
USOO8276.149B2

(12) United States Patent (10) Patent No.: US 8,276,149 B2
Burns et al. (45) Date of Patent: Sep. 25, 2012

(54) THREAD LIVELOCK REDUCTION UNIT 6,542.921 B1* 4/2003 Sager T18, 108

(75) Inventors: David W. Burns, Portland, OR (US); K.
S. Venkatraman, Hillsboro, OR (US)

(73) Assignee: Intel Corporation, Santa Clara, CA
(US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 36 days.

(21) Appl. No.: 12/783,469

(22) Filed: May 19, 2010

(65) Prior Publication Data

US 2010/0229172A1 Sep. 9, 2010

Related U.S. Application Data
(63) Continuation of application No. 10/948,878, filed on

Sep. 23, 2004, now Pat. No. 7,748,001.

(51) Int. Cl.
G06F 9/46 (2006.01)
G06F 12/00 (2006.01)
G06F 5/00 (2006.01)

(52) U.S. Cl. 718/103: 718/102; 710/240; 710/244:
712/205: 712/219; 712/228

(58) Field of Classification Search 718/100,
718/102

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

6,085,300 A 7/2000 Sunaga et al.
6.212,544 B1 4/2001 Borkenhagen et al.
6,343,352 B1* 1/2002 Davis et al. T11 158

6,543,002 B1 4/2003 Kahleet al.
6,587,894 B1 7/2003 Stracovsky et al.
6,651,158 B2 11/2003 Burns et al.
6,658.447 B2 12/2003 Cota-Robles
6,968.431 B2 11/2005 Mayfield
7,000,047 B2 * 2/2006 Nguyen et al. T10/200
7,065,596 B2 6/2006 Kulicket al.
7401207 B2 * 7/2008 Kalla et al. 71.2/215
7,434,033 B2 10/2008 Abernathy et al.
7,437.539 B2 10/2008 Abernathy et al.
7,454,600 B2 11/2008 Burns et al.

2002fOO42856 A1 4/2002 Hartwell et al.
2002, 008784.0 A1 7/2002 Kottapalliet al.
2002/0199088 A1 12/2002 Burns et al.
2002/0199089 A1* 12/2002 Burns et al. T12/228

(Continued)

FOREIGN PATENT DOCUMENTS

WO WO2006.034288 A2 3, 2006

OTHER PUBLICATIONS

International Application No. PCT/US2005/033699, PCT Interna
tional Search Report and Written Opinion, Sep. 19, 2006, 16 pages.
International Application No. PCT/US2005/033699, PCT Interna
tional Preliminary Report on Patentability, Apr. 5, 2007. 12 pages.

(Continued)
Primary Examiner — Jennifer To
(74) Attorney, Agent, or Firm — Mnemoglyphics, LLC;
Lawrence M. Mennemeier

(57) ABSTRACT
Method, apparatus and system embodiments to assign prior
ity to a thread when the thread is otherwise unable to proceed
with instruction retirement. For at least one embodiment, the
thread is one of a plurality of active threads in a multiproces
Sor system that includes memory livelock breaker logic and/
or starvation avoidance logic. Other embodiments are also
described and claimed.

20 Claims, 9 Drawing Sheets

Memory livelockbreaker

US 8,276.149 B2
Page 2

2003/0O23658
2003, OO886.10
2003/O154235
2003/O158885
2003. O196141
2004/OO68597
2004/OO78794
2004/0216103
2004/0216106

U.S. PATENT DOCUMENTS

A1 1, 2003
A1 5/2003
A1* 8, 2003
A1 8, 2003
A1 10, 2003
A1 4, 2004
A1 4, 2004
A1* 10, 2004
A1* 10, 2004

Kalafatis et al.
Kohn et al.
Sager TO9, 108
Sager
Shaw
Kulicket al.
Burns et al.
Burky et al. T18, 100
Kalla et al. T18, 100

OTHER PUBLICATIONS
U.S. Appl. No. 10/361,368 "Method and Apparatus for Controlling
the Processing Priority Between Multiple Threads in a Multithreaded
Processor.” David J. Sager, Feb. 10, 2003.
U.S. Appl. No. 10/365.918 "Method and Apparatus for Controlling
the Processing Priority Between Multiple Threads in a Multithreaded
Processor.” David J. Sager, Feb. 10, 2003.
U.S. Appl. No. 09/888,273 "Method and Apparatus for Assigning
Threat Priority in a Processor or the Like,” Burns et al.

* cited by examiner

US 8,276,149 B2 Sheet 1 of 9 Sep. 25, 2012 U.S. Patent

FIG. I.

U.S. Patent Sep. 25, 2012 Sheet 3 of 9 US 8,276,149 B2

Front End 32

Execution Core

Execution
resource(s)

Execution units

FIG. 3

U.S. Patent Sep. 25, 2012 Sheet 4 of 9 US 8,276,149 B2

?n 400 490

Front End 420

462

Out-of-Order ROB
() Execution Core

464

60 166
, LDRB/STRB,

Instruction Queue

FIG. 4

U.S. Patent Sep. 25, 2012 Sheet 5 Of 9 US 8,276,149 B2

500

conditions Special cases
false AND
Special case:
On-core S
miss OR

(Empty ROB Predetermined
+HP lock) number of clock

cycles (Y)

555

ROB empty
and HP lock
on other
thread

Ask arbitrator for -
priority when I or D
on-core cache miss
has lasted for>x

| clock cycles.

Assert stall
on other thread(s) of

processor

508

ROB empty and no longer have
HP lock on another thread

U.S. Patent Sep. 25, 2012 Sheet 6 of 9 US 8,276,149 B2

500 (cont'd)

Nuke
countdown state

Received nuke
request

Request to arbitrator for all
thread, all-core nuke

U.S. Patent Sep. 25, 2012 Sheet 7 Of 9 US 8,276,149 B2

From any state

A TLU disabled OR
B. Reset OR
C. No Active Thread on current Logical Processor OR
D. Other Logical Processor has exclusive access to shared

resources OR
E. Transition: Current Logical Processor has Transitioned out of I

side Starvation OR
F. MLU active for another logical processor OR
G. Nuke asserted for current Logical Processor OR
H. TLU for another Logical Processor is taking corrective action

OR
I. Current Logical Processor is exhibiting greedy behavior OR
J. Current Logical Processor has instructions available for execution

AND is subject to high priority lock
K. Transition: Current Logical Processor has received long-latency

cache missinfo OR
L. Transition: Current Logical Processor has retired at least one

instruction
M. Potential special case AND defeature is true

To State 502

FIG. 7

U.S. Patent Sep. 25, 2012 Sheet 8 of 9 US 8,276,149 B2

804

806

policy to assign
priority to one core

808

Notify all other
cores to nuke

No

814

U.S. Patent Sep. 25, 2012 Sheet 9 Of 9 US 8,276,149 B2

165a

165n 920a Thread 930a

i- livelock
breaker

: : breaker : ---------- N
920m 930n

166

Memory livelockbreaker

FIG. 9

US 8,276,149 B2
1.

THREAD LIVELOCK REDUCTION UNIT

The present patent application is a Continuation of appli
cation Ser. No. 10/948,878, filed Sep. 23, 2004, now U.S. Pat.
No. 7,748,001.

BACKGROUND

1. Technical Field
The present disclosure relates generally to information

processing systems and, more specifically, to detecting and
correcting livelock among a plurality of concurrent threads in
a multi-threaded processing system.

2. Background Art
In order to increase performance of information processing

systems, such as those that include microprocessors, both
hardware and software techniques have been employed. On
the hardware side, microprocessor design approaches to
improve microprocessor performance have included
increased clock speeds, pipelining, branch prediction, Super
Scalar execution, out-of-order execution, and caches. Many
Such approaches have led to increased transistor count, and
have even, in some instances, resulted in transistor count
increasing at a rate greater than the rate of improved perfor
aCC.

Rather than seek to increase performance strictly through
additional transistors, other performance enhancements
involve Software techniques. One software approach that has
been employed to improve processor performance is known
as “multithreading. In Software multithreading, an instruc
tion stream may be divided into multiple instruction streams
that can be executed in parallel. Alternatively, multiple inde
pendent Software streams may be executed in parallel.

In one approach, known as time-slice multithreading or
time-multiplex (“TMUX) multithreading, a single processor
switches between threads after a fixed period of time. In still
another approach, a single processor Switches between
threads upon occurrence of a trigger event, Such as a long
latency cache miss. In this latter approach, known as Switch
on-event multithreading (“SoEMT), only one thread, at
most, is active at a given time.

