发明专利申请公布说明书

申请号 200680054021.5

公开日 2009 年 4 月 8 日

申请日 2006.3.28

申请人 艾利森电话股份有限公司
地址 瑞典斯德哥尔摩

发明人 R·斯藤森

专利代理机构 中国专利代理(香港)有限公司
代理人 张雪梅 刘春元

发明名称
无线电基站系统、蜂窝移动通信网络中的节点和分路设备

摘要
本发明涉及用于移动通信的无线电基站，在蜂窝移动通信网络中的节点，也涉及在无线电基站系统使用的分路设备。无线电基站系统包括第一天线和至少第一、第二和第三无线电基站(1, 2, 3)，第一无线电基站(1)被连接到第一天线(A1)。无线电基站系统包括第一分路设备(S1)，第一分路设备被连接到第一、第二和第三无线电基站(1, 2, 3)。
1. 一种用于移动通信的无线电基站系统，包括第一天线 (A1) 和至少第一、第二和第三无线电基站 (1, 2, 3)，第一无线电基站 (1) 被连接到第一天线 (A1)，其特征在于：所述无线电基站系统包括连接到第一、第二和第三无线电基站 (1, 2, 3) 的第一分路设备 (S1)。

2. 根据权利要求 1 所述的无线电基站系统，包括第一信号组合设备 (DDU1)，第一无线电基站 (1) 通过第一信号组合设备 (DDU1) 被连接到第一天线 (A1)，并且第一分路设备 (S1) 通过第一信号组合设备 (DDU1) 被连接到第二无线电基站 (2)。

3. 根据权利要求 2 所述的无线电基站系统，其中所述第一信号组合设备 (DDU1) 适于组合来自第一和第二无线电基站 (1, 2) 的信号以通过第一天线 (A1) 进行发射。

4. 根据前述任一项权利要求所述的无线电基站系统，其中第一无线电基站 (1) 被连接到第一分路设备 (S1) 的输入 (Sa)，第二和第三无线电基站 (2, 3) 被连接到第一分路设备 (S1) 的相应输出 (Sb, Sc)。

5. 根据前述任一项权利要求所述的无线电基站系统，包括适于从通过第一天线 (A1) 接收的信号中提取用于第一基站 (1) 的信号的提取装置 (E)。

6. 根据前述任一项权利要求所述的无线电基站系统，包括第二天线 (A2) 和第二分路设备 (S2)，第一无线电基站 (1) 被连接到第二天线 (A2)，第二分路设备 (S2) 被连接到第一、第二和第三无线电基站 (1, 2, 3)。

7. 根据权利要求 6 所述的无线电基站系统，包括第二信号组合设备 (DDU2)，第一无线电基站 (1) 通过第二信号组合设备 (DDU2) 被连接到第二天线 (A2)，第二分路设备 (S2) 通过第二信号组合设备 (DDU2) 被连接到第二无线电基站 (2)。

8. 根据权利要求 7 所述的无线电基站系统，其中第二信号组合设备 (DDU2) 适于组合来自第一和第二无线电基站 (1, 2) 的信号以通过第一天线 (A1) 进行发射。

9. 根据权利要求 6-8 中的任一项所述的无线电基站系统，其中第一无线电基站 (1) 被连接到第二分路设备 (S2) 的输入 (Sa)，第二和第三无线电基站 (2, 3) 被连接到第二分路设备 (S2) 的相应输出 (Sb, Sc)。
10. 根据权利要求 6-9 中的任一项所述的无线电基站系统，其中所述提取装置 (E) 适于从通过第二天线 (A2) 接收的信号中提取用于第一无线电基站 (1) 的信号。

11. 根据前述任一项权利要求所述的无线电基站系统，其中第一分路设备 (S1) 提供至少两个输出 (Sb, Sc)，所述输出 (Sb, Sc) 中的至少一个被连接到模拟设备 (TMAS)，所述模拟设备适于模拟塔顶放大器 (TMA)。

