实用新型名称
一种用于叶片成形的扭转炉

摘要
本实用新型公开了一种用于叶片成形的扭转炉，其包括炉架、炉体，真空炉胆，上炉盖，下炉盖，上扭转轴组件，下扭转轴组件，升降平台，真空泵，控制器以及气体制保护系统。所述真空炉胆设置于所述炉体内与所述真空泵及气体制保护系统相连。所述真空炉胆的上下对应设置有上、下炉盖，所述上扭转轴组件设置于上炉盖上，所述升降平台可上下移动地设置于所述炉架上，所述下炉盖固定于所述升降平台上。所述下扭转轴组件设置于下炉盖上。所述用于叶片成形的扭转炉可采用通用夹具加工多种叶片，尤其适用于小批量的产品试制，替换叶片加工，相比传统的模锻加工，无需模锻模具，大幅节约成本，缩短制造周期，剩余加工余量较少。
1. 一种用于叶片成形的扭转炉，其包括炉架、炉体、真空炉胆、上炉盖、下炉盖、上扭转轴组件、下扭转轴组件、升降平台、真空泵、控制器以及气体保护系统，其特征在于，所述炉架上设置有炉体，所述真空炉胆设置于所述炉体内与所述真空泵及气体保护系统相连，所述真空炉胆的上下方对应设置有上、下炉盖，所述上扭转轴组件设置于上炉盖上，其包括固定于所述上炉盖上滑台，所述滑台上固定有安装架，所述安装架上设置有上扭转轴和第一驱动组件，所述上扭转轴穿过上炉盖伸入真空炉胆内，所述滑台由第一驱动组件驱动上下移动，所述第一驱动组件连接上扭转轴驱动其转动，所述炉架上于所述炉体的下方设置有若干根滑轨，所述升降平台可滑动地设置于所述滑轨上，所述下炉盖固定于所述升降平台上，所述升降平台由第二驱动组件驱动其升降，所述下扭转轴组件包括下扭转轴和旋转驱动装置，所述下扭转轴穿设于所述下炉盖上，所述旋转驱动装置连接下扭转轴。

2. 根据权利要求1所述的用于叶片成形的扭转炉，其特征在于，所述上扭转轴与安装架之间采用0型橡胶圈及高温硅脂密封，所述安装架与上炉盖之间采用波纹管连接。

3. 根据权利要求1所述的用于叶片成形的扭转炉，其特征在于，所述上、下炉盖与真空炉胆之间采用双层密封圈密封，密封槽外有冷却水循环腔。

4. 根据权利要求1所述的用于叶片成形的扭转炉，其特征在于，所述上、下炉盖和上、下扭转轴均配置有冷却系统，所述冷却系统由冷水机、水冷却和相应的冷却水路组成。

5. 根据权利要求4所述的用于叶片成形的扭转炉，其特征在于，所述气体保护系统包括压力传感器、氧含量传感器、电磁阀、流量计以及相对应的管线，所述压力传感器位于靠近真空泵的管线位置，所述氧含量传感器位于上炉盖的顶部，炉内气体经上炉盖顶部的冷却系统冷却后到达氧传感器。

6. 根据权利要求1所述的用于叶片成形的扭转炉，其特征在于，所述上炉盖与真空炉胆之间采用销孔定位，螺栓固定，双层密封圈密封。

7. 根据权利要求1所述的用于叶片成形的扭转炉，其特征在于，所述下炉盖上设置有两个锥形定位销与真空炉胆上的销孔配合定位。

8. 根据权利要求1所述的用于叶片成形的扭转炉，其特征在于，所述第二驱动组件包括伺服电机，所述伺服电机的通过链轮和链条组成的传动机构驱动升降平台做升降动作。
一种用于叶片成形的扭转炉

技术领域
[0001] 本实用新型属于叶片加工领域，尤其涉及一种用于叶片成形的扭转炉。

背景技术
[0002] 在汽轮机、燃气轮机、航空发动机、烟气轮机、压缩机等机组在运行过程中会出现叶片损坏的情况，对于一些老旧机型已停产或无备品叶片，单片叶片损坏需要重新加工新叶片替换，需要重新制作模锻所需模具，成本很高。同样对于小批量新品试制，也存在同样的问题。
[0003] 除此之外，对于无法采用传统锻造方法成形的，带有内部空心结构的叶片，无论是三层瓦楞型结构还是层状结构工艺，都是在平板状态下通过扩散连接成形。由于平板毛坯与成品叶片之间扭转角度差异很大，毛坯在难以在气胀模具中放置定位。某些工艺采用螺变的方式成形出带扭转的形状，但这种方法效率低，成形温度高，材料性能下降较明显。