Increasingly, multithreading is Supported in hardware. For
instance, in one approach, processors in a multi-processor
system, such as a chip multiprocessor (“CMP) system, may
each act on one of the multiple software threads concurrently.
In another approach, referred to as simultaneous multithread
ing (SMT), a single physical processor is made to appear as
multiple logical processors to operating systems and user
programs. For SMT, multiple software threads can be active
and execute simultaneously on a single processor without
Switching. That is, each logical processor maintains a com
plete set of the architecture state, but many other resources of
the physical processor. Such as caches, execution units,
branch predictors, control logic and buses are shared. For
SMT, the instructions from multiple software threads thus
execute concurrently on each logical processor.

For a system that Supports concurrent execution of Soft
ware threads, such as SMT and/or CMP systems, there exists
the possibility that contention for shared resources among
two or more concurrent active threads may prevent at least
one of the threads from making forward progress. This inabil
ity of a thread to make forward progress due to resource
contention with another active thread may be referred to as
“livelock.

BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the present invention may be understood
with reference to the following drawings in which like ele

15

25

35

40

45

55

60

65

2
ments are indicated by like numbers. These drawings are not
intended to be limiting but are instead provided to illustrate
selected embodiments of an apparatus, System and method to
detect and correct livelock among a plurality of concurrent
threads in a multi-threaded processing system.

FIG. 1 is a block diagram of at least one embodiment of a
processor that includes a plurality of thread livelock units,
each to determine forward thread progress for one of a plu
rality of logical processors.

FIG. 2 is a block diagram illustrating at least one embodi
ment of a multithreading system capable of performing dis
closed techniques.

FIG. 3 is a block diagram illustrating a front end and an
execution core for at least one embodiment of a processor that
includes a thread livelock unit for each of a plurality of logical
processors.

FIG. 4 is a block diagram illustrating a memory hierarchy
for at least one embodiment of a processing system that
includes a thread livelock unit for each of a plurality of logical
processors.

FIGS. 5 and 6 are state diagrams illustrating at least one
embodiment of a method for detecting and alleviating live
lock among multiple concurrent threads.

FIG. 7 is a block diagram illustrating reset conditions for
entry into an idle state for the method illustrated in FIGS. 5
and 6.

FIG. 8 is a flowchart illustrating at least on embodiment of
a method for arbitrating livelock priority requests among a
plurality of processors.

FIG. 9 is a block diagram illustrating at least one embodi
ment of livelock breaker logic shared among thread livelock
units and a memory livelock unit.

DETAILED DESCRIPTION

In the following description, numerous specific details
Such as processor types, multithreading environments, and
microarchitectural structures have been set forth to provide a
more thorough understanding of the present invention. It will
be appreciated, however, by one skilled in the art that the
invention may be practiced without Such specific details.
Additionally, some well known structures, circuits, and the
like have not been shown in detail to avoid unnecessarily
obscuring the present invention.

Method, apparatus and system embodiments disclosed
herein provide for detection and avoidance of livelock in a
multithreaded processing system. For at least one disclosed
embodiment, thread livelock units include a mechanism to
track retirement of instructions of a software thread for a
logical processor. Tracking retirement is just one approach for
tracking whether a thread is making forward progress.
Although embodiments discussed herein focus on retirement
of instructions as an indicator of forward progress, one of skill
in the art will recognize that other embodiments may utilize a
different, or additional, indicators to determine whether a
thread is making forward progress. For example, a thread
progress signal or register may be evaluated, advancement of
the instruction pointer may be tracked, or any other progress
indicating signals or indicators may be evaluated.

FIG. 1 illustrates at least one embodiment of a processor
104 and an arbitrator 180 to perform multithreading. The
processor 104 and the arbitrator 180 may reside in a single
chip package 103. The processor 104 may include multiple
logical processors 150a-150n to support concurrent multi
threading. For at least one embodiment, processor 104 uti
lizes its multiple logical processors 150a-150n to provide
SMT processing capability. For such embodiments, each

US 8,276,149 B2
3

logical processor 150a-150n has its own instruction
sequencer (see, for example, 340, FIG. 3). For such embodi
ment, the logical processor 150 maintains its own version of
the architecture state, although execution resources of the
single processor core 104 may be shared among all concur
rent SMT software threads.

For SMT, a plurality of multiple software threads may run
concurrently, each on one of a plurality of logical processors
150. The logical processors 150a-150n may also be inter
changeably referred to herein as “physical threads.” Unless
otherwise specifically noted, the term “thread” as used herein,
when not prefaced with “physical or “software', is meant to
collectively refer to an active logical processor and the asso
ciated Software instruction stream that the logical processor is
executing.

FIG. 1 illustrates that a thread livelock unit (“TLU) 165
165n may be associated with each of the logical processors
150a-150m. For at least one embodiment, the TLU 165 is thus
replicated on a per-thread basis for each physical thread 150a
150m of the processor 104. The TLU 165 for a particular
physical thread 150 may sometimes be referred to herein
simply as the physical threads “TLU.”

FIG. 1 illustrates that the processor 104 may also include a
memory livelock unit (“MLU) 166. A memory livelock unit
166 may 1) detect livelock among memory operations from
concurrent threads for a single processor 104 based on
memory livelock indicators, and 2) may take action to resolve
such livelock.
The operation of the TLU 165 is discussed in greater detail

below in connection with FIGS. 5 through 7. Generally, a
thread livelock unit 165 may 1) determine, based on certain
thread livelock indicators, that the software thread for its
associated logical processor is failing to make forward
progress ("live-locked'), and 2) may take action to resolve
such livelock. For at least one embodiment, the thread live
lock unit 165 determines a lack of forward progress by count
ing the number of cycles since its logical processor has retired
an instruction or has otherwise demonstrated potential for
ward progress. One particular condition, among others, that
the thread livelock unit 165 may detect is referred to as
“instruction starvation.” Instruction starvation is a condition
wherein a first thread may block or unduly delay instruction
fetching for another other thread. As a result, we say that the
other thread is “instruction starved” or I-starved. A thread
experiencing instruction starvation is experiencing an
absence of available instructions for execution it cannot
make forward progress because it has no instructions to retire.
When a thread livelock unit 165 takes action in an attempt

to resolve alivelock, the thread livelock unit 165 is referred to
herein as “active.” A thread livelock unit 165 may become
“active' to perform any of several livelock breaker actions,
which are undertaken in an attempt to stimulate forward
progress of the thread with which the TLU 165 is associated.
For example, a first logical processor's 150 TLU 165 may
take action to request that one or more other logical proces
sors 150 be stalled, or that the microarchitectural state for one
or more other logical processors 150 be reset (sometimes
referred to herein as “nuked'), in response to inability of its
associated logical processor 150 to make forward progress.
Also, for example, an active TLU 165 may invoke a livelock
breaker (see, for example, discussion of shared livelock
breaker 950 in connection with FIG.9, below) to take actions
to alleviate instruction starvation. Also, an active TLU 165
may request priority from the arbitrator 180 if a long-latency
cache miss is detected. Some embodiments that take Such
actions are discussed in further detail below, in connection
With FIGS. 5-7.

10

15

25

30

35

40

45

50

55

60

65

4
Thus, according to one embodiment, the TLU's 165-165m,

along with the arbitrator 180, enforce a priority among the
logical processors 150a-150n and the MLU 166 for a proces
sor 104 in order to detect and alleviate livelock conditions
during execution of SMT software threads. In addition, the
TLU's 165-165n may themselves enforce a priority among
the logical processors 150a-150n in order to detect and alle
viate certain livelock conditions. Finally, for a multi-core
processing system, the arbitrator 180 may also enforce a
priority among multiple cores in order to alleviate thread
livelock. However, invarious different embodiments, some or
all of these features may or may not be present.

FIG. 2 is a block diagram illustrating at least one embodi
ment of a multi-core multithreaded computing system 200
capable of performing the disclosed techniques to detect and
alleviate livelock among a plurality of concurrent threads.
Like elements in FIGS. 1 and 2 bear like reference numerals

FIG. 2 illustrates that the computing system 200 includes at
least one processor core 104a and a memory 202. Memory
202 may store data 240 and instructions 241 for controlling
the operation of the processors 104a-104n. For at least one
embodiment, the processor 104a may be one of a plurality of
processor cores 104a-104n residing in a single chip package
103. The additional processors, including 104n, are optional.
The optional nature of the additional processors is denoted by
ellipses and broken lines in FIG. 2.

