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METHOD AND APPARATUS FOR BATCHED NETWORK SECURITY
PROTECTION SERVER PERFORMANCE

FIELD OF THE INVENTION
The claimed invention relates to the field of secure communications.
More particularly it relates to improving the efficiency of establishing secure

network communications.

BACKGROUND OF THE INVENTION

Many network transactions require secure communications. The Secure
Socket Layer ("SSL") is the most widely deployed protocol for securing
communication onthe World Wide Web ("WWW™"). SSL along with other
protocols such as Transport Layer Security ("TLS") are used by E-commerce
and financial web sites to guarantee privacy and authenticity of information
exchanged between a web server and a web browser. Currently, the number of
web sites using SSL and TLS to secure web traffic is growing at a phenomenal
rate and as the services provided on the World Wide Web continue to expand so
will the need to establish secure connections.

Unfortunately, SSL and TLS are not cheap. A number of studies show
that web servers using these protocols perform far worse than web servers that
do not encrypt web traffic. In particular, a web server using SSL can handle 30
to 50 times fewer transactions per second than a web server using clear-text
communication only. The exact transaction performance degradation depends
on the type of web server used by the site and the security protocol
implemented. To overcome this degradation web sites typically buy
significantly more hardware in order to provide a reasonable response time to
their customers.

Web sites often use one of two techniques to overcome secure
communication's impact on performance. The first method, as indicated above,
is to deploy more machines at the web site and load balance connections across

these machines. This is problematic since more machines are harder to
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administer. In addition, mean time between failures decreases significantly.

The other solution is to install a hardware acceleration card inside the web
server. The card handles most of the secure network workload thus enabling the
web server to focus on its regular tasks. Accelerator cards are available from a
number of vendors and while these cards reduce the penalty of using secure
connections, they are relatively expensive and are non-trivial to configure. Thus

there is a need to establish secure communications on a network at a lower cost.

SUMMARY OF THE INVENTION

A method and apparatus for batching secure communications in a
computer network are provided. When a web browser first connects to a web
server using secure protocols, the browser and server execute an initial
handshake protocol. The outcome of this protocol is a session encryption key
and a session integrity key. These keys are only known to the web server and
web browser, and establish a secure session.

Once session keys are established, the browser and server begin

exchanging data. The data is encrypted using the session encryption key and

' protected from tampering using the session integrity key. When the browser

and server are done exchanging data the connection between them is closed.

The establishment of a secure session using a protocol such as Secure
Socket Layer ("SSL") begins when the web browser connects to the web server
and sends a client-hello message. Soon after receiving the message, the web
server responds with a server-hello message. This message contains the server's
public key certificate that informs the client of the server's Rivest-Shamir-
Adleman algorithm ("RSA") public key. Having received the public key, the
browser picks a random 48-byte string, R, and encrypts it using the key. Letting
C be the resulting cipher-text of the string R, the web browser then sends a
client-key-exchange message containing C. The 48-byte string R is called the
pre- master- secret. Upon receiving the message, from the browser, the web
server uses its RSA private key to decrypt C and thus learns R. Both the

browser and server then use R and some other common information to derive
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the session keys. With the session keys established, encrypted message can be
sent between the browser and server with impunity.

The decryption of the encrypted string, R, is the expensive part of the
initial handshake. An RSA public key is made of two integers (N, ). In an
embodiment N = pq is the product of two large primes and is typically 1024 bits
long. The value e is called the encryption exponent and is typically some small
number such as e = 65537. Both N and e are embedded in the server's public
key certificate. The RSA private key is simply an integer d satisfying e - d=1
mod (p—1) (g —1). Given an RSA cipher-text C, the web server decrypts C by
using its private key to compute C? mod N that reveals the plain-text message,
R. Since both d and N are large numbers (each 1024 bits long) this computation
takes some effort.

At a later time, the browser may reconnect to the same web server.
When this happens the browser and server execute the SSL resume handshake
protocol. This protocol causes both server and browser to reuse the session
keys established during the initial handshake saving invaluable resources. All
application data is then encrypted and protected using the previously established
session keys.

Of the three phases, the initial handshake is often the reason why SSL
degrades web server performance. During this initial handshake the server
performs an RSA decryption or an RSA signature generation. Both operations
are relatively expensive and the high cost of the initial handshake is the main
reason for supporting the resume handshake protocol. The resume handshake
protocol tries to alleviate the cost of the initial handshake by reusing previously
negotiated keys across multiple connections. However, in the web
environment, where new users constantly connect to the web server, the
expensive initial handshake must be executed over and over again at a high
frequency. Hence, the need for reducing the cost of the initial handshake
protocol.

One embodiment presents an implementation of batch RSA in an SSL
web server while other embodiments present substantial improvements to the

basic batch RSA decryption algorithms. These embodiments show how to
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reduce the number of inversions in the batch tree to a single inversion. Another
embodiment further speeds up the process by proper use of the Chinese
Remainder Theorem ("CRT") and simultaneous multiple exponentiation.

A different embodiment entails an architecture for building a batching
SSL web server. The architecture in this embodiment is based on using a
batching server process that functions as a fast decryption oracle for the main
web server processes. The batching server process includes a scheduling
algorithm to determine which subset of pending requests to batch.

Yet other embodiments improve the performance of establishing secure
connections by reducing the handshake work on the server per connection. One
technique supports web browsers that deal with a large encryption exponent in

the server's certificate, while another approach supports any browser.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is illustrated by way of example in the following
figures in which like references indicate similar elements. The following
figures disclose various embodiments of the claimed invention for purposes of
illustration only and are not intended to limit the scope of the claimed invention.

Figure 1 is a flow diagram of the initial handshake between a web
server and a client of an embodiment.

Figure 2 is a block diagram of an embodiment of a network system for
improving secure communications.

Figure 3 is a flow diagram for managing multiple certificates using a
batching architecture of an embodiment.

Figure 4 is a flow diagram of batching encrypted messages prior to
decryption in an embodiment.

Figure 5 is a flow diagram for increasing efficiency of the initial
handshake process by utilizing cheap keys in an embodiment.

Figure 6 is a flow diagram for increasing efficiency of the initial

encryption handshake by utilizing square keys in an embodiment.

PCT/US01/18825
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DETAILED DESCRIPTION

The establishment of a secure connection between a server and a
browser can be improved by batching the initial handshakes on the web server.
In one embodiment the web server waits until it receives b handshake requests
from b different clients. It treats these b handshakes as a batch, or set of
handshakes, and performs the necessary computations for all » handshakes at
once. Results show that, for b = 4, batching the Secure Socket Layer ("SSL")
handshakes in this way results in a factor of 2.5 speedup over doing the b
handshakes sequentially, without requiring any additional hardware. While the
Secure Socket Layer protocol is a widely utilized technique for establishing a
secure network connection, it should be understood that the techniques
described herein can be applied to the establishment of any secure network-
based connection using any of a number protocols.

One embodiment improves upon a technique developed by Fiat for batch
RSA decryption. Fiat suggested that decrypting multiple RSA cipher-texts as a
batch would be faster than decrypting them one by one. Unfortunately,
experiments show that Fiat's basic algorithm, naively implemented, does not
give much improvement for key sizes commonly used in SSL and other network
security protection handshakes.

A batching web server must manage multiple public key certificates.
Consequently, a batching web server must employ a scheduling algorithm that
assigns certificates to incoming connections, and picks batches from pending
requests, so as to optimize server performance.

To encrypt a message M using an RSA public key (¥, e), the message M
is formatted to obtain an integer X'in {1, . .., N}. This formatting is often done
using the PKCS1 standard. The cipher-text is then computed as C = X° mod N.
This process occurs during the initial stages of the initial handshake between a
client and server when attempting to create a secure connection.

To decrypt a cipher-text C the web server uses its private key d to
compute the ¢ root of C in Zy. The e™ root of C is given by C* mod N as
previously noted. Since both d and N are large numbers (each 1024 bits long)

-5-
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this is a lengthy computation on the web server. It is noted that d must be taken
as a large number (i.e., on the order of N) since otherwise the RSA system is
insecure. .

