(19) 中华人民共和国国家知识产权局

(12) 发明专利申请

(10) 申请公布号 CN 104515255 A
(43) 申请公布日 2015.04.15

(21) 申请号 201310457740.3
(22) 申请日 2013.09.30

(71) 申请人 郑州科林车用空调有限公司
地址 450000 河南省郑州市高新区长椿路8号

(72) 发明人 陈传强 赵博 桓晓锋 李新

(74) 专利代理机构 郑州中原专利事务所有限公司 41109
代理人 霍彦伟 李想

(51) Int.Cl.
F24F 11/00 (2006.01)
F24F 11/02 (2006.01)

(54) 发明名称
一种智能温湿度联合控制冷暖客车空调的方法及其系统

(57) 摘要
一种智能温湿度联合控制冷暖客车空调的方法，它包括如下步骤：①在客车空调中的蒸发器回风口和蒸发器芯体之间布置车外温度传感器、车内温度传感器，出风温度传感器和湿度传感器，上述传感器将采集的温湿度信号送入客车空调控制器中；②在客车空调控制器中预先植入人体舒适温湿度曲线函数，根据人体舒适温湿度曲线函数，与获取的温湿度信号进行比较；③然后根据比较结果，采用逼近计算控制方式，输出控制信号调节压缩机运转、冷凝器、蒸发器风机转速，以及水泵开停，从而把客车空气的温度和湿度控制在人体舒适的范围内。本发明相对于现有技术，为解决客车空调制冷、制热、通风时温度湿度智能联合控制。
1. 一种智能温湿度联合控制冷暖客车空调的方法，其特征在于，它包括如下步骤：
① 在客车空调中的蒸发器回风口和蒸发器芯体（6）之间布置车外温度传感器（8）、车内温度传感器（10）、出风温度传感器（9）和湿度传感器（7），上述传感器将采集的温湿度信号送入客车空调控制器中；
② 在客车空调控制器中预先植入人体舒适温湿度曲线函数；根据人体舒适温湿度曲线函数，与获取的温湿度信号经行比较；
③ 然后根据比较结果，采用逼近计算控制方式，输出控制信号调节压缩机运转、冷凝器、蒸发器风机转速、以及水泵开停，从而把客车空气的温度和湿度控制在人体舒适的范围内。

2. 根据权利要求1所述的智能温湿度联合控制冷暖客车空调的方法，其特征在于：在蒸发器芯体（6）内设置微压差开关（5），所述的微压差开关（5）获取蒸发器芯体内外空气结霜的厚度，并将厚度信号送入客车空调控制器中；客车空调控制器根据预先设定的结霜厚度值，决定压缩机、冷凝器和蒸发器风机的运行状态。

3. 根据权利要求1所述的智能温湿度联合控制冷暖客车空调的方法，其特征在于：在所述的客车空调控制器中还设有自清洗间隔时间；客车空调控制器采集空调工作累计时间，当工作时间达到自清洗间隔时间后，客车空调控制器输出控制指令至蒸发器风机，实现蒸发器的自清洗功能。

4. 一种智能温湿度联合控制冷暖客车空调系统，它包括空调壳体（13）以及位于空调壳体（13）内的冷凝器芯体（1）、冷凝器风机（3）、蒸发器芯体（6）、蒸发器风机（11）和压缩机，其特征在于：在客车空调中的蒸发器回风口和蒸发器芯体（6）之间布置车外温度传感器（8）、车内温度传感器（10）、出风温度传感器（9）和湿度传感器（7），上述传感器与客车空调控制器相连接；客车空调控制器的输出端连接压缩机、蒸发器风机（11）和冷凝器风机（3）。

5. 根据权利要求4所述的智能温湿度联合控制冷暖客车空调系统，其特征在于：在蒸发器芯体（6）内设置微压差开关（5），所述的微压差开关（5）与客车空调控制器相连接。

6. 根据权利要求4或5所述的智能温湿度联合控制冷暖客车空调系统，其特征在于：所述的客车空调控制器与定时器相连接。

7. 根据权利要求4所述的智能温湿度联合控制冷暖客车空调系统，其特征在于：所述蒸发器芯体（6）为蒸发器冷暖一体芯体，其换热翅片上设有热水进水口（17）、热水出水口（18）、制冷剂出口（19）、制冷剂进口（20）和隔热条缝（16），且隔热条缝（16）占分割设置。