FIG. 2 illustrates that, in addition to the processing cores
104a-104n, additional logic 280 may reside on the chip pack
age 103. Such additional logic 280 is sometimes referred to
herein as the “uncore.” The additional logic 280 may include
one or more of a cache 251 and arbitration and control logic
252. The cache 251 may be a last-level shared unified data and
instruction cache that is shared among the processors 104a
104n. The arbitration and control logic 252 may include a
point-to-point communications controller, a global commu
nications queue, and/or arbitration logic 180 (see FIG. 1).
The additional logic 280 may also optionally include an

integrated memory controller 253. The integrated memory
controller 253 may provide an interface to the off-chip
memory 202. For such embodiments, a chipset 255 primarily
supports graphics-related functionality. The chipset 255 may
also provide connectivity with one or more input/output (I/O)
devices 290. For at least one embodiment, chipset 255 may
include one or more chipset devices, with each chipset device
providing separate interface functionality. For example, one
of the chipset devices may support graphics functionality
while another chipset device may support I/O connectivity
and/or interface with a firmware hub (not shown).

For embodiments that do not include an integrated memory
controller 253 in the chip package 103, the chipset 255 may
provide an interface to the off-chip memory 202. For such
embodiments, the chipset 255 may also provide, in addition to
memory control functionality, the graphics, I/O and/or firm
ware functionality described above.

Although embodiments of the system 200 are discussed
herein as having a point-to-point communications controller
as part of the arbitration and control logic 252, such controller
is not required for all embodiments. Indeed, one of the skill in
the art will recognize that embodiments of the livelock detec
tion and correction mechanism discussed herein may be per
formed in a system that employs a multi-drop bus or other
communications topology.

FIG. 2 illustrates that, as is shown in FIG. 1, at least one
embodiment of the one or more processor cores 104a-104n of
the system 200 may be a multithreading core that includes a
TLU 165 for each logical processor 150a-150n, and also
includes a memory livelock unit 166.

US 8,276,149 B2
5

For an embodiment of a processing system 200 that
includes a plurality of processor cores 104a-104n, a TLU for
one of the physical processors 150a-150n on a processor core
104a-104m may signal the arbitration logic 180 if it has taken
corrective action but its associated physical thread 150 still
unable to achieve forward progress in the execution of
instructions for its associated Software thread. In Such cases,
it may be that actions of another processor core 104 are
interfering with the first processor core's 104a ability to make
forward progress. As is explained in further detail below, the
arbitration logic 180 may grant priority to the requesting core
104 and/or may take action to “nuke' the other cores.

Accordingly, the TLU's 165-165n for each processor core
104, along with the MLU's 166 for each core, and the arbi
trator 180 may together form a coordinated livelock reducer.
The livelock reducer may thus include a livelock circuit for
each core 104, where the livelock circuit may include the
TLU's 165-165m and the MLU 166 for the core. As is
described in further detail, below, the livelock reducer may
receive thread progress information about a thread from a first
processor 104a core and may adjust activity of a thread of a
second processor core 104m in response to the thread progress
information about the first thread from the first processor core
104a.
As is explained in further detail below, at least one embodi

ment of the processor 104 may be designed to invoke action
logic of the MLU 166 in response to detection, by a TLU 165,
that a physical thread 150 is unable to make forward progress
for its current instruction stream. MLU 166 logic may be
invoked, for example, if a TLU 165 takes action to alleviate
instruction side (I-side) starvation. (See discussion, below, of
state 604 of FIG. 6).

FIG. 3 is a block diagram illustrating further details for at
least one embodiment of a processor 104 capable of perform
ing disclosed techniques to detect and alleviate livelock con
ditions among a plurality of concurrent threads. The proces
sor 104 may include a front end 320 that prefetches
instructions that are likely to be executed.

For at least one embodiment, the front end 320 includes a
fetch/decode unit 322 that includes logically independent
sequencers 340a-340n for each of one or more logical pro
cessors 150a-150m. The fetch decode unit 322 may fetch
appropriate instructions from an instruction cache (see, for
example, I-cache 444 in FIG. 4). The fetch/decode unit 322
may also include decode logic that decodes the instructions
into a final or intermediate format.
The physical fetch/decode unit 322 thus includes a plural

ity of logically independent sequencers 340a-340m, each cor
responding to a physical thread 150. The sequencer 340 for a
physical thread 150 determines the next instruction of the
associated Software instruction stream (also referred to herein
as a “software thread') to be executed by the physical thread
150. The sequencers 340a-340n may utilize information from
a branch predictor (see 432, FIG. 4) to determine which
instruction is next to be executed.

FIG.3 illustrates that at least one embodiment of processor
104 includes an execution core 330 that prepares instructions
for execution, executes the instructions, and retires the
executed instructions. The execution core 330 may include
out-of-order logic to schedule the instructions for out-of
order execution. The execution core 330 may include one or
more resources 362 that it utilizes to smooth and re-order the
flow of instructions as they flow through the execution pipe
line and are scheduled for execution. These resources 362
may include one or more of aan instruction queue to maintain
unscheduled instructions, memory ordering buffer, load
request buffers to maintain entries for uncompleted load

5

10

15

25

30

35

40

45

50

55

60

65

6
instructions, store request buffers to maintain entries for
uncompleted store instructions, MLU (see 166, FIG. 1), and
the like.
The execution core 330 may include retirement logic that

reorders the instructions, executed in an out-of-order manner,
back to the original program order. Such retirement logic may
include at least one retirement queue 364 to maintain infor
mation for instructions in the execution pipeline until Such
instructions are retired. For at least one embodiment, the
retirement queue 364 may be partitioned among the logical
processors 150a-150n, such that a portion of the retirement
queue is allocated to each logical processor 150a-150m. Alter
natively, a separate retirement queue 364 may be utilized for
each logical processor 150a-150m.
The retirement logic may receive the completion status of

the executed instructions from execution units 360 and may
process the results so that the proper architectural state is
committed (or retired) according to the program order. The
retirement logic may also include thread livelock units 165a
165n. For at least one embodiment, the processor 104
includes separate TLU's 165a-165n for each logical proces
SOr 150-150i.
Of course, one of skill in the art will recognize that the

execution core 330 may process instructions in program order
and need not necessarily provide out-of-order processing. In
such case, the retirement queue 364 is not a reorder buffer, but
is merely a buffer that maintains instructions, in program
order, until such instructions are retired. Similarly, the execu
tion resources 362 for such an in-order processor do not
include structures whose function is to re-order and track
instructions for out-of-order processing.

FIG. 4 is a block diagram illustrating at least one embodi
ment of a multi-threaded out-of-order processing system 400
capable of practicing disclosed techniques. Like elements in
FIG. 4 and FIGS. 1, 2, and/or 3 bear like reference numerals.
FIG. 4 illustrates that the processing system may include a
memory Subsystem 490, a processor 404 and a memory con
troller 453.

FIG. 4 illustrates that the processor 404 may include a front
end 420 along the lines of front end 320 described above in
connection with FIG. 3. Front end 420 supplies instruction
information to an execution core 430. For at least one embodi
ment, the front end 420 may supply the instruction informa
tion to the execution core 430 in program order.
The front end 420 may include a fetch/decode unit 322

having multiple independent logical sequencers 340a-340m,
one for each of multiple logical processors 150a-150m. For at
least one embodiment, the front end 420 prefetches instruc
tions that are likely to be executed. A branch prediction unit
432 may supply branch prediction information in order to
help the frontend 420 determine which instructions are likely
to be executed.
At least one embodiment the execution core 430 prepares

instructions for out-of-order execution, executes the instruc
tions, and retires the executed instructions. The execution
core 430 may include TLU's 165. The execution resources
462 for the processor 404 may include the MLU 166, an
instruction queue, load request buffers and store request buff
CS.

The MLU 166 is designed to alleviate livelock related to
the following design feature: logical processors 150a-150m
may share resources of a memory system 490. Accordingly,
an older (in program order) memory instruction from one
logical processor 150 may be blocked by a younger memory
instruction from another logical processor 150. The MLU 166
is designed to detect and correct this situation. The MLU may

US 8,276,149 B2
7

stall one logical processor So that another logical processor
can complete one or more memory operations.
The execution core 430 may include retirement logic that

reorders the instructions, executed in an out-of-order manner,
back to the original program order in a retirement queue 464,
referred to as a reorder buffer (“ROB'). This retirement logic
receives the completion status of the executed instructions
from the execution units 360. The execution core 430 may
include more than one reorder buffer 464. That is, a portion of
a single partitioned reorder buffer 464 may maintain unretired
instruction information for all logical processors 150a-150n.
Alternatively, a separate reorder buffer 464 may be main
tained for each logical processor 150.

