A61B 8/02 (2006.01) A61B 8/08 (2006.01) G01R 33/567 (2006.01)

(21) International Application Number:
PCT/EP20 16/08 1147

(22) International Filing Date:
15 December 2016 (15.12.2016)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
15200597. 1 16 December 2015 (16.12.2015) EP

(71) Applicant: UNVERSITATSKLINIKUM HAMBURG-
EPPENDORF [DE/DE]; MartinistraBe 52, 20446 Hamburg (DE).

(72) Inventors: KORDING, Fabian; Neuer Steinweg 5, 20459
Hamburg (DE). DR. YAMAMURA, Jin; Ottersbekallee
25, 20255 Hamburg (DE). RUPRECHT, Christian;
Simon-von-Utrecht-Str. 65, 20359 Hamburg (DE). FEHRS,
Kai-Kristoph; ContastraBe 4, 20253 Hamburg (DE).

(74) Agent: MAIWALD PATENTANWALT GMBH; Elis-
enhof, Eilenstr. 3, 80335 Munich (DE).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KH, KN,
KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA,
MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG,
NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS,
RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY,
TH, TJ, TM, TN, TR, TT, TZ, UA, UK, US, UZ, VC, VN,
ZA, ZM, ZW.

(54) Title: ULTRASONIC DEVICE FOR DETECTING THE HEARTBEAT OF A PATIENT

(57) Abstract: A device for detecting the heartbeat of a patient comprises a transmitter for ultrasonic waves, a receiver for Doppler-shifted ultrasonic waves, and evaluating means configured to extract at least one time-varying frequency component (5lb) from the time-dependent signal (51, 5la) delivered by the receiver and to evaluate moments t, t2, t3, t4 of the heartbeat from the variation of at least one of the frequency components in time. In particular, a window of interest, WOI (53a, 53b, 53c, 53d), in time is determined from the variation of the at least one frequency component. The moments are then determined as the moment where the time-dependent signal (51, 5la) from the receiver assumes a maximum (bol, b2, b3, b4) within the WOI. The heartbeat may be used to trigger image acquisition, in particular in a MRI apparatus. Tracking means may be provided to determine which transmitters and/or receivers cover the heart, in particular for imaging of a fetus.
Designated States (unless otherwise indicated, for every kind of regional protection available):

ARIPO (BW, GH, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

GM, KE, KE, LA, SP, ME, NA, RO, RO, SL, ST, TZ.

TD, TM, TTA, ZM, ZW).

Published:

— with international search report (Art. 21(3))
Ultrasonic device for detecting the heartbeat of a patient

The invention relates to an ultrasonic device for detecting the heartbeat of a patient that can preferably be used while the patient is being examined in an imaging apparatus, e.g., a magnetic resonance imaging, MRI, apparatus.

Background of the invention

When the heart of a patient is examined using an MRI or other imaging apparatus, it is important to eliminate motion artifacts caused by the rapid motion of the heart. To date, the image acquisition of the MRI is synchronized to the moment of the patient's heartbeat by means of an external trigger signal. It is customary in the art to derive such a trigger signal from an electrocardiogram that is acquired simultaneously with the MRI imaging. The high magnetic and electromagnetic fields involved in the MRI imaging superimpose a rather high level of interference onto the weak electrical signals that have been picked up from the skin of the patient. In addition, electrolytes in the blood of the patient represent moving charges that generate even more interference in combination with the high magnetic field. This interference is termed magnetohydrodynamic effect. Both types of interference deteriorate the detection of the heartbeat to the point where it can no longer serve as a reliable trigger signal for the MRI imaging. This causes the motion artifacts, which the triggering with the heartbeat was intended to avoid, to reappear in the resulting MRI images. In addition, when the heart of an unborn fetus is to be imaged using MRI, the skin of the fetus is not accessible for picking up an electrocardiogram, so no trigger signal for the MRI imaging is available at all.
To overcome these drawbacks (F. Kording, B. Schoennagel, G. Lund, F. Ueberle, C. Jung, G. Adam, J. Yamamura, "Doppler Ultrasound Compared with Electrocardiogram and Pulse Oximetry Cardiac Triggering: A Pilot Study", Magnetic Resonance in Medicine, doi: 10.1002/mrm.25502 (2014)) propose, and demonstrate an MR-compatible cardiotocograph, CTG, to acquire the heartbeat of adult patients during MRI. The heart of the patient is examined with ultrasonic waves, and the reflected ultrasonic waves that are Doppler-shifted by the motion of the heart are detected. From this signal, the exact moment of the heartbeat is extracted using a wavelet-based peak detection. (J. Yamamura, I. Kopp, M. Frisch, R. Fischer, K. Valett, K. Hecher, G. Adam, U. Wedegartner, "Cardiac MRI of the Fetal Heart Using a Novel Triggering Method: Initial Results in an Animal Model", Journal of Magnetic Resonance Imaging 35, 1071-1076 (2012)) propose, and demonstrate on sheep, MRI imaging of a fetal heart that is triggered by a CTG signal. The Doppler frequency shift is proportional to the speed of movement of the heart; therefore, the Doppler-shifted ultrasonic signal can serve as a suitable triggering signal for the image acquisition in the MRI:

When the heart of a fetus is to be imaged using MRI, a high level of noise is superimposed on the CTG signal by the blood flow, breathing of the mother and by the MRI. As a robust trigger signal has to be processed in real-time without false negative or false positive trigger detections, there is therefore a need for an improved ultrasonic detection of the heartbeat during MRI.

Disclosure of the invention

The inventors have developed a device for detecting the heartbeat of a patient. This device may preferably be used during imaging in a magnetic resonance imaging, MRI, apparatus because it can be very easily constructed to be MRI compatible. However, its basic working is not dependent on the presence of an MRI apparatus in any way. Specifically, it can be used in conjunction with another type of imaging apparatus, such as computer tomography, CT, or positron emission tomography, PET, to provide the heartbeat of the patient as a trigger signal for the imaging. The slower the imaging method is compared with the rhythm of the heartbeat, the more the image quality is
improved by the triggering. However, the device can be used even without any imaging taking place.