8. 根据权利要求7所述的智能温湿度联合控制冷暖客车空调系统，其特征在于：所述的隔热条缝（16）纵向分割设置，且隔热条缝（16）位于热水出水口（17）和制冷剂进口（20）之间。

9. 根据权利要求4所述的智能温湿度联合控制冷暖客车空调系统，其特征在于：空调壳体（13）与冷凝器盖（2）和蒸发器盖（12）分别对接。
说明书

一种智能温湿度联合控制冷暖客车空调的方法及其系统

技术领域
[0001] 本发明涉及一种车用空调系统，尤其在舒适度要求高、冷暖两用的大中型公交客车上使用的客车空调技术。

背景技术
[0002] 目前，传统客车空调普遍采用单冷模式，车箱底部采用暖风机，这种模式在密闭的车体内空间内，需要引入新风的时候，由于冬季车外温度过低，从风道吹出后直接到人体，会产生极强的冷风感，容易对人体造成伤害。传统的冷暖客车空调还是单纯的控制客车内的温度，而与舒适性相关的湿度不受单独控制，容易造成车内环境温湿度偏离人体舒适曲线。智能温湿度联合控制冷暖客车空调制冷制热时控制温度和湿度始终保持在人体舒适曲线上还是技术空白。

[0003] 传统冷暖客车空调因为只能满足普通调节的需要，由于中国经济和人民生活水平的不断提高，满足更舒适更健康的乘车环境，变得很重要，而中国发展对能源和资源的需求越来越大，政府提倡节能减排，对于开发一款既舒适健康、又节能环保的客车空调，从根本上改变传统客车空调的格外重要。

[0004] 申请号为 201210467576.X，发明名称为“汽车空调制冷自动控制系统”，其区别点是本专利实现的是联合控制除湿，在采集到车内外温度时不但控制压缩机，而且要控制风机和水泵，通过控制除湿后，进行温度和湿度联合智能补偿，其特点是控制精度更高，可以任意调节温度和湿度。而申请号为 201210467576.X，发明名称为“汽车空调制冷自动控制系统”其只对压缩机运行状态控制，不能精确的控制到任意温度和湿度点，具有一定的不可调节性，具有适用范围较小的缺点，本专利注重的是空调设备，而申请号为 201210467576.X 的专利注重的是单片机。

[0005] 申请号为 20121024618.X，发明名称为“汽车空调功能实现系统”，其区别点是本专利，可以任意调节温度和湿度，并可以预先设计人体温湿度舒适曲线，并非单个点，其申请号为 20121024618.X 的专利，只能默认夏季的 55%，冬季 48%，不是能连续的调节温度和湿度的关系，本专利是任意调节温度和湿度，并可 preset 温度和湿度曲线，关系，保证时刻在人体舒适曲线范围运行，其申请号为 20121024618.X 的专利有可调节、适用范围小，舒适点单一等缺点。

[0006] 申请号为 200810121561.1，发明名称为“具有湿度调节的车载空调”，其区别点是本专利是智能联合调湿，其压缩机形式为发动机带动压缩机，调节方式为通过预设湿度，控制压缩机的能量调节装置来控制压缩机排量和风机转速（其排量控制方式为滑塞行程和工作缸体数量），并通过控制水泵来补偿温度和湿度，属于联合补偿方式，其特点是控制的控制到任意点的温度和湿度，而申请号为 200810121561.1 的专利，其压缩机为电动压缩机，控制的方式是压缩机的转速，来控制蒸发温度，其控制方式输出的温度和湿度受湿空气露点温度影响严重，其补偿装置只能补偿湿度，由于单独补偿湿度受空气表面蒸汽压影响，没有温度湿度联合补偿迅速有效，并且其调节范围小，缺点，由于压缩机运行除湿只能在
制冷情况下经行，故不能实现制热除湿功能，本专利实现的是可以在制冷制热情况下实现
湿度控制，其控制范围和适用范围更广。

