

(12) STANDARD PATENT
(19) AUSTRALIAN PATENT OFFICE

(11) Application No. AU 2010306121 B2

(54) Title
Cushion having damping properties

(51) International Patent Classification(s)
A41D 1/08 (2006.01)

(21) Application No: **2010306121** (22) Date of Filing: **2010.10.18**

(87) WIPO No: **WO11/045082**

(30) Priority Data

(31) Number **20 2009 014 105.5** (32) Date **2009.10.16** (33) Country **DE**

(43) Publication Date: **2011.04.21**

(44) Accepted Journal Date: **2015.11.19**

(71) Applicant(s)
X-Technology Swiss GmbH

(72) Inventor(s)
Lambertz, Bodo W.

(74) Agent / Attorney
Davies Collison Cave, 255 Elizabeth Street, Sydney, NSW, 2000

(56) Related Art
US 2006/0191052

(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES
PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum
Internationales Büro

(43) Internationales Veröffentlichungsdatum
21. April 2011 (21.04.2011)

(10) Internationale Veröffentlichungsnummer
WO 2011/045082 A1

(51) Internationale Patentklassifikation:
A41D 1/08 (2006.01)

(21) Internationales Aktenzeichen: PCT/EP2010/006336

(22) Internationales Anmeldedatum:

18. Oktober 2010 (18.10.2010)

(25) Einreichungssprache: Deutsch

(26) Veröffentlichungssprache: Deutsch

(30) Angaben zur Priorität:

20 2009 014 105.5

16. Oktober 2009 (16.10.2009) DE

(71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): **X-TECHNOLOGY SWISS GMBH** [CH/CH]; Samstagernstrasse 45, CH-8832 Wollerau (CH).

(72) Erfinder; und

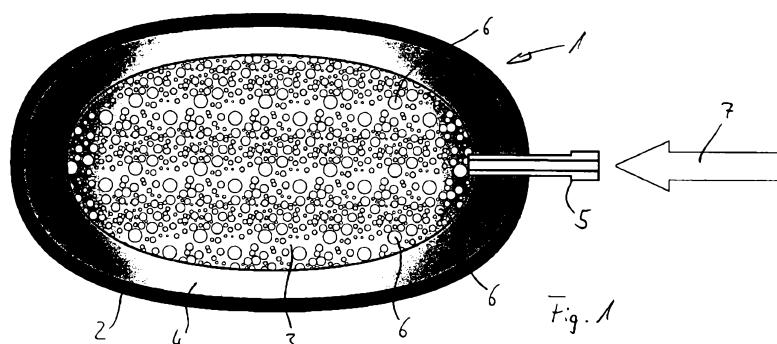
(75) Erfinder/Anmelder (nur für US): **LAMBERTZ, Bodo, W.** [DE/CH]; Etzelstrasse 25, CH-8808 Pfäffikon (CH).

(81) Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfügbare nationale Schutzrechtsart): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,

KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfügbare regionale Schutzrechtsart): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Erklärungen gemäß Regel 4.17:


— Erfindererklärung (Regel 4.17 Ziffer iv)

Veröffentlicht:

- mit internationalem Recherchenbericht (Artikel 21 Absatz 3)
- vor Ablauf der für Änderungen der Ansprüche geltenden Frist; Veröffentlichung wird wiederholt, falls Änderungen eingehen (Regel 48 Absatz 2 Buchstabe h)

(54) Title: CUSHION HAVING DAMPING PROPERTIES

(54) Bezeichnung : KISSEN MIT DÄMPFUNGSEIGENSCHAFTEN

(57) Abstract: The invention relates to a cushion having damping properties for bicycle pants. The cushion comprises an outer shell (2) and a core (3) and at least one layer (4) arranged between the outer shell (2) and the core (3). The core (3) and the layers (4) are formed by at least one filler material having different degrees of firmness. The damping properties of the core (3) and/or of the layers (4) can be changed by means of inflation.