The device comprises a transmitter for ultrasonic waves and a receiver for Doppler-shifted ultrasonic waves. The transmitter and the receiver may be implemented in one and the same transducer that performs both functions, but they may also be separate entities. Preferably, the transmitter and/or the receiver are piezoelectric transducers that may convert back and forth between an electrical signal and an ultrasonic signal.

The device further comprises evaluating means that are coupled to the receiver and configured to evaluate the moment t_1, t_2, t_3, t_4 of a heartbeat of the patient out of the time dependent signal from the receiver. This time dependent signal may be a raw signal, but it may also have been pre-processed in order to extract only a frequency component that has been Doppler-shifted from the frequency of the transmitter. This pre-processing may, for example, be accomplished using a demodulator.

The evaluating means comprise spectrum analyzing means that are configured to extract at least one time-varying frequency component from the time-dependent signal delivered by the receiver. The evaluating means further comprise determining means configured to evaluate the moment t_1, t_2, t_3, t_4 of the heartbeat from the variation of at least one of the frequency components in time.

Preferably, the device comprises means that prevent coupling to the radio frequency field of the MRI at RF frequency COR. Such means may, for example, comprise structures that are designed not to be resonant at the frequency COR, the use of non-metallic materials, or standing wave traps configured to block the frequency COR.

The inventors have found that a single heartbeat of the patient is an aperiodic event that generates a plurality of frequency components in the time-dependent signal from the receiver. However, the heartbeat is a periodically recurring event. Therefore, any frequency component generated by the heartbeat is a periodic function in time, with
the period corresponding to the heart rate of the patient. This can be exploited to derive the moment \(t_i, t_2, t_3, U \) of every single heartbeat from said function. The inventors have found that, surprisingly, this permits a very accurate detection of this moment \(t_i, t_2, t_3, U \) even if the original time-dependent signal from the receiver is superimposed with noise that contains peaks about as high as, or even higher than, the peaks produced by the heartbeat. The only a priori knowledge used in this heartbeat detection is the fact that the heartbeat is a periodically recurring event.

Therefore, the variation of the frequency component in time that is evaluated by the determining means is most preferably a periodic variation that corresponds to the heart rate of the patient.

In a first very simple embodiment, the determining means may be configured to determine the moment \(t_a, t_b, t_c, t_d \) where the at least one time-dependent frequency component assumes a maximum \(m_a, \eta_4, \vartheta_4, m_d \) as the moment \(t_i, t_2, t_3, t_4 \) of the heartbeat. However, because the periodically varying frequency component more or less resembles a sine wave, its maximum may be a lot less sharp than a peak caused by the heartbeat in the original time-dependent signal from the receiver. To recover this sharpness and to improve the accuracy with which the moment \(t_i, t_2, t_3, t_4 \) can be detected, according to the invention, a hybrid detection of the heartbeat is used. The determining means are configured to determine a window of interest, WOI, in time from the variation of the at least one frequency component in time. This window is subsequently used to determine the moment where the time-dependent signal from the receiver assumes a maximum \(b_i, b_2, b_3, b_4 \) within the WOI as the moment \(t_i, t_2, t_3, t_4 \) of the heartbeat. Thus, basically, a frequency component of the time-dependent signal is analyzed to determine a time frame that contains the desired heartbeat event, and this time frame is used to gate the actual detection of this event in the original signal in the time domain.

The window of interest, WOI, may be a window of pre-set length \(\Delta t \) around the moment \(t_a, t_b, t_c, t_d \) where the at least one time-dependent frequency component of the signal assumes a maximum \(m_a, \eta_4, m_c, m_4 \). In the alternative or in combination with
this, the WOI may also be, for example, a window that extends between two moments \(t_e, t_f, t_g, t_h \) where the at least one time-dependent frequency component (51a) assumes a minimum \(m_e, m_{34}, m_g, \eta_{34} \).

For the detection of a fetal heart beat, multiple receivers may be necessary, entailing more electric wiring that is prone to pick up interference from the radio frequency field of the MRI. To reduce this interference and improve the compatibility of the device with MRI, resonant paths, especially circular closed conductive paths, should be avoided. Preferably, the response of the complete signal path from the receiver to the evaluating means at the frequency \(\omega_0 \) of the radio frequency field of the MRI is at least -30 dB lower than the response of a structure that is resonant at the frequency \(\omega_0 \). TO this end, the inventors propose a further specially advantageous embodiment of the invention that is directed at optimizing the electrical wiring in this way.

The inventors stress that while this embodiment integrates perfectly with the features relating to the evaluation of the signal presented above, it is not tied in any way to this mode of evaluation.

In this embodiment, the device for detecting the heartbeat of a patient comprises a transceiver unit with a transmitter for ultrasonic waves and a plurality of receivers for Doppler-shifted ultrasonic waves. The transmitters and the receivers may be one and the same element, for example, piezo-electric transducers that convert back and forth between an electrical voltage signal and an ultrasonic wave. The transceiver unit may therefore be a transducer unit. Each receiver has a first output terminal and a second output terminal. The transmitters and receivers may, for example, also be separate piezo-electric elements.

According to the invention, each of the first output terminals of at least two receivers is connected by a branch line to a first common bus, and each of the second output terminals of at least two receivers is connected by a branch line to a second common bus. The inventors have found that this topology of wiring minimizes the
induction of radio frequency pulses to the common buses when the transceiver unit is used inside the radio frequency field of an MRI.

Likewise, multiple transmitters may be connected with common buses using the same topology. If transducers are used that combine the functions of a transmitter and a receiver in one single element, only one first common bus and one second common bus are necessary to wire all transducers. If the transducers are piezoelectric elements, each having a plus pole and a minus pole, then the first common bus may interconnect the plus poles, while the second common bus may interconnect the minus poles. The second common bus may also be connected to a ground potential.

