发明名称
超顺磁性复合微粒载药体及其制备方法

摘要
本发明涉及一种主要用于磁靶向治疗的超顺磁性复合微粒载药体及其制备方法。本发明的磁性复合微粒载药体由磁性复合微粒和包覆在其外层的载体层组成。本发明是利用超顺磁性复合微粒的壳层或胶体金的高表面活性的性质直接将药物包覆或利用超顺磁性复合微粒的壳层或胶体金的高表面活性的性质将高分子材料包覆在其表面，再利用高分子材料对药物的亲和吸附或共价键合将药物包覆，也可以在超顺磁性复合微粒表面包覆高分子材料和药物交联。靶向制剂和药物交联的方法和制备方法。
1. 一种超顺磁性复合微粒载药体的制备方法，所述的超顺磁性复合微粒载药体由超顺磁性复合微粒和包裹在其表面的载药层组成，所述的超顺磁性复合微粒是核 / 壳型超顺磁性复合微粒或组装型磁性复合微粒，其中，核 / 壳型超顺磁性复合微粒由磁性材料核心部分和包裹于核部分表面上的单质金或贵金属金属材料构成的外壳部分组成，磁性材料核心部分由 Fe₃O₄，γ - Fe₂O₃ 磁性材料构成或者由三价铁与二价锰、镍、锌的正铁酸盐磁性微粒构成，组装型磁性复合微粒由具有超顺磁性的磁性微粒核心部分和纳米级贵金属颗粒组装层部分构成，磁性微粒核心部分由 Fe₃O₄，γ - Fe₂O₃ 磁性材料构成或者由三价铁与二价锰、镍、锌的正铁酸盐磁性微粒构成，所述的载药层为阿霉素药物单层，其制备步骤是：

1）对超顺磁性复合微粒进行清洗处理，取超顺磁性复合微粒液悬液，摇匀后移入离心管，向该离心管中加入磷酸盐缓冲液并摇匀，进行磁性分离，去除上清液；

2）加入 1～2 倍于超顺磁性复合微粒悬液体积的药物的水或生理盐水溶液，吹打混匀，然后置于摇床，在 24～30℃下，以 150～220r/min 振荡 3～6 小时；

3）磁性分离，移取上清液弃去，即得超顺磁性复合微粒载药体。

2. 一种超顺磁性复合微粒载药体的制备方法，所述的超顺磁性复合微粒载药体由超顺磁性复合微粒和包裹在其表面的载药层组成，所述的超顺磁性复合微粒是核 / 壳型超顺磁性复合微粒或组装型磁性复合微粒，其中，核 / 壳型超顺磁性复合微粒由磁性材料核心部分和包裹于核部分表面上的单质金或贵金属金属材料构成的外壳部分组成，磁性材料核心部分由 Fe₃O₄，γ - Fe₂O₃ 磁性材料构成或者由三价铁与二价锰、镍、锌的正铁酸盐磁性微粒构成，组装型磁性复合微粒由具有超顺磁性的磁性微粒核心部分和纳米级贵金属颗粒组装层部分构成，磁性微粒核心部分由 Fe₃O₄，γ - Fe₂O₃ 磁性材料构成或者由三价铁与二价锰、镍、锌的正铁酸盐磁性微粒构成，所述的载药层为高分子材料中间层与阿霉素药物外层组成的复合层，所述的高分子材料是血清白蛋白或壳聚糖，其制备步骤是：

1）对超顺磁性复合微粒进行清洗处理，取超顺磁性复合微粒液悬液，摇匀后移入离心管，向该离心管中加入磷酸盐缓冲液并摇匀，磁性分离，去除上清液；

2）加入 1～2 倍于超顺磁性复合微粒液悬液体积的高分子材料溶液，吹打混匀，置于摇床，在 30～50℃，以 180～220r/min 振荡 3～6 小时；

3）磁性分离，移取上清液弃去，得到高分子材料包覆的超顺磁性复合微粒；

4）用清洗液清洗 2～3 次，加入 1～2 倍于超顺磁性复合微粒液悬液体积的药物的水或生理盐水溶液，吹打混匀，置于摇床，在 20～30℃，以 150～220r/min 振荡 2～5 小时；