(57) Zusammenfassung: Die Erfindung betrifft ein Kissen mit Dämpfungseigenschaften für Fahrradhosen. Es umfasst eine Außenhülle (2) und einen Kern (3) sowie mindestens eine zwischen Außenhülle (2) und Kern (3) angeordnete Schicht (4). Der Kern (3) und die Schichten (4) sind von mindestens einem Füllmaterial gebildet, welche unterschiedliche Härtegrade aufweisen. Der Kern (3) und/oder die Schichten (4) sind durch Aufblasen in ihren Dämpfungseigenschaften veränderbar.

WO 2011/045082 A1

Cushions with damping properties

The invention relates to a cushion with damping properties for bicycle pants comprising an outer shell and a core, as well as at least one layer positioned between 5 the outer shell and the core.

Cushions with damping properties of various types are already known. In the simplest form, these cushions consist of a filling of foam material that is surrounded by textiles or plastics. They are generally used as seat cushions. In addition, simple 10 air cushions, which consist only of an airtight outer shell and in which the damping is provided by the enclosed air, are already known. The inflatable cushions can be positioned in the objects to be cushioned, such as in sitting surfaces or the like, for example. Inflatable air cushions are also used as heat insulation in items of clothing.

15 The above-stated cushions are constructed simply in terms of their structure. As the result, they have only relatively slight damping properties or are difficult to handle, as the case may be. In particular, cushions filled with air have the problem that air can escape, so that the damping properties are lost upon damage to the outer shell. Damage frequently occurs, particularly in bicycle pants of the type considered here, 20 because the cushions with the thin outer shell are positioned in the area of the crotch, which is subjected to extraordinarily high levels of stress.

The invention is intended to provide a remedy for this. The task that forms the basis for the invention is that of creating a cushion with damping properties for bicycle pants 25 that has, on the one hand, a high level of damping and is, in addition, changeable in its damping properties. In accordance with one form of the invention, the core and the layers, which have different levels of hardness, are formed from at least one filling material, and the core and/or the layers can be changed in their damping properties by means of inflation.

- 1A -

According to one aspect of the invention, there is provided a cushion with damping properties for bicycle pants, comprising an outer shell and a core, as well as at least one layer positioned between the outer shell and the core, wherein the core and the 5 layers, which have differing levels of hardness, are formed by at least one filling material, and the core and/or the layers can be changed in their damping properties by means of inflation.

10 A cushion for bicycle pants with damping properties that has changeable damping properties is created by means of the invention. Through the feeding of air into the inflatable layer with the filling material positioned therein, a possibility exists for increasing or reducing the damping properties. The feeding of air leads to an expansion of the cushion, through which an increase

of the damping properties is brought about. Conversely, a draining off of the air leads to a reduction of the damping properties, with a simultaneous reduction of the volume of the cushion.

In one configuration of the invention, the filling material is silicone. The use of silicone as a filling material offers the advantage that silicone, in various classifications, is available as a fluid, a rubber, or an elastomer, so that a broadly diversified spectrum is consequently available for the filling material.

In another configuration of the invention, the filling material is an open-pored foam. The use of the open-pored foam offers the possibility, in particular, of inflating it by feeding in air and thereby bringing about a change in the damping properties.

A valve is advantageously provided. The possibility of blowing air into the cushion by mouth is provided with the help of the valve. The possibility also exists for letting air out of the cushion with the help of the valve, as desired.

Advantageously, the core and/or the layers are self-inflating. In self-inflating cushions, no air is contained in the core and/or the layers in the compressed condition; as soon as the valve is opened, the elastic filling material used expands, as the result of which the cushion resumes its original shape. Air is thereby sucked into the filling material and remains in the filling material for as long as the valve is closed. Through the opening of the valves and the simultaneous exertion of pressure on the cushion, the air can escape from the core of the layer again.

Other further developments and configurations of the invention are stated in the remaining sub-claims. One embodiment of the invention is depicted in the diagrams, and is described in individual terms in the following. These depict the following:

Figure 1: A schematic representation of a cross-section through a cushion in accordance with the invention in the inflated condition; and:

Figure 2: A schematic representation of the cushion depicted in Figure 1 in an only partially inflated condition.