The general process in establishing a Secure Socket Layer
communication between a browser or client and a server or host is depicted in
Figure 1. The process begins with a request from the browser to establish a
secure session 110. The client forms a hello message requesting a public key
and transmits the message to the server 114, Upon receiving the client-hello
message, the web server responds with a server-hello message containing a
public key 118. The public key is one half of a public / private key pair. While
the server transmits the public key back to the browser the server keeps the
private key. Once the client receives the public key 122 a random number R is
generated 126. This random number is the session key. The client encrypts R
by using the private key that it received from the server 132. With the number
R encrypted, the client sends the cipher-text to the web-server 138. Upon
receiving the cipher-text 142 the web server user the private key portion of the
public / private key pair to decrypt the cipher-text 146. With both the client and
the server possessing the session key R, a new encrypted secure socket layer
session 160 is established using R as the session key 158. This session is truly
encrypted since only the client and the web server possess the session key for
encryption and decryption.

When using small public exponents, e; and e;, which are components of
the public key, it is possible to decrypt two cipher-texts for approximately the
price of one. Suppose v; is a cipher-text obtained by encrypting using the
public key (¥, 3). Similarly, imagine v, is a cipher-text obtained by encrypting
using the public key (N, 5). To decrypt v; and v,, computing vi"? and v,"® mod

N are made by setting 4 = (v’ - )Y it can be shown that

10 6
A A
v1“3=————3 5 andv%/5= -
Vi *Vy V1 *Va

Hence, at the cost of computing a single 15" root both vy and v, can be

decrypted.
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This batching technique is most useful when the public exponents e, and
e are very small (e.g., 3 and 5). Otherwise, the extra arithmetic required can be
expensive. Also, only cipher-texts encrypted using distinct public exponents
can be batch decrypted. Indeed, it can be shown that it is not possible to batch
when the same public key is used. That is, it is not possible to batch the
computation of vlu 3 and vz]B .

This observation to the decryption of a batch of 5 RSA cipher-texts can
be generalized. In one embodiment there are b distinct and pairwise relatively
prime public keys ey, . . . ,e;, all sharing a common modulus N = pq.
Furthermore, assume there are b encrypted messages, Vi, . . . , v, one encrypted

with each key, that are desirable to decrypt simultaneously, to obtain the plain-

l/e,~
i .

texts m; =v

The batch process is implemented around a complete binary tree with b
leaves, possessing the additional property that every inner node has two
children. In one embodiment the notation is biased towards expressing locally
recursive algorithms: Values are percolated up and down the tree. With one
exception, quantities subscripted by L or R refer to the corresponding value of
the left or right child of the node, respectively. For example, m is the value of m
at a node; mp is the value of m at that node's right child and so forth.

Certain values necessary to batching depend on the particular placement
of keys in the tree and may be pre-computed and reused for multiple batches.
Pre-computed values in the batch tree are denoted with capital letters, and
values that are computed in a particular decryption are denoted with lower-case
letters.

The batching algorithm consists of three phases: an upward-percolation
phase, an exponentiation phase, and a downward-percolation phase. In the
upward-percolation phase, the individual encrypted messages v; are combined to

form, at the root of the batch tree, the value

v= H b v’ where e = H‘f-;le,- .
In preparation, assign to each leaf node a public exponent: E < e;. Each inner
node then has its E computed as the product of those of its children: £ « Ej, -

Egr. The root node's E will be equal to e, the product of all the public exponents.
-7-
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Each encrypted message v; is placed (as v) in the leaf node labeled with its
corresponding e;. The v's are percolated up the tree using the following recursive

step, applied at each inner node:
Vv i,
At the completion of the upward-percolation phase, the root node
contains v = H 5-’=1vie ‘% nthe exponentiation phase, the e ™ root of this v is

extracted. Here, the knowledge of factorization of N is required. The

e

exponentiation yields v/ = [ [ 2, v/ , which is stored as m in the root node.

In the downward-percolation phase, the intent is to break up the product
m into its constituent subproducts my, and mg, and, eventually, into the
decrypted messages m; at the leaves. At each inner node anX is chosen
satisfying the following simultaneous congrﬁencies:
X =0 (mod Ey) X=1 (mod Eg).
The value X is constructed using the Chinese Remainder Theorem ("CRT").
Two further numbers, X1, and X, are defined at each node as follows:
X1.=XEL Xo=X-1)Ex
Both divisions are done over the integers. (There is a slight infelicity in the
naming here: X and Xy are not the same as the X's of the node's left and right
children, as implied by the use of the L and R subscripts, but separate values.)
The values of X, X1, and X are such that, at each inner node, m* equals

vf L -vl‘f R .mp . This immediately suggests the recursive step used in

downward-percolation:
my m* /(vi‘fL -vff“) my, < m/mg.

At the end of the downward-percolation process, each leaf's 7 contains
the decryption of the v placed there originally. Only one large (full-size)
exponentiation is needed, instead of b of them. In addition, the process requires
a total of 4 small exponentiations, 2 inversions, and 4 multiplications at each of
the 4 - 1 inner nodes.

Basic batch RSA is fast with very large moduli, but may not provide a

significant speed improvement for common sized moduli. This is because
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batching is essentially a tradeoff. Batching produces more auxiliary operations
in exchange for fewer full-strength exponentiations.

Batching in an SSL-enabled web server focuses on key sizes generally
employed on the web, e.g., = 1024 bits. Furthermore, this embodiment also
limits the batch size b to small numbers, on the order of b = 4, since collecting
large batches can introduce unacceptable delay. For simplicity of analysis and
implementation, the values of b are restricted to powers of 2.

Previous schemes perform two divisions at each internal node, for a total
of 2b - 2 required modular inversions. Modular inversions are asymptotically
faster than large modular exponentiations. In practice, however, modular
inversions are costly. Indeed, the first implementation (with & =4 and a 1024-
bit modulus) spends more time doing the inversions than doing the large
exponentiation at the root. Two embodiments, when combined, require 6n1y a
single modular inversion throughout the algorithm with the cost of an additional
o(b) modular multiplication. This tradeoff gives a substantial running-time
improvement.

The first embodiment is referred to herein as delayed division. An
important realization about the downward-percolation phase is that the actual
value of m for the internal nodes of the tree is consulted only for calculating s,
and mg. An alternative representation of m that supports the calculation of my,
and mg_ and that can be evaluated at the leaves to yield m would do just as well.

This embodiment converts a modular division a/b to a "promise," {a, b).
This promise can operate as though it were a number, and, can "force" getting
its value by actually computing 5™ a. Operations on these promises work in a

way similar to operations in projective coordinates as follows:

alb={a,b) (a,b)° =<ac,b°>
¢+(a,b)={ac,b) (a,b)-(c,d)= (ac,bd) .
(a,b)/ c={a, be) (a,b)/{c,d)=(ad,bc)

Multiplication and exponentiation takes twice as much work had these promises
not been utilized, but division can be computed without resort to modular

inversion.
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If, after the exponentiation at the root, the root m is expressed as a
promise, m <— (m, 1), this emquiment can easily convert the downward-
percolation step to employ promises:

m, «m” /(va-vlfk) m; < m/mg.
No internal inversions are required. The promises can be evaluated at the leaves
to yield the decrypted messages.

Batching with promises uses & - 1 additional small exponentiations and
b - 1 additional multiplications. This translates to one exponentiation and one
multiplication at every inner node, saving 2(b - 1) - b =b -2 inversions. To
further reduce the number of inversions, another embodiment uses batched
divisions. When using delayed inversions one division is needed for every leaf
of the batch tree. In the embodiment using batched divisions, these b divisions
can be done at the cost of a single inversion with a few more multiplications.