5）磁性分离，移取上清液弃去，即得超顺磁性复合微粒载药体。

3. 一种超顺磁性复合微粒载药体的制备方法，所述的超顺磁性复合微粒载药体由超顺磁性复合微粒和包裹在其表面的载药层组成，所述的超顺磁性复合微粒是核 / 壳型超顺磁性复合微粒或组装型磁性复合微粒，其中，核 / 壳型超顺磁性复合微粒由磁性材料核心部分和包裹于核部分表面上的单质金或贵金属金属材料构成的外壳部分组成，磁性材料核心部分由 Fe₃O₄，γ - Fe₂O₃ 磁性材料构成或者由三价铁与二价锰、镍、锌的正铁酸盐磁性微粒构成，组装型磁性复合微粒由具有超顺磁性的磁性微粒核心部分和纳米级贵金属颗粒组装层部分构成，磁性微粒核心部分由 Fe₃O₄，γ - Fe₂O₃ 磁性材料构成或者由三价铁与二价锰、镍、锌的正铁酸盐磁性微粒构成，所述的载药层为高分子材料与阿霉素药物的复合体层，所述的高分子材料是血清白蛋白或壳聚糖，其制备步骤是：
1) 按药物与高分子材料质量比为 1：10 ～ 30 秤取药物和高分子材料，加入适量溶剂，搅拌使其充分溶解；所说的溶剂可以是水、醇或水和醇的混合液；

2) 再加入超顺磁性复合微粒悬液，超声波混匀，得混合液；

3) 搅拌下将上述混合液滴入到由液体石蜡、Span-20 组成的有机溶剂体系，摇匀后再于 20 ～ 30℃、60 ～ 100mlz 超声波混匀；再置于 45 ～ 55℃的水浴中，以 500 ～ 1300r/min 搅拌，乳化 20 ～ 40min；

4) 加入交联剂，反应 1 ～ 2 小时，经清洗液洗涤数次，超声悬浮于保存液中，得载药微粒悬液，经磁性分离，除去上清液即得超顺磁性复合微粒载药体。
超顺磁性复合微粒载药体及其制备方法

技术领域
[0001] 本发明涉及一种以超顺磁性复合微粒为载体与药物复合的技术，特别是一种主要用于靶向治疗的超顺磁性复合微粒载药体及其制备方法。

背景技术
[0002] 随着纳米技术的发展，人们已开始对纳米微粒作为药物载体的应用进行了研究，特别是在靶向治疗中的应用研究。
[0004] 之后，不少国内外的专家在这方面展开研究，但实验中发现，由于磁性微粒粒径过大等原因，容易引起实验动物血栓样血管阻塞，甚至出现动物死亡的例子，限制了在临床上的应用。但研究人员在磁性载体等方面不断加以改进，使磁性载药微粒在临床应用上有了较大的突破。
[0006] 国内张阳德等人也开展了用磁性微粒靶向治疗的研究，如中国专利 CN1476896A 公开了一种纳米药物载体的制法，是用氯化铁、氯化亚铁混合液与氨水作用，生成的四氧化三铁溶液与阿霉素、白蛋白混合，加入棉籽油，装入细胞粉碎仪，进行超声混匀，使磁性铁包裹着阿霉素和白蛋白的微粒分散在油脂内，然后再用乙醚溶解油脂，即得到粒径为 0.1-1μm 的阿霉素磁性白蛋白微球。
[0007] 上述磁性微粒的磁性核心材料单一，用的都是铁的氧化物，必须先在其外包覆白蛋白等大分子材料，才负载药物，也就是说必须依靠第二载体才能复合药物，所以其选择吸附能力及固定化容量有限。
说明书

本发明所要解决的问题是：提供一种具有固定化容量高、选择吸附能力较大，且具有良好生物相容性的超顺磁性复合微粒载药体及其制备方法。

解决上述问题的总体思路是：上述的“金磁微粒”与目前的磁性微粒相比，具有固定化容量高，磁响应强，表面金选择吸附能力较大；该“金磁微粒”还具有高度靶向性，其表面可以粘附药物而形成靶向药物，进入人体内无毒副作用，因此将其与药物结合可用于靶向治疗，是对现有的给药途径和药物剂型的改进。

