55 60
 Tyr Lys Glu His Gly Ala Gin Glu Gly Gin Ala Gly Thr Gly Ala Phe
65 70 75 80
 Pro Arg Cys Arg Arg Glu Val Val Lys Leu Thr Ala Ala Ser Ile Thr
85 90 95
 Ala Val Cys Arg Leu Pro Ile Val Val Asp Ala Ser Gly Asp Gly Ala
100 105 110
<210> SEQ ID NO 3
<211> LENGTH: 145
<212> TYPE: PRT
<213> ORGANISM: Triticum aestivum

<400> SEQUENCE: 3

Met Ala Ser Lys Ser Ser Ile Ser Pro Leu Leu Leu Ala Thr Val Leu 1 5 10 15
Val Ser Val Phe Ala Ala Ala Thr Ala Thr Gly Pro Tyr Cys Tyr Ala 20 25 30
Gly Met Gly Leu Pro Ile Asn Pro Leu Glu Gly Cys Arg Glu Tyr Val 30 40 46
 Ala Gln Gln Thr Cys Gly Ile Ser Gly Ser Ala Val Ser Thr 50 55 60
Glu Pro Gly Asn Thr Pro Arg Asp Arg Cys Cys Lys Glu Leu Tyr Asp 65 70 75 80
 Ala Ser Gln His Cys Arg Cys Ala Val Arg Tyr Phe Ile Gly Arg 85 90 95
Arg Ser Asp Pro Asn Ser Ser Val Leu Lys Asp Leu Pro Gly Cys Pro 100 105 110
Arg Glu Pro Gln Arg Asp Phe Ala Lys Val Leu Val Thr Ser Gly His 115 120 125
Cys Asn Val Met Thr Val His Asn Ala Pro Tyr Cys Leu Gly Leu Asp 130 135 140
Ile 145

<210> SEQ ID NO 4
<211> LENGTH: 145
<212> TYPE: PRT
<213> ORGANISM: Triticum aestivum

<400> SEQUENCE: 4

Met Ala Ser Lys Ser Ser Ile Thr His Leu Leu Leu Ala Ala Val Leu 1 5 10 15
Val Ser Val Phe Ala Ala Ala Ala Thr Ala Thr Gly Pro Tyr Cys Tyr Pro 20 25 30
Gly Met Gly Leu Pro Ser Asn Pro Leu Glu Gly Cys Arg Glu Tyr Val 30 40 45
 Ala Gln Gln Thr Cys Gly Val Gly Ile Val Gly Ser Pro Val Ser Thr 50 55 60
Glu Pro Gly Asn Thr Pro Arg Asp Arg Cys Cys Lys Glu Leu Tyr Asp 65 70 75 80
 Ala Ser Gln His Cys Arg Cys Ala Val Arg Tyr Phe Ile Gly Arg 85 90 95
Thr Ser Asp Pro Asn Ser Gly Val Leu Lys Asp Leu Pro Gly Cys Pro 100 105 110
Arg Glu Pro Gln Arg Asp Phe Ala Lys Val Leu Val Thr Pro Gly His 115 120 125
Cys Asn Val Met Thr Val His Asn Thr Pro Tyr Cys Leu Gly Leu Asp 130 135 140
Ile 145
<210> SEQ ID NO 5
<211> LENGTH: 145
<212> TYPE: PRT
<213> ORGANISM: Triticum aestivum

<400> SEQUENCE: 5

Met Ala Ser Lys Ser Ser Ile Thr Pro Leu Leu Leu Ala Ala Val Leu
1 5 10 15
Ala Ser Val Phe Ala Ala Ala Thr Ala Thr Gly Gln Tyr Cys Tyr Ala
20 25 30
Gly Met Gly Leu Pro Ser Asn Pro Leu Glu Gly Cys Arg Glu Tyr Val
35 40 45
Ala Gln Gln Thr Cys Gly Val Thr Ile Ala Gly Ser Pro Val Ser Ser
50 55 60
Glu Pro Gly Asp Thr Pro Lys Asp Arg Cys Cys Gin Glu Leu Asp Glu
65 70 75 80
Ala Pro Gln His Cys Arg Cys Glu Ala Val Arg Tyr Phe Ile Gly Arg
95 100 105 110
Arg Ser His Pro Asp Trp Ser Val Leu Lys Asp Leu Pro Gly Cys Pro
120 125
Lys Glu Pro Gin Arg Asp Phe Ala Lys Val Val Leu Thr Pro Gly Gin
115
Cys Asn Val Leu Thr Val His Asn Ala Pro Tyr Cys Leu Gln Leu Asp
130 135 140
Ile
145

