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DYNAMIC LOAD BALANCER FOR MULTIPLE NETWORK SERVERS

BACKGROUND OF THE INVENTION

Field of the Invention

The present invention relates generally to computer networking and, in

particular, to a system to perform load balancing on multiple network servers.

Discussion of Related Art

Due to increasing traffic over computer networks such as the Internet, as
well as corporate intranets, WANs and LANs, data providers must satisfy an
increasing number of data requests. For example, a company that provides a
search engine for the Internet may handle over a million hits (i.e. accesses to its
web page) every day. A single server cannot handle such a large volume of data
requests within an acceptable response time. Therefore, most high-volume
information providers use multiple servers to satisfy the large number of data
requests.

The prior art does not take into account packets given time interval, and
other measures of packet traffic to and from each replicated server. One reason this
is not done is because it takes a great number of CPU cycles to compute this on a
continual basis for each server that may be connected to a load balancer, which
typically is based on a general purpose microprocessor driven by a software

program. There is a need for a solution that overcomes this technical hurdle and
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incorporates packet traffic loads on the network interfaces belonging to the servers,
as packet loss at the server network interface is a frequent reason for throughput
and performance degradation.

Figure 1 illustrates a typical arrangement of computers on a network 110.
Network 110 represents any networking scheme such as the internet, a local
ethernet, or a token ring network. Various clients such as a client 120 or a client
130 are coupled to network 110. Computer equipment from a data provider 160 is
also coupled to network 110. For example, data provider 160 may use a bridge 161
to connect a local area network (LAN) 163 to network 110. Servers 162, 164, 166,
and 168 are coupled to LAN 163.

Most data transfers are initiated by a client sending a data request. For
example, client 120 may request a web page from data provider 160. Typically, on
the internet, client 120 requests information by sending a data request to a name
such as “www.companyname.com” representing data provider 160. Through the
use of the domain name server system of the internet, the name is converted into a
IP address for data provider 160. Client 120 then sends a data request to the IP
address. The data request contains the IP address of client 120 so that data
provider 160 can send the data requested data back to client 120. Data provider
160 converts the IP address into the IP address of server 162, server 164, server
166, or server 168. The data request is then routed to the selected server. The
selected server then sends the data requested data to client 120. For other
networks, the specific mechanism for routing a data request by client 120 to data

provider 160 can vary. However, in most cases data requests from client 120

PCT/US98/25821
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contain the network address of client 120 so that data provider 160 can send the
requested data to client 120.

Since each of the multiple servers contain the same information, each data
request can be handled by any one of the servers. Furthermore, the use of multiple
servers can be transparent to client 120. Thus the actual mechanism used to route
the data request can be determined by data provider 160 without affecting client
120. To maximize the benefits o)f having multiple servers, data provider 160
should spread the data requests to the servers so that the load on the servers are
roughly equal. Thus, most data providers use a load balancer to route the data
requests to the servers. As shown in Figure 2, conceptually a load balancer 210
receives multiple data requests 220 and routes individual data requests to server
162, 164, 166, or 168. In Figure 2, four servers are shown for illustrative purposes
only. The actual number of servers can vary. Multiple data requests 220,
represents the stream of data requests from various clients on network 110.

Some conventional load balancing methods include: random assignment,
mod S assignment where S represents the number of servers, and sequential
assignment. In random assignment, load balancer 210 selects a server at random
for each data request. In modulo-S assignment, each server is assigned a number
from 0 to S-1 (where S is the number of servers). Load balancer 210 selects the
server which corresponds to the address of the client making the data request
modulo S. In sequential assignment, each server is selected in turn for each new
data request. Thus, if eight data requests are received, server 162 processes data

requests one and five; server 164 processes data requests two and six; server 166
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processes data requests three and seven; and server 168 processes data requests
four and eight.

On the average over many data requests, each of the conventional load
balancing methods should provide adequate load balancing. However, short term
imbalances can result from a variety of sources. For example, if some data
requests require more data than other data, all three methods may overload one
server while other servers are idle. If the majority of data requests come from
clients which are mapped to the same server using modulo S assignment, one
server becomes overloaded while others servers are underloaded. Thus,
conventional load balancing methods do not provide balanced loads in many
circumstances. Furthermore, conventional load balancing methods do not adapt to
conditions of the servers. Hence there is a need for a load balancer which uses a
dynamic load balancing method which can consistently balance the load on a

plurality of servers.

SUMMARY OF THE PRESENT INVENTION

The present invention includes methods and systems for consistently
balancing the load on a plurality of servers. Specifically, the load balancer uses
hashine to separate data requests from clients into a plurality of buckets. The
buckets are dynamically assigned to the server having the lightest load as
necessary.