实用新型内容
[0004] 本实用新型的目的在于提供一种用于叶片成形的扭转炉，其具有节约成本、制造周期短及加工余量小的特点，以解决现有技术叶片加工过程中存在的上述问题。
[0005] 为达此目的，本实用新型采用以下技术方案：
[0006] 一种用于叶片成形的扭转炉，其包括炉架、炉体、真空炉胆、上炉盖、下炉盖、上扭转轴组件、下扭转轴组件、升降平台、真空泵、控制器以及气体保护系统，其中，
[0007] 所述炉架上设置有炉体，所述真空炉胆设置于所述炉体内与所述真空泵及气体保护系统相连，
[0008] 所述真空炉胆的上下方对应设置有上、下炉盖，所述上扭转轴组件设置于上炉盖上，其包括固定于所述上炉盖上滑台，所述滑台上固定有安装座，所述安装座上设置有上扭转轴和第一驱动组件，所述上扭转轴穿过上炉盖伸入真空炉胆内，所述滑台由第一驱动组件驱动上下移动，所述第一驱动组件连接上扭转轴驱动其转动，
[0009] 所述炉架上于所述炉体的下方设置有若干个滑轨，所述升降平台可滑动地设置于所述滑轨上，所述炉盖固定于所述升降平台上，所述升降平台由第二驱动组件驱动其升降，所述下扭转轴组件包括下扭转轴和旋转驱动装置，所述下扭转轴穿设于所述下炉盖上，所述旋转驱动装置连接下扭转轴。
[0010] 特别地，所述上扭转轴与安装座之间采用 O 型橡胶圈及高温硅脂密封，保证旋转过程中的气密性，所述安装座与上炉盖之间采用波纹管连接，保证在扭转轴上下移动过程系统的密封性。
[0011] 特别地，所述上、下炉盖与真空炉胆之间采用双层密封圈密封，密封槽外有冷却水循环腔，避免密封圈高温损坏。
[0012] 特别地，所述上、下炉盖和上、下扭转轴均配有冷却系统，所述冷却系统由冷水机、水冷套和相应的冷却水路组成，以防止密封结构及电气部件因高温损坏。
特别地，所述气体保护系统包括压力传感器、氧含量传感器、电磁阀、流量计以及相对应的管路，所述压力传感器位于靠近真空泵的管线位置，以避免温度过高，所述氧含量传感器位于上炉盖的顶部，炉内气体经过上炉盖顶部的冷却系统冷却后到达氧传感器，防止氧传感器损坏。

特别地，所述上炉盖与真空炉胆之间采用销孔定位，螺栓固定，双层密封圆密封，保证较低的泄漏率。

特别地，所述下炉盖上设置有两个锥形定位销与真空炉胆上的销孔配合定位，确保上、下转轴的相对位置准确。

特别地，所述第二驱动组件包括伺服电机，所述伺服电机的通过链轮和链条组成的传动机构驱动升降平台做升降动作。

本实用新型的有益效果为，所述用于叶片成形的扭转炉可采用通用夹具加工多种叶片，尤其适用于小批量的产品试制，替换叶片加工，相比传统的模锻加工，无需模锻模具，大幅节约成本，缩短制造周期。经过扭转的叶片各档位扭转角度与成品叶片一致，剩余加工余量较少。本扭转炉也可用于带有空心结构叶片的预定位扭转，使得叶片经过扭转后能够较好的贴合气胀模具，利于进一步成形。

附图说明

图 1 是本实用新型具体实施方式 1 提供的用于叶片成形的扭转炉的主视图；图 2 是本实用新型具体实施方式 1 提供的用于叶片成形的扭转炉的侧视图。


具体实施方式

下面结合附图并通过具体实施方式来进行进一步说明本实用新型的技术方案。

请参阅图1和图2所示，本实施例中，一种用于叶片成形的扭转炉包括炉架1、炉体2、真空炉胆3、上炉盖4、下炉盖5、上转轴组件、下转轴组件、升降平台6、真空泵7、控制器以及气体保护系统，所述炉架1上设置有炉体2，所述炉体2内采用电热丝0Cr21Al6Nb作为加热元件，采用陶瓷纤维作为保温材料，所述真空炉胆3设置于所述炉体2内与所述真空泵7及气体保护系统相连。