As an example of this embodiment, invert three values x, y, and z.
Continue by forming the partial product yz, xz, and xy and then form the total
product xyz and invert it, yielding (xyz)". With these values, calculate all the
inverses:

x!=02) - ()’ =) - ()

7' =) Goz)’

Thus the inverses of all three numbers are obtained at the cost of only a single

modular inverse along with a number of multiplications. More generally, it can
be shown that by letting x,, . . . , X, € Zy, all n inverses x;”, ...,x,’ can be

obtained at the cost of one inversion and 3n - 3 multiplications.
It can be proven that a general batched-inversion algorithm proceeds in
three phases. First, set A; < x1, and 4; < x; - A1 for i > 1. By induction, it can

be shown that

Next, invert 4, = Hx ; » and store the result in

B,:B, «(4,)" = Hx;.l . Now, set B; <= x;41 - Bi+y for i <n. Again, it can be

shown that

-10-

PCT/US01/18825



10

15

20

25

30

WO 01/97442 PCT/US01/18825

]

B, =[x/ .
j=1

Finally, set Cj «— By, and C; <~ 4;.1 - B; for i > 1. Furthermore, C;= B; =
x1%, and, by combining, C; = 4;.; - B;=x;! for i > 1. This embodiment has thus
inverted each x;.

Each phase above requires # - 1 multiplications, since one of the »
values is available without recourse to multiplication in each phase. Therefore,
the entire algorithm computes the inverses of all the inputs in 37 - 3
multiplications and a single inversion.

In another embodiment batched division can be combined with delayed
division, wherein promises at the leaves of the batch tree are evaluated using
batched division. Consequently, only a single modular inversion is required for
the entire batching procedure. Note that the batch division algorithm can be
easily modified to conserve memory and store only » intermediate values at any
given time.

The Chinese Remainder Theorem is typically used in calculating RSA
decryptions. Rather than computing m < va (mod N), the modulo p and q is

evaluated:
m, < vZ" (mod p) m, < v‘;q (mod q).

Here dj, = d mod p — 1 and d; =d mod g — 1. Correspondingly the CRT can
calculate m from my, and m, This is approximately 4 times faster than
evaluating m directly.

This idea extends naturally to batch decryption. In one embodiment
each encrypted message v; modulo p and ¢ is reduced. Then, instead of using a
single batch tree modulo N, two separate, parallel batch trees, modulo p and g,
are used and then combined to the final answers from both using the CRT.
Batching in each tree takes between a quarter and an eighth as long as in the
original, unified tree since the number-theoretical primitives employed, as
commonly implemented, take quadratic or cubic time in the bit-length of the
modulus. Furthermore, the b CRT steps required to calculate each m; mod N

afterwards take negligible time compared to the accrued savings.

-11-
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Another embodiment referred to herein as Simultaneous Multiple
Exponentiation provides a method for calculating a” -b” mod m without first

evaluating a" -b". It requires approximately as many multiplications as does a

single exponentiation with the larger of u or v as an exponent.

For example, in the percolate-upward step, ¥V <~ V,® -V&* | the entire

right-hand side can be computed in a single multi-exponentiation. The

percolate-downward step involves the calculation of the quantity

v -y ,which can be accelerated similarly. These small-exponentiations-and-
product calculations are a larger part of the extra bookkeeping work required for
batching. Using Simultaneous Multiple Exponentiation reduces the time
required to perform them by close to 50% by combining the exponentiation
process.

Yet another embodiment involves Node Reordering. Normally there are
two factors that determine performance for a particular batch of keys. First,
smaller encryption exponents are better. The number of multiplications
required for evaluating a small exponentiation is proportional to the number of
bits in the exponent. Since upward and downward percolation both use O(b)
small exponentiations; increasing the value of e =[]e; can have a drastic effect
on the efficiency of batching.

Second, some exponents work well together. In particular, the number
of multiplications required for a Simultaneous Multiple Exponentiation is
proportional to the number of bits in the larger of the two exponents. If batch
trees are built that have balanced exponents for muitiple exponentiation (E;, and
Ep, then X7, and Xp, at each inner node), the multi-exponentiation phases can be
streamlined.

With b = 4, optimal reordering is fairly simple. Given public exponents

e, <e, <e, <e,,the arrangement e, —e, —e, —e, minimizes the disparity
between the exponents used in Simultaneous Multiple Exponentiation in both
upward and downward percolation. Rearranging is harder for b > 4.

Figure 2 is an embodiment of a system 200 for improving secure

communications. The system includes multiple client computers 232, 234, 236,

-12-
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238 and 240 which are coupled to a server system 210 through a network 230.
The network 230 can be any network, such as a local area network, a wide area
network, or the Internet. Coupled among the server system 210 and the network
230 is a decryption server. While illustrated as a separate entity in Figure 2, the
decryption server can be located independent of the server system or in the
environment or among any number of server sites 212, 214 and 216. The client
computers each include one or more processors and one or more storage
devices. Each of the client computers also includes a display device, and one or
more input devices. All of the storage devices store various data and software
programs. In one embodiment, the method for improving secure
communications is carried out on the system 200 by software instructions
executing on one or more of the client computers 232 - 240. The software
instructions may be stored on the server system 210 any one of the server sites
212 - 216 or on any one of the client computers 232 - 240. For example, one
embodiment presents a hosted application where an enterprise requires secure
communications with the server. The software instructions to enable the
communication are stored on the server and accessed through the network by a
client computer operator of the enterprise. In other embodiments, the software
instructions may be stored and executed on the client computer. A user of the
client computer with the help of a user interface can enter data required for the
execution of the software instructions. Data required for the execution of the
soﬂ§vare instructions can also be accessed via the network and can be stored
anywhere on the network.

Building the batch RSA algorithm into real-world systems presents a
number of architectural challenges. Batching, by its very nature, requires an
aggregation of requests. Unfortunately, commonly-deployed protocols and
programs are not designed with RSA aggregation in mind. The solution in one
embodiment is to create a batching server process that provides its clients with a
decryption oracle, abstracting away the details of the batching procedure.

With this approach modifications to the existing servers are minimized.
Moreover, it is possible to simplify the architecture of the batch server itself by
freeing it from the vagaries of the SSL protocol. An example of the resulting

-13-
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web server design is shown in Figure 3. Note that in batching the web server
manages multiple certificates, i.e., multiple public keys, all sharing a common
modulus N 310.

One embodiment for managing multiple certificates is the two-tier
model. For a protocol that calls for public-key decryption, the presence of a
batch-decryption server 320 induces a two-tier model. First is the batch server
process that aggregates and performs RSA decryptions. Next are client
processes that send decryption requests to the batch server. These client
processes implement the higher-level application protocol (e.g., SSL) and
interact with end-user agents (e.g., browsers).

Hiding the workings of the decryption server from its clients means that
adding support for batch RSA decryption to existing servers engenders the same
changes as adding support for hardware-accelerated decryption. The only
additional challenge is in assigning the different public keys to the end-users
such that there are roughly equal numbers of decryption requests with each e;.
As the end-user response times are highly unpredictable, there is a limit to the
ﬂexibility that may be employed in the public key distribution.

If there are k keys each with a corresponding certificate, it is possible to
create a web with ck web server processes with a particular key assigned to
each. This approach provides that individual server processes need not be
aware of the existence of multiple keys. The correct value for ¢ depends on
factors such as, but not limited to, the load on the site, the rate at which the
batch server can perform decryption, and the latency of the communication with
the clients.

Another embodiment accommodates workload unpredictability. The
batch server performs a set of related tasks including receiving requests for
decryption, each of which is encrypted with a particular public exponent e;.
Having received the requests it aggregates these into batches and performs the
batch decryption as described herein. Finally, the server responds to the
requests for decryption with the corresponding plain-text messages. The first
and last of these tasks are relatively simple I/O problems and the decryption

stage is discussed herein. What remains is the scheduling step.
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One embodiment possesses scheduling criteria including maximum
throughput, minimum turnaround time, and minimum turnaround-time variance.
The first two criteria are self-evident and the third is described herein. Lower
turnaround-time variance means the server's behavior is more consistent and
predictable which helps prevent client timeouts. It also tends to prevent
starvation of requests, which is a danger under more exotic scheduling policies.