The load balancer tracks the state of each server. A server is in the non-

operational state if it is deemed as unable to perform the service. The load balancer
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maintains a list of services that re operational and assigns load only to servers that
are operational.
The server fault tolerance mechanism in the load balancer detects when a
server goes down and redistributes the load to the new set of operational servers.
5  Additionally, when a previously non-operational server becomes operations, the
traffic is redistributed over the new set of operational servers. This redistribution is

done in such a manner as not to disrupt any existing client-server connections.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is a representational showing of a prior art network connecting a
10  plurality of servers to a plurality of clients;
Figure 2 illustrates a prior art load balancer connecting a network to a
plurality of servers;
Figure 3 illustrates how a load balance in accordance with this invention
determines to which server multiple data request are allocated;
15 Figure 4 is a block diagram of a load balance in accordance with one
embodiment of this invention.
Figure 5a and 5b illustrate multi-mode buckets used in some embodiments
of the invention;
Figure 6a - 6d illustrate the effect of a new bucket assignment;
20 Figure 7, 8 and 9 are simplified flow charts summarizing the action
performed by the load balancer of this invention;
Figure 10 is a block diagram illustrating the operation of one embodiment

of the server fault detection of this invention; and
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Figure 11 illustrates a load balancer in the form of a flow switch and in

which each a plurality of servers has the same IP address.

DETAILED DESCRIPTION

According to the principles of this invention, certain limitations imposed by
conventional load balancers have been overcome. The present invention provides a
load balancer that monitors the load on each server to determine how to allocate
data requests among the servers. Specifically, the load balancer separates the data
requests into buckets and assigns buckets to the least loaded server.

Figure 3 illustrates conceptually how a load balancer in accordance with
one embodiment of the invention determines to which server each data request is
allocated. Multiple data requests 220 are separated into a first plurality of buckets
310. As used herein, the number of buckets is B and the bucket in first plurality of
buckets 310 are numbered from 310_0to 310_(B-1). Each bucket is assigned to
one server in plurality of servers 320 as explained below. As used herein, the
number of servers is equal to S and the individual servers are numbered 320 0 to
320 (S-1). As explained in detail below, a single bucket can be separated into a
plurality of child buckets.

To increase flexibility, the number of buckets B should be user
configurable. Generally, a larger number of buckets B will result in a more
balanced load on the servers. However, if the address space of the clients making

data requests are large; a smaller number of buckets B is acceptable. In one
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specific embodiment of a load balancer in accordance with the present invention,
the number of buckets B is configurable to be 64 or 128 or 256.

In one embodiment of the present invention, data requests are assigned to
buckets using Modulo-B assignment based on the address of the client making the
data request. Thus, in this embodiment, a data request is assigned to bucket
310 _((Client_Address) MOD B). Therefore, data requests from different clients
may share the same bucket. One benefit of using Modulo-B assignment is to cause
all data requests from a single client to be assigned to the same bucket in plurality
of buckets 310. Since each bucket is assigned to only one server, all data requests
from a single client are directed to a single server. If having all of a client’s data
requests directed to a single server is not important, other methods such as random
assignment or sequential assignment can be used to assign data requests to plurality
of buckets 310.

Figure 4 is a block diagram of a load balancer 400 in accordance with one
embodiment of the present invention. In Figure 4, a bucket selector 410 assigns
data requests in multiple data requests 220 to buckets of first plurality of buckets
310 (Figure 3). A server selector 420 assigns buckets from first plurality of
buckets 310 as well as other buckets created by a bucket controller 430 (as
explained below) to servers in plurality of servers 320. Server selector 420 assigns
a bucket to a server based on data from credit calculator 450, bucket controller 430,
and bucket selector 410. Server selector 420 assigns unassigned buckets to the

server with the largest credit as determined by credit calculator 450.
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Load estimator 460 monitors various load statistics about the servers to
determine the load on each server. Credit calculator 450 determines the amount of
free resources or credit each server has remaining from the load estimates provided
by load estimator 460. Skew detector 440 uses the credit of each server to
determine whether the load balancing between the servers is in a tolerable range. If
the load is skewed, i.e. outside the tolerable range, skew detector 440 signals
bucket controller 430 to create additional buckets as explained below.

Figures 5(a) and 5(b) illustrate multi-mode buckets used in some
embodiments of the present invention. Specifically, buckets can be in low
granularity mode or high granularity mode. Buckets in first plurality of buckets
310 begin in low granularity mode. In certain situations (as described below), a
bucket in first plurality of buckets 310, such as bucket 310_0, is placed into high
granularity mode by bucket controller 430. In high granularity mode, new data
requests in bucket 310_0 are separated into a plurality of child buckets 520. Child
buckets are created to be in low granularity mode. Assignment of data requests to
bucket 310_0 to plurality of child buckets 520 is done by straight selection. In one
embodiment, plurality of child buckets 520 contains one child bucket for each
client having pending data requests in bucket 310_0. If additional data requests
from different clients are sent to bucket 310_0, bucket controller 430 creates
additional child buckets in plurality of child buckets 520. Bucket controller 430
may place other buckets in first plurality of buckets 310 into high granularity mode

to create additional pluralities of child buckets.
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In some embodiments of the present invention, buckets are assigned to one
of several states to track whether a bucket is in low or high granularity mode. The
bucket states for one embodiment include: NOT ASSIGNED, ASSIGNED LOW,
ASSIGNED TRANSITION HIGH, ASSIGNED HIGH, and ASSIGNED
TRANSITION LOW.