The transmitter and the receivers may be mounted on a common dielectric substrate, preferably a flexible substrate. If the substrate is flexible, it may, for example, adapt to the shape of a mother’s womb when placed on that womb. Exemplary mounting methods that are especially favorable for MRI compatibility are gluing and heat-sealing, which require no additional metal. For the device to be MRI-compatible, no ferromagnetic components may be introduced into the high magnetic field of the MRI, since it may heat up, and/or the magnetic field may apply a high force to it. It is very advantageous to use as little metal in the field of the MRI as possible, since the rapidly varying magnetic field of the MRI may cause eddy currents in metal. The magnetic field that is associated with these eddy currents disturbs the field of the MRI and causes artifacts. The imaging quality of the MRI strongly depends on the homogeneity of the magnetic field and on the ability of radio frequency pulses to propagate throughout the patient without being obstructed by metallic matter.

In a specially advantageous embodiment of the invention, the dielectric substrate is at least partially surrounded by a conductive shield. This conductive shield prevents external electromagnetic fields from being picked up by the first and/or second common bus to which the receivers are connected, in the manner of a Faraday cage. This is especially advantageous in MRI imaging, where the patient is interrogated with radio-frequency fields. For compatibility with MRI imaging, the shield should be made of a non-ferromagnetic but highly conductive material, such as copper, silver or gold.
The shield may, for example, be a thin foil made of these metals. The shield may also, for example, comprise a non-conducting carrier, such as a plastic foil, carrying conductive structures.

The shield may surround the receivers in addition to surrounding the substrate. This improves the shielding of the first and second common buses at the price of introducing a slight mechanical damping of the ultrasonic waves captured by the receivers. If maximizing the coupling of the received ultrasonic waves to the receivers is more important, then the receivers may alternatively protrude out of the shield. In this case, the surface of the receivers that protrude out of the shield may comprise conductive structures that are electrically connected to the shield, so as to prevent electromagnetic waves from passing through the shield in the places where the receivers protrude out of the shield.

Preferably, at least part of the conductive shield is grounded. This grounding may be effected through the same cable that connects the first and second common buses to the outside world. For example, the cable may comprise at least two concentric conductors, wherein one conductor is connected to the first common bus and the other conductor is connected to the second common bus. At least a part of the conductive shield is grounded via the outermost conductor of the cable. For example, the cable may be a coaxial cable. The grounded outer conductor then provides the ground potential to the second common bus as a reference potential for the signal acquisition, while at the same time providing the ground to the shield.

The cable may also be, for example, a triaxial cable. In this case, for example, the first common bus may be connected to the innermost conductor, the second common bus may be connected to the middle conductor, and the shield may connect the outermost conductor to ground. At the price of having one more conductor, this provides the freedom of arbitrarily choosing the reference potential for the signal detection.

For MRI imaging, it is important that the shield provides substantially no circular structures that may heat up or lead to image artifacts. Therefore, in a further specially
advantageous embodiment of the invention, at least part of the shield is divided into a plurality of segments. To make the different segments work together as one shield nonetheless, in a further specially advantageous embodiment of the invention, at least two of the segments are electrically connected by means of a capacitor.

This capacitor is preferably dimensioned in a way that it blocks lower frequencies which are relevant for the generation of eddy currents within the shield, while being conductive for higher frequencies that may be picked up by the first and second common buses. In this manner, eddy currents are avoided, but the shield is effective for the frequencies that may obscure the measured signals.

In a further specially advantageous embodiment of the invention, the first common bus and the second common bus are arranged on different faces of the substrate, and/or the first common bus and the second common bus are interwoven along at least part of the signal path between at least one receiver and the spectrum analyzing means. This reduces induced common-mode currents by the MRI and parasitic magnetic fields.

Preferably, the substrate (circuit board) is protected by a plastic casing that is biocompatible and sealed in a watertight manner.

When the heartbeat of a human fetus is to be detected, an additional challenge is that the fetus may move within the uterus so that its heart is no longer being examined by the ultrasonic waves from the transmitter. If this happens, the trigger signal for the MR imaging of the fetal heart is gone. Because the mother has to lie in a very uncomfortable position inside the MRI apparatus, which is not possible for an extended period of time, the loss of the trigger signal usually means that the whole examination of the fetal heart must be aborted and repeated at a later time. The intravaginal movement of the fetus may especially be triggered by the loud intimidating noise generated by the MRI.

To overcome this drawback, in a further specially advantageous embodiment of the invention, the transceiver unit comprises a plurality of transmitters and/or receivers,
and the evaluating means comprise tracking means to determine which transmitters and/or receivers cover the present position of the heart of the patient, so that the Doppler-shifted ultrasonic waves can be registered by at least one receiver and evaluated by the evaluating means. The transmitters may, for example, be arranged in groups, and they may be activated either by group or individually. The transmitters, and/or the receivers, may, for example, be distributed over a large area in which a fetus is expected to be moving. Preferably, the transmitters, and/or the receivers, are arranged on a flexible mat that can be placed on the mother's womb, so that every point in the uterus where the fetal heart can be is covered by at least one transmitter and/or receiver. Therefore, a constant detection of the heartbeat of the fetus, and thus a continuous trigger signal for the MPI, will be available, no matter which way the fetus moves.

Advantageously, the evaluating means comprise feedback means that control operation of the plurality of transmitters, wherein the feedback means are configured to power on only those transmitters that have been identified to cover the present position of the heart of the patient by the tracking means. No unnecessary ultrasound, which could result in artifacts, is then transmitted.

In a further advantageous embodiment of the invention, the signal path between at least one receiver and the spectrum analyzing means comprises at least one standing wave trap configured to block the radio frequency f_{COR} of the MRT apparatus, and/or to prevent coupling between the signal path and the radio frequency f_{COR} of the MRI. This avoids the introduction of common-mode signals into the wiring and avoids potential heating of the wire. Such heating could injure the patient by burning of the skin, or it might even be a fire hazard. Furthermore, the MRI image may be significantly disturbed, if the transmitted radio frequency f_{COR} of the MRI is induced into the signal path.