The execution core 430 may also report branch history
information to the branch predictor 432 at the front end 420 of
the processor 404 to impart the latest known-good branch
history information.
As used herein, the term “instruction information' is meant

to refer to basic units of work in a final format that can be
understood and executed by the execution core 430. Instruc
tion information may be stored in a cache 425. The cache 425
may be implemented as an execution instruction cache oran
execution trace cache. For embodiments that utilize an execu
tion instruction cache, “instruction information' includes
instructions that have been fetched from an instruction cache
444. Such fetched instructions may or may not be decoded
into micro-operations before they are stored in the execution
instruction cache. For embodiments that utilize a trace cache,
the term “instruction information' may include traces of
micro-operations that have been decoded from macroinstruc
tions. For embodiments that utilize neither an execution
instruction cache nor trace cache, “instruction information”
may also include raw bytes for instructions that may be stored
in an instruction cache (such as I-cache 444).
The processing system 400 includes a memory Subsystem

490 that may include one or more caches 442, 444 along with
the memory 202. Although not pictured as such in FIG.4, one
skilled in the art will realize that all or part of one or both of
caches 442, 444 may be physically implemented as on-die
caches local to the processor 404. The memory subsystem
490 may be implemented as a memory hierarchy and may
also include an interconnect 453 in order to facilitate the
transfer of information, such as data 240 and/or instructions
241, from memory 202 to the hierarchy levels. One skilled in
the art will recognize that various configurations for a
memory hierarchy may be employed, including non-inclu
sive hierarchy configurations.

It will be apparent to one of skill in the art that, although
only an out-of-order processing system 400 is illustrated in
FIG. 4, the embodiments discussed herein are equally appli
cable to in-order processing systems as well. Such in-order
processing systems typically do not include ROB 464. None
theless, such in-order Systems may still include a retirement
queue (see 364, FIG. 3) in order to track unretired instruc
tions.

FIGS. 5, 6 and 7 together present a state diagram that
illustrate at least one embodiment of a method 500 for deter
mining that a livelock condition exists among a plurality of
concurrent threads and for taking action to alleviate the live
lock condition. For at least one embodiment, a thread livelock
unit, such as TLU 165 illustrated in FIGS. 1-4, may perform
the method 500. The TLU 165 may be a hardware unit that
implements the method 500 as a state machine.

FIG.5 is now discussed with reference to FIGS. 3 and 4. As
way of background for FIG. 5, it is helpful to understand that,
for at least one embodiment of an SMT processor, such as
processors 104 and 404 illustrated in FIGS. 3 and 4, respec

10

15

25

30

35

40

45

50

55

60

65

8
tively, each logical processor 150 maintains a complete set of
the architecture state. In addition, certain features of the pro
cessor, such as a retirement queue 364 or ROB 464, and
execution resources 362, 462, may maintain microarchitec
tural state information for each of the currently active soft
ware threads. Upon certain conditions, an active thread may
be stalled and the microarchitectural state for the thread may
be flushed, or “nuked.” from the SMT logical processor 150.
By stalling and “nuking the microarchitectural state of non
selected logical processors (which may well be making for
ward progress), a selected logical processor may be thus
afforded relief from current beat patterns and may be able to
make forward progress without interference from the non
selected logical processors.

FIG. 5 illustrates that the method 500 includes an idle State
502. FIG. 5 further illustrates that the idle state 502 may be
entered 551 when one or more reset conditions 501 are met. In
order to simplify FIGS. 5 and 6, the arrow 551 between block
501 and state 502 indicates satisfaction of any reset condition
501. One of skill in the art will recognize that, for one or more
of the reset conditions, transition to state 502 may occur from
one of the other states 504,506,508,602, 604,606, illustrated
in FIGS. 5 and 6. However, for the sake of simplicity, arrows
denoting such transitions are not illustrated in FIGS. 5 and 6.

Turning to FIG. 7, one can see at least one embodiment of
the one or more reset conditions 501. FIG. 7 is discussed
herein with reference to FIGS. 4 and 5. For at least one
embodiment, reset conditions 501 may be applied in either a
single-core processing system or a multi-core processing sys
tem. In the following discussion, the term "current logical
processor is meant to refer to the logical processor 150
associated with the TLU 165 performing the method 500 to
determine whether the reset conditions 501 are true. Thus,
although one or more of the other TLU's 165-165m in a
processor 104 may also be concurrently performing the
method 500, the "current logical processor is the logical
processor of interest, as opposed to the other logical proces
sors 150 of a processor 104.

FIG. 7 illustrates that one or more of the reset conditions
501 may become true when the TLU 165 is any other state
illustrated in FIGS. 5 and 6, including states 502,504, 506,
508,602, 606, and 604. If one or more of the reset conditions
501 become true, a transition to state 502 is triggered. As is
stated above, the transition from any other state to state 502 is
subsumed by arrow 551, which indicates transition to idle
state 502 from any other state.

FIG. 7 illustrates that condition A of the reset conditions
501 indicate that a TLU 165 should remain in/return to the
idle State 502 if its TLU 165 has been disabled. Such condi
tion A reflects an assumption that, for at least one embodi
ment, the TLU 165 may be disabled. For at least one embodi
ment, for example, the TLU 165 may be disabled during
execution of an exception-handling routine. During Such rou
tine, which may be performed by microcode or other firm
ware, livelock detection may be disabled. One example of an
exception that might cause a TLU 15 to be disabled is the
assertion of a signal. Such as a stopclock signal, which indi
cates that the chipset (see, e.g., 255, FIG.2) has requested that
the processor 104 transition into a low power state.

FIG. 7 illustrates that condition B of the reset conditions
501 indicate that a TLU 165 should remain in/return to the
idle state 502 if a reset trigger has been detected. Upon detec
tion of such reset trigger, the TLU 165 effectively resets its
livelock determination activity by remaining in/returning to
the idle state 502. For at least one embodiment, a reset trigger
may be activated by a user-initiated event such as activation of
an init pin or a power-down reset.

US 8,276,149 B2

FIG. 7 illustrates that condition C of the reset conditions
501 indicate that a TLU 165 should remain in/return to the
idle state 502 if its associated logical processor 150 is idle and
therefore is not currently attempting to execute a Software
thread. Such condition may be detected by the TLU 165, for
at least one embodiment, by examining a register than main
tains a “thread active indicator for the TLU 165.

FIG. 7 illustrates that condition D of the reset conditions
501 indicate that a TLU 165 should remain in/return to the
idle state 502 if another logical processor 150 of the processor
core 104 is in an exclusive access mode. During exclusive
access mode, one logical processor may be taking action of
which all other logical processors need to be aware. For
example, there may be times when one logical processor is
executing an instruction that effects re-partitioning of a
shared resource, such as the ROB 464. Or, for example, one
logical processor may execute an instruction that makes a
global change Such as setting a cache disable bit in a control
register. In such circumstances, all other logical processors
should stall execution until the exclusive access operation has
been completed. During such time, a stalled TLU 165 should
not expect its logical processor to make forward progress, and
should therefore remain in/return to the idle state 502. For at
least one embodiment, the TLU 165 may determine whether
condition D is met by examining a shared signal (which may
be reflected, for instance, in a microarchitectural register) to
determine whether another logical processor 150 of the pro
cessor 104 is in an exclusive access mode.

FIG. 7 illustrates that condition E of the reset conditions
501 indicate that a TLU 165 should remain in/return to the
idle state 502 if the TLU's 165 logical processor 150 has
transitioned out of the I-side starvation action state 604 (FIG.
6). Such transition indicates that Successful actions (dis
cussed below in connection with state 604) have been taken in
an attempt to alleviate I-side starvation on the current logical
processor 150, and the TLU 165 should therefore return to the
idle state 502 to begin a new livelock detection sequence in
order to give the starvation-avoidance actions time to take
effect.

FIG. 7 further illustrates that condition F of the reset con
ditions 501 indicate that a TLU 165 should remainin/return to
the idle state 502 if the memory livelock unit 166 is currently
active. Via this condition F, the TLU 165 concedes priority to
the memory livelock unit 166. Such prioritization scheme is
useful in order to prevent a livelock that is induced by con
tention between a TLU 165 and the MLU 166. That is, as is
stated above, the MLU 166 may stall one logical processor's
150 memory operation(s) so that another logical processor
can complete one or more memory operations. Without reset
condition F, the stalled logical processor may erroneously
determine that it is unable to make forward progress due to an
undesirable livelock condition. Condition F assures that, in
such situations, the TLU 165 gives priority to the MLU 166.
Accordingly, reset condition Fassures that each TLU 165 and
the MLU 166 are aware of, and work cooperatively with, each
other.