Buckets, which are not yet assigned to a server are in the NOT ASSIGNED
state. First plurality buckets when assigned to a server are in the ASSIGNED
LOW state.

Buckets, which are in high granularity mode and already assigned to a server are in
the ASSIGNED HIGH state.

When bucket controller changes the mode of a bucket from low granularity
to high granularity, the bucket is in the ASSIGNED TRANSITION HIGH state.
When in this state, additional data requests from different clients that do not
correspond to a child bucket create additional child buckets. All the child buckets
are assigned to the same server as the first plurality bucket.

When the bucket completes the transition to high granularity, the state of
the bucket changes to the ASSIGNED HIGH state. In this state the first plurality
of buckets are no longer assigned to a server. Data requests from clients that do
not correspond to a child bucket create additional child buckets. In this state,
different child buckets are assigned to different servers.

When bucket controller 430 changes the mode of a bucket from high
granularity to low granularity, the bucket is in the ASSIGNED TRANSITION

LOW state. In this state, the first plurality of buckets are assigned to a server. Data
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requests from clients that do not correspond to a child bucket do not create
additional child buckets. These data requests are sent to the server assigned to the
first plurality bucket.

When the bucket completes the transition to low granularity mode, the state
of the bucket changes to the ASSIGNED LOW state.

As explained below, the buckets are used to forward data requests from
clients to servers. If a bucket does not receive a data request in some fixed time,
i.e. the time-out period, the bucket transitions to the NOT ASSIGNED state

As explained above, as data requests are received by load balancer 400,
bucket selector 410 assigns the data requests to first plurality of buckets 310
(Figure 3). If a bucket in first plurality of buckets 310 is in high granularity mode,
the data requests are further divided into a plurality of child buckets belonging to
the bucket in first plurality of buckets 310 (Figure 3). Server selector 420 (Figure
4) assigns unassigned buckets which have active data requests to a server in
plurality of servers 320 (Figure 3).

Specifically, whenever an unassigned bucket receives a data request, server
selector 420 assigns that bucket to the server with the most credit as calculated by
credit calculator 450. In embodiments using states, the state of the bucket is
changed from NOT ASSIGNED to ASSIGNED LOW. Once a bucket is assigned
to a server, the bucket remains assigned to that server until the bucket times out
due to lack of data requests, which causes the bucket to change to the NOT
ASSIGNED state, or until bucket controller 430 forces to bucket to high

granularity mode.

-10-
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If bucket controller 430 forces a bucket, for example bucket 310_0 (Figure
3), to high granularity mode, the state of the bucket is changed to ASSIGNED
TRANSITION HIGH. Bucket controller 430 then creates a plurality of child
buckets 520, each of which is in the ASSIGNED LOW state. Some network data
requests, such as TCP data requests, can not be reassigned to a different server.
Therefore, one embodiment of load balancer 400 does not reassign any of the
pending data requests. However, since some network data requests, such as UDP
data requests, are reassignable, another embodiment of load balancer 400 reassigns
pending data requests which can be reassigned to child buckets.

As new data requests are routed to bucket 310_0 by bucket selector 410;
bucket controller 430 routes the data requests to the appropriate child bucket. If an
appropriate child bucket is not found and a new child bucket is created, server
selector 420 assigns the child bucket to the server with the most credit. The state
of the child bucket then transitions to the ASSIGNED LOW state. Thus, each
unassigned buckets which has a data request is assigned by server selector 420 to
the operational server which currently has the most credit.

Operational servers are assigned credits by the credit calculator 450. Credit
calculator 450 determines the credit of each operational server based on the relative
power of each server and the load on each server. Credit calculator 450 determines
which servers are underloaded relative to the power of each operational server.
Underloaded servers have loads which are smaller than overloaded servers relative
to the power of each server. In some embodiments, credit calculator 450 receives

load information directly from each server. In other embodiments, the load on an

-11-
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operational server is determined by load estimator 460 as explained below.
General-ly, the load on each server is reduced to a scalar number. If the servers in
plurality of server 320 are not of equal power, credit calculator 450 should be
provided with a relative power rating for each server. In one embodiment of credit
calculator 450, the relative power rating of each server is provided as a scalar

number.

Method Description

Integer computations are faster in a computer than floating point
computations. Thus all calculations are scaled appropriately to employ only integer
calculations at the expense of a certain loss of computational precision. Two
different scaling factors are used - namely WeightScale and LoadScale. In one

embodiment the both scaling factors used are 1000.