Under these constraints a batch server's scheduling can implement a
queue where older requests are handled first. At each step the server seeks the
batch that allows it to service the oldest outstanding requests. It is impossible to
compute a batch that includes more than one request encrypted with any
particular public exponent e;, This immediately leads to the central realization
about batch scheduling that it makes no sense, in a batch, to service a request
that is not the oldest for a particular e;, However, substituting the oldest request
for a key into the batch improves the overall turnaround-time variance and
makes the batch server better approximate a perfect queue.

Therefore, in choosing a batch, this embodiment needs only consider the
oldest pending request for each ¢;. To facilitate this, the batch server keeps £
queues O;, or one for each key. When a request arrives, it is placed onto the
queue that corresponds to the key with which it was encrypted. This process
takes O(1) time. In choosing a batch, the server examines only the heads of
each of the queues.

Suppose that there are k keys, with public exponents ey, . . ., e, and that
the server decrypts requests in batches of b messages each. The correct requests
to batch are the b oldest requests from amongst the £ queue heads. If the
request queues Q; are kept in a heap with priority determined by the age of the
request at the queue head, then batch selection can be accomplished by
extracting the maximum, oldest-head, queue from the heap, de-queue the
request at its head, and repeat the process to obtain b requests to batch. After
the batch has been selected, the b queues from which requests were taken may
be replaced in the heap. The entire process takes O(b1gk) time.

Another embodiment utilizes multi-batch scheduling. While the process

described above picks only a single batch, it is possible, in some cases, to
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choose several batches at once. For example, with b = 2, k= 3, and requests for
the keys 3-3~5-7 in the queues, the one-step lookahead may choose to do a 5-7
batch first, after which only the unbatchable 3-3 remain. A smarter server
could choose to do 3—5 and 3—7 instead. The algorithms for doing lookahead
are more complicated than the single-batch algorithms. Additionally, since they
take into account factors other than request age, they can worsen turnaround-
time variance or lead to request starvation.

A more fundamental objection to multi-batch lookahead is that
performing a batch decryption takes a significant amount of time. Accordingly,
if the batch server is under load, additional requests will arrive by the time the
first chosen batch has been completed. These can make a better batch available
than was without the new requests.

But servers are not always under maximal load. Server design must take
different load conditions into account. One embodiment reduces latency in a
medium-load environment by using £ public keys on the web server and
allowing batching of any subset of b of them, for some b < k. To accomplish
this the batches must be pre-constructed and the constants associated with (’,f)
batch trees must be keep in memory one for each set of e's.

However, it is no longer necessary to wait for exactly one request with
each e before a batch is possible. For k keys batched b at a time, the expected
number of requests required to give a batch is
2 1

E[# ts]= k- .
[# requests] ; P

This equation assumes each incoming request uses one of the k keys
randomly and independently. With b =4, moving from k=4 to k= 6 drops the
expected length of the request queue at which a batch is available by more than
31%, from 8.33 to 5.70.

The particular relationship of b and & can be tuned for a particular
server. The batch-selection algorithm described herein is time-performance
logarithmic in %, so the limiting factor on k is the size of the Em prime, since

particularly large values of e degrade the performance of batching.
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In low-load situations, requests trickle in slowly, and waiting for a batch
to be available can introduce unacceptable latency. A batch server should have
some way of falling back on unbatched RSA decryption, and, conversely, if a
batch is available and batching is a better use of processor time than unbatched
RSA, the servers should be able to exploit these advantages. So, by the
considerations given above, the batch server should perform only a single
unbatched decryption, then look for new batching opportunities.

Scheduling the unbatched decryptions introduces some complications.
Previous techniques in the prior art provide algorithms that when requests
arrive, a batch is accomplished if possible, otherwise a single unbatched
decryption is done. This type of protocol leads to undesirable real-world
behavior. The batch server tends to exhaust its queue quickly. Furthermore it
responds immediately to each new request and never accumulates enough
requests to batch.

One embodiment chooses a different approach that does not exhibit the
performance degradation associated with the prior art. The server waits for new
requests to arrive, with a timeout. When new requests arrive, it adds them to its
queues. If a batch is available, it evaluates it. The server falls back on
unbatched RSA decryptions only when the request-wait times out. This
approach increases the server's turnaround-time under light load, but scales
gracefully in heavy use. The timeout value is tunable.

Since modular exponentiation is asymptotically more expensive than the
other operations involved in batching, the gain from batching approaches a
factor-of-b improvement only when the key size is improbably large. With
1024-bit RSA keys the overhead is relatively high and a naive implementation
is slower than unbatched RSA. The improvements described herein lower the
overhead and improve performance with small batches and standard key-sizes.

Batching provides a sizeable improvement over plain RSA with b =8
and n = 2048. More important, even with standard 1024-bit keys, batching
significantly improves performance. With b =4, RSA decryption is accelerated
by a factor of 2.6; with b = 8, by a factor of almost 3.5. These improvements

can be leveraged to improve SSL handshake performance.
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At small key sizes, for example n = 512, an increase in batch size
beyond 5 = 4 provides only a modest improvement in RSA performance.
Because of the increased latency that large batch sizes impose on SSL
handshakes, especially when the web server is not under high load, large batch
sizes are of limited utility for real-world deployment.

SSL handshake performance improvements using batching can be
demonstrated by writing a simple web server that responds to SSL handshake
reqﬁests and simple HTTP requests. The server uses the batching architecture
described herein. The web server is a pre-forked server, relying on "thundering
herd" behavior for scheduling. All pre-forked server processes contact an
additional batching server process for all RSA decryptions as described herein.

Batching increases handshake throughput by a factor of 2.0 to 2.5,
depending on the batch size. At better than 200 handshakes per second, the
batching web server is competitive with hardware-accelerated SSL web servers,
without the need for the expensive hardware.

Figure 4 is a flow diagram for improving secure socket layer
communication through batching of an embodiment. As in a typical initial
handshake between server and client in establishing a secure connection, the
client uses the server's public key to encrypt a random string R and then sends
the encrypted R to the server 420. The message is then cached 425 and the
batching process begins by determining is there is sufficient encrypted messages
coming into the server to form a batch 430. If the answer to that query is no, it
is determined if the scheduling algorithm has timed out 440. Again if the
answer is no the message returns to be held with other cached messages until a
batch has been formed or the scheduler has timed out. If the scheduler has
timed out 440 then the web server receives the encrypted message from the
client containing R 442. The server then employs the private key of the public /
private RSA key pair to decrypt the message and determine R 446. With R
determined the client and the server use R to secure further communication 485
and establish an encrypted session 490.

Should enough encrypted messages be available to create a batch 430
the method examines the possibility of scheduling multiple batches 450. With
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the scheduling complete the exponents of the private key are balanced, 455, and
the e root of the combined messages is extracted 458 allowing a common root
to be determined and utilized 460. The embodiment continues by reducing the
number of inversions by conducting delayed division 462 and batched division
468. With the divisions completed, separate parallel batch trees are formed to
determine the final inversions that are then combined 470. At this point
simultaneous multiple exponents are applied to decrypt the messages 472 which
are separated 476 and sent to the server in clear text 480. With the server and
client both possessing the session key R 485 a encrypted session can be
established 490.

Batching increases the efficiency and reduces the cost of decrypting the
cipher-text message containing the session's common key. By combining the
decryption of several messages in an optimized and time éaving manner the
server is capable of processing more messages thus increasing bandwidth and
improving the over all effectiveness of the network. While the batching
techniques described previously are a dramatic improvement in secure socket
layer communication, other techniques can also be employed to improve the
handshake protocol.

Another embodiment for the improvement to the handshake protocol
focuses on how the web server generates its RSA key and how it obtains a
certificate for its public key. By altering how the browser uses the server's
public key to encrypt a plain-text R, and how the web server uses its private key
to decrypt the resulting cipher-text C, this embodiment provides significant
improvements to SSL communications.