本发明所提供的超顺磁性复合微粒载体由超顺磁性复合微粒和包覆在其中的载药层组成，所制的超顺磁性复合微粒是核 / 壳型超顺磁性复合微粒或共组装型磁性复合微粒，其中，核 / 壳型超顺磁性复合微粒由磁性材料芯部和包覆于核心部分表面之外的单质金或银贵金属材料构成的外壳部分组成，共组装型磁性复合微粒由具有超顺磁性的磁性微粒芯部和包覆贵金属颗粒的组分层部分构成；所制的载药层是药物单层、高分子材料中间层与药物外层组成的复合层、高分子材料与药物的复合层或药物和靶向制剂复合层或药物和靶向制剂和高分子材料的复合体中的一种。

上述高分子材料包括各种高分子相容性和可分解的生物大分子或人工合成化合物，如壳聚糖、BSA/ISA、半乳糖化白蛋白、脂质体、胶原、明胶、聚氨基酸、脂肪族聚酯、聚乙烯醇、聚乙烯醇等中的一种或两种。上述的生物大分子是指由生物体产生的高分子物质，由一定数量的单体通过聚合形成分子量较大的且有一定结构和功能的聚合物，分子量一般在2000以上，主要包括蛋白质类、核酸类、多糖类和脂类。

上述药物可以是单药也可以是两种或两种以上复合药物，如：抗癌化疗药物、基因药物、抗生素类药物。

上述抗癌化疗药物包括盐酸阿霉素、氟尿嘧啶、丝裂霉素、放线菌素、平阳霉素、顺铂、卡铂、表阿霉素、甲氨喋呤、阿糖胞苷等各种抗癌药物。

上述抗生素类包括阿克拉霉素、红霉素、盐酸多西环素等。

上述基因药物包括寡核苷酸、核酸、基因探针等。

上述靶向制剂包括单克隆抗体和多抗、基因工程抗体、细胞因子与受体、转铁蛋白或多肽等。
说明书中

[0018] 本发明的超顺磁性复合微粒载药体的制备方法之一是：
[0019] 利用上述超顺磁性复合微粒的壳层或胶体金的高表面活性的性质直接将药物包覆，具体制备步骤如下：
[0020] 1) 对超顺磁性复合微粒进行清洗处理：取超顺磁性复合微粒悬液，摇匀后移入离心管，向该离心管中加入磷酸盐缓冲液并摇匀，进行磁性分离，去除上清液；
[0021] 2) 加入1～2倍于超顺磁性复合微粒悬液体积的药物水或生理盐水溶液，吹打混匀，然后置于摇床，在24～30℃下，以150～220r/min振荡3～6小时；
[0022] 3) 磁性分离，移取上清液弃去，即得超顺磁性复合微粒载药体。
[0023] 本发明的超顺磁性复合微粒载药体的制备方法之二是：
[0024] 首先利用上述超顺磁性复合微粒的壳层或胶体金的高表面活性的性质将高分子材料包裹在其表面，再利用高分子材料对药物的亲和吸附或共价键合将药物包覆，具体制备步骤如下：
[0025] 1) 对超顺磁性复合微粒进行清洗处理：取超顺磁性复合微粒悬液，摇匀后移入离心管，向该离心管中加入磷酸盐缓冲液并摇匀，进行磁性分离，去除上清液；
[0026] 2) 加入1～2倍于超顺磁性复合微粒悬液体积的高分子材料溶液，吹打混匀，置于摇床，在30～50℃，以180～220r/min振荡3～6小时；
[0027] 3) 磁性分离，移取上清液弃去，得到高分子材料包裹的超顺磁性复合微粒；
[0028] 4) 用清洗液清洗2～3次，加入1～2倍于超顺磁性复合微粒悬液体积的药物的水或生理盐水溶液，吹打混匀，置于摇床，在20～30℃，以150～220r/min振荡2～5小时；
[0029] 5) 磁性分离，移取上清液弃去，即得超顺磁性复合微粒载药体。
[0030] 本发明的超顺磁性复合微粒载药体的制备方法之三是：
[0031] 在超顺磁性复合微粒表面包裹高分子材料和药物交联、靶向制剂和药物交联或高分子材料、靶向制剂和药物交联的复合层，具体制备步骤如下：
[0032] 1) 按药物与高分子材料质量比为1：10～30称取药物和高分子材料，或者按药物与靶向制剂质量比为1：1～3称取药物与靶向制剂，或者按按药物、靶向制剂与高分子材料质量比为1：1～3：10～30称取药物、靶向制剂和高分子材料，加入适量溶剂，搅拌使其充分溶解；所得的溶剂可以是水、醇或水和醇的混合液；
[0033] 2) 再加入超顺磁性复合微粒悬液，超声波混匀，得混合液；
[0034] 3) 搅拌下将上述混合液滴入到由液体石蜡、Span-20组成的有机溶剂体系，摇匀后于20～30℃，60～100mHz超声波混匀，再置于45～55℃的水浴中，以500～1300r/min搅拌，乳化20～40min；
[0035] 4) 加入交联剂，反应1～2小时，经清洗液洗涤数次，超声悬浮于保存液中，得载药微粒悬液，经磁性分离，除去上清液即得超顺磁性复合微粒载药体。
[0036] 本发明涉及的超顺磁性复合微粒载体具有大的比表面积，吸附能力很强；由于金属或胶体金的存在，大大增加了吸附生物活性大分子的能力，所以可以吸附吸附那些容易破坏失活的生物分子，避免有机溶剂乳化、热固定、超声搅拌等操作过程中对生物分子的破坏，并可简单快速的将药物吸附固定在其表面。因此，本发明的超顺磁性复合微粒载体具有药物包覆率高、载药量大、载药方式灵活的优点，可通过局部介入，静脉和动脉注射或者
口服等途径进入人体。