Specifically, the weights, Wi, of each server i is computed by dividing

each power rating by the sum of the power ratings, as shown in equation 1:
—_— S-1
Wi = WeightScale * Pi/ (Z Pn) M
=0

where Pi is the power rating of each server i (numbered from 0 to S-1) and Wi is
the weight of each server. The sﬁm of the weights of every server is equal to
WeightScale and each weight is in the range of one to WeightScale. The weights
are computed every time the set of operational servers changes.

Specifically, the credit calculator 450 at periodic intervals, calculates a

weighted load for each server as shown in equation 2:

=12~

PCT/US98/25821
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Li = LoadScale* Li/Wi Q)

where Li is the load on server i (numbered from 0 to S-1) and Li is the weighted

load on server i.

The load normalizer is calculated from Li as shown in equation 3:

5 LN =min _ abs(Ti) Q)

Specifically, the credit calculator 450 calculates the credit of each server,
Ki, is calculated by subtracting the normalized weighted load of the server from the

weight of the server, as shown in equation 4:

Ki=Wi-(Li/LN) ey
10 A flow weight is calculated from Ki as shown in equation 5:
S-1
Fw = min abs(Ki) )

i=0

Servers that are overloaded relative to their power ratings may have
negative credits and servers that are underloaded relative to their power rating may
have positive credits. The server that is the most underloaded has the largest

15  credit.

Instead of recalculating the credit of every server after a bucket is assigned,
some embodiments of load balancer 400 reduce the computational overhead of
credit calculator 450 by approximating the effect of a new bucket assignment.
When server selector 420 assigns a bucket to a server, it calculates a flow

20  adjustment for said server shown in equation 6:

-13-
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Fa = LoadScale* Fw /| Wi (6)
Specifically, when server selector 420 assigns a bucket to a server, it
adjusts the credit of the said server as shown in equation 7:

Ki =Ki - Fa )

Figure 6(a)-6(d) illustrates the computation performed. Buckets in plurality
of buckets 610 are already assigned to server 660, server 670 and server 680.

10  Buckets 620, 630, and 640 are unassigned and will be in the NOT ASSIGNED
state in embodiments using bucket states. The power rating of server 660 is 10; the
power rating of server 670 is 20 and the power rating of server 680 is 30. The
algorithm implicitly normalizes all quantities to an idealized server and the
effective load that the idealized server experiences. In the following discussion,

15  the result of calculations in Table 1 is compared with an idealized server. The
idealized server has 1000 units of capacity.

The weights (or relative capacity) for servers 660, 670 and 680 are 167,
333, and 500 respectively (and sum up to the idealized servers capacity)
Table 1 shows the computational results at 2 time epochs. All

20  computations are done with integer arithmetic. This ensures that the computations

are fast. To avoid loss of precision due to integer computations a scaling factor is

used.

-14 -
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Table 1: Motivation for Load Balancing Algorithm

-15-
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Ideal Server 660 Server 670 Server 680

1 Power rating 10 20 30
2 Server Weight 1000 167 333 500
3 Load at time ¢ 100 100 100
4 Weighted load at 110 60 = 30 = 20 =

time £ (100 * 100)/167 (100 * 100)/333 (100 * 100)/500
5 Load normalizer 20

at time ¢
6 Server credits at 995 164 = 332= 499 =

time ¢ 167 - 60/20 333 - 30/20 500 - 20/20
7 Flow weight at 164

time ¢
8 Flow adjustment 164 98 = 49 = 32=

attime t+k 100 * 164)/167 100 * 164)/333 (100 * 164)/500
9 | Load at time / 300 200 50
10 | Weighted load at | 249 179 = 60 = 10=

time / (100 * 300)/167 (100 * 200)/333 (100 * 50)/500
11 | Load normalizer 10

at time /
12 | Server credits at 973 150 = 324 = 499 =

time / 167 - 179/10 333 -90/10 500 —10/10
13 | Flow weight at 150

time /
14 | Flow adjustment 150 89 = 45= 30=

at time /+m

(100 * 150)/167

(100 * 150)/333

(100 * 150)/500

In Table 1, rows 1 and 2 are computed by credit calculator 450 every time

the set of operational servers changes.

Row 1:

Row 2:

User defined power ratings (P;).

in accordance with equation 1.