<210> SEQ ID NO 6
<211> LENGTH: 171
<212> TYPE: PRT
<213> ORGANISM: Hordeum vulgare

<400> SEQUENCE: 6

Met Ala Cys Lys Ser Ser Arg Ser Leu Leu Leu Ala Thr Val Met
1 5 10 15
Val Ser Val Phe Ala Ala Ala Ala Ala Ala Ala Ala Ala Thr Asp Cys
20 25 30
Ser Pro Gly Val Ala Phe Pro Thr Asn Leu Leu Gly His Cys Arg Asp
35 40 45
Tyr Val Leu Gln Gln Thr Cys Ala Val Phe Thr Pro Gly Ser Lys Leu
50 55 60
Pro Gly Trp Met Thr Ser Ala Glu Leu Asn Tyr Pro Gly Gin Pro Tyr
65 70 75 80
Leu Ala Lys Leu Tyr Cys Cys Gin Glu Leu Ala Glu Ile Pro Gin Gin
95 100 105 110
Cys Arg Cys Glu Ala Leu Arg Tyr Phe Met Ala Leu Pro Val Pro Ser
100 105
Gln Pro Val Asp Pro Ser Thr Gly Asn Val Gin Glu Ser Gly Leu Met
115 120 125
Asp Leu Pro Gly Cys Pro Arg Gin Met Gin Arg Asp Phe Val Arg Leu
130 135 140
Leu Val Ala Pro Gly Gin Cys Asn Leu Ala Thr Ile His Asn Val Arg
145 150 155 160
Tyr Cys Pro Ala Val Glu Gln Pro Leu Trp Ile

<210> SEQ ID NO 7
<211> LENGTH: 143
<212> TYPE: PRT
<213> ORGANISM: Triticum aestivum

<400> SEQUENCE: 7
Met Ala Ser Lys Ser Asn Cys Val Leu Leu Leu Ala Ala Val Leu Val 1 5 10 15
Ser Ile Phe Ala Ala Ala Ala Ile Gly Asn Glu Asp Cys Thr Pro 20 25 30
Trp Met Ser Thr Leu Ile Thr Pro Leu Pro Ser Cys Arg Asp Tyr Val 35 40 45
Glu Gln Gln Ala Cys Arg Ile Glu Thr Pro Gly Ser Pro Tyr Leu Ala 50 55 60
Lys Gln Gln Cys Cys Gly Leu Ala Asn Ile Pro Gln Gln Cys Arg 65 70 75 80
Cys Gln Ala Leu Arg Tyr Phe Met Gly Pro Lys Ser Arg Pro Asp Gln 85 90 95
Ser Gly Leu Met Glu Leu Pro Gly Cys Pro Arg Glu Val Gln Met Asp 100 105 110
Phe Val Arg Ile Leu Val Thr Pro Gly Tyr Cys Leu Leu Thr Thr Val 115 120 125
His Asn Thr Pro Tyr Cys Leu Ala Met Glu Glu Ser Gln Trp Ser 130 135 140

<210> SEQ ID NO 8
<211> LENGTH: 149
<212> TYPE: PRT
<213> ORGANISM: Hordeum vulgare

<400> SEQUENCE: 8
Met Ala Ser Lys Ser Ser Cys Asp Leu Leu Leu Ala Ala Val Leu Val 1 5 10 15
Ser Ile Phe Ala Ala Ala Ala Val Gly Ser Glu Asp Cys Thr Pro 20 25 30
Trp Thr Ala Thr Pro Ile Thr Pro Leu Pro Ser Cys Arg Asp Tyr Val 35 40 45
Glu Gln Gln Ala Cys Arg Ile Glu Thr Pro Gly Pro Tyr Leu Ala 50 55 60
Lys Gln Gln Cys Cys Gly Leu Ala Asn Ile Pro Gln Gln Cys Arg 65 70 75 80
Cys Gln Ala Leu Arg Phe Phe Met Gly Arg Lys Ser Arg Pro Asp Gln 85 90 95
Ser Gly Leu Met Glu Leu Pro Gly Cys Pro Arg Glu Val Gln Met Asp 100 105 110
Phe Val Arg Ile Leu Val Thr Pro Gly Phe Cys Asn Leu Thr Thr Val 115 120 125
His Asn Thr Pro Tyr Cys Leu Ala Met Asp Glu Trp Gln Thr Asn Arg 130 135 140
Gln Phe Cys Ser Ser 145
Met Ala Phe Lys His Gln Leu Ile Leu Ser Thr Ala Ile Leu Leu Ala
Val Leu Ala Ala Ala Ser Ala Ser Phe Arg Glu Gln Cys Val Pro Gly
Arg Glu Ile Thr Tyr Glu Ser Leu Asn Ala Arg Arg Glu Tyr Ala Val
Arg Glu Thr Cys Gly Tyr Tyr Leu Ser Ala Glu Arg Glu Lys Arg Arg
Cys Cys Asp Glu Leu Ser Lys Val Pro Glu Leu Cys Trp Cys Glu Val
Leu Arg Ile Leu Met Asp Arg Arg Val Thr Lys Glu Gly Val Val Lys
Gly Ser Leu Leu Gln Asp Met Ser Arg Cys Lys Leu Thr Arg Glu
Phe Ile Ala Gln Ile Val Gly Arg Glu