12. 一种用于根据前述任一项权利要求所述的无线电基站系统中的分路设备 (S1, S2)，其特征在于：所述分路设备提供至少两个输出 (Sb, Sc)，所述输出 (Sb, Sc) 中的至少一个被连接到模拟设备 (TMAS)，所述模拟设备适于模拟塔顶放大器 (TMA)。

13. 一种蜂窝移动通信网络中的节点，包括根据权利要求 1-11 中的任一项所述的无线电基站系统。
无线电基站系统、蜂窝移动通信网络中的节点
和分路设备

技术领域
本发明涉及用于移动通信的无线电基站（radio base station）系统，该无线电基站系统包括第一基站和至少第一、第二和第三基站无线电基站，第一无线电基站被连接到第一基站。本发明还涉及在蜂窝移动通信网络中的节点和在无线电基站系统中使用的分路设备（splitter device）。

背景技术
当新的蜂窝技术被引入蜂窝运营商网络时，经常有最小化额外天线和馈线的数目的愿望。当全球移动通信系统（GSM）在美国被引入到现有的时分多址（TDMA）站点时，开发出了最小化额外天线和馈线的共址（co-siting）解决方案。

图 1 示出了带有 TDMA 无线电基站 TDMA RBS 的已知装置，TDMA RBS 带有两个 RX 端口 RXA, RXB 和 TX 端口。图 1 中的装置可以是独立的带有塔顶放大器 TMA 的 TDMA 1900MHz 装置，TMA 覆盖在馈线上由直流 (DC) 电压供电，用于优化的接收机的灵敏性。

图 2 示出了已知装置的进一步实例。通过重新使用 TDMA 接收 (RX) 天线作为用于 GSM 的发射/接收 (TX/RX) 天线，并且通过转发动来自 GSM 无线电基站的接收信号到 TDMA 无线电基站；避免了额外的天线和馈线。如图 2 所示，这通过使用装备有天线共享单元 ASU 的 GSM 无线电基站 GSM RBS 作为主基站来完成。天线共享单元 ASU 经过主 GSM 无线电基站的 2 个共址端口 RXB2, RXA2 来提取并转发动已放大的接收信号给从 TDMA 无线电基站 TDMA RBS。

图 3 示出了引入带有码分多址 (WCDMA) 到现有站点的已知解决方案。WCDMA 无线电基站 WCDMA RBS 的 2 个发送/接收 TX/RX 端口被连接到相应的双工双路单元 (diplex duplex unit) DDU 的相应的主端口，DDU 是组合器的形式。除了主端口，每个双工双路单元具有天线端口 ANT、接收端口 RX 和从端口。通过利用双工双路单元 DDU，在图 3 的装
置中减少 2 个天线馈线 F 是可能的。每个双工双路单元转发来自主天线端口的接收信号到主端口，转发来自接收端口 RX 的接收信号到从端口，并且组合主端口和从端口上的到公共天线端口 ANT 的发射 TX 信号。
WCDMA 无线电基站设有两个共址端口 RXB1，RXA1，每个共址端口被连接到相应的双工双路单元 DDU 的相应的接收端口 RX。相应的双工双路单元 DDU 的从端口被连接到 GSM 基站 GSM RBS 的相应的发送/接收 TX/RX 端口。与图 2 中的 GSM 基站中的天线共享单元 ASU 相似，WCDMA 无线电基站配备有经由双工双路单元 DDU 提取接收信号和转发它们给 GSM 基站的功能。GSM 基站被提供了天线共享单元 ASU 和 TMA 模拟器 TMAS，GSM 基站提取和转发已放大的接收信号给从 TDMA 无线电基站 TDMA RBS。
这样，GSM 基站将成为 WCDMA 基站的从属，而 TDMA 基站又将从属于从 GSM 基站。