In one embodiment a server generates an RSA public/private key pair by
generating two distinct n-bit primes p and ¢ and computing N = pq. While N
can be of any arbitrary size, assume for simplicity that N is 1024 bits long and
letw =gcd(p - 1, g - 1) where ged is the greatest common divisor. The server
then picks two random %-bit values ry, r; such that ged(r, p — 1) = 1, ged(r2, g —
1)=1, and r; = r, mod w. Typically £ falls in the range of 160 -512 bits in size.
Although other larger values are also acceptable, k is minimized to enhance

performance. The server then computes 4 such that d=r; modp —1 and d=r,
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mod g — 1. Having computed d, e'is found by solving the equation e’ = d” mod

@(N) resulting in the public key being (N, ¢') and the private key (r, r9).

The server then sends the public key to a Certificate Authority (CA).
The CA returns a public key certificate for this public key even though ¢’ is very
large, namely on the order of N. This is unlike standard RSA public key
certificates that use a small value of ¢, e.g. e = 65537. Consequently, the CA
must be willing to generate certificates for such keys.

To find d the Chinese Remainder Theorem is typically used.
Unfortunately, p — 1 and g — 1 are not relatively prime (they are both even) and
consequently the theorem does not apply. However, by letting w = ged(p -1, ¢

. -1 -1 . .
— 1), knowing that P ond 472 are relatively prime, and recalling that r; =
w w

r, = amod w, the CRT caﬁ be used to find an element d’ such that

d= n-a (modp_l)
w w

d = 274 (modq—lJ

w w

Observing that the required d is simply d =w - d' + a and indeed,
d=rimodp—1and d=r,mod g — 1, if w is large, the requirement that
r1 = r, mod w reduces the entropy of the private key. For this reason it is
desirable to ensure that w is small and one embodiment lets w = 2, or namely
that ged(p — 1, g — 1) = 2. Recall that ged(r;, p—1) =1 and ged(r2, g —1)=1.
It follows that ged(d, p— 1) =1 and ged(d, g — 1) = 1 and consequently
ged(d, (p — 1)(g — 1)) = 1. Hence, d is invertible modulo ¢(N) = (p — 1)(g — 1).

The web browser obtains the server's public key certificate from the
server-hello message. In this embodiment, the certificate contains the server's
public key (N, e). The web browser encrypts the pre-master-secret R using this
public key in exactly the same way it encrypts using a normal RSA key. Hence,
there is no need to modify any of the browser's software. The only issue is that
since e’ is much larger than e in a normal RSA key, the browser must be willing
to accept such public keys.

When the web server receives the cipher-text C from the web browser

the web server then uses the server's private key, (7, 72), to decrypt C. To
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accomplish this the server computes R{ =C"t mod p and R/, = C* modg.
Using CRT the server then computes an R € Zy such that R = R{ mod p and
R = R, mod g, noting that R = C* mod N. Hence, the resulting R is a proper
decryption of C.

Decryption using a standard RSA public key is completed with C? mod
N using the CRT. Typically R; = C“™ =D mod p and R, = C¢™49—D 04
q is first computed and then the CRT is applied to Ry, R; to obtain R mod N.
Note that the exponents d mod p — 1 and d mod ¢ — 1 are typically as large as
p and g, namely 512 bits each. Hence, to generate the signature the server must
compute one exponentiation modulo p and one exponentiation modulo g. When
N is 1024 bits, the server does two full exponentiations modulo 512-bit
numbers.

In one embodiment, the server computes R, R5 and then applies CRT

to Rj,R5. Asinnormal RSA, the bulk of the work is in computing Ry, Rj.

However, computing R; requires raising C to the power of 7, which minimized.
Since the time that modular exponentiation takes is linear in time to the size of
the exponent, computing R; takes approximately one third the work and one
third of the time of raising C to the power of a 512 bit exponent. Hence,
computing R; takes one third the work of computing R;. Therefore, during the
entire decryption process the server does approximately one third the work as in
a normal SSL handshake.

To illustrate the implementation of this embodiment suppose Eve is an
eavesdropper that listens on the network while the handshake protocol is taking
place. Eve sees the server's public key (N, ') and the encrypted pre-master-

secret C. Suppose 7 <7;. It can be shown that an adversary who has (N, ¢', C)

can mount an attack on the system that runs in time O(\/Z log 1y )

Let (N, e’)be an RSA public key with N = pg and let d € Z'be the
corresponding RSA private key satisfying d = r;, mod p—1and d =r; mod g —

1 with r; <, Ifr; is m bits long and it is assumed that r; # r; mod 2772 then

given (N, ¢’) an adversary can expose the private key d in time O(\/;'l_ logr, )
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One skilled in the art knows that ¢’ = (;)” mod (p - 1). But, suppose 7 is m-
bits long. If7; =4 - 2™2 + B where 4, B are in [0, 2™21 and a random g € Zy is
selected combined with the definition

2//1/ 2

o5,

i=0
then if follows that G(g* %) = 0 mod p. This occurs since one of the products

above is

1ami2, ‘. !
(g” A-g"’B—g)‘:g”‘ ~g=0 (modp).

Since 71 # > mod 22, it can be shown that G(g° ) # 0 mod ¢. Hence, ged (N,
G(g° " ®)) gives a non-trivial factor of N. Hence, if G(x) mod N is evaluated at x
=g"/forj=0,...,2" at least one of the values will expose the factorization
of N. Evaluating a polynomial of degree 2™ at 22 values can be done in time

2" . m/2 using Fast Fourier Transform methods. This algorithm requires

5(2 m! 2) space. Hence, in time at most O(\/E logn ) we can factor N. Thus in
order to obtain security of 280, both 7, and r, must be at least 160 bits long.
Figure 5 is a flow diagram for improving secure socket layer
communications of an embodiment by altering the public / private key pair. In
operation, the server generates an RSA public / private key pair initiating a
normal initial handshake protocol 510. At this point the server generates two
distinct prime numbers 515 and takes the product of the numbers to produce the
N component of the public key 520. Similarly, the server picks two random
values to create the private key 525. Using the prime numbers 515 and the
random values of the private key 525, the server computes the value d 530 and
cotrespondingly the value e! 535. The result is a new public / private key pair
540 that the client uses to encrypt the pre-master-secret R 550. Once R has
been encrypted with the new public key and transmitted to the server as cipher-
text C, the server uses it private key to decrypt the pre-master-secret 560. Once
R; and R; have been determined 565 they are combined to find R 570. Having
the value of the pre-master-secret intact, the server and client can establish a

secure session 580.
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A further embodiment dealing with the handshake protocol reduces the
work per connection on the web server by a factor of two. This embodiment
works with all existing browsers. As before, the embodiment is illustrated by
describing how the web server generates its RSA key and obtains a certificate
for its public key. This embodiment continues in describing how the browser
uses the server's public key to encrypt a plain-text R, and the server uses its
private key to decrypt the resulting cipher-text C.

In this embodiment the server generates an RSA public/private key pair
by generating two distinct #-bit primes p and g such that the size of each distinct
prime number is on the order of one third of the size of N. Using this
relationship the server computes N’ as N =p2 -q. The relationship between the
prime numbers and N is dependent on the power by which one of the prime
number is raised. For example if one of the prime numbers was raised to the
fourth power the prime numbers would be on the order of one fifth the size of
N. The exponent of at least one of the prime numbers must be greater than one.
While clearly N’ can be of arbitrary size, assume for simplicity that A7 is 1024
bits long, and hence p and g are 341 bits each. The server uses the same e used
in standard RSA public keys, namely e = 65537 as long as ged(e, (p~1) (g -
1)) = 1. The server then computes d = emod (p-1)(g—-1)aswellasr=d
mod p — 1 and 7, = d mod g — 1. With the public key being (N, ) and the
private key being (), r2), the server sends the public key, (N, e), to a Certificate
Authority (CA) and the CA returns a public key certificate. The public key in
this case cannot be distinguished from a standard RSA public key.