【0007】申请号为 200820149377.3，发明名称为“客车空调湿度控制系统”，其区别点是本
专利实现的是智能联合控制的空调装置，通过控制压缩机的排气和风机转速以及温度和
湿度联合补偿装置，实现在制冷制热两用情况下的湿度控制，可以实现在工况湿度和温度
的控制，任意调节空气湿度和湿度，可以轻易的实现温度湿度曲线，保证在人体舒适范围运
行，而申请号为 200820149377.3 的专利，是通过压缩机的启停实现湿度控制，其范围窄，不
可任意调节，没有制热除湿功能，没有补偿装置，适用情况小的缺点。

发明内容

【0008】为了克服目前市场上冷暖客车空调存在的弊端，满足市场需求，本发明提供了一
种智能温湿度联合控制的冷暖双用型客车空调。

【0009】为实现上述目的，本发明采用以下技术方案：

一种智能温湿度联合控制冷暖客车空调的方法，包括如下步骤：

1. 在客车空调中的蒸发器回风口和蒸发器芯体之间设置车外温度传感器，车内温度
传感器、出风温度传感器和湿度传感器，上述传感器将采集的温湿度信号送入客车空调控制
器中；

2. 在客车空调控制器中预先植入人体舒适温湿度曲线函数；根据人体舒适温湿度曲
线函数，与获取的温湿度信号综合作用；

3. 然后根据比较结果，采用逼近计算控制方式，输出控制信号调节压缩机运转、冷凝
器、蒸发器风机转速，以及水泵开停，从而把客车空气的温度和湿度控制在人体舒适的范围
内。

【0010】在蒸发器芯体内设置微压差开关，所设的微压差开关获取蒸发器芯体内外空气质量
的密度，并将密度信号送入客车空调控制中；客车空调控制器根据预先设定的密度电
压度值，决定压缩机、冷凝器和蒸发器风机的运行状态。

【0011】在所述的客车空调控制器中还设有自清洁间隔时间；客车空调控制器采集空调工
作累计时间，当工作时间达到自清洁间隔时间后，客车空调控制器输出控制指令至蒸发器
风机，实现蒸发器的自清洁功能。

【0012】一种智能温湿度联合控制冷暖客车空调系统，它包括空调壳体以及位于空调壳体
内的冷凝器芯体、冷凝器风机、蒸发器芯体、蒸发器风机和压缩机，在客车空调中的蒸发器
回风口和蒸发器芯体之间设置车外温度传感器，车内温度传感器、出风温度传感器和湿度
传感器，上述传感器与客车空调控制器相关；客车空调控制器的输出端连接压缩机、蒸发
器风机和冷凝器风机。

【0013】在蒸发器芯体内设置微压差开关，所设的微压差开关与客车空调控制器相连接。

【0014】所述客车空调控制器与定时器相连接。

【0015】所述蒸发器芯体为蒸发器冷暖一体芯体，其外壁片上设有热水供水口、热水出
水口、制冷剂出口、制冷剂进口和隔热水道，且隔热水道设有隔水装置。

【0016】所述的隔热水道设置于热水供水口和制冷剂进口之间。

【0017】空调壳体与冷凝器罩和蒸发器罩分别对应。
说明书

[0018] 本发明相对于现有技术，具有以下优点：
（1）为解决客车空调制冷、制热、通风时实现温度湿度智能联合控制，采用了回风温度
d器、风温度传感器、电感传感器（或者中部压力开关）、湿度传感器、风速传感器、电磁阀、循环水泵、
变频压缩机、无级调节冷凝风机和无级调节蒸发风机，通过采集这些温度和湿度以及压力参数，
进行模式联合智能计算，确定制冷、制热、制冷调湿、制热调湿、
通风、通风调湿等状态，来控制压缩机排量、风机转速、电磁阀开闭、水泵开停，从而把空气
的温度和湿度控制在人体舒适的范围内。

[0019] （2）本发明提供了一种制冷、制热联合运行实现调湿的工作模式，在客车空调内部
由于密闭的乘车环境，以及大量的乘车人员，内部湿度大于环境湿度，通过制冷凝水加热调
温的智能联合计算方式实现调湿功能。