FIG. 7 further illustrates that condition G of the reset con
ditions 501 indicate that a TLU 165 should remainin/return to
the idle state 502 if a “nuke' action has been asserted for its
logical processor. A nuke action for a logical processor 150
has the following result: the current instruction, as well as any
other instructions necessary to fully complete execution of
the current macro-operation, are completed. All further
instruction execution is stalled and all pipelines, and associ
ated microarchitectural state, for the logical processor 150 are
flushed. In this manner, not only is processing for the thread
stalled, but its microarchitectural state is flushed.

5

10

15

25

30

35

40

45

50

55

60

65

10
Condition G for a current logical processor may be true, for

example, if an all-nuke' action has been initiated by another
of the logical processors 150a-150m. Such condition could be
satisfied, for example, if another logical processor has insti
tuted an all-nuke action as a result of completion of state
606. In such case, the current logical processor will, for at
least one embodiment, be stalled and its microarchitectural
state will be flushed; the TLU 165 for the current logical
processor should therefore return to the idle state 502.

Alternatively, condition G could be satisfied for a particu
lar logical processor even if another logical processor has not
completed state 606. Instead, a “nuke' action for the current
logical processor 150 may be initiated by any of several other
events in the processor that are not otherwise associated with
the states of method 500. For example, the “nuke' event could
be asserted as a result of an interrupt on the current logical
processor 150 in order to provide for precise exception-han
dling for an out-of-order processor 104.

FIG. 7 further illustrates that condition H of the reset con
ditions 501 indicates that a TLU 165 should remain in/return
to the idle state 502 if another logical processor's TLU 165
has become “active' and is in the process of taking livelock
breaker action. By virtue of condition H, a second TLU 165 is
designed to yield to a first TLU 165, if the first TLU 165 has
transitioned from a detection stage (see 502, 504,506) to a
stage (see 508,602, 606, 604) for which the first TLU 165 is
“active' in the sense that it takes some type of corrective
action to attempt to alleviate alivelock condition. Satisfaction
of condition H necessitates that each TLU 165 beaware of the
state of the other TLU's 165 on the processor (FIG. 3 illus
trates that, for at least one embodiment, all TLU's 165a-165n
communicate with each other).

There could arise a “tie' situation in which more than one
TLU 165 attempts to transition into an active state during the
same clock cycle. In such case, priority may be given to only
one of the requesting TLU's 165. For example, priority may
be assigned to the lowest-numbered TLU (i.e. 165a has
higher priority than 165b, so 165b goes back to the idle state
502). Alternatively, many other priority selection mecha
nisms may be utilized. For at least one embodiment, the
priority mechanism is enforced by an arbitrator (see, e.g., 180
of FIG. 1). The arbitration policy utilized to assign priority in
Such cases may be, but need not necessarily be, the same
policy utilized at block 806 described in below in connection
with FIG. 8.

FIG. 7 further illustrates that condition I of the reset con
ditions 501 indicate that a TLU 165 should remainin/return to
the idle state 502 if it has exhibited greedy behavior and is
thus likely to be contributing to a livelock condition on
another logical processor 150. Such greedy behavior may be
identified in any of several ways. That is, a TLU 165 should
not necessarily remain in a non-idle state if its logical proces
sor's 150 ROB 364 portion is empty for a reason other than
I-side starvation, such as a processor 150 whose ROB 364
portion is empty because one of its execution resources is full

For example, a logical processor 150 may be exhibiting
greedy behavior by issuing a series of store instructions that
tie up the system's memory bandwidth and cause the store
buffer for the current logical processor 150 to be full of store
instructions. For at least one embodiment, a logical proces
sor's 150 processing of instructions may be stalled until the
execution resource (Such as for example, a store buffer) is no
longer full. During the time that the logical processor 150 is
thus stalled, ROB 364 portion for the current logical proces
Sor may be empty, but another execution resource (i.e., the
store buffer) is full. Thus, for condition I, the greedy behavior
may be identified when the allotted portion of the ROB 364

US 8,276,149 B2
11

for the current logical processor 150 is empty, but its store
buffer (or any other specified execution resource) is full of
retired store instructions whose data has not yet been com
mitted to a cache or memory. In Such case, the current logical
processor 150 returns to the idle state 502 and implicitly
yields priority in case another logical processor's TLU 165
needs to go active.

FIG. 7 further illustrates that condition J of the reset con
ditions 501 indicate that a TLU 165 should remainin/return to
the idle state 502 if the TLU's 165 logical processor has
instructions available for execution and another logical pro
cessor is performing a high-priority lock sequence. A high
priority lock sequence may be, for example, an atomic
instruction. For an atomic instruction, the memory logic of
the processor works only on the locked thread until the locked
operation is completed, no matter how longittakes. This type
of high-priority lock sequence may represent the highest pri
ority in the processor. Accordingly, reset condition Jenforces
this priority by remaining in/returning to the idle state 502 if
another logical processor is currently processing this type of
high-priority lock operation. If the other processor is per
forming a series of high-priority lock operations, such that the
current logical processor 150 cannot execute one of its own
memory instructions for a long period of time, then the MLU
166 will presumably be invoked to allow the current logical
processor to execute its memory instruction. Thus, in light of
competing memory instructions between two logical proces
sors, the MLU 166 can protect one logical processor from
being stalled for an unacceptably long amount of time due to
a series of high-priority locks on another logical processor.

However, reset condition J is not satisfied if the current
logical processor has no instructions to execute (i.e., the cur
rent logical processor's ROB 464 portion is empty). That is, if
another logical processor is currently processing a high-pri
ority lock operation, but the current logical processor's ROB
464 portion is empty, then the TLU 165 does not return to the
idle state 502. If the ROB portion 464 is empty, the current
logical processor has no instructions to process. Thus, the
MLU 166 cannot be relied upon to protect the current logical
processor from being Subject to a series of high-priority lock
operations performed by another logical processor. In Such
case, the TLU 165 is responsible for protecting the current
logical processor from being stalled too long in the face of
Sucha series of high priority lock operations. Accordingly, the
current TLU 165 should proceed to determine whether it
should perform I-side starvation avoidance actions at stage
506, if the current logical processor 150 has an empty ROB
464 portion and there is a high-priority lock in progress on
another thread.

FIG. 7 further illustrates that condition K of the reset con
ditions 501 indicate that a TLU 165 should remainin/return to
the idle state 502 if the current logical processor 150 has
received long-latency data. For at least one embodiment,
condition Kissatisfied when a logical processor that has been
waiting for data or instructions as a result of a cache miss
finally receives the data or instructions. At Such time, the
current logical processor should return to the idle state 502.
This is because, if the current logical processor 150 does not
return to the idle state 502 in response to satisfaction of
condition K, the logical processor 150 might erroneously
proceed to send a cache-miss-related priority request 530 to
the arbitrator 180 (FIGS. 1 and 2) (see discussion of state 506,
below).

FIG. 7 further illustrates that condition L of the reset con
ditions 501 indicate that a TLU 165 should remainin/return to
the idle state 502 if the current logical processor 150 has
retired at least one final-format instruction during the relevant

10

15

25

30

35

40

45

50

55

60

65

12
time frame. For at least one embodiment, the final-format
instruction is a micro-operation, and the relevant time period
is a single clock cycle. If condition L is satisfied, then we say
that the current logical processor 150 has made forward
progress in the execution of its thread instruction stream.
Accordingly, no livelock condition exists, and the TLU 165
should return to or remain in the idle state 502.

FIG. 7 further illustrates that condition M of the reset
conditions 501 indicate that a TLU 165 should remain in/re
turn to the idle state 502 if the ability of the logical processor
to send a priority request 530 to the arbitrator (180, FIGS. 1
and 2) (see discussion of state 506, below) has been disabled.
When the ability of the logical processor 150 to send a priority
request 530 to the arbitrator 180 (FIGS. 1 and 2) is disabled,
we say that a “defeature' is true. Condition M may be satisfied
when 1) any condition that might otherwise lead to sending of
a priority request 530 from state 506 is true and 2) the defea
ture is true. In Such case, even if the conditions for sending the
priority request 530 from state 506 is true, the logical proces
Sor 150 cannot send the request. Accordingly, the logical
processor 150 should remain in/return to the idle state 502,
rather than transitioning to/remaining in the special cases
state 506 (discussed below).