图 3 所示的解决方案的主要缺陷是 TDMA 基站的接收机将带有一些连续交替的放大和衰减的相当长的链中的最后一个，这将消极地影响 TDMA 接收机灵敏性。更具体地说，TDMA 接收信号路径将经过天线，放大部分的塔顶放大器 TMA、衰减信号的双工双路单元馈线、WCDMA 基站（放大）、电缆（衰减）、GSM 基站（放大），再次经过电缆（衰减），到达 TDMA 接收机。这样，图 3 中的已知解决方案提供了放大器的级联，带有这样的级联的问题可以通过 Friis 公式表示：

$$NR_{TOT} = NR_1 + \frac{NR_2 - 1}{g_1} + \frac{NR_3 - 1}{g_1 \times g_2} + \frac{NR_4 - 1}{g_1 \times g_2 \times g_3} + \ldots + \frac{NR_n - 1}{g_1 \times g_2 \times g_3 \times \ldots \times g_{n-1}}$$

这里，NR_{TOT} = 总噪声比率，
NR_1, NR_i 等 = 每级的噪声比率，和
\(g_1, g_i\) 等 = 每级的增益比率。

发明内容

本发明的目的是减少在蜂窝移动通信网络中所需的天线数目。
本发明的另一个目的是，当在蜂窝移动通信网络中引入新技术时，减少对额外天线的需求。
进一步的目的是，当至少三个无线电基站共享天线时，提高接收机的灵敏性。
使用用于移动通信的无线电基站系统达到了上述目的，所述无线电基站系统包括第一天线、至少第一、第二和第三无线电基站，第一无线电基站连接到第一天线，其特征在于，所述无线电基站系统包括第一分路设备，第一分路设备连接到第一、第二和第三无线电基站。

因此，如下面所述的，第二和第三基站是从基站，其可以被从作为主基站的第一基站并行地馈给接收信号。与参考图3在上面所述的级联结构相比，对于从基站中的一个来说，它提供了明显更短的信号路径。这将明显地提高从基站的接收机灵敏性。

优选地，无线电基站系统包括第一信号组合设备，第一无线电基站通过第一信号组合设备被连接到第一天线，第一分路设备通过第一信号组合设备被连接到第二无线电基站。这样，第一信号组合设备被连接到第一天线、第一和第二无线电基站以及第一分路设备。第一信号组合设备优选地适用于组合来自第一和第二无线电基站的信号以通过第一天线进行发射。因此，第一信号组合设备可以将来自第一分路设备的接收信号馈送给第二无线电基站，并且还将来自第二基站的发射信号馈送给第一分路。

优选地，无线电基站系统包括第二天线和第二分路设备，第一无线电基站被连接到第二天线，并且第二分路设备被连接到第一、第二和第三无线电基站。组合地使用第一和第二天线提供了天线分集，即信息承载信号被沿着不同的传播路径传输。通过以上所述方式提供第一和第二分路设备，该系统除了提供第二和第三从属基站从第一主基站并行地接收信号的可能性之外还提供天线分集，而不管这些信号是否通过第一或第二天线被接收。这样，与上面参考图3描述的级联结构相比，对于从基站中的一个来看，来自两个天线的信号路径明显更短。

优选地，第一无线电基站被连接到第一分路设备的输入，第二和第三无线电基站被连接到第一分路设备的相应输出。此外，如果无线电基站系统包括第二分路设备，则第一无线电基站被连接到第二分路设备的输入，并且第二和第三无线电基站被连接到第二分路设备的相应输出。

优选地，无线电基站系统包括提取装置，其适于从通过第一天线和/或第二天线接收到的信号中提取用于第一无线电基站的信号。

优选地，第一分路设备具有至少两个输出，所述输出中的至少一
个被连接到模拟设备(TMAS)，该模拟设备适于模拟塔顶放大器(TMA)。如下面所述，这将明显改善使作为从属的特定类型的无线电基站适应本发明的无线电基站系统的可能性。这个优点也由根据权利要求12所述的分路设备来提供。