The web browser obtains the server's public key certificate from the
server-hello message. The certificate contains the server's public key (N, ¢).
The web browser encrypts the pre-master-secret R using this public key in
exactly the same way it encrypts using a normal RSA key.

When the web server receives the cipher-text C from the web browser
the web server decrypts C by computing R{ =C" mod p and R =C" modgq.
Note that (R!)° = Cmodp and (®, )e =Cmod q. Lifting the server constructs

an R} suchthat (R!)° =Cmodp?. More precisely, the server computes
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R}y -C
R{=R;—~2—— |modp?).
1 1 e- (R ; )e—l ( p )
Using CRT, the server computes an R € Zy such that R = R} mod p? and
R = R} mod g noting that R = C* mod N. Hence, the resulting R is a proper

decryption of C. Recall that when N is 1024 bits, the server does two full

exponentiations modulo 512-bit numbers.

In this embodiment the server computes R{, Rj, R{ and then applies
CRT to Ry, Rj5. The bulk of the work is in computing Rj, RS, R{ but
computing R{ requires a full exponentiation modulo a 341-bit prime rather than
a 512-bit prime. The same holds for R). Hence in this embodiment,
computing Rj, R takes approximately half the time of computing R, R».
Furthermore, computing R{ from R only requires a modular inversion modulo
p*. This takes little time when compared with the exponentiations for
computing R;, R5. Hence, using this embodiment the handshake takes
approximately half the work of a normal handshake on the server.

Some accelerator cards do not provide support for modular inversion.

As a result, the inversion is preformed using an exponentiation. This is done by
observing that for any x Z:, the inverse of x is given by:

x! = x?'et (modpz).
Unfortunately, using an exponentiation to do the inversion hurts performance.

As discussed herein a better embodiment for inversion in this case is batching.
One can invert two numbers x,,x, € Z; as a batch faster than inverting the two
numbers separately. To do so use the fact that

xil=x, (epx,)! and x7' =x,-(x,x,)” (modpz).
Hence, at the cost of inverting x; - x; it is possible to invert both x; and x,. This
embodiment shows that an inversion of £ elements x,,...,x, € Z ; is at the cost

of one inversion and k log, k multiplications. Thus, the amortized cost of a

single inversion is I/k of an exponentiation plus log, k£ multiplications.
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To take advantage of batched inversion in the SSL handshake a number
of instances of the handshake protocol are collected from among different users

and the inversion is preformed on all handshakes as a batch. As a result, the
amortized total number of exponentiations per handshake is 2 +% . This

approximately gives a factor of two improvement in the handshake work on the
server as compared to the normal handshake protocol.

The security of the improved handshake protocol depends on the
difficulty of factoring integers of the form N=p*- g. When 1024 bit keys are
used the fastest factoring algorithms (i.e. the number field sieve) cannot take
advantage of the special structure of N. Similarly, p and g are well beyond the
capabilities of the Elliptic Curve Method (ECM).

Figure 6 is a flow diagram for modifying the public key of an
embodiment to facilitate an improvement in secure socket layer communication.
As in other embodiments, the process begins with the servers generation of a
RSA public / private key pair 610. In this embodiment, the public key is
modified. The web server generates two distinct prime numbers 612 and
computes a new N' 618. Using the same exponent 620 the server computes the
value d 622 which it uses to find the private key 628. The result is a pubic /
private key combination 630 that the sever then sends to the client for the
encryption of the pre-master-secret 640. Once the server receives the encrypted
pre-master-secret, R, from the client 650 the server decrypts R 660 by
computing R1 662 and R2 668 and combining the results 670. Once R has been
determined the client can establish a secure session with the client using the
new session key 680.

From the above description and drawings, it will be understood by those
of ordinary skill in the art that the particular embodiments shown and described
are for purposes of illustration only and are not intended to limit the scope of

the claimed invention.
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CLAIMS

‘What is claimed is:

1. A method for secure communications in a computer network,
comprising;

combining individually encrypted network security protection
handshake messages into a set of encrypted messages wherein each encrypted
handshake message is derived using a public key containing an encryption
exponent;

determining a root node of a binary tree comprising leaf nodes
corresponding to each encryption exponent;

calculating a product of the encrypted messages;

extracting at least one root from the product of the encrypted messages;
and

decrypting the encrypted messages by expressing the at least one root as
at least one promise and evaluating the at least one promise at the leaf nodes
decreasing the number of modular inversions wherein efficiency of the

decryption is increased.

2. The method of claim 1, wherein the secure communications

include secure socket layer ("SSL") messages.

3. The method of claim 1, wherein the secure communications

include transport layer security ("TLS") messages.

4, The method of claim 1, wherein the secure communications

include internet protocol secure ("IPSec") techniques.

5. The method of claim 1, wherein evaluating the at least one

promise includes multiplying an inversion of a total product of the leaf nodes
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with a partial product of the leaf nodes to produce the inversion of an individual

leaf node.

6. The method of claim 1, further comprising minimizing the

disparity among the sizes of the encryption exponents of the public keys within

the set.

. The method of claim 1, wherein determining includes using a
plurality of separate, parallel batch trees finding the root node of each tree and

combining the final answers.

8. The method of claim 1, wherein decrypting includes
simultaneous multiple exponentiation such that the encryption exponents are

combined to reduce the number of exponentiations.

9. A method for improving secure communications in a computer
network comprising;

combining individually encrypted network security protection
handshake messages into a set of encrypted messages wherein each encrypted
handshake message is derived using a public key containing an encryption
exponent;

determining a root node of a binary tree comprising leaf nodes
corresponding to the encryption exponent of each encrypted message;

calculating a product of the encrypted messages;

extracting at least one root from the product of the encrypted messages;
and

decrypting the encrypted messages by evaluating at least one individual
leaf node by multiplying an inversion of the total product of leaf nodes with a
partial product of the leaf nodes to produce an inversion of the at least one

individual leaf node wherein efficiency of the decryption is increased.
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10.  The method of claim 9, wherein the network security protection

handshake messages include secure socket layer ("SSL") messages.

11.  The method of claim 9, wherein the network security protection

messages include transport layer security ("TLS") messages.

12.  The method of claim 9, wherein the network security protection

messages include internet protocol secure ("IPSec") messages.

13.  The method of claim 9, further comprising minimiiing the
disparity among the sizes of the encryption exponents of theﬂpublic keys within

the set.

14.  The method of claim 9, wherein determining includes using a
plurality of separate, parallel batch trees finding the root node of each tree and

combining the answers.

15.  The method of claim 9, wherein decrypting includes
simultaneous multiple exponentiation such that the encryption exponents are

combined to reduce the number of exponentiations.

16.  The method of claim 9, wherein decrypting includes expressing
the at least one root as at least one promise and evaluation the at least one

promise at the leaf nodes decreasing the number of modular inversions.

17. A method for secure communications in a computer network,
comprising;

combining individually encrypted network security protection
handshake messages into a set of encrypted messages wherein each encrypted
handshake message is derived using a public key containing an encryption
exponent;

determining a root node of a binary tree comprising leaf nodes
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corresponding to the encryption exponent of each encrypted message;

calculating a product of the encrypted messages;

extracting at least one root from the product of the encrypted messages;
and

decrypting the encrypted messages by minimizing the disparity between
the sizes of the encryption exponents of the public keys, wherein efficiency of

the secure communications is increased.

18.  The method of claim 17, wherein combining includes secure

socket layer ("SSL") messages.

19.  The method of claim 17, wherein combining includes transport

layer security ("TLS") messages.

20.  The method of claim 17, wherein combining includes internet

protocol secure ("IPSec") messages.

21.  The method of claim 17, wherein determining uses a plurality of
separate, parallel batch trees finding the root node of each tree and combining

the final answers.