For at least one embodiment, the first part of condition M
(namely, “1) any condition that might otherwise lead to send
ing of a priority request 530 from state 506 is true”) may be
satisfied if the logical processor 150 is experiencing an on
core cache miss (data or instruction) and is waiting for
instructions or data from an off-core source (such as, for
example, off-core shared cache 251 or off-chip memory 202).
Such miss may occur, for example, if 1) a cache miss occurred
for a load instruction, and the load instruction is at retirement,
but cannot retire because the load data is not available on the
processor core 104 (i.e., is not available in any on-core cache
nor in the Load Buffers (LDRBs)). Such miss may also
occur, for example, if 2) the logical processor 150 is experi
encing an on-core miss for an instruction fetch, and is waiting
for the instruction information from an off-core source (such
as, for example, off-core shared cache 251 or off-chip
memory 202), OR 3) the logical processor 150 is experienc
ing an on-core miss for a STA micro-op (which may be a
final-format Store-Address micro-operation related to a Store
macroinstruction) and is therefore waiting for an off-core
retrieval of the memory location indicated by the Store-Ad
dress micro-operation.

Again, such third condition is satisfied if the STA micro-op
is at retirement, but cannot retire because the memory loca
tion (Store-Address) to which the data associated with the
Store instruction is to be written, is not on the processor core
104, either in a cache or the Store Buffers (“STRB’s”). Ordi
narily, any of these three conditions would cause the TLU 165
to transition to the special cases state 506. However, if the
defeature is true, reset condition Mindicates that such tran
sition should not occur, because the ability of the logical
processor 150 to send a priority request 530 under such con
ditions has been disabled.

Returning to FIG. 5, one can see the other states 504, 506
that may be entered by the TLU 165 to determine whether a
livelock condition exists. Such states 504,506, along with the
idle state 502, are referred to herein as “detection' states.
While the TLU 165 is in such a detection state 502,504,506,
it is not considered to be “active” because it is merely moni
toring for certain conditions and is not taking any affirmative
action to attempt to break a livelock. As such, the logical
processor 150, while in one of the detection states 502, 504,
506, will not trigger reset condition H of the reset conditions
501 discussed in connection with FIG. 7, and will therefore

US 8,276,149 B2
13

not cause the other logical processors, see 150a-150n, to
concede priority to the current logical processor 150.

Entry into the two remaining detection states, 504 and 506,
is differentiated by whether or not the condition that has
caused the logical processor 150 to transition out of the idle
state 502 is 1) one that might eventually benefit from sending
of a priority request 530 to the arbitrator 180 (FIGS. 1 and 2)
OR2) the case that the logical processor 150 may be suffering
from I-side starvation but is blocked from taking action by
high-priority lock on another thread (Such conditions are
referred to herein as “special cases'). If so, then the TLU 165
transitions 552 from the idle state 502 to the special cases
state 506. Otherwise, the TLU 165 transitions 553 from the
idle state 502 to the initial counting state 504. Each of these
states 504, 506 is discussed in further detail, separately,
below.

The special cases state 506 is entered 552 from the idle
state 502 when 1) none of the reset conditions 501 are true,
AND 2)

a. the logical processor 150 is experiencing an on-core
cache miss OR

b. the logical processor 150 has an empty ROB 464 but
there is a high-priority (“HP) lock in progress on
another logical processor.

In the latter case (condition 2b), the current logical proces
sor 150 may be experiencing I-side starvation. However, the
current logical processor 150 is also subject to a stall because
another thread is performing a high-priority lock operation.
Accordingly, until the high-priority lock operation is lifted,
the current logical processor 150 should not proceed to any
“active' state.

In the former case, (2a) the logical processor 150 is expe
riencing an on-core cache miss. For at least one embodiment,
Such on-core cache miss may be determined by examining the
three conditions discussed above in connection with condi
tion M of the reset conditions 501: at-retirement load or STA
instruction, or instruction fetch that cannot complete. Of
course, one of skill in the art will realize that such embodi
ment should not be taken to be limiting, and that detection of
an on-core cache miss may be determined for other embodi
ments by evaluating other, or additional, conditions. In any
event, when a logical processor 150 is experiencing an on
core cache miss (and the defeature is not true), then the TLU
165 transitions 552 to the special cases state 506 in order to
allow for sending of a priority request signal 530, to the
arbitrator 180, which is minimally disruptive to other logical
processors, rather than transitioning directly to a more severe
action state, such as stall assertion state 508, which expressly
interferes with processing of other logical processors.

During the special cases state 506, the TLU 165 may utilize
a counter to count the number of clock cycles that have
elapsed since entering the special cases state 506. For alter
native embodiments, any other approach for measuring
elapsed time may be employed rather than, or in addition to,
the counting of clock cycles. After expiration of a predeter
mined number of clock cycles (X), the TLU 165 may assert a
priority request 530. The priority request 530 is issued if 1)
the current logical processor 150 is experiencing a cache
miss, and 2) the predetermined amount of time (X) has
elapsed since the TLU 165 entered this occurrence of the
special cases state 506.
The priority request 530 goes to the arbitrator 180 (FIGS. 1

and 2), and requests that the arbitrator 180 give memory
requests for the current logical processor 150 higher priority
than memory requests from other logical processors (see
150a-150n). Alternatively, the priority request 530 may
request that the arbitrator 180 give memory requests for the

10

15

25

30

35

40

45

50

55

60

65

14
current processor core 104 priority over other processor cores
in a multi-core embodiment (see 104a-104n, FIG. 2). For the
latter embodiment, the priority request 530 is not useful in a
single-core system (see FIG. 1). Accordingly, the optional
nature of a core-specific priority request 530 for a single-core
embodiment is denoted by dotted lines in FIG.5. After issuing
the priority request 530, the TLU 165 may remain in the
special cases state 506 until one of the exit conditions dis
cussed below becomes true.
The logical processor remains 555 in the special cases state

506 as long as the portion of the ROB 464 associated with the
TLU's 165 logical processor 150 is empty, and any other
logical processor, see 150a-150m, for the processor core 104
is performing a high-priority lock operation. If, however, the
TLU 165 determines during the special cases state 506 that
the HP lock-in-progress indicator for another logical proces
sor has transitioned from true to false, then the TLU 165 exits
the special cases state 506 and enters 554 an “active' state, the
stall assertion state 508, during which the current logical
processor 150 may assert a stall to other logical processors.
The initial counting state 504 is thus bypassed if the ROB 464
portion is empty. The transition 554 from state 506 to state
508 implements high-priority processing when the ROB 464
portion is empty because it does not take time to perform the
initial countdown state 504. The countdown takes too long if
the ROB 464 is empty; the logical processor doesn’t have any
instructions in this case, and the TLU 165 is thus designed to
get more instructions into the ROB 464 as soon as possible.
FIG.5 illustrates that the TLU 165 may also transition 556

out of the special cases state 506 if it determines that the
memory livelock unit 166 for its core 104 has been triggered.
In such case, the TLU 165 transitions 556 from the special
cases state 506 to the initial counting state 504. Under such
operation, the TLU 165 concedes temporary priority to the
MLU 166, in order to allow the MLU 166 logic to attempt to
break the potential livelock that is developing as a result of the
long-latency on-core cache miss that the logical processor
150 may be experiencing (see condition 2a, discussed above,
for entry into special cases state 506). During its processing,
the MLU 166 may assign priority to a particular thread. By
conceding priority to the MLU 166 at transition 556, the TLU
165 avoids effectively assigning priority to the current logical
processor while the TLU 166 has assigned priority to a dif
ferent logical processor 150. In this manner, the TLU's 165
and the MLU 166 work together to assign priority to only one
thread at a time. The TLU 165 thus transitions 556 to the
initial counting state 504 in order to allow the MLU 166 the
full predetermined time period Y (see further discussion of
state 504 below) before determining that the MLU 166 has
not been able to alleviate the memory livelock, and that the
current logical processor 150 is still unable to make forward
progress after an acceptable amount of time.

It should be noted that, in accordance with reset condition
K discussed above in connection with FIG. 7, the TLU 165
transitions 551 back to the idle State 502 from the initial
counting state 504 if the MLU 166 is able to successfully
break the memory livelock such that the missed cache infor
mation (data or instructions) is finally received.