The weights (or relative computational capacity) for each server (W;)

Attime epoch ¢, load estimator 460 gets the load vector and converts it into a

scalar quantity L;. Since the servers are of different computing capacity, load

-16-

SUBSTITUTE SHEET (RULE 26)




10

15

20

WO 99/32956 PCT/US98/25821

estimator 460 normalizes the load before they can be compared. Intuitively, a load
of 100 units to a server of capacity 10 should equal a load of 200 units to a server
of capacity 20. Thus load estimator 460 normalizes based on the inverse of the
server weights.
Server credits are computed periodically to decide which server has the maximum
capacity available. In Table 1, rows 3 to 7, show the computation of server credits
by credit calculator 450 at epoch ¢ when the raw loads are all equal.
Row 3:  Current load per server (L,). This is computed from a load vector.
Row 4:  The weighted load for each server is computed in accordance with
equation 2. Note that even though each server has the same load, it represents a
larger load for server 660 than for server 670 or server 680. The effective load
for idealized server is the sum of the normalized load for all servers.
Row 5:  To relate the load to capacity, the load normalizer LN is computed
in accordance with equation 3. Evidently this value has to be a function of the
current load.
Row 6: A normalized estimate of computational resources used by the
current load is subtracted from the servers weight to arrive at the servers credits
(K)) in accordance with equation 4.
Note that the idealized server credits can be computed in 2 different ways. In
one method, we use the same formula that we use for each server. Alternately
we could sum up the credits of all servers. Both methods should come out to

be equal (or very nearly equal due to integer arithmetic).

-17-
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Row 7:  Finally an estimate of computational use by a new flow is needed
for each server. Towards this goal we compute the flow weight in accordance
with equation 5. This is also the amount that we must deduct from the
idealized servers credits when a flow is assigned to it.
Whenever a flow is assigned to a server at a later time epoch (say ¢+k), the
computational resource to be subtracted from the server credits is shown in Table
1, rows 8 (in accordance with equation 6). This credit adjustment is performed by
server selector 420 whenever a bucket to server assignment occurs.
Row 8:  The computational resource that a flow consumes for each server is
computed in accordance with equation 6. This is the value to deduct from the
servers credits when a new bucket is assigned to the server.
Note that we can assign 3 flows to server 680, 2 flows to server 670 and 1 flow
to server 660 and each individual server credits would be diminished by the
same amount.
In Table 1, rows 9 to 14, show the computation at another epoch when the raw
loads are not equal.

Since the bucket debit amount is only an approximation of the load added
to a server by a bucket, credit calculator 450 must periodically recalculate the
credit of every server using load information of load estimator 460. For a typical
internet web server business, recalculation of the server credits should be
performed every ten to twenty seconds. Recalculation should be performed more

often if a large number of data requests are received.

-18-
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As explained above, load estimator 460 provides credit calculator 450 with
an estimate of the load on each server. Common measures of the load on a server
are based on the number of data requests, the number of data packets received by
the server, the number of bytes received by the server, the number of data packets
sent by the server, the number of bytes sent by the server, the processor activity on
the server, and the memory utilization on the server. Because load balancer 400 is
primarily designed to balance the network load on a plurality of servers, load
estimator 460 typically uses load measures based on network traffic to the server.
Thus most embodiments of load estimator 460 use load measures based on the
number of data requests received by the server, the number of data packets
received by the server, the number of bytes received by the server, the number of
data packets sent by the server, or the number of bytes sent by the server.

One embodiment of the load estimator 460 uses a combination of the
number of data packets received by the server, the number of bytes received by the
server, the number of data packets sent by the server, and the number of bytes sent
by the server. This embodiment of load estimator 460 forms a load vector with
four scalar quantities corresponding to the number of data packets received by the
server, the number of bytes received by the server, the number of data packets sent
by the server, and the number of bytes sent by the server. This embodiment of load
estimator 460 calculates the load of a server using the cross product of the load
vector with a weighting vector, having four scalar weights. Thus, the load of a

server is calculated as shown in equation 8:
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L= <P_in, B _in, P_out, B_out> ® < W_pin, W_bin, W_pout, W_bout >
= P in *W_pin + B_in * W_bin + P_out * W_pout + B_out * W_bout

®)
where P_in is the number of packets received by the server, B_in is the number of
bytes received by the server, P_out is the number of packets sent by the server,
B_out is the number of bytes sent by the server, W_pin is the weight assigned to
the number of packets received by the server, W_bin is the weight assigned to the
number of bytes received by the server, W_pout is the weight assigned to the
number of packets sent by the server, and W_bout is the weight assigned to the
number of bytes sent by the server. In most embodiments, the weight vector is
provided by the user of load balancer 400. However, some embodiments hard code
the weight vector in firmware, software, or hardware.

As explained above, bucket controller 430 converts buckets from low
granularity mode to high granularity mode to balance the load on the servers.
Bucket controller 430 works in conjunction with skew detector 440. Skew detector
440 determines when the load on the servers are skewed, i.e. unbalanced.
Specifically, skew detector 440 compares a measure of skewness against a skew
threshold. If the absolute value of measure of skewness is greater than the skew
threshold, skew detector 440 causes bucket controller 430 to change one or more
buckets from low granularity mode to high granularity mode.