The cushion 1 selected as an embodiment comprises an outer shell 2 and a core 3. A layer 4 is positioned between the outer shell 2 and the core 3. The cushion 1 is provided with a valve 5, which passes through the outer shell 2 as well as the layer 4, and consequently projects into the core 3. The valve 5 is provided for inflation by mouth. In one modification of the embodiment, the valve 5 can also be constructed as a non-return valve.

In the embodiment, the outer shell 2 is constructed in an air-permeable manner. It is expandable, in order to be able to undergo a change of shape through stress as well as through an inflation of the cushion. The core 3 and the layer 4 are formed from at least one filling material. They have different levels of hardness. In the embodiment, the filling material for the layer 4 is a solid silicone; the filling material for the core 3 is a foamed silicone. The foamed silicone of the core 3 contains air pockets, which are marked in the figures with "6".

In one modification of the embodiment, it is possible to provide several layers 4 between the outer shell 2 and the core 3. In this case, the individual layers can likewise have differing levels of hardness. It is thus possible, for example, in a way comparable to the embodiment depicted in the figures, to produce the core 3 from foamed silicone, and to produce the external layer adjacent to the outer shell 2 from solid silicone. An additional layer -- not depicted --, which has fluid silicone as its filling material, can be positioned between the core 3 and the layer 4, which is then on the outside. In one modification of the embodiment, the possibility also exists for using an open-pored foam instead of the foamed silicone, which can be a polyurethane foam, for example. The use of polyether foams is also possible.

The core 3 in the embodiment can be changed in its damping properties by means of inflation. For this purpose, air can be blown into the core through the valve 5 corresponding to the arrow 7 depicted in Figure 1. The cushion is thereby inflated, as the result of which its damping properties are improved. In the reverse way, air can, in order to reduce the volume and to reduce the damping properties of the cushion, be let out through the valve 5, as indicated by the arrow 8 depicted in Figure 2. It is possible to develop the core 3 and/or the layers 4 in a self-inflating manner. In this case, the valve 5 can easily be opened in order to make possible an enlargement of the volume of the cushion 1. Thus, for the purpose of transport, for example, the

5 cushion can be compressed and the valve can be closed. In order to use the cushion 1, the valve 5 is opened, through which the filling material in the core 3 is, in accordance with the embodiment, expanded in accordance with its natural expansion and air is sucked into the core 3. After closing the valve, an improved damping 5 property of the cushion is consequently also brought about.

10 The cushion 1 is used as a cushion in bicycle pants. It is positioned in the crotch of the bicycle pants. Such an arrangement is known from US 6 928 665 B1, for example. In its simplest form, the cushion then has a perineal area that covers the 10 crotch portion of the bicycle pants. A buttocks area, which covers the saddle area 5 of the pants, is also provided. In addition to the improvement of the damping properties per se, a varying of the damping properties is made possible in the cushion in accordance with the invention through the feeding of the air into the inflatable layer with the filling material positioned therein. The adjustment of the damping properties 15 to the sensitivity of the specific cyclist is consequently made possible for the first time, whereas a change in the damping is not possible in the known cushions in cycling pants.

20 Throughout this specification and the claims which follow, unless the context requires otherwise, the word "comprise", and variations such as "comprises" or "comprising", will be understood to imply the inclusion of a stated integer or step or group of integers or steps but not the exclusion of any other integer or step or group of integers or steps.

25 The reference in this specification to any prior publication (or information derived from it), or to any matter which is known, is not, and should not be taken as, an acknowledgement or admission or any form of suggestion that that prior publication (or information derived from it) or known matter forms part of the common general knowledge in the field of endeavour to which this specification relates.

30 Whilst the present invention has been hereinbefore described with reference to a particular embodiment, it will be understood that numerous variations and modifications will be envisaged by persons skilled in art. All such variations and modifications should be considered to fall within the scope of the invention as broadly 35 hereinbefore described and as hereinafter claimed.