It should also be noted that, in accordance with reset con
dition K, transition 551 from special cases state 506 back to
the idle state 502 can also occur without assistance from the
MLU 166 if, as part of normal processor operations, the
requested data or fetched instructions are finally received.
As is stated above, if neither of the special case conditions

exist (on-core cache miss or empty ROB+HP lock) and none
of the reset conditions 501 are true, then the TLU 165 transi
tions 553 from the idle state 502 to the initial counting state

US 8,276,149 B2
15

504. During the initial counting state, the TLU 165 maintains
a timer to determine if the TLU 165 has been in the initial
counting state 504 for a predetermined amount of time, Y.
This predetermined amount of time, Y, may be determined to
reflect that amount of time after which, if the current logical
processor 150 has been unable to make forward progress, it is
assumed that the current logical processor 150 is experienc
ing a livelock condition.

For at least one embodiment, the TLU 165 maintains dur
ing the initial counting state 504 a count-down timer, where
the timer is set to the predetermined amount of time, Y, and
then decrements the counter every clock cycle. If the counter
reaches 0 (or Some other predetermined minimum value), the
logical processor 150 may be in a livelock condition, and
transition to an “active' state may be warranted. The count
down of the timer from the predetermined timer value, Y, to
the predetermined minimum value thus represents, for at least
one embodiment, a predetermined number of clock cycles for
which lack of forward progress will be tolerated.

It should be noted that, if any reset condition 501 becomes
true during the initial counting state 504, the TLU 165 will
transition to the idle state 502 and the counter utilized during
the initial counting state 504 may be re-initialized. One such
reset condition, condition L, is the retirement of a final-format
instruction. If such retirement does not occur during the initial
counting stage 504, then the current logical processor is not
making forward progress in the execution of its instructions.
The other reset conditions, A-K and M, may provide some
other indication of likely forward progress. If none of the reset
conditions occur during the predetermined number of clock
cycles, then the TLU 165 transitions 557 from the initial
counting state 504 to the stall assertion state 508.

FIG. 5 thus illustrates that the stall assertion state 508 may
be entered from either the initial counting state 504 (see
transition 557) or the special cases state 506 (see transition
554). During the stall assertion state 508, the TLU 165 asserts
a stall signal to every logical processor 150a-150n of the
processor 104, except its own logical processor (i.e., the cur
rent logical processor). Such action enforces a priority among
all logical processors 150a-150n for a processor 104. For at
least one embodiment, the stall signal asserted during the stall
assertion state 508 renders the other logical processors (see
150a-150m) unable to issue instructions to the execution units
360 while the stall signal is asserted. The TLU 165 remains in
the stall assertion state, and continues to assert the stall signal
to every other logical processor 150 of the processor 104,
until one of the following exit conditions is met.

FIG. 5 illustrates that at least one embodiment of the TLU
165 may exit 558 the stall assertion state 508 when a prede
termined time period, which may be reflected as a number, Z.
of clock cycles, has expired AND the portion of the ROB 464
associated with the current logical processor is not empty. In
such case, because the appropriate ROB 464 portion is not
empty, the current logical processor 150 is not experiencing
instruction starvation. Nonetheless, the current logical pro
cessor 150 has been asserting a stall signal to all other logical
processors for a period of Z clock cycles and still has been
unable to experience forward progress. Stalling the other
logical processors has not permitted the current logical pro
cessor 150 to make forward progress, and additional action is
therefore required in order to attempt to alleviate the livelock
condition. The TLU 165 thus transitions 558 to State 602 of
FIG. 6 when such exit condition is true.

If, on the other hand, the designated portion of the ROB 464
for the current logical processor 150 is empty, then the first
exit condition for state 508 discussed immediately above is
not true. Since the ROB 464 portion is empty, the current

10

15

25

30

35

40

45

50

55

60

65

16
logical processor 150 may be experiencing instruction star
vation. Accordingly, the if the ROB 464 portion is empty, the
TLU 165 waits a predetermined amount of time, Z, before
transitioning 559 to state 604 of FIG. 6, where the logical
processor 150 may take actions to alleviate instruction star
Vation.

Turning to FIG. 6, which is discussed herein with reference
to FIG. 4, one can see that the I-side starvation actions state
604 may be entered 559 from stall assertion state 508 in
response to its ROB 464 portion being empty for at least the
predetermined amount of time, Z. During the I-side starva
tion actions state 604, the TLU 165 takes one or more actions
to attempt to get more instructions into the current logical
processor's ROB 464 portion. These actions are referred to
herein as starvation avoidance actions. During state 604, the
TLU 165 de-asserts the stall signal, which was asserted dur
ing state 508, to the other logical processor(s) 150a-150n.
During Such assertion, the current logical processor 150 has
failed to make forward progress; the stall has not helped and
the current logical processor 150 is still experiencing a lack of
instructions (i.e., its ROB 464 is still empty). Indeed, at the
entry of state 604 it may be the case that the stall signal
asserted during state 508 has been preventing another logical
processor from completing execution of a macroinstruction,
which may have prevented release of a resource needed by the
current logical processor 150.
At the time of entry into state 604, it is assumed that the

current logical processoris indeed suffering from instruction
side starvation (i.e., it lacks available instructions to execute).
Such starvation may be due to any of several factors. For at
least one embodiment, such factors may include: its instruc
tion fetch request is being blocked at the memory instruction
arbitration logic (not shown); one or more other logical pro
cessor(s) have been performing a series of high priority lock
operations, or the current logical processor's 150 instruction
fetch has repeatedly received a “not acknowledged response
from any structure utilized to process requests to the memory
system.

During the I-side starvation state 604, the TLU 165 may
take the following actions: 1) de-assert the stall signal to all
other logical processors 150a-150n of the processor core 104;
and 2) request that the current logical processor be given
“thread priority.” The “thread priority” request may be made
to thread priority logic (not pictured). When the current logi
cal processor assumes thread priority, the MLU 166 may be
invoked.

Brief reference to FIG. 9 illustrates certain features of the
TLU165 and MLU 166 that may work together during at least
one embodiment of the I-side starvation actions state 604
(FIG. 6). FIG.9 is discussed herein with reference to FIGS. 3,
5 and 6. FIG. 9 illustrates that each TLU 165a-165n may
include a livelock detector 920 and alivelockbreaker 930. For
at least one embodiment, the livelock detector 920 monitors
for the reset conditions 501 and performs the detection stages
502,504,506. The livelock breaker 930 is responsible, for at
least one embodiment, of performing the actions of the
“active' states 508, 602, 604 and 606.

FIG. 9 illustrates that the MLU 166 includes a memory
livelock breaker 940. The memory livelock breaker 940 is
responsible, for at least one embodiment, for taking actions to
alleviate a memory livelock condition, such as a prolonged
on-core cache miss condition as discussed above.

FIG. 9 illustrates that the memory livelock breaker 940 of
the MLU 166 may include shared livelock breaker logic 950.
The shared livelock breaker logic 950 may be invoked during
the I-side starvation action state 604, in response to the cur
rent logical processor gaining “thread priority. The shared

US 8,276,149 B2
17

livelockbreaker logic 950 may beinvoked by the TLU 165 for
any logical processor 150a-150n on the processor core 104.

Returning to FIG. 6, it can be seen that the I-side starvation
actions state 604 may be exited when the logical processor
150 suffering I-side starvation has had thread priority
assigned to it for a contiguous predetermined time N (which
may reflect a number of clock cycles) since the current logical
processor was first given “thread priority. In Such case, the
TLU 165 transitions 651 to nuke State 606.

It should be noted that the transition 651 is made only when
the actions taken during the I-side starvation actions state 604
are unsuccessful. For example, repeated detection of Self
Modifying Code (SMC) initiated by another logical proces
sor my force the starved thread to continually discard and
refetch instructions, thus keeping its ROB 464 portion empty.
However, the I-side starvation avoidance actions taken during
state 604 may well be successful in alleviating the instruction
starvation condition. If so, then instructions will be fetched
and will be sent to the allotted portion of the ROB 464 for the
current logical processor 150. In Such case, the current logical
processor 150 will have, for at least one embodiment, transi
tioned out of an instruction-starvation condition. Accord
ingly, reset condition E (see 501, FIG. 7) will be true, and the
TLU 165 will transition 501 from the I-side starvation actions
state 604 to the idle state 502 (see FIG. 5).