[0037] 本发明可简单快速地将药物吸附固定在其表面，且包覆率高，可以多种方式实现磁粒对药物的复合。

[0038] 本发明的超顺磁性复合微粒载药体可应用于磁导向下的靶向治疗，在外部磁场的定位引导下，使载药金磁微粒富集于病变的靶位组织或器官，不但提高了疗效，而且减少了药物对人体正常组织的毒副作用。

附图说明

[0039] 图 1 本发明涉及的核 / 壳型磁性复合微粒载药体模式图。

[0040] 图 2 本发明涉及的组装型磁性复合微粒载药体模式图。

[0041] 图 3 本发明磁性复合微粒吸附阿霉素的时间曲线图。

具体实施方式

[0042] 如图 1 所示：核 / 壳型磁性复合微粒的核心部分由 Fe₃O₄、γ-Fe₂O₃ 磁性材料构成或者由三价铁与二价锰、镍、锌的正铁酸盐磁性微粒构成，核心部分的外面包覆一层单质金外壳（中间层），金外层的外面是载药层。

[0043] 如图 2 所示：组装型磁性复合微粒与核 / 壳型磁性复合微粒相同，其外层由纳米胶体金微粒包覆，最外层是载药层。

[0044] 图 3 给出了本发明的超顺磁性复合微粒吸附阿霉素的实验结果。

[0045] 实验方法：制备浓度为 8mg/ml 的阿霉素的生理盐水溶液，用荧光分光光度计测定该溶液在 502/554nm 处的荧光强度。取 1mg/ml 的超顺磁性复合微粒生理盐水悬液 3ml，磁性分离 3 分钟，加入 8mg/ml 的阿霉素的生理盐水溶液 6ml，吹打混匀，并开始计时，放在摇床上，25℃，180r/min 振荡。每隔一段时间取超顺磁性复合微粒 - 阿霉素混合液，磁性分离，取上清于 502/554nm 处进行荧光检测，记录荧光强度。

[0046] 从吸附曲线图可以得知，超顺磁性复合微粒在前 3 小时内迅速的吸附阿霉素，使阿霉素在溶液中的含量迅速降低。在 3-20 小时内，呈现二次曲线的吸附过程，且在 20 小时处吸附接近饱和，在以后的时间呈现非常缓慢的吸附过程。由此可知，超顺磁性复合微粒可以在较短的时间内实现对阿霉素药物的吸附，且吸附药物效果稳定。