To keep the measure of skew independent of the design of the load

estimator 460, only normalized measures of skew are used. Thus, in one
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embodiment the measure of skewness used by skew detector 440 is given in
equation 7. In another embodiment the measure of skewness may be computed by

equation 8.

Li = Li/(siLn) (7)

n=

Li = Li/ [Szlj (Ln)z) (8)

n=0

If skew detector 440 directs bucket controller 430 to convert one or more
buckets from low granularity mode to high granularity mode, bucket controller 430
must determine which bucket to convert. In one embodiment, exactly one bucket
is selected for transition from low to high granularity state. In this embodiment
one bucket is selected at random from the set of buckets assigned to the server with
the largest load.

In another embodiment, one or more buckets are selected for transition
from low to high granularity state. For each server that has a skewed load, 1
bucket is selected at random from the set of buckets assigned to that server. In still
another embodiment, a fuzzy logic controller with a set of rules for bucket
selection is used.

The transition of a bucket from low granularity mode to high granularity
mode is not instantaneous. As explained above, in some embodiments the bucket
first transitions to the ASSIGNED TRANSITION HIGH state before reaching the
ASSIGNED HIGH state. After a configurable aount of time has transpired, the

bucket controlier 430 forces the bucket in high granularity state to low granularity
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state. Therefore, in most embodiments of load balancer 400, bucket controller 430
only converts one bucket from low granularity mode to high granularity mode
when skew detector 440 detects a skewed load. Skew detector 440 should then
wait for a time before rechecking for a skewed load. However, some embodiments
of load balancer 400 may cause bucket controller 430 to convert a plurality of
buckets every time skew detector 440 detects a skewed load.

Figures 7, 8, and 9 are three simplified flow charts which summarize the
actions performed by load balancer 400. The processes of the three flow charts of
Figures 7, 8, and 9 are performed simultaneously in load balancer 400.
Specifically, Figure 7 summarizes the flow of a data request through load balancer
400. In WAIT FOR DATA REQUEST 710, load balancer 400 waits for data
requests from network 110. When a data request is received, the data request is
assigned to a bucket in ASSIGN REQUEST TO DATA BUCKET 720. Once the
data request is assigned to a bucket, load balancer 400, or more specifically bucket
controller 430 (Figure 4), must determine if the data request must be redirected to a
child bucket in REDIRECT TO CHILD BUCKET? 730. If the data request must
be directed, the data request is directed to a child bucket in ASSIGN TO CHILD
BUCKET 740.

Once the data request is properly assigned to a bucket or child bucket, the
data request is sent to the server to which the bucket or child bucket is assigned in
SEND REQUEST TO BUCKET 750. SEND REQUEST TO BUCKET 750 may
be delayed if the bucket is not yet assigned. The bucket is assigned by the process

described by the flow chart of Figure 8. Load balancer 400 then returns to WAIT
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FOR DATA REQUEST 710. Although the flow chart of Figure 7 shows a
sequential processing of data requests, data requests are actually pipelined in load
balancer 400 since bucket selector 410 can assign data requests to buckets
simultaneously as server selector 420 assigns buckets to servers and bucket
controller 430 controls buckets.

Figure 8 summarizes the process of assigning buckets to servers for server
selector 420. In LOAD NEW CREDIT ALLOCATION 810, load server selector
420 must determine whether to load a new credit allocation from credit calculator
450. IF a new credit allocation is required, server selector 420 loads the credit
allocation in LOAD CREDIT ALLOCATION 820. In either case, server selector
420 then detects if any unassigned bucket, i.e. buckets in the NOT ASSIGNED
state, contain data requests in DETECT UNASSIGNED BUCKETS WITH
REQUESTS 830. If no unassigned buckets contains data requests, server selector
420 returns to LOAD NEW CREDIT ALLOCATION? 810. Otherwise, server
selector 420 assigns the unassigned bucket containing a data request to the server
with the most credit in ASSIGN BUCKET 840. For embodiments of load balancer
400 using bucket debit amount approximation as described above, server selector
420 subtracts the bucket debit amount from the credit of the server receiving the
bucket assignment in DEBIT CREDIT 850. Then server selector 420 returns to
LOAD NEW CREDIT ALLOCATION? 810. For embodiments not using bucket
debit amount approximation, server selector returns to LOAD NEW CREDIT

ALLOCATION? 810 directly from ASSIGN BUCKET 840.
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Figure 9 summarizes the interaction of load estimator 460, credit calculator
450, skew detector 440, and bucket controller 430 in load balancer 400.. In
ESTIMATE LOAD 910, load estimator 460 estimates the load of the servers as
described above. Credit calculator 450 uses the load estimates from load estimator
460 to calculate the credit of each server in CALCULATE CREDIT 920. Skew
detector 440 then detects whether the load on the servers is skewed in DETECT
SKEW 930. If the load on the servers is not skewed, load balancer 400 returns to
ESTIMATE LOAD 910. If the load on the servers is skewed, bucket controller
430 selects a bucket in SELECT BUCKET 940 and causes the bucket to transition
from low granularity mode to high granularity mode in TRANSITION BUCKET
950. Load balancer 400 then returns to ESTIMATE LOAD 910.