- 5 -

The claims defining the invention are as follows:

1. A cushion with damping properties for bicycle pants, comprising an outer shell and a core, as well as at least one layer positioned between the outer shell and the core, wherein the layer is completely surrounded by the outer shell and the core is completely surrounded by the layer, and wherein the core and the layers, which have differing levels of hardness, are formed by at least one filling material, and the core and/or the layers can be changed in their damping properties by means of inflation.
- 10 2. A cushion in accordance with claim 1, wherein the filling material is silicone.
3. A cushion in accordance with claim 1, wherein the filling material is an open-pored foam.
- 15 4. A cushion in accordance with one or more of the above-stated claims, wherein a valve for inflation by mouth is provided.
5. A cushion in accordance with one or more of the above-stated claims, wherein the valve is a non-return valve.
- 20 6. A cushion in accordance with one or more of the above-stated claims, wherein the core and/or the layers are self-inflating.
7. A cushion according to one or more of the preceding claims, wherein the outer shell is made air-permeable.
- 25 8. A cushion according to one or more of the preceding claims, wherein a plurality of layers are provided between the outer shell and the core.
- 30 9. A cushion according to claim 8, wherein the individual layers have different degrees of hardness.

- 6 -

10. Use of the cushions according to any one of the preceding claims as a padding in cycling shorts.

11. Use according to claim 10, wherein the cushions are arranged in the crotch.

5

12. Cycling shorts comprising at least one cushion as a padding according to any one of claims 1 to 9.

10 13. Cycling shorts according to claim 12, wherein the cushions are arranged in the crotch.

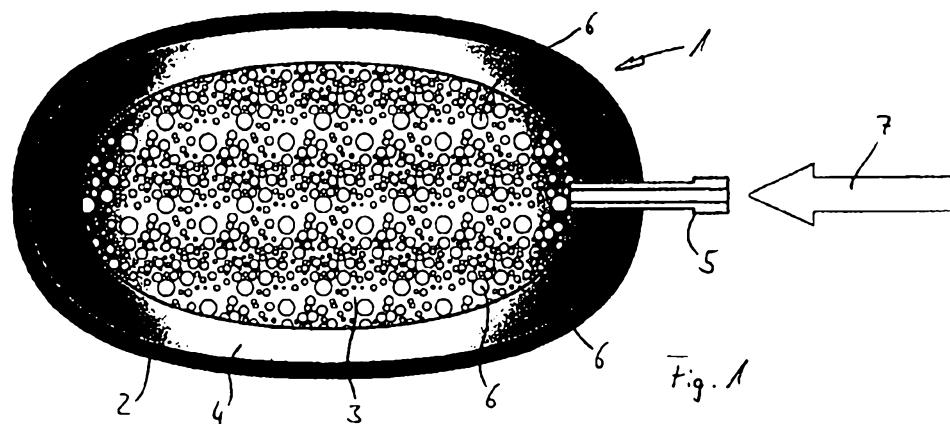


Fig. 1

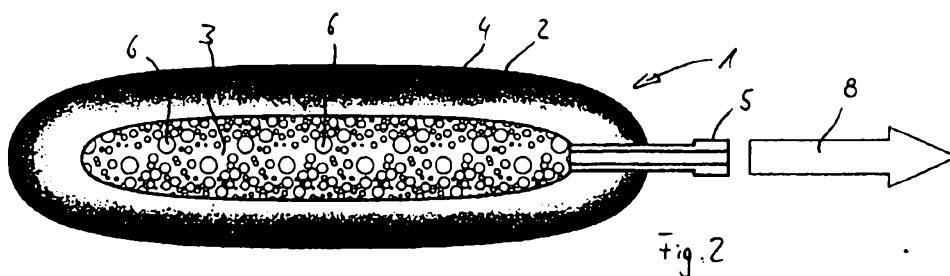


Fig. 2