[0047] 以下结合实施例对发明作进一步详细说明，其中的金磁复合微粒是指本发明所涉及的核 / 壳型磁性复合微粒或组装型磁性复合微粒。

[0048] 实施例 1

[0049] 利用金磁复合微粒金壳层或胶体金的高表面活性的性质直接将药物包覆，形成载药微粒。本实例中的药物为阿霉素。

[0050] 将 5mg/ml 的金磁复合微粒悬液，摇匀后用移液器移取 200 μl 于离心管中，加入 pH 7.4 的磷酸盐缓冲液 400 μl，轻摇重悬磁粒，再将离心管置于磁性分离器中磁性分离 2min，在磁性分离器上用移液器移取上清液弃去；然后加入 0.5mg/ml 的阿霉素生理盐水溶液 200 ～ 400 μl，吹打混匀，并置于摇床，在 25℃，以 200r/min 振荡 5 ～ 6 小时；结束后，磁性分离，移取上清液弃去，得到载阿霉素的金磁复合微粒。4℃保存，使用前，加入生理盐水 1 ～ 2ml 稀释即可，注意稀释后应尽快使用。
实施例2

用本发明的磁复合作用依次将高分子材料和药物包覆在其表面形成载体微粒。本实施例中的高分子材料为小牛血清白蛋白（BSA），药物为阿霉素。

将5mg/ml的金磁微粒摇匀后，用移液器取200μl于离心管中，磁性分离，加入pH7.4的磷酸盐缓冲液400μl，充分震荡，将离心管置于磁性分离器上磁性分离2min，在磁性分离器上用移液器移取上清弃去。加入2mg/ml的BSA磷酸盐缓冲液200～400μl，置于恒温摇床，37℃，200r/min振荡1～2小时。包被结束后，磁性分离，移取上清弃去，50%乙醇清洗两次，再分散于0.5mg/ml的0.8～1ml阿霉素溶液中，在室温下，震荡4～6小时。结束后，磁性分离，移取上清弃去，得到阿霉素-BSA磁复合作用微粒。4℃保存，使用前，加入生理盐水1～2ml稀释即可。

实施例3

制备的原理同实施例2，其中高分子材料为壳聚糖，药物为阿霉素。

称取1g壳聚糖置于250ml的三颈烧瓶中，加入10ml3%的乙酸溶液，搅拌使其充分溶解，再加入5mg/ml金磁微粒5～10ml，超声波10min（室温，80ml）后置于40℃的水浴中，300～800r/min搅拌1～2小时。磁性分离，超纯水洗涤数次。再超声悬浮于0.5mg/ml的0.8～1ml阿霉素溶液中，在室温下，震荡4～6小时。结束后，磁性分离，移取上清液弃去，得到阿霉素-壳聚糖磁复合作用微粒。4℃保存，使用前，加入生理盐水1～2ml稀释即可。

实施例4

用于金磁复合作用制备高分子材料和药物交联的载体微粒。本实施例中的高分子材料为壳聚糖，药物为阿霉素。

称取1g壳聚糖和35mg阿霉素置于250ml的三颈烧瓶中，加入10ml3%的乙酸溶液，搅拌使其充分溶解，再加入5mg/ml金磁微粒5～10ml，超声波混匀。搅拌下滴加加入到100ml液体石蜡、2g Span-20组成的有机溶剂体系，摇匀后超声10min（20℃，80ml）后置于50℃的水浴中，1000～1300r/min搅拌，氮气保护，乳化30min。再加入交联剂为3.7%的甲醛14ml，反应1小时后再加入37%甲醛200μl，反应1小时，通入氮气硬化20min，最后通氮气20min，经石油醚、丙酮和无水乙醇洗净数次。超声悬浮于无水乙醇中。制备好的载体复合微粒于离心管中并在磁分离箱上进行分离，除去上清液，即得阿霉素与壳聚糖交联的金磁复合微粒。