Preferably, the standing wave trap is formed from a coaxial cable with an inner conductor and an outer conducting shield. This may especially be the same coaxial
cable that is carrying the signal. The coaxial cable is wound to a coil so that a first coil is formed in the inner conductor and a second coil is formed in the conducting shield. The second coil in the outer conducting shield is bridged by a capacitor that forms the standing wave trap in combination with said second coil in the outer conducting shield.

Moreover, if several piezoelectric elements are used, for example on a flexible substrate to create a large area for signal reception, multiple signals paths may be required. The signals paths may also couple to the radio frequency of the MRI, which has to be prevented in order to prevent heating of the signal paths and MRI image artifacts. This may especially be achieved by resonant parallel circuits, consisting of a parallel capacitor and inductor, tuned to the resonant frequency of the MRI, which are placed within each signal path.

In a specially advantageous embodiment of the invention, the signal path between at least one receiver and the spectrum analyzing means comprises a plurality of standing wave traps, so that in the radio frequency COR field of the MRI apparatus, the signal travels no more than a quarter of the wavelength \(\lambda \) corresponding to said radio frequency COR before traversing a first or a further standing wave trap. The magnetic field inside the MRI apparatus is very inhomogeneous and may result in localized heating of wiring.

If any currents coupled into the wiring by the radio frequency field cannot travel any further than \(\lambda/4 \) and if these are minimally attenuated by -30 dB, the heating and corresponding image artifacts can be effectively avoided.

Preferably, the signal path between at least one receiver and the spectrum analyzing means comprises a bandpass filter that rejects both the switching frequency COG of the gradient field of the MRI apparatus and the radio frequency COR of the MRI apparatus. The switching frequency COG is on the order of 200 kHz or below, while the frequency of the ultrasonic waves used to examine the heart of the patient is on the order of 1 MHz, and the radio frequency COR is on the order of 64 MHz and above. The
bandpass may be preferably centered on the frequency of the ultrasonic waves. The width of the bandpass filter needs to be at least large enough to accommodate both the frequency of the transmitted ultrasonic wave and the frequency of the received ultrasonic wave with the maximum possible Doppler shift.

Advantageously, at least part of the evaluating means are shielded by a housing that comprises conductive carbon fiber. While such a housing serves as a Faraday cage like a metallic housing, the generation of eddy currents and associated parasitic magnetic fields is greatly reduced.

The disclosure presented above also teaches to provide a system that comprises a magnetic resonance tomography, MRI, apparatus and a device for detecting the heartbeat of a patient according to the present invention. The trigger input of the MRI apparatus that triggers image acquisition is coupled to the determining means of said device to receive the moment \(t_1, t_2, t_3, t_4 \) of the heartbeat of the patient, so that image acquisition is triggered at this moment \(t_1, t_2, t_3, t_4 \). The improved precision of the heartbeat detection and the improved resilience of this detection to interference of the MRI makes the triggering of the image acquisition more reliable. The reliability of the triggering in turn improves the quality of the final MR image. In addition, the triggering is also resilient against intra-uterine movement of the fetus, so that this movement no longer results in the MRI examination being aborted.

The disclosure of the present invention also includes the following Examples:

Example 1: A device for detecting the heartbeat of a patient, preferably during imaging in a magnetic resonance imaging, MRI, apparatus or other imaging apparatus, comprising a transmitter for ultrasonic waves, a receiver for Doppler-shifted ultrasonic waves, and evaluating means coupled to the receiver and configured to evaluate the moment \(t_1, t_2, t_3, t_4 \) of a heartbeat of the patient out of the time-dependent signal from the receiver, wherein said evaluating means comprise:
spectrum analyzing means configured to extract at least one time-varying frequency component from the time-dependent signal delivered by the receiver; and
determining means configured to evaluate the moment \(t_1, t_2, t_3, U \) of the heartbeat from the variation of at least one of the frequency components in time.

Example 2: The device according to Example 1, wherein the determining means are configured to determine the moment \(t_{a}, t_{b}, t_{c}, t_{d} \) where the at least one time-dependent frequency component assumes a maximum \(\eta_{a}, \eta_{b}, \eta_{c}, \eta_{d} \) as the moment \(t_{a}, t_{b}, t_{c}, t_{d} \) of the heartbeat.

Description of the drawings
Further advantageous embodiments of the invention are detailed in the description of the Figures, where this description shall not limit the scope of the invention. The Figures show:

Figure 1: Embodiment of the device 1 and of the system 100 according to the present invention.
Figure 2: Extraction of the moment \(t_1, t_2, t_3, U \) of the heartbeat 2a out of the time-dependent signal 51 from the receiver 5.
Figure 3: Transceiver unit 13 optimized for compatibility with the MRI apparatus 3.
Figure 4: Transceiver unit 13, further optimized for tracking of intra-uterine movement of a fetus.
Figure 5: Assembly of a transceiver unit 13 with a flexible substrate 16 suitable for application on a mother’s womb 2c.
Figure 6: A further embodiment of a transceiver unit 13 adapted for use on an adult patient 2.
Figure 7: Interfacing of the evaluating means 6 with the receiver 5 and the trigger input 31 of the MRI apparatus 3.
Figure 8: Shielding 20 of the substrate 16, connected to a coaxial cable 21.
Figure 1 shows an embodiment of the device 1 for detecting the heartbeat 2a of a patient 2 to synchronize the data acquisition of an MRI apparatus 3. The patient 2 is located within the MRI apparatus 3, where his heart 2b is to be imaged. To trigger this imaging, the device 1 is used. The device 1 comprises a transmitter 4 for ultrasonic waves 4a and a receiver 5 for Doppler-shifted ultrasonic waves 5a. The transmitter 4 and the receiver 5 are integrated in one single component 4, 5. The time-dependent signal 51 from the receiver 5 is fed into the evaluating means 6 by means of a coaxial cable 81 with an inner conductor 82 and an outer conductive shield 83. A stretch of this coaxial cable 81 is wound into a coil 81a, thereby forming a first coil 84 in the inner conductor 82 and a second coil 85 in the outer conducting shield 83. The second coil 85 in the outer conducting shield 83 is bridged by a capacitor 86, so that this second coil 85 and the capacitor 86 together form a standing wave trap 8 that is part of the device 1. The resonance frequency of the standing wave trap 8 is set to the radio frequency COR of the MRI apparatus 3.