Ser Gly Pro Trp Met Cys Tyr Pro Gly Gln Ala Phe Gln Val Pro Ala
Leu Pro Gly Cys Arg Pro Leu Leu Lys Leu Gln Cys Asn Gly Ser Gln
Val Pro Glu Ala Val Leu Arg Asp Cys Cys Gln Gln Leu Ala Asp Ile 35 40 45
Ser Glu Trp Pro Arg Cys Gly Ala Leu Tyr Ser Met Leu Asp Ser Met 50 55 60
Tyr Lys Glu His Gly Val Ser Glu Gly Gin Ala Gly Thr Gly Ala Phe 65 70 75 80
Pro Ser Cys Arg Arg Glu Val Val Lys Leu Thr Ala Ala Ser Ile Thr 90 95 95
Ala Val Cys Arg Leu Pro Ile Val Val Asp Ala Ser Gly Asp Gly Ala 100 105 110
Tyr Val Cys Lys Asp Val Ala Ala Tyr Pro Asp Ala 115 120

Cys Ser Lys Lys Lys Lys
1 5

Leu Gly Gln Gln Pro Phe Pro Pro Gln Gln Pro Tyr
1 5 10

Gly Leu Gln Pro Phe Gln Gln Pro Gln Pro Pro Gln Tyr
1 5 10

ccccagctta gggaccctg gatgtgctac
30
continued

<table>
<thead>
<tr>
<th><212> TYPE: DNA</th>
<th><213> ORGANISM: Artificial Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td><220> FEATURE:</td>
<td></td>
</tr>
<tr>
<td><223> OTHER INFORMATION:</td>
<td>Description of Artificial Sequence: Synthetic primer</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><400> SEQUENCE: 16</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>cggggtacc tccaggcgtc aggtaacg gcac</td>
<td>35</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><210> SEQ ID NO 17</th>
<th><211> LENGTH: 30</th>
</tr>
</thead>
<tbody>
<tr>
<td><212> TYPE: DNA</td>
<td></td>
</tr>
<tr>
<td><213> ORGANISM: Artificial Sequence</td>
<td></td>
</tr>
<tr>
<td><220> FEATURE:</td>
<td></td>
</tr>
<tr>
<td><223> OTHER INFORMATION:</td>
<td>Description of Artificial Sequence: Synthetic primer</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><400> SEQUENCE: 17</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>aagtcgtgaa taacccgcc gcgttgacgc</td>
<td>30</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><210> SEQ ID NO 18</th>
<th><211> LENGTH: 168</th>
</tr>
</thead>
<tbody>
<tr>
<td><212> TYPE: PRT</td>
<td></td>
</tr>
<tr>
<td><213> ORGANISM: Triticum aestivum</td>
<td></td>
</tr>
<tr>
<td><400> SEQUENCE: 18</td>
<td></td>
</tr>
<tr>
<td>Met Ala Cys Lys Ser Ser Cys Ser Ser Cys Ser Leu Leu Leu Leu Ala Ala Val Leu</td>
<td>1 5 10 15</td>
</tr>
<tr>
<td>Leu Ser Val Leu Ala Ala Ala Ala Ala Ser Gly Ser Cys Val Pro Gly</td>
<td>20 25 30</td>
</tr>
<tr>
<td>Val Ala Phe Arg Thr Asn Leu Leu Pro His Cys Arg Asp Tyr Val Leu</td>
<td>35 40 45</td>
</tr>
<tr>
<td>Gln Gln Thr Cys Gly Thr Phe Thr Pro Gly Ser Lys Leu Pro Glu Trp</td>
<td>50 55 60</td>
</tr>
<tr>
<td>Met Thr Ser Ala Ser Ile Tyr Ser Pro Gly Lys Pro Tyr Leu Ala Ala Lys</td>
<td>65 70 75 80</td>
</tr>
<tr>
<td>Leu Tyr Cys Gln Glu Leu Ala Glu Ile Ser Gln Gln Cys Arg Cys</td>
<td>85 90 95</td>
</tr>
<tr>
<td>Glu Ala Leu Arg Tyr Phe Ile Ala Leu Pro Val Pro Ser Gln Glu Pro Val</td>
<td>100 105 110</td>
</tr>
<tr>
<td>Asp Pro Arg Ser Gly Asn Val Gly Glu Ser Gly Leu Ile Asp Leu Pro</td>
<td>115 120 125</td>
</tr>
<tr>
<td>Gly Cys Pro Arg Glu Met Glu Trp Asp Phe Val Arg Leu Leu Ala Val Ala</td>
<td>130 135 140</td>
</tr>
<tr>
<td>Pro Gly Gln Cys Asn Leu Ala Thr Ile His Asn Val Arg Tyr Cys Pro</td>
<td>145 150 155 160</td>
</tr>
<tr>
<td>Ala Val Glu Glu Pro Leu Trp Ile</td>
<td>165</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><210> SEQ ID NO 19</th>
<th><211> LENGTH: 124</th>
</tr>
</thead>
<tbody>
<tr>
<td><212> TYPE: PRT</td>
<td></td>
</tr>
<tr>
<td><213> ORGANISM: Triticum aestivum</td>
<td></td>
</tr>
<tr>
<td><400> SEQUENCE: 19</td>
<td></td>
</tr>
<tr>
<td>Ser Gly Pro Trp Met Cys Tyr Pro Gly Gln Ala Phe Gln Val Pro Ala</td>
<td>1 5 10 15</td>
</tr>
<tr>
<td>Leu Pro Ala Cys Arg Pro Leu Leu Leu Arg Leu Gln Cys Asn Gly Ser Gln</td>
<td>20 25 30</td>
</tr>
</tbody>
</table>
What is claimed is:

1. A pharmaceutical composition comprising an antibody against alpha Amylase Inhibitor CM3 (CM3).
2. The pharmaceutical composition of claim 1, wherein said antibody is a polyclonal antibody.
3. The pharmaceutical composition of claim 1, wherein said antibody is a monoclonal antibody.
4. The pharmaceutical composition of claim 1, wherein said antibody is humanized.
5. The pharmaceutical composition of claim 1, wherein said antibody is formulated for oral administration.
6. The pharmaceutical composition of claim 1, wherein said antibody is formulated in milk or colostrum.
7. The pharmaceutical composition of claim 1, wherein said antibody is generated in the milk or colostrum of a mammal.
8. The pharmaceutical composition of claim 1, wherein said mammal is a cow or a goat.
9. The pharmaceutical composition of claim 1, wherein said antibody is formulated to be active in the intestine.
10. A method of treating a gastrointestinal disorder comprising administering the pharmaceutical composition of claim 1.
11. The method of claim 10, wherein said gastrointestinal disorder is selected from the group consisting of celiac disease, ulcerative colitis, and Crohn’s disease.
12. The method of claim 10, wherein said pharmaceutical composition is administered immediately prior to, concomitantly with or after a meal.
13. The method of claim 10, wherein said pharmaceutical composition is administered once or twice daily.
14-31. (canceled)
32. A pharmaceutical composition comprising an antibody against a protein selected from the group consisting of Alpha Amylase Inhibitor 0.19 (0.19), CM1, CM2, CMa, CMd, CM16, CMb, CMX1/CMX3, CMX2, alpha Amylase Inhibitor 0.53 (0.53), and structurally and functionally related compounds.
33. The pharmaceutical composition of claim 32, wherein said antibody is a polyclonal antibody.
34. The pharmaceutical composition of claim 32, wherein said antibody is a monoclonal antibody.
35. The pharmaceutical composition of claim 32, wherein said antibody is humanized.
36. The pharmaceutical composition of claim 32, wherein said antibody is formulated for oral administration.
37. The pharmaceutical composition of claim 36, wherein said antibody is formulated in milk or colostrum.
38. The pharmaceutical composition of claim 37, wherein said antibody is generated in the milk or colostrum of a mammal.
39. The pharmaceutical composition of claim 38, wherein said mammal is a cow or a goat.
40. The pharmaceutical composition of claim 36, wherein said antibody is formulated to be active in the intestine.
41. A method of treating a gastrointestinal disorder comprising administering the pharmaceutical composition of claim 32.
42. The method of claim 41, wherein said gastrointestinal disorder is selected from the group consisting of celiac disease, ulcerative colitis, and Crohn’s disease.
43. The method of claim 42, wherein said pharmaceutical composition is administered immediately prior to a meal.
44. The method of claim 43, wherein said pharmaceutical composition is administered once or twice daily.
45-66. (canceled)
67. The method of claim 3, wherein said antibody is isolated from a hybridoma.
68. The method of claim 34, wherein said antibody is isolated from a hybridoma.

* * * * *