22.  The method of claim 17, wherein decrypting includes
simultaneous multiple exponentiation such that the encryption exponents are

combined to reduce the number of exponentiations.

23.  The method of claim 17, wherein decrypting includes expressing
the at least one root as at least one promise and evaluating the at least one
promise at the leaf nodes decreasing the number of modular inversion.

24.  The method of claim 17, wherein decrypting includes evaluating

at least one individual leaf node by multiplying an inversion of the total product

29.
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of leaf nodes with a partial product of the leaf nodes to produce an inversion of

the at least one individual leaf node.

25. A method for improving secure communications in a computer
network, comprising;

combining individually encrypted network security protection
handshake into a set of encrypted messages wherein each encrypted handshake
message is derived using a public key containing an encryption exponent;

determining a root node of a binary tree comprising leaf nodes
corresponding to each encryption exponent by using a plurality of separate
parallel batch trees finding the root node of each tree and combining the final
answers;

calculating a product of the encrypted messages;

extracting at least one root from the product of the encrypted messages;
and

decrypting the encrypted messages by expressing the at least one root as
at least one promise and evaluating the at least one promise at the leaf nodes
producing a reduced number of modular inversions wherein efficiency of

establishing secure communications is increased.

26.  The method of claim 25, wherein combining includes secure

socket layer ("SSL") messages.

27.  The method of claim 25, wherein combining includes transport

layer security ("TLS") messages.

28.  The method of claim 25, wherein combining includes internet

protocol secure ("IPSec") messages.

29.  The method of claim 25, wherein decrypting includes
simultaneous multiple exponentiation such that the encryption exponents are

combined to reduce the number of exponentiations.
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30.  The method of claim 25, wherein evaluating the at least one
promise includes multiplying an inversion of a total product of the leaf nodes
with a partial product of the leaf nodes to produce the inversion of an individual

leaf node.

31.  The method of claim 25, further comprising minimizing the
disparity among the sizes of the encryption exponents of the public keys within
the set. '

32. A method for secure communications in a computer network,
comprising;

combining individually encrypted network security protection messages
into a set of encrypted messages, wherein each encrypted handshake message is
derived using a public key containing an encryption exponent;

determining a root node of a binary tree comprising leaf nodes
corresponding to each encrypted messages encryption exponent;

calculating a product of the encrypted messages;

minimizing the disparity among the sizes of the encryption exponents of
the public keys within the set;

extracting at least one root from the product of the encrypted messages;
and

decrypting the encrypted messages by evaluating the at least one leaf
node by multiplying an inversion of a total product of the leaf nodes with a
partial product of the leaf nodes to produce the inversion of the at least one leaf
node wherein efficiency of establishing secure network communications is

increased.

33.  The method of claim 32, wherein combining includes secure

socket layer ("SSL") messages.
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34.  The method of claim 32, wherein combining includes transport

layer security ("TLS") messages.

35.  The method of claim 32, wherein combining includes internet

protocol secure ("IPSec") messages.

36. A method for secure communications in a computer network,
comprising:

coupling a client to a web server;

sending a client hello message to the web server;

generating a public / private key pair at the web server, wherein the
public key contains an encryption exponent;

responding to the client with a server hello message comprising the
public key;

encrypting a random handshake message at the client using the public
key;

sending the encrypted handshake message to a batch-decryption server;

batching handshake messages on a batch-decryption server according to
the public key such that the disparity between the sizes of the encryption
exponents of the public key is minimized;

separating the batch's eMrootina downward-percolation phase into
constituent decrypted messages, wherein internal inversions are converted to
modular divisions increasing efficiency by producing a reduced number of
modular inversions;

scheduling the batch-decryption server based on server-load
considerations;

decrypting the handshake messages using at least one alternate
expression of at least on arithmetic function of at least one batch's M root; and

sending the decrypted message to the web server.

37.  The method of claim 36, wherein batching handshake messages

includes Secure Socket Layer ("SSL") messages.
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38.  The method of claim 36, wherein combining includes transport

layer security ("TLS") messages.

39.  The method of claim 36, wherein combining includes internet

protocol secure ("IPSec") messages.

40.  The method of claim 36, wherein batching further comprises an
upward-percolation phase that combines individual encrypted messages to form
a value, v wherein v is the product of the individual encrypted messages raised
to the power of e/e;, e being the product of all individual encryption exponents

€.

41.  The method of claim 36, wherein the value v is determined by

e/e,-

the equation v=| | L;v;" " , where e is the product of individual

exponentiation exponents, v; is the individual encrypted message, e; is the
individual public key, and & is the number of encrypted messages in a particular
batch.

42.  The method of claim 36, wherein batching further comprises an
exponentiation phase that includes the extraction of an e™ root from the value,

V.
43.  The method of claim 36, wherein exponentiation further includes
simultaneous multiple exponentiation such that the encryption exponents are

combined to reduce the number of exponentiations.

44,  The method of claim 36, wherein exponentiation includes

combining a plurality of inversions to form a single modular inversion.
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45.  The method of claim 36, wherein decrypting includes reducing
each encrypted batch message into a separate moduli, using separate parallel

batch trees to determine the moduli, and combining the final answers

46. A method for batch decryption in a computer network
comprising:

combining a plurality of encrypted messages into a plurality of batches,
wherein each encrypted message includes a public / private key pair, each
public key comprising an encryption exponent;

scheduling the batches of encrypted messages using a plurality of
criteria selected from a group including maximum throughput, minimum
turnaround-time, minimum turnaround-time variance, and server load
considerations, wherein the efficiency of establishing secure communications is
enhanced; and

replacing at least one inversion of at least one batch decryption
operation with a single inversion and a plurality of multiplication operations,

wherein the speed of the decryption is significantly improved.

47.  The method of claim 46, wherein combining a plurality of

encrypted messages includes secure socket layer ("SSL") messages.

48.  The method of claim 46, wherein combining a plurality of

encrypted messages includes transport layer security ("TLS") messages.

49.  The method of claim 46, wherein combining includes internet

protocol secure ("IPSec") messages.

50.  The method of claim 46, further comprising using separate,

parallel batch trees and combining the results.

51.  The method of claim 46, wherein combining includes selecting

the encrypted messages for the batches by balancing the encryption exponent.
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52. A method for secure communications in a computer network,
comprising;

combining individually encrypted network security protection
handshake messages into a set of encrypted handshake messages wherein each
encrypted message is derived using a public key comprising an encryption
exponent;

determining a root node of a binary tree containing leaf nodes
corresponding to each encrypted message encryption exponent by using a
plurality of separate parallel batch trees finding the root node of each tree and
combining the final answers;

minimizing the disparity between the sizes of the encryption exponents
of the public keys within the set;

using simultaneous multiple exponentiation such that the encryption
exponents are combined to reduce the number of exponentiations;

calculating a product of the encrypted messages;

extracting at least one root from the product of the encrypted messages;
and

decrypting the encrypted messages by expressing the at least one root as
at least one promise and evaluating the at least one promise at the leaf nodes,
and multiplying an inversion of a total product of the leaf nodes with a partial
product of the leaf nodes decreasing the number of modular inversions by
producing an inversion of the leaf node wherein efficiency of secure

communications is increased.

53.  The method of claim 52, wherein combining encrypted network
security protection handshake messages includes secure socket layer ("SSL")

messages.

54.  The method of claim 52, wherein combining encrypted network
security protection handshake messages includes transport layer security

("TLS") messages.
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55.  The method of claim 52, wherein combining encrypted network
security protection handshake messages includes internet protocol secure

("IPSec") messages.