The evaluating means 6 are shielded in a housing 65 that comprises conductive carbon fiber, so that the generation of eddy currents and associated magnetic fields is reduced. The time-dependent signal 51 contains interference from two sources in the MRI apparatus 3, namely from the switching of the gradient fields at the frequency COG and from the radio frequency pulses with frequency COR. To eliminate both sources of interference, the signal 51 is first filtered by means of an analog bandpass filter 61 that only lets a frequency band ω0+Δω pass, wherein ω0 is the frequency of the transmitted ultrasonic waves 4a and Δω is the Doppler shift that the received ultrasonic waves 5a have experienced due to the fast motion of the heart 2b of the patient 2. The signal 51 then passes through an analog front-end 62 that receives amplifies, demodulates and filters the signal 51 again, hence only signals with the frequency components of the Doppler shift Δω remain in the signal 51a. The demodulation may also be performed in the digital domain.
The filtered signal 51a then passes through spectrum analyzing means 63 that decompose it into frequency components. Since a single heartbeat 2a of the patient 2 is an aperiodic event that is periodically recurring with a period corresponding to the heart rate of the patient 2, some frequency components 51b will be periodically time-varying with the same period. These frequency components are evaluated further by the determining means 64 to yield the moment ti, t2, t3, t4 of the heartbeat 2a of the patient 2. By contrast, frequency components in the signal 51a that result from noise or spontaneous movement are not periodic and can be neglected. The signal path from the receiver 5 to the input of the spectrum analyzing means 63 is labeled 52.

The filtered signal 51a, the time-varying frequency components 51b and the moment ti, t2, t3, t4 of the heartbeat are fed into tracking means 66 that monitor whether the heart 2b of the patient 2 is still in range of the transceiver 4, 5. If the heart 2b has left this range, so that the heartbeat 2a can no longer be detected, the feedback means 67 that are combined with the tracking means 66 power this transceiver 4, 5 off and power on a different transceiver 4, 5 that covers the new position of the heart 2b, so that the detection of the heartbeat 2a can be resumed.

The moment ti, t2, t3, U of the heartbeat 2a is delivered to a display unit 7 where it can be directly monitored by the attending physician. The main purpose of the evaluated moment ti, t2, t3, t4 of the heartbeat 2a, however, is to serve as a trigger signal for the imaging in the MRI apparatus 3. To this end, the moment ti, t2, t3, U of the heartbeat 2a is fed into a trigger port 31 of the MRI apparatus 3 by means of a standard cable connection or by means of a wireless connection. A wireless connection has the additional benefit that it cannot create any ground loops. For the same reason, the evaluating means 6 are battery-powered.

Figure 2 illustrates the extraction of the moment ti, t2, t3, t4 of the heartbeat 2a from the time-dependent filtered signal 51a in more detail. Diagram (a) shows the amplitude A of the filtered Doppler signal 51a over the time t. From this raw signal, the spectrum analyzing means 63 extract frequency components 51b with a time-varying amplitude
A. To this end, the signal 51a is decomposed into frequency components at sampling
time t, and it is monitored which of those frequency components vary in time. Diagram
(b) shows the decomposition of the signal 51a into frequency components 51b at one
point in time t_0. The decomposition can be done by discrete Fast Fourier Transform
(FFT), filter banks or any other appropriate means.

Diagram (b) in Figure 2 shows only those frequency components 51b that are time-
varying, with amplitudes $A(t_0)$ that correspond to the spectral power density of the
respective frequency components 51b. It should be noted that frequency components
caused by noise may well have amplitudes $A(t_0)$ that are at least as large, or even larger,
than the amplitudes $A(t_0)$ of the time-varying frequency components 51b. However,
according to the present invention, the frequency components of the noise can be easily
dismissed because they are not time-varying periodically and they are time-varying in
the range of > 3 Hz, whereas the range of the heartbeat is < 2.5 Hz.

Diagram (c) in Figure 2 shows the variation in time of the amplitude $A(t)$ of one time-
varying frequency component 51b. Within the range of diagram (c), the amplitude $A(t)$
assumes four maxima n_4, n_4, n_4 and n_4 at times t_a, t_b, t_c and t_d, respectively. The
amplitude $A(t)$ also assumes four minima m_4, m_4, m_4 and m_4 at times t_c, t_f, t_g and t_h.

As shown in diagram (d) in Figure 2, windows of interest 53a, 53b, 53c and 53d in
time are generated from the times t_a, t_b, t_c and t_d at which the amplitude $A(t)$ assumes
a maximum in diagram (c). Each window 53a, 53b, 53c and 53d has a fixed length At.
Within each window 53a, 53b, 53c and 53d, the determining means 64 examine the
original time-dependent signal 51a for the occurrence of the highest maximum. In each
of the windows 53a, 53b, 53c and 53d, this maximum occurs at times t_i, t_2, t_3 and U
with amplitude $A(t)$ values b_1, b_2, b_3 and b_4, respectively. It represents the E wave and
is followed by a smaller maximum that represents the A wave. The times t_i, t_2, t_3 and
t_4 are the final outcome of the determining means 64. The data analyzed in Figure 2
were acquired on an adult patient.
Figure 3 details a transceiver unit 13 that is optimized for compatibility with the MRI apparatus 3. This embodiment is adapted for detection of the heartbeat 2a of a fetus 2, but it has no compensation for intra-uterine movement of the fetus 2. The transceiver unit 13 comprises a substrate 16 with an upper face 16a and a lower face 16b. Sub-figure (a) shows the components visible on both faces 16a and 16b of the substrate 16. Sub-figure (b) only shows the components visible on the upper face 16a, with the exception of the transceivers 4, 5 that are mounted on the lower face 16b, but shown in sub-figure (b) with dashed contours for clarity. Sub-figure (c) only shows the components visible on the lower face 16b.