[0020] （3）本发明提供了一种冷暖一体开放式热的换热器技术，此技术可以在一个换热
器上实现一半制冷一半制热同时工作且热量不传递，此技术弥补了目前普遍存在的蒸发器
和水暖散热器单独制作时费时费力的问题。

[0021] （4）本发明提供了一种自洗功能，通过智能分步调节控制技术，实现了客车空调
蒸发器的智能自清洗，解决了长期使用造成空调发霉异味等问题。

附图说明

[0022] 图 1 是本发明的整体结构示意图。

[0023] 图 2 是本发明的蒸发器换热翅片示意图。

具体实施方式

[0024] 一种智能温湿度联合控制冷暖客车空调的方法，步骤如下：
①、在客车空调中的蒸发器回风口和蒸发器芯体 6 之间布置车外温度传感器 8、车内温
度传感器 10、车外温度传感器 9 和湿度传感器 7，通过车外温度传感器 8、车内温度传感器
10 检测车内外温度，和车内设定温度进行比较确定制冷制热状态，通过湿度传感器 7 检测
车内外湿度，上述传感器将采集的温湿度信号送入客车空调控制器中；
②、在客车空调控制中预先植入人体舒适温湿度曲线函数；根据人体舒适温湿度曲
线函数，与获取的温湿度信号进行比较；
③、然后根据比较结果，采用逼近计算控制方式，输出控制信号调节压缩机运转、冷凝
器、蒸发器风机转速，以及水泵开停，实现湿度调节从而把客车空气的温度和湿度控制在人
体舒适的范围内。

[0025] 通过压缩机运转和风机转速调节，实现凝结空气中的水分，并使之结霜。在蒸发器
芯体 6 内设置微差开关 5 和中压保护开关 4，微差开关 5 获取蒸发器芯体内外空气结霜
的厚度，并将厚度信号送入客车空调控制器中；客车空调控制根据预先设定的结霜厚度
值，决定压缩机、冷凝器和蒸发器风机的运行状态，该运行状态包括压缩机的启停、冷凝器
和蒸发器风机进入低速和高速状态。本发明利用霜层固化融化作用力，以及后期风机高速
运转风流摩擦力清洗翅片污垢。

[0026] 在客车空调控制器中还设有自清洗间隔时间；客车空调控制器采集空调工作累计
时间，当工作时间达到自清洗间隔时间后，客车空调控制器输出控制指令至蒸发器风机，实
现蒸发器的自清洗功能。

[0027] 一种智能温湿度联合控制冷暖客车空调系统，它包括空调壳体 13 以及位于壳体 13 内的冷凝器芯体 1、冷凝器风机 3、蒸发器芯体 6、蒸发器风机 11 和压缩机，空调壳体 13 与冷凝器盖 2 和蒸发器盖 12 分别对接，冷凝器芯体 1 与蒸发器芯体 6 连接管路布置压力传感器（或中压保护开关）检测空调系统压力。在客车空调中的蒸发器回风口和蒸发器芯体 6 之间布置车外温度传感器 8、车内温度传感器 10、出风温度传感器 9 和湿度传感器 7，蒸发器芯体水暖部分进风口布置温度传感器 15，以及电磁阀 14，上述传感器与客车空调控制器相连接；客车空调控制器的输出端连接压缩机、蒸发器风机 11 和冷凝器风机 3。本发明通过这些参数的采集和智能联合计算，控制压缩机排量和风机转速以及循环水泵开停和电磁阀开闭，从而把空气的温度和湿度控制在人体舒适的范围内。

[0028] 在蒸发器芯体 6 内设置微压差开关 5，微压差开关 5 与客车空调控制器相连接。另外，客车空调控制器与定时器相连接。

[0029] 如图 2 所示，蒸发器芯体 6 为蒸发器冷暖一体芯体，其换热翅片上设有热水进水口 17、热水出水口 18、制冷剂进口 19、制冷剂出口 20 和隔热条缝 16，且隔热条缝 16 纵向分割设置，且隔热条缝 16 位于热水出水口 17 和制冷剂进口 20 之间。本发明中的换热翅片采用分割传热路线原理，开孔隔热传热路径，解决了冷热共用一个芯体同时工作不准传递热量技术难题。
图 1
图 2