In addition to the three process illustrated in Figures 7, 8, and 9, buckets
which are assigned can become unassigned, i.e. transition to the NOT ASSIGNED
state, if the buckets do not receive data requests after a time-out period.

Some embodiments of load balancer provide for a administratively
controlled graceful take down of a selected server from the plurality of servers. In
this method, the bucket controller 430 forces all buckets currently assigned to said
server to ASSIGNED TRANSITION HIGH state for a specified period of time.
After the said time has transpired, the bucket controller 430 forces the said bucket
to the ASSIGNED TRANSITION LOW state. In this way, traffic assigned to said
server is reassigned without disrupting client-to-server communication.

Some embodiments of load balancer 400 are enhanced to handle server

faults, i.e. a server developing a problem which causes the server to not respond or
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to respond poorly to data requests. As shown in Figure 10, a server fault detector
1010, which detects server faults, is included in a load balancer 1000. In some
embodiment server fault detector 1010 and load estimator 460 are combined.

Server fault detector 1010 can be configured to detect server faults in a
variety of ways including many well known fault detection routines. For example,
server fault detector 1010 could “ping” each server periodically to determine if the
server is up. Server fault detector 1010 can also poll the servers periodically to
request the status of each server. In one embodiment of load balancer 1000, in
addition to polling the servers, server fault detector 1010 analyzes the number of
incoming and outgoing packets of a server to determine if the server has a server
fault. For example, if a server receives many incoming packets, which most likely
are data requests, and has little or no outgoing packets, the server is most likely
experiencing a server fault.

Some embodiments of server fault detector 1010 are configured to detect
link faults as well as server faults. Since link faults may completely cut off one or
more servers from load balancer 1000, link faults are equally damaging as server
faults. In one embodiment, the hardware can detect link faults.

Once server fault detector 1010 determines that a server is down, i.e. the
server has a server fault or a link fault, server fault detector 1010 marks the server
as inactive and removes it from the set of operational servers. Server fault detector
1010 then informs credit calculator 450 about the change in set of operational

servers. Credit calculator 450 then recomputes each servers normalized weight and
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credits. Credit calculator will ignore inactive servers in performing calculations.
The Server selector ignores inactive servers when performing bucket assignments.

Server fault detector 1010 also informs bucket controller 430 of the identity
of a down server. In one embodiment of load balancer 1000, bucket controller 430
deassigns all buckets assigned to the down server. Thus the state of the buckets
previously assigned to the down server transition to the NOT ASSIGNED state.
Server selector 420 can then reassign the buckets previously assigned to the down
server to the other servers as described above. In another embodiment of server
1000, bucket controller 1000 reassigns all the buckets assigned to the down server
to another server, typically the server with the most credit. Load balancer 1000
rebalances the load among the remaining servers as described above.

Server fault detector 1010 should continue to monitor all inactive servers,
to detect when an inactive server may be repaired. Some embodiments of server
fault detector 1010, tests a repaired server to assure that the server is actually
repaired. Once the down server is repaired to the satisfaction of server fault
detector 1010, server fault detector 1010 marks the server as active and adds it to
the set of operational servers. Server fault detector 1010 then informs credit
calculator 450 about the change in operational servers. Credit calculator 450 then
recomputes each servers normalized weight and credits. Since no buckets are
assigned to the previously down server, the previously down server should have no
load and, therefore, a large credit. Consequently, server selector 420 assigns
unassigned buckets with data requests to the previously down server as described

above. In time load balancer 400 is able to rebalance the load on all of the servers.
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To hasten the load balancing process, skew detector 440 may cause bucket
controller 430 to move one or more buckets from low granularity mode to high
granularity mode as described above.

Fig. 11 illustrates an overall system in which the present invention is-
utilized. Fig. 11 shows a plurality of servers 210, 220, 230, 240, 250 each having
the same IP address. Servers are connected to a plurality of network routers 260,
270, 280 through a network flow switch 205 in accordance with this invention.
The structure and method of operation of the flow switch one disclosed in the
above copending application serial no. 08/994,709 (M-4968) which is incorporated
herein by reference in its entirety.

In the various embodiments of this invention, methods and structures have
been described that provide dynamic load balancing and server fault tolerance for a
plurality of servers. By monitoring the load on the servers and dynamically
allocating buckets based on the credit of each server, embodiments of the present
invention can maintain a balanced load on the servers. Furthermore, by monitoring
the status of the servers, embodiments of the present invention can gracefully
handle server faults by balancing the load of a down server among the remaining
operational servers.