Each transceiver 4, 5, which combines the function of a transmitter 4 for ultrasonic waves 4a and the function of a receiver 5 for Doppler-shifted ultrasonic waves 5a, has a first terminal 9 and a second terminal 10. The first terminals 9 are connected by branch lines 14 to a first common bus 11. The second terminals 10 are connected by branch lines 15 to a second common bus 12. The first terminals 9 and the branch lines 14 are all on the upper face 16a of the substrate 16, while the second terminals 10 and the branch lines 15 are all on the lower face 16b of the substrate 16.

The first terminals 9 of the transceivers 4, 5 are positive (plus) terminals, while the second terminals 10 of the transceivers 4, 5 are negative (minus) terminals. The second common bus 12 that interconnects the second terminals 10 is connected via a standing wave trap 8 to the outside world.

As shown in a sectional view in sub-figure (d), and in sub-figure (e) in a perspective view, both common buses 11 and 12 straddle the substrate 16 and are interwoven with each other. This arrangement of the wiring contains as few symmetries and circular structures as possible, so that both the coupling of radio frequency pulses into the buses 11 and 12 and the generation of parasitic magnetic fields by the currents flowing through the buses 11 and 12 are minimized.

Figure 4 shows another embodiment of a transceiver unit 13 that is specifically adapted to compensate intra-uterine movement of a fetus 2 during an MRI examination. The
substrate 16 is a large flexible mat designed to adapt to the shape of a mother's womb 2c. The transceivers 4, 5 are arranged in a plurality of groups 17a-17h, but may also be arranged individually. Even if transceivers are arranged in groups, their transmitting functions may be activated individually, and their receivers may be read out individually. In this grouped example, each group 17a-17h has a separate first common bus 11a-1lh that connects the first terminals 9 of all transceivers 4, 5 in the group 17a-17h. All groups 17a-17h share one second common bus 12 that is connected to a ground potential. Every group 17a-17h has its own standing wave trap 8 through which all signals leaving this group 17a-17h on both buses 11a-1lh, 12 have to pass. On its further path in the horizontal direction in the perspective of Figure 4, the signals have to pass further standing wave traps 8. The standing wave traps 8 are arranged so that no signal can travel more than one quarter of the wavelength corresponding to the radio frequency cor of the MRI apparatus 3 without hitting the first or another standing wave trap 8. This ensures that no matter where on the extended substrate 16 a radio frequency pulse couples into some wiring, this will not cause a potentially dangerous local heating of this wiring and will reduce MRI related image artifacts.

Figure 5 details the assembly of the embodiment shown in Figure 4, as well as its use. The flexible substrate 16 consists of a flexible plastic mat 16c and a flexible printed circuit board 16d onto which all wiring (for example, branch lines 14) is printed. The transceivers 4, 5 are set into both the flexible plastic mat 16c and the flexible printed circuit board 16d. The plastic mat 16c and the printed circuit board 16d are joined together in a water-tight manner by gluing.

To monitor the heartbeat 2a of a fetus 2 inside an uterus 2d, the transceiver unit 13 is placed on the mother's womb 2c with the flexible plastic mat 16c facing towards the womb 2c. When the fetus 2 moves inside the uterus 2d, the heart 2b of the fetus 2 may move out of the detecting range of one of the transceivers 4, 5 and into the detecting range of another one of the transceivers 4, 5, of which only three are shown in Figure 5 for clarity. The tracking means 66 register this intra-uterine movement and instruct the feedback means 67 to power on the correct transceivers 4, 5 in order to ensure an uninterrupted detection of the heartbeat 2a.
Figure 6 illustrates a further embodiment of a transceiver unit 13 that is adapted for use on an adult patient 2. Sub-figure (a) shows a sectional side view, sub-figure (b) shows a top view.

Since an adult’s heartbeat produces a much stronger signal, only one transceiver 4, 5 is required. The transceiver 4, 5 is set in a printed circuit board 16 inside a housing 19 and connected by an acoustic matching layer 18 to this housing 19. The first (positive, plus) terminal 9 of the transceiver 4, 5 is connected by a branch line 14 to the inner conductor 21a of the coaxial signal cable 81. The second (negative, minus) terminal 10 of the transceiver 4, 5 is connected by a branch line 15 to the outer conducting shield 83 of the coaxial signal cable 81. A standing wave trap 8 is installed between the second terminal 10 of the transceiver 4, 5 and the outer conducting shield 83.

Figure 7 details the interfacing of the evaluating means 6 with the receiver 5 and the trigger input 31 of the MRI apparatus 3. The signal 51 from the receiver 5 first passes through the analog bandpass filter 61 that only lets frequencies in the range \(\omega_0 \pm \Delta \omega \) pass. The analog front end 62 receives, amplifies, demodulates and filters the signal 51 to signal 51a. The demodulation may also be performed in the digital domain downstream of the analog front end 62, as long as it is performed before the decomposition of the signal 51a into frequency components. The analog front end 62 is the entry and exit point of a microcontroller 70 that further comprises a combined analog-digital and digital-analog converter 68, as well as a digital signal processor 69 that implements the function of the spectrum analyzing means 63 and the determining means 64.

Figure 8 shows a transceiver unit 13 according to an embodiment where the common dielectric substrate 16 onto which the transceivers 4, 5 are mounted is surrounded by a conductive shield 20. The transceiver unit 13 is connected to a coaxial cable 21 comprising an inner conductor 21a, a grounded outer conductor 21b that serves to shield the inner conductor 21a, and a plastic cladding 21c. The inner conductor 21a of the cable 21 is connected to the first common bus 11 on the substrate 16, while the
outer conductor 21b of the cable 21 is connected to the shield 20. The shield 20 is in turn connected to the second common bus 12 on the substrate 16.

Two variants are shown in Figure 8. Figure 8a shows a first variant where the transceivers 4, 5 are completely covered by the shield 20. Figure 8b shows a second variant where the transceivers 4, 5 protrude through the shield 20, so that the shield 20 does not impede the coupling of transmitted and reflected ultrasonic waves in any way.