所述真空炉胆3内设置有温度传感器，其上下方对应设置有上炉盖4和下炉盖5。所述上炉盖4和下炉盖5与真空炉胆3之间采用双层密封圈密封，密封槽外有冷却水循环冷却，避免密封圈高温损坏。所述上炉盖4与真空炉胆3之间采用销孔定位，螺栓固定，双层密封圈密封，保证较低的泄漏率。所述上转轴组件设置于上炉盖4上，其包括固定于所述上炉盖4上的滑台8，所述滑台8上固定有安装座9，所述安装座9上设置有上转轴10、减速器和伺服电机，所述上转轴10穿过上炉盖4伸入真空炉胆3内，所述滑台8由减速器和伺服电机驱动其上下移动，所述伺服电机和减速器连接上转轴10驱动其转动，所述上转轴10与安装座9之间采用0型橡胶圈及高硅胶密封，保证旋转过程中的气密性，所述安装座9与上炉盖4之间采用波纹管连接，保证在扭转轴上下移动过程系统的密封性。
所述炉架 1 上于所述炉体 2 的下方设置有若干根滑轨 11, 所述升降平台 6 可滑动地设置于所述滑轨 11 上, 所述下炉盖 5 固定于所述升降平台 6 上, 所述升降平台 6 由伺服电机通过链轮链条驱动其沿滑轨 11 升降移动, 所述下扭转轴组件包括下扭转轴 12 和伺服电机, 所述下扭转轴 12 穿设于所述下炉盖 5 上, 所述伺服电机连接下扭转轴 12 驱动其转动, 所述下炉盖 5 上设置有两个锥形定位销与真空炉胆 3 上的销孔配合定位, 确保上扭转轴 10 和下扭转轴 12 的相对位置准确。

所述上炉盖 4、下炉盖 5、上扭转轴 10 和下扭转轴 12 均配置有冷却系统, 所述冷却系统由冷却水机、水冷套和相应的冷却水路组成, 以防止密封结构及电路部件因高温损坏。

所述气体保护系统包括压力传感器、氧含量传感器 13、保护气体的电磁阀、流量计以及相对应的管线, 所述压力传感器位于靠近真空泵的管线位置, 以避免温度过高, 所述氧含量传感器 13 位于上炉盖 4 的顶部, 炉内气体经过上炉盖 4 顶部的冷却系统冷却后到达氧含量传感器 13, 防止氧传感器损坏。

控制器由 PLC 为主体, 包括电源模块、CPU 模块、热电偶模块、输入模块及输出模块, 来控制所有开关及伺服电机的运动, 由触摸屏显示及进行控制, 可进行编程连续动作, 也可手动控制。

工作时, 首先将需要扭转成形的叶片毛胚安装在下扭转轴 12 的夹紧工装上, 然后升降平台 6 上升, 至限位开关后自动停止, 接下来气动夹钳启动, 下炉盖 5 关闭, 真空阀开启, 气探头上的电磁阀关闭, 真空泵开始工作, 气压传感器测量炉内气压, 达到设定真空度时真空阀关闭, 真空泵 7 关闭, 保护气电磁阀开启, 开始通入保护气, 当压力达到设定值时, 电磁阀关闭, 停止通气。当都达到设定要求时, 冷水机开启, 加热元件通电, 开始加热, 达到设定温度及保温时间后, 上扭转轴 10 下降, 两轴开始按照设定的工艺执行扭转动作。扭转到位后进行快速冷却, 保护气体电磁阀开启, 气探头上方阀门开启, 多路保护气体同时通入, 进行快速冷却。冷却至工艺设定温度后, 气动夹钳开启, 下炉盖 5 随升降平台 6 下降, 随后即可取出叶片。

上述扭转转炉的炉温精确可控, 炉膛均温性好, 可实现等温成形。扭转速度大范围可调, 可按照材料的特点, 选择成形参数。可以精确定位扭转夹具及叶片位置, 能够精确控制旋转角度, 可实现叶片在纵向上的分段扭转, 双轴同时扭转, 使其更为接近最终叶片型面。扭转过程中可实现高纯度惰性气体保护, 防止叶片高温氧化。

以上实施例只是阐述了本实用新型的基本原理和特性, 本实用新型不受上述事例限制, 在不脱离本实用新型精神和范围的前提下, 本实用新型还有各种变化和改变, 这些变化和改变都落入要求保护的本实用新型范围内。本实用新型要求保护范围由所附的权利要求书及其等效物界定。