56. A method for performing batch decryption in a computer
network, comprising:

receiving a plurality of encrypted messages generated using a plurality
of public keys, wherein the plurality of public keys share a common modulus;

forming a binary tree using leaf nodes corresponding to the plurality of
public keys; |

placing each of the plurality of encrypted messages in a leaf node having
a corresponding public key;

percolating the plurality of encrypted messages up the binary tree to
form a root node including a prodﬁct of the encrypted messages, extracting at
least one root from the product of the encrypted messages by forming an
exponentiation product in the root node;

expressing the at least one root using at least one promise that includes
at least one alternative representation of at least one arithmetic function of the at
least one root;

percolating the at least one root down the binary tree using the at least
one promise; and

decrypting the plurality of encrypted messages by evaluating the at least
one promise at the leaf nodes, wherein efficiency of the decryption is increased

by reducing a number of modular inversions and a number of root extractions.

57.  The method of claim 56, wherein receiving a plurality of

encrypted messages includes secure socket layer ("SSL") messages.

58.  The method of claim 56, wherein receiving a plurality of

encrypted messages includes transport layer security ("TLS") messages.
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59.  The method of claim 56, wherein receiving a plurality of

encrypted messages includes internet protocol secure ("IPSec") messages.

60.  The method of claim 56, wherein evaluating the at least one
promise uses batched division to calculate a plurality of inverses for the
plurality of leaf nodes using a single modular inversion, wherein the single
modular inversion is multiplied with a partial product at each leaf node to

produce a corresponding inverse for the leaf node

61.  The method of claim 56, further comprising:
reducing each of the plurality of encrypted messages modulo p and q;
generating two parallel batch trees modulo p and g; and

batching in each of the two parallel batch trees modulo p and q.

62.  The method of claim 56 , wherein the percolating includes

balanced exponents.

63.  The method of claim 56, wherein the percolating includes

simultaneous multiple exponentiation.

64. A method for secure communications in a computer network,
comprising:

generating a Rivest-Shamir-Adleman ("RSA") public / private key pair
at a web server;

coupling a client to the web server;

sending a client hello message to the web server requesting the
establishment of a Secure Socket Layer ("SSL");

responding to the client with a server hello messa,;ge containing the RSA
public key;

encrypting a random string R, the pre-master secret at the client, using
the RSA public key, wherein the resulting cipher-text, C, contains R;

sending the encrypted cipher-text message, C, to the web server;
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combining individually encrypted secure socket layer ("SSL") encrypted
cipher-text messages to form a batch;

decrypting the batch of cipher-text, C, messages at the web server using
the RSA private keys to determine R, wherein the efficiency of the decryption is
enhanced by replacing at least one inversion with at least one multiplication;
and

establishing a common session key between the web server and the

client using R.

65.  The method of claim 64, wherein decrypting includes using at
least one alternative representation of at least one arithmetic function to reduce

to the number of inversions.

66. A system for secure communications in a computer network
comprising:

at least one client processor;

at least one web server; and

‘ at least one batch server coupled among the at least one client processor

and the at least one web server, wherein the at least one batch server receives
requests for decryption of a plurality of individually encrypted network secure
protection handshake messages, aggregates the plurality of individually
encrypted handshake messages into at least one batch wherein each encrypted
message is derived by using an encryption exponent from an Rivest-Shamir-
Adleman ("RSA") public / private key pair, forms a binary tree containing leaf
nodes corresponding to each encryption exponent, extracts at least one root
from a product of the encrypted messages, decrypts the encrypted messages by
expressing the at least one root as at least one promise and evaluating the at '
least one promise at the leaf nodes, and multiplies an inversion of a total
product of the leaf nodes with a partial product of the leaf nodes producing an
inversion of the leaf node decreasing the number of modular inversions, and

responds to the requests for decryption with corresponding plain-text.
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67.  The system of claim 66, wherein the individually encrypted
network secure protection handshake messages includes secure socket layer

("SSL") messages.

68.  The system of claim 66, wherein the individually encrypted
network secure protection handshake messages includes transport layer security

("TLS") messages.

69.  The method of claim 66, wherein the individually encrypted
network secure protection handshake messages includes internet protocol secure

("IPSec") messages.

70. The system of claim 66, wherein the batch server aggregates the
plurality of encrypted messages base on criteria including maximum

throughput, minimum turnaround time, and minimum turnaround time variance.

71. A system for secure communications in a computer network,
comprising at least one client processor coupled among at least one web server,
wherein the web server receives requests for decryption of a plurality of
individually encrypted network security protection handshake messages,
aggregates the plurality of individually encrypted handshake messages into at
least one baich wherein each encrypted message is derived using an encryption
exponent from an Rivest-Shamir-Adleman ("RSA") public / private key pair,
forms a binary tree containing leaf nodes corresponding to each encryption
exponent, extracts at least one root from a product of the encrypted messages,
decrypts the encrypted messages by expressing the at least one root as at least
one promise and evaluating the at least one promise at the leaf nodes, and
multiplies an inversion of a total product of the leaf nodes with a partial product
of the leaf nodes producing an inversion of the leaf node decreasing the number
of modular inversions, wherein efficiency of secure communications is

increased.
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72. A system of scheduling batch decryption in a computer network,
comprising:

a plurality of client processors;

at least one web server;

at least one batch server coupled among the at least one web server and
the plurality of client processors using a Rivest-Shamir-Adleman ("RSA")
decryption algorithm, wherein the at least one batch server links the plurality of
client processors to the at least one web server; and

a scheduler, wherein during a timed period the scheduler places arriving
encrypted messages in a queue forming a batch, wherein the encrypted |

messages in the queue are decrypted upon completion of the timed period.

73. A system for secure network communications in a computer
network, comprising at least one batch server coupled among at least one client
processor and at least one web server, wherein the at least one batch server uses
a Rivest-Shamir-Adleman ("RSA") batch algorithm to decrypt an aggregation
of encrypted messages transferred among the at least one client processor and

the at least one web server.

74. A system for secure computer network communications,
comprising at least one client processor and at least one server processor
wherein the server processor combines decryption requests of Secure Socket
Layer ("SSL") messages into at least one batch and decrypts the at least one
batch using a Rivest-Shamir-Adleman ("RSA") batch decryption algorithm.

75. A computer-readable medium, comprising executable
instructions for establishing secure communications in a computer network
which, when executed in a processing system, causes the system to:

combine individually encrypted network security protection handshake
messages into a set of encrypted messages wherein each encrypted handshake
message is derived using a public key comprising an encryption exponent;

determine a root node of a binary tree containing leaf nodes
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corresponding to each encrypted messages encryption exponent by using a
plurality of separate parallel batch trees to find the root node of each tree and
combine the final answers;

minimize the disparity between the sizes of the encryption exponents of
the public keys within the set;

combine the encryption exponents using simultaneous multiple
exponentiation such that the number of exponentiations is reduced;

calculate a product of the encrypted messages;

extract at least one root from the product of the encrypted messages; and

decrypt the encrypted messages by expressing the at least one root as at
least one promise and evaluating the at least one promise at the leaf nodes,
multiplyiﬂg an inversion of a total product of the leaf nodes with a partial
product of the leaf nodes producing an inversion of the leaf node and decreasing
the number of modular inversions, wherein efficiency of establishing secure

communications is increased.

76.  An electromagnetic medium, comprising executable instructions
for establishing secure communications in a computer network which, when
executed in a processing system, causes the system to;

combine individually encrypted secure network handshake messages
into a set of encrypted handshake messages wherein each encrypted handshake
message is derived using a public key comprising an encryption exponent;

determine a root node of a binary tree containing leaf nodes
corresponding to each encrypted messages encryption exponent by using a
plurality of separate parallel batch trees to find the root node of each tree and
combine the final answers;

minimize the disparity between the sizes of the encryption exponents of
the public keys within the set;

combine the encryption exponents using simultaneous multiple
exponentiation such that the number of exponentiations is reduced;

calculate a product of the encrypted messages;

extract at least one root from the product of the encrypted messages; and
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decrypt the encrypted messages by expressing the at least one root as at
least one promise and evaluating the at least one promise at the leaf nodes,
multiplying an inversion of a total product of the leaf nodes with a partial
product of the leaf nodes producing an inversion of the leaf node, and
decreasing the number of modular inversions wherein efficiency of establishing

secure communications is increased.
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