Figure 9 details the division of a shield 20 into four segments 20a-20d. The segments are connected to each other via capacitors 20e-20h. Lower frequencies that are mainly relevant for the generation of eddy currents are blocked by the capacitors 20e-20h, so that the shield 20 does not heat up. Higher frequencies that have the potential to interfere with the measurement pass the capacitors, and are therefore shorted by the shield 20.
List of reference signs

1 device
2 patient (adult or fetus)
2a heartbeat of patient 2
2b heart of patient 2
2c mother's womb
2d uterus
3 MRI apparatus
4 ultrasonic transmitter
4a ultrasound transmitted by transmitter 4
5 ultrasonic receiver
5a ultrasound received by receiver 5
6 evaluating means
7 display unit
8 standing wave trap
9 first terminal
10 second terminal
11 first common bus
12 second common bus
13 transceiver unit
14 branch lines to first common bus 11
15 branch lines to second common bus 12
16 substrate
16a, 16b top and bottom faces of substrate 16
16c flexible plastic mat of substrate 16
16d flexible printed circuit board of substrate 16
17a-17h groups of transceivers 4, 5
18 acoustic matching layer
19 housing
20 conductive shield
20a-20d segments of conductive shield 20
20e-20h capacitors between segments 20a-20d
21 cable to connect to common buses 11, 11a-h, and 12
21a, 21b concentric conductors of cable 21
21c plastic cladding of cable 21
31 trigger input of MRI apparatus 3
51 time-dependent signal from receiver 5
51a time-varying filtered Doppler signal derived from signal 51
51b frequency components of signal 51a
52 signal path from receiver 5 to spectrum analyzing means 63
53a-53d window of interest, WOI
61 analog bandpass filter
62 analog front end
63 spectrum analyzing means
64 determining means
65 housing of evaluating means 6
66 tracking means
67 feedback means
68 analog-digital converter
69 digital signal processor
70 microcontroller
81 coaxial cable
81a coil formed in coaxial cable 81
82 inner conductor of coaxial cable 81
83 outer conducting shield of coaxial cable 81
84 first coil formed in inner conductor 81
85 second coil formed in outer conducting shield 83
86 capacitor
100 system
A amplitude (time domain) / spectral power density (ω domain)
b_i, b_2, b_3, b_4 amplitudes of E wave maxima in signal 51
m_a, m_b, m_c, m_d amplitudes of maxima in frequency component 51a
me, nif, nig, nih amplitudes of minima in frequency component 51a

time

Δt length of windows 53a-53d

tₐ, th, t c, t d moments of maxima in frequency component 51a

moments of minima in frequency component 51a

point in time for generation of diagram (b) in Figure 2

moment of heartbeat 2a of patient 2

cog switching frequency of gradient field in MRI apparatus 3

cor radio frequency field in MRI apparatus 3

frequency of ultrasound 4a

maximum Doppler shift of ultrasound 5a
1. A device (1) for detecting the heartbeat (2a) of a patient (2), preferably during imaging in a magnetic resonance imaging, MRI, apparatus (3) or other imaging apparatus, comprising a transmitter (4) for ultrasonic waves (4a), a receiver (5) for Doppler-shifted ultrasonic waves (5a), and evaluating means (6) coupled to the receiver (5) and configured to evaluate the moment t₁, t₂, t₃, t₄ of a heartbeat (2a) of the patient (2) out of the time-dependent signal (5) from the receiver (5), wherein said evaluating means (6) comprise:

- spectrum analyzing means (63) configured to extract at least one time-varying frequency component (5lb) from the time-dependent signal (5, 5la) delivered by the receiver (5); and
- determining means (64) configured to evaluate the moment t₁, t₂, t₃, t₄ of the heartbeat (2a) from the variation of at least one of the frequency components (5lb) in time, characterized in that the determining means (64) are configured to determine a window of interest, WOI, (53a, 53b, 53c, 53d) in time from the variation of the at least one frequency component (5lb) in time, and to determine the moment where the time-dependent signal (5, 5la) from the receiver (5) assumes a maximum b₁, b₂, b₃, b₄ within the WOI (53a, 53b, 53c, 53d) as the moment t₁, t₂, t₃, t₄ of the heartbeat (2a).

2. The device (1) according to claim 1, characterized in that the determining means (64) are configured to determine the moment tₐ, tₐ, tₐ, tₐ where the at least one time-dependent frequency component (5lb) assumes a maximum ma, mₐ, mₐ, mₐ as the moment t₁, t₂, t₃, t₄ of the heartbeat (2a).

3. The device (1) according to any one of claims 1 to 2, characterized in that the determining means (64) are configured to determine the WOI (53a, 53b, 53c, 53d) as a window of pre-set length Δₜ around the moment tₐ, tₐ, tₐ, tₐ where the at least one
time-dependent frequency component (51a) assumes a maximum \(m_a, m_b, t^{(4)} \), \(m_a \), and/or as a window that extends between two moments \(t_e, t^f, t^g, t_h \) where the at least one time-dependent frequency component (51b) assumes a minimum \(m_e, m_{(4)} m_g, m_h \).

4. The device (1) according to any one of claims 1 to 3, characterized in that the device (1) further comprises a transceiver unit (13) with at least one transmitter (4) and a plurality of receivers (5), wherein
 - each receiver (5) has a first output terminal (9) and a second output terminal (10),
 - each of the first output terminals (9) of at least two receivers (5) is connected by a branch line (14) to a first common bus (11, 11a-11h), and
 - each of the second output terminals (10) of the at least two receivers (5) is connected by a branch line (15) to a second common bus (12).

5. The device (1) according to claim 4, characterized in that the transmitter (4) and the receivers (5) are mounted on a common dielectric substrate (16), preferably a flexible substrate (16).

6. The device (1) according to claim 5, characterized in that the dielectric substrate (16) is at least partially surrounded by a conductive shield (20).