上述目的还利用根据权利要求13的蜂窝移动通信网络中的节点来实现。

附图说明
下面，将参考附图更详细地描述本发明：图1-3示出了描述根据已知方案的无线电基站系统的方框图；图4示出了描述根据本发明的优选实施例的无线电基站系统的方框图；图5和6示出了描述在图4中的无线电基站系统中使用的分路设备的替换实施例的方框图；图7和8示出了描述根据本发明的替换实施例的无线电基站系统的方框图；图9示意性地示出了带有节点的蜂窝移动通信网络的一部分，每个节点包括根据本发明的无线电基站系统。

具体实施方式
图4示出了根据本发明的用于蜂窝网络移动通信的一个实施例的无线电基站系统。无线电基站系统包括WCDMA基站1形式的第一无线电基站1、GSM无线电基站2形式的第二无线电基站2和TDMA基站2形式的第三基站、用于发射和接收无线电电信号的第一天线A1。第一无线电基站1通过第一信号组合设备DDU1被连接到第一天线A1，DDU1是本领域已知的双工双路单元的形式。更具体地说，第一天线A1通过塔顶放大器TMA和馈线F被连接到第一信号组合设备DDU1的天线端口ANT，第一基站1的第一发射和接收端口TXRxA被连接到第一信号组合设备DDU1的主端口M。

无线电基站系统包括在下面参考图5和图6描述的第一分路设备S1，第一分路设备被连接到第一、第二和第三无线电基站1,2,3。在第一分路设备S1和第二基站2的情况下，后者通过第一信号组合设备
DDU1 被连接到前者。更具体地说，第一分路设备 S1 的第一分支被连接到第一基站 1 的第一共址（co-siting）端口 RXA1。第一分路设备 S1 的第二分支被连接到第一信号组合设备 DDU1 的接收端口 RX，第一信号组合设备 DDU1 的从端口 SL 被连接到第二基站 2 的第一发射和接收端口 TXRXA。第一分路设备 S1 的第三分支被连接到第三基站 3 的第一接收端口 RXA。这里，分路设备 S1 的第一分支还被称为输入，第二和第三分支还被称为输出。

第一无线电基站 1 包括提取装置 E，提取装置 E 从通过第一天线 A1 接收的信号中提取用于第一无线电基站 1 的信号。提取装置 E 可以包括天线共享单元 (ASU)，该 ASU 适于提取具有用于第一基站的频率的信号并且还转发放大的信号。

此外，第一信号组合设备 DDU1 适于组合来自第一和第二无线电基站 1, 2 的信号以通过第一天线 A1 进行发射。更具体地说，通过第一信号组合设备 DDU1 的主端口 M 从第一基站 1 的第一发射和接收端口 TXRXA 接收到的发射信号，和通过第一信号组合设备 DDU1 的从端口 SL 从第二基站 2 的第一发射和接收端口 TXRXA 接收到的发射信号，被第一信号组合设备 DDU1 组合，并且经过天线端口 ANT 被第一天线 A1 接收。

仍然参考图 4，为了提供天线信号分集，无线电基站系统包括第二天线 A2, 第二天线 A2 用于发射和接收无线电信号并且以相应于第一天线被并入的方式被连接到基站 1, 2, 3。这样，第二天线 A2 经过塔顶放大器 TMA 和馈线 F 被连接到第二信号组合设备 DDU2 的天线端口 ANT，第一基站 1 的第二发射和接收端口 TXRXB 被连接到第二信号组合设备 DDU2 的主端口 M。通过第二天线，提供了塔顶放大器 TMA。第二分路设备 S2 的第一分支被连接到第一基站 1 的第二共址端口 RXB1。第二分路设备 S2 的第二分支被连接到第二信号组合设备 DDU2 的接收端口 RX，第二信号组合设备 DDU2 的从端口 SL 被连接到第二基站 2 的第二发射和接收端口 TXRXB。第二分路设备 S2 的第三分支被连接到第三基站 3 的第二接收端口 RXB。第一无线电基站的提取装置 E 适于从通过第二天线 A2 接收到的信号中提取用于第一无线电基站 1 的信号。通过第二信号组合设备 DDU2 的主端口 M 从第一基站 1 的第二发射和接收端口 TXRXB 接收到的发射信号，和通过第二信号组合设备 DDU2 的从端口 SL
从第二基站 2 的第二发射和接收端口 TXRXB 接收到的发射信号，被第二信号组合设备 DDU2 组合，并且经过天线端口 ANT 被第二天线 A2 接收。