The various embodiments of the structures and methods of this invention
that are described above are illustrative only of the principles of this invention and
are not intended to limit the scope of the invention to the particular embodiments
described. In view of this disclosure, those skilled-in-the-art can define other

bucket selectors, server selectors, skew detectors, credit calculators, load
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estimators, bucket controllers, server fault detectors, load vectors, weighting
vectors, credit allocation rules, load estimation rules, fault detection rules, buckets,
bucket states, network configurations, and use these alternative features to create a

method, circuit, or system according to the principles of this invention.

~28-



WO 99/32956 PCT/US98/25821

CLAIMS
We claim:
1. A method for assigning a plurality of data requests among a

plurality of servers, said method comprising:
5 assigning each of said data requests to a bucket of a first plurality of
buckets; and
assigning each bucket of said plurality of buckets containing a data
request to a server of said plurality of servers;
wherein said first plurality of buckets outnumber said plurality of

10 servers.

2. The method of Claim 1, wherein each of said data requests includes
a source address and wherein each of said data requests is assigned to a bucket

based on said source address.

15
3. The method of claim 2, wherein
said first plurality of buckets contain B buckets;
each of said buckets in said first plurality of buckets is uniquely
numbered from zero to B-1; and
20 a data request of said plurality of data requests is assigned to bucket

number said source address of said data request modulo B.
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4. The method of claim 1, wherein said assigning each bucket of said
plurality of buckets containing a data request to a server of said plurality of servers

further comprises:

detecting a first not-assigned bucket having at least one of said data

5 requests;

assigning said first not-assigned bucket to an underloaded server.

5. The method of claim 4, wherein said underloaded server is the most

underloaded server.
10
6. The method of claim 1, wherein assigning each bucket of said
plurality of buckets containing a data request to a server of said plurality of servers

further comprises:

detecting a first not-assigned bucket having at least one of said data

15 requests;
calculating a weighted load on each of said server based on said
Sserver power;
calculating a credit for each of said servers;
assigning said first not-assigned bucket to a server having the

20 largest credit.

7. The method of claim 6, further comprising detecting a skewed load

on said plurality of servers.
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8. The method of claim 7, further comprising:
selecting a second bucket from said plurality of buckets, wherein
said second bucket is in a low granularity mode; and
5 converting said second bucket from said low granularity mode to a

high granularity mode.

9. The method of claim 8 further comprising:
creating a pluraﬁty of child buckets; and
10 assigning data requests destined for said second bucket to one of

said plurality of child buckets.

10. A load balancer for balancing the load due to a plurality of data
requests on a plurality of servers, said load balancer comprising:
15 a first plurality of buckets;
a bucket selector configured to assign each of said data requests to a
bucket in said plurality of buckets; and
a server selector configured to dynamically assign any unassigned
bucket containing a data request to a server in said plurality of servers.
20
11.  The load balancer of claim 11, wherein said plurality of buckets

outnumbers said plurality of servers.
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12. The load balancer of claim 10, wherein
each of said data requests contains a source address; and
said bucket selector determines which bucket to assign a specific

data request based on said source address of said specific data request.

13.  The load balancer of claim 10, further comprising a load estimator

configured to estimate a load on each of said servers to form a plurality of loads.

14.  The load balancer of claim 13 wherein said server selector assigns
an unassigned bucket containing a data request to an underloaded server.
15. The load balancer of claim 14, wherein said underloaded server is a

most underloaded server.

16.  The load balancer of claim 13, further comprising a credit calculator
coupled to said load estimator and configured to calculate a credit for each of said

servers to form a plurality of credits.

17.  The load balancer of claim 13, wherein said server selector assigns

an unassigned bucket containing a data request to a server having a large credit.

18.  The load balancer of claim 17, wherein said server selector assigns

an unassigned bucket containing a data request to a server having the largest credit.
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19. A server fault handling system for handling the non-operational
status of one of a plurality of servers, said server receiving requests in buckets;
comprising,

fault detection means for detecting the non-operational status of said
server,
credit calculation means responsive to said server fault detection
means for recalculating parameters of said plurality of servers based on the

loss of said non-operational server,

20. A fault handling system in accordance with claim 19 in which said
server selection means reassigns all of said buckets from non-operational server to

the one of said plurality of servers having the lightest load.

21. A fault handling system in accordance with claim 19 in which said
server selection means reassigns said buckets for said non-operational server to

said other servers.

22. A server fault handling system in accordance with claim 19
including

means for notifying said server fault detector that said formerly non-
operational server is now operational,

means for notifying said credit calculator of the operational status of
said formerly non-operational server to cause said credit calculator to
increase the credit of said now operational server, and

means in said selector means responsive to said increased credit of
said now operational server for assigning unassigned buckets to said now

operational server.
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23. A fault handling system in accordance with claim 22 in which said
means in said server selection means reassigns assigned buckets to all of said

plurality of servers including said now operational server.
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