7. The device (1) according to claim 6, characterized in that at least part of the conductive shield (20) is grounded.

8. The device (1) according to claim 7, characterized in that the first common bus (11, 11a-11h) and the second common bus (12) are connected to two different concentric conductors (21a, 21b) of a cable (21), and at least part of the conductive shield (20) is grounded via the outermost conductor (21b) of the cable (21).

9. The device (1) according to any one of claims 6 to 8, characterized in that at least part of the shield (20) is divided into a plurality of segments (20a-20d).
10. The device (1) according to claim 9, characterized in that at least two of the segments (20a-20d) are electrically connected by means of a capacitor (20e-20h).

11. The device (1) according to any one of claims 5 to 10, characterized in that the first common bus (11, 11a-11h) and the second common bus (12) are arranged on different faces (16a, 16b) of the substrate (16), and/or that the first common bus (11, 11a-11h) and the second common bus (12) are interwoven along at least part of the signal path (52) between at least one receiver (5) and the spectrum analyzing means (63).

12. The device (1) according to any one of claims 4 to 11, characterized in that the transceiver unit (13) comprises a plurality of transmitters (4) and that the evaluating means (6) comprise tracking means (66) to determine which transmitters (4) and/or receivers (5) cover the present position of the heart (2b) of the patient (2), so that the Doppler-shifted ultrasonic waves (5a) can be registered by at least one receiver (5) and evaluated by the evaluating means (6).

13. The device (1) according to claim 12, characterized in that the evaluating means (6) comprise feedback means (67) that control operation of the plurality of transmitters (4), wherein the feedback means (67) are configured to power on only those transmitters (4) that have been identified to cover the present position of the heart (2b) of the patient (2) by the tracking means (66).

14. The device (1) according to any one of claims 1 to 13, characterized in that the signal path (52) between at least one receiver (5) and the spectrum analyzing means (63) comprises at least one standing wave trap (8) configured to block the radio frequency coil of the MRI apparatus (3).

15. The device (1) according to claim 14, characterized in that the standing wave trap (8) is formed from a coaxial cable (81) with an inner conductor (82) and an outer conducting shield (83), wherein the coaxial cable (81) is wound to a coil (81a) so that a first coil (84) is formed in the inner conductor (82) and a second coil (85) is formed...
in the conducting shield (83) and wherein the second coil (85) in the outer conducting
shield (83) is bridged by a capacitor (86) that forms the standing wave trap (8) in
combination with said second coil (85) in the outer conducting shield (83).

16. The device (1) according to any one of claims 14 to 15, characterized in that
said signal path (52) comprises a plurality of standing wave traps (8), so that in the
radio frequency cor field of the MRI apparatus (3), the signal (51) travels no more than
a quarter of the wavelength \(\lambda \) corresponding to said radio frequency cor before
traversing a first or a further standing wave trap (8).

17. The device (1) according to any one of claims 1 to 16, characterized in that
the signal path (52) between at least one receiver (5) and the spectrum analyzing means
(63) comprises a bandpass filter (61) that rejects both the switching frequency cog of
the gradient field of the MRI apparatus (3) and the radio frequency cor of the MRI
apparatus (3).

18. The device (1) according to any one of claims 1 to 17, characterized in that
at least part of the evaluating means (6) are shielded by a housing (65) that comprises
conductive carbon fiber.

19. A system (100), comprising a magnetic resonance tomography, MRI, apparatus
(3) and a device (1) according to any one of claims 1 to 18, characterized in that the
trigger input (31) of the MRI apparatus (3) that triggers image acquisition is coupled
to the determining means (64) of the device (1) to receive the moment \(t_1, t_2, t_3, U \) of
the heartbeat (2a) of the patient (2), so that image acquisition is triggered at said
moment \(t_1, t_2, t_3, t_4 \).
Fig. 2
Fig. 8
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

INV. A61B8/02 A61B8/08 A61B5/00 G01R33/567

ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

A61B G01R

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>DE 103 45 717 AI (TRIUM ANALYSIS ONLINE GMBH [DE]) 28 April 1 2005 (2005-04-28) the whole document -----</td>
<td>1,2,19</td>
</tr>
<tr>
<td>A</td>
<td>US 2015/094592 AI (RAVINDRAN SOURABH [US] ET AL) 2 April 1 2015 (2015-04-02) paragraphs [0021] - [0024]; figures -----</td>
<td>1,2,19</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents:
 - "A" document defining the general state of the art which is not considered to be of particular relevance
 - "E" earlier application or patent but published on or after the international filing date
 - "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 - "O" document referring to an oral disclosure, use, exhibition or other means
 - "P" document published prior to the international filing date but later than the priority date claimed

*" T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 - "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 - "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 - "A" document member of the same patent family

Date of the actual completion of the international search:
7 March 2017

Date of filing of the international search report:
20/03/2017

Name and mailing address of the ISA:
European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Fax: (+31-70) 340-3016

Authorized officer:
Kiister, Gunnilla

Form PCT/ISA/210 (second sheet) (April 2005)
DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>CHRIS H L PETERS ET AL: "Beat-to-beat detection of fetal heart rate: Doppler ultrasound cardiocography compared to direct ECG cardiocography in time and frequency domain". PHYSIOLOGICAL MEASUREMENT, vol. 25, no. 2, 1 April 2004 (2004-04-01), pages 585-593, XP020074138, ISSN: 0967-3334, DOI: 10.1088/0967-3334/25/2/015 sections 2.1.1 and 2.1.2</td>
<td>1, 2, 19</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>US 2008015439 A1</td>
<td>17-01-2008</td>
<td>BR PI0515158 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 101072541 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2008512167 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2008015439 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2006030354 A1</td>
</tr>
<tr>
<td>DE 10345717 A1</td>
<td>28-04-2005</td>
<td></td>
</tr>
<tr>
<td>US 2015094592 A1</td>
<td>02-04-2015</td>
<td></td>
</tr>
<tr>
<td>US 5032793 A1</td>
<td>16-07-1991</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2005272995 A1</td>
</tr>
<tr>
<td>DE 102014207985 A1</td>
<td>29-10-2015</td>
<td></td>
</tr>
</tbody>
</table>