为了从第三无线电基站 3 发射，第三天线 A3 被连接到第三基站 3 的发射端口 TX。

在图 4 的无线电基站系统中，由第一和第二天线 A1, A2 接收到的信号通过相应的天线端口 ANT 和主端口 M, 并且分别在第一基站 1 的第一和第二发射和接收端口 TXRXA, TXRXB 被接收到。第一基站 1 中的提取装置 B 从接收的信号中提取旨在用于第一基站的信号。进一步地，由第一和第二天线 A1, A2 接收到的信号分别通过第一基站的第一和第二共址端口 RXA1, RXB1, 并且被第一和第二分路设备 S1, S2 的相应的第一分支所接收。所述分路设备 S1, S2 的相应的第二分支输出由第一和第二信号组合设备 DDU1, DDU2 的相应的接收端口 RX 接收的信号，DDU1 和 DDU2 将所述信号通过相应的端口 SL 分别馈送给第二基站的第一和第二发射和接收端口 TXRXA, TXRXB。分路设备 S1, S2 的相应的第三分支输出信号，使得它们分别被第三基站的第一和第二接收端口 RXA, RXB 接收。第二和第三基站 2, 3 可以包括适当的装置，其例如包括一个或多个滤波器，以从接收的信号中提取旨在用于相应的基站的信号。

这样，图 4 中所示的本发明的实施例的概念是并行地将来自 WCDMA 主 (第一) 无线电基站 1 的接收 (RX) 信号馈给从 GSM (第二) 无线电基站 2 和从 TDMA (第三) 无线电基站 3。更通常地，相比于参考图 3 的上述已知解决方案，本发明将提高第三无线电基站 3 的结果噪声系数。用于第三基站 3 的接收信号路径将被减少为通过天线、塔顶放大器 TMA (放大)、馈线 (衰减)、第一基站 1 (放大)、电缆和分路设备 S1, S2 (衰减)，到达第三基站 3 中的接收机。

作为本发明的缺点的具体例子：当以根据本发明的方式引入 WCDMA 基站到如图 2 所示的带有 GSM 和 TDMA 基站的装置时，TDMA 接收 (RX) 噪声系数将基本上保持和加入 WCDMA 基站前一样。可以容易地证明，相比较于上面参考图 3 描述的已知解决方案，通过使用本发明，所得到的 TDMA 接收 (RX) 噪声系数将被改善。由于分路设备 S1, S2 的损耗可以被看成是在 WCDMA 基站和 GSM 基站之间的电缆损耗的一部分，因此
只要来自 WCDMA 基站的足够增益是可用的，GSM 噪声系数就将不受影响。

应该注意的是，本发明可以用于其他共址应用中，其中用于不同于 WCDMA，如 GSM, TDMA 或其他标准的移动通信标准的无线电基站将被并入现有的基站系统。例如，上述所述的第一、第二和第三基站可以分别是 GSM, WCDMA 和 TDMA 基站或者分别是 TDMA, WCDMA 和 GSM 基站。

分路设备 S1, S2 可以是相同的分路器，这意味着它们在输出上提供相同的功率，或者 S1, S2 是不相同的分路器，也被称为分接器（tapper），其将在 2 个输出上提供不同的功率级别。使用的分路设备的类型优选依赖于第二和第三基站 2, 3 的所需的 RF 信号级别。

参考图 5 和图 6，它们示出了作为第一和第二分路设备 S1, S2 用在根据本发明的无线电基站系统中的分路设备 S1 的相应实施例。通常，分路设备 S1, S2 可以是标准的分路器或分接器。然而，图 5 和图 6 中的分路设备实施例将改善适应作为从属的特定类型的 TDMA 无线电基站的可能性，以便这样的基站进入正确的操作状态，并且避免从属中的 DC 电压短路。更具体地说，特定类型的 TDMA 无线电基站在传统安装中在用于塔顶放大器的接收端口上具有 DC 电压，并且为了基站正确工作，需要通过接收端口的 DC 电流。当根据本发明将这样的接收端口连接到分路设备时，后者可以按如下配置来避免 DC 电压的短路。

如上所述，第一分支 Sa，分路器输入，被连接到第一无线电基站 1，第二分支 Sb，输出之一，经过第一信号组合设备 DDUI 连接到第二无线电基站 2，第三分支 Sc，另一个输出，被连接到第三无线电基站 3。如可以是图 5 所看到的，在第三分支 Sc 处提供适于模拟塔顶放大器 (TMA) 的模拟设备 TMAS。TMA 模拟器 TMAS 被连接到第第三分支和地。在 TMA 模拟器 TMAS 和第一分支 Sa 之间，提供例如电阻器形式的 DC 电流阻塞设备 DCB，以防止 DC 电流到达第一分支并导致短路。这样，来的第三基站的 DC 电流将会到至 TMA 模拟器 TMAS。此外，在 TMA 模拟器 TMAS 和第三分支 Sc 之间，提供例如低通滤波器形式的 RF 阻塞设备 RFB，以将信号从天线指向第三基站 3。在图 6 所示的替换实施例中，还以相似的方式在第二分支 Sb 处提供 TMA 模拟器 TMAS，DC 电流阻塞设备 DCB 和 RF 阻塞设备 RFB。

TMA 模拟器 TMAS 提供负载，其处于由无线电基站适于的塔顶放大
器 TMA 提供的负载的水平。在分路设备的输出 Sb, Sc 处提供 TMA 模拟器 TMAS 将解决上面提到的 DC 问题，并且连接到输出的从属无线电基站 2, 3 表现如同它具有连接到其的塔顶放大器 TMA 那样。

作为图 5 和 6 中的分路设备的替代，可以使用带有在标准分路器或分接器外部提供的 (TDMA) TMA 模拟器的 DC 块。另外，设有 TMA 模拟器 TMAS 的两个分路设备 S1, S2 (分路器或分接器) 可以被集成为一个物理单元，这从安装的角度来说是有利的。

参考图 7。如所述的，通过提供第一和第二天线 A1, A2 用于发射和接收无线电信号，上面参考图 4 描述的例子适于提供天线信号分集。但是本发明也可应用到没有设置这种双天线配置的无线电基站系统。图 7 显示了这样的系统的例子，它相应于图 4 中的系统，区别在于没有提供第二天线 A2, 第二信号组合设备 DDU2 和第二分路设备 S2。

图 8 示出了本发明的替换实施例。除了下面的区别：用于发送和接收无线电信号的第一和第二天线 A1, A2 被连接到第一无线电基站 1，而没有任何插入的信号组合设备，图 8 中的无线电基站系统相应于上面参考图 4 描述的无线电基站系统。更具体地说，第一和第二天线 A1, A2 被分别连接到第一和第二射频和接收端口 TXRXA, TXRXB。进一步地，第一和第二分路设备 S1, S2 被连接到第二基站 2，而没有任何插入的信号组合设备。更具体地说，第一和第二分路设备 S1, S2 的相应的输出被分别连接到第二基站 2 的第一和第二接收端口 RXA, RXB。为了从第二无线电基站 2 发射，第四天线 A4 被连接到第二基站 2 的发射端口 TX。

图 9 示意性地示出带有蜂窝 C1, C2, C3 的蜂窝移动通信网络的一部分，在所述蜂窝中由节点 N1, N2, N3 提供无线电覆盖范围，每个节点包括根据上面描述的任一实施例的无线电基站系统。
图 2
图 9