FIG. 6 illustrates nuke countdown state 602 may be entered
558 from stall assertion state 508. During the nuke count
down state 602, again, the TLU 165 de-asserts the stall signal,
which was asserted during state 508, to the other logical
processor(s) 150a-150m. During such assertion, the current
logical processor 150 has failed to make forward progress; the
stall has not helped. Indeed, at the entry of state 602 it may be
the case that the stall signal asserted during state 508 has been
preventing another logical processor 150 from completing
execution of a macroinstruction, which may have prevented
release of a resource needed by the current logical processor
150. However, the stall may have perturbed the timing of the
other logical processors, which may prove beneficial in help
ing the current logical processor 150 make forward progress.
When the nuke countdown state 602 is entered, the current

logical processor 150 may be in a state that will eventually
lead to forward progress. For example, the current logical
processor 150 may be undergoing a memory livelock for
which the MLU 166 is currently active, but needs more time
to complete its livelock-breaker processing. During the nuke
countdown state 602, the TLU 165 waits for a predetermined
amount of time (which may be reflected, for example, as a
count of M cycles) in hopes that the current logical processor
150 will achieve one of the reset conditions 501. For at least
one embodiment, the M and N counts illustrated in FIG. 6
may be the same number, though such equality is not required
for all embodiments.

FIG. 6 illustrates that, for at least one embodiment, the
TLU 165 transitions 652 from the nuke countdown state 602
to the nuke state 606 upon the following condition: The cur
rent logical processor has been assigned “thread priority” and
has held thread priority for a contiguous time frame, M.
During this time, the current logical processor 150, despite its
thread priority, has been unable to make forward thread
progress. As is stated above, the TLU 165 may also transition
651 to the nuke state 606 if the current logical processor is
instruction-starved; that is, if the I-side starvation actions
taken during state 604 were not successful.

During state 606, the TLU 165 issues a core-internal
“nuke' signal to each of the other logical processors (see
150a-150m) of the processor core 104. It is hoped that, as a
result of such action, the current logical processor 150 will

5

10

15

25

30

35

40

45

50

55

60

65

18
now be able to make forward progress. For a single-core
embodiment, such as that illustrated in FIG. 1, processing for
the method 500 may transition 654 to the idle state 502 from
state 606 (see connector “C”).

FIG. 6 illustrates that the nuke state 606 may also be
entered 655, in response to an outside event, rather than as a
result of one of the state transitions discussed above. Such
outside event may be, for instance, receipt of an all-thread
nuke request generated by a TLU 165 on another core at
optional state 608 (discussed below).
From state 606, an optional state transition 653 may occur

if the core-internal all-thread “nuke' signals issued during
state 606 does not result in forward progress for the current
logical processor 150 within a predetermined amount of time,
P. It will be noted that state 608 is denoted with dotted lines in
FIG. 6. Such is the case because transition 653 and state 608
are optional in the sense that they only apply for multi-core
embodiments, such as the embodiment 200 illustrated in FIG.
2. At state 608, an all-core nuke request is sent to the arbitrator
180 (FIGS. 1 and 2). In response to the request generated at
state 608, at least one embodiment of the arbitrator 180 ini
tiates the following actions: all queues maintained by the
arbitrator 180 are drained for all threads 150a-150m (except
the current logical processor) on all cores 104a-140m. Also,
all new all-core nuke requests are blocked (see block 806 of
FIG. 8), except those emanating from the current logical
processor 150. Finally, an all-thread nuke request (see discus
sion of state 508, above) is issued for every other processor
core 104a-104m and is also issued for every other thread
150a-150m (except the current logical processor) on the pro
cessor core 104 associated with the current logical processor
150. (As is stated above, such nuke request, when received by
the logical processors of the other processor cores, may cause
the TLU's 165 for such logical processors to enter state 606—
see above discussion of block 620). From state 608, the TLU
165 returns to the idle state (see connector “D).

FIG. 8 is a flowchart illustrating a method 800 for process
ing all-core nuke requests such as those issued during state
608 for a multi-core embodiment. For at least one embodi
ment, the method 800 may be performed by an arbitrator,
such as arbitrator 180 illustrated in FIGS. 1 and 2. The arbi
trator may be, for at least one embodiment, included as part of
an off-core portion 280 (FIG. 2) of logic referred to herein as
an “uncore.

FIG. 8 illustrates that the method 800 begins at block 802
and proceeds to block 804. If a single all-core nuke request
has been generated (i.e., from a TLU 165 on a first processor
core 104a), then processing proceeds to block 806. As is
described above in connection with the processing associated
with state 608, the requesting core 104a is assigned priority at
block 806, and all subsequent all-core nuke requests from the
remaining cores 104a-104n disregarded.

Processing proceeds from block 806 to block 808. At block
808, an all-thread nuke request is initiated to all other cores
104a-104n, except the core from which the original all-core
nuke request originated. Such request may be received by the
other cores and cause them to transition to the nuke state 606
(see block 620, FIG. 6). Processing then ends at block 814.

If, however, two or more simultaneous all-core nuke
requests are received from multiple cores, then processing
proceeds to block 810 from block 804. At block 810, the
method 800 applies an arbitration policy to select one of the
multiple requesting cores as the priority core. For at least one
embodiment, the requesting core may supply, along with the
nuke request, a core ID to the arbitrator. The arbitrator 180
may then apply a simple selection algorithm, such as select
ing the core with the highest or lowest ID, as the priority core.

US 8,276,149 B2
19

From block 810, processing proceeds to block 808 and then to
block 814, as is described in the preceding paragraph.

The foregoing discussion describes selected embodiments
of methods, systems and apparatuses to coordinate thread
priority among a plurality of threads in order to allow forward
progress in the execution of thread instructions, while also
maintaining priority among livelockbreaker logic, I-side star
Vation avoidance logic, and high-priority lock processing.
The mechanisms described herein may be utilized with
single-core or multi-core multithreading systems. In the pre
ceding description, various aspects of methods, system and
apparatuses have been described. For purposes of explana
tion, specific numbers, examples, systems and configurations
were set forth in order to provide a more thorough under
standing. However, it is apparent to one skilled in the art that
the described method and apparatus may be practiced without
the specific details. In other instances, well-known features
were omitted or simplified in order not to obscure the method
and apparatus.

Embodiments of the methods described herein may be
implemented in hardware, hardware emulation Software or
other software, firmware, or a combination of Such imple
mentation approaches. Embodiments of the invention may be
implemented for a programmable system comprising at least
one processor, a data storage system (including Volatile and
non-volatile memory and/or storage elements), at least one
input device, and at least one output device. For purposes of
this application, a processing system includes any system that
has a processor, Such as, for example, a digital signal proces
Sor (DSP), a microcontroller, an application specific inte
grated circuit (ASIC), or a microprocessor.
A program may be stored on a storage media or device

(e.g., hard disk drive, floppy disk drive, read only memory
(ROM), CD-ROM device, flash memory device, digital ver
satile disk (DVD), or other storage device) readable by a
general or special purpose programmable processing system.
The instructions, accessible to a processor in a processing
system, provide for configuring and operating the processing
system when the storage media or device is read by the
processing system to perform the procedures described
herein. Embodiments of the invention may also be considered
to be implemented as a machine-readable storage medium,
configured for use with a processing system, where the Stor
age medium so configured causes the processing system to
operate in a specific and predefined manner to perform the
functions described herein.
At least one embodiment of an example of such a process

ing system is shown in FIG. 4. Sample system 400 may be
used, for example, to detect livelock conditions and to take
corrective action to attempt to alleviate such conditions.
Sample system 400 is representative of processing systems
based on the Pentium(R), Pentium(R) Pro, PentiumR II, Pen
tium RIII, Pentium(R)4, and Itanium(R) and Itanium(R2 micro
processors available from Intel Corporation, although other
systems (including personal computers (PCs) having other
microprocessors, engineering workstations, personal digital
assistants and other hand-held devices, set-top boxes and the
like) may also be used. For one embodiment, sample system
may execute a version of the WindowsTM operating system
available from Microsoft Corporation, although other oper
ating systems and graphical user interfaces, for example, may
also be used.

Referring to FIG. 4, sample processing system 400 may
include a memory system 490 and a processor 404. Memory
system 490 may store instructions 241 and data 240 for con
trolling the operation of the processor 404.

10

15

25

30

35

40

45

50

55

60

65

20
Memory system 490 is intended as a generalized represen

tation of memory and may include a variety of forms of
memory, such as a hard drive, CD-ROM, random access
memory (RAM), dynamic random access memory (DRAM),
static random access memory (SRAM), flash memory and
related circuitry. Memory system 490 may store instructions
241 and/or data 240 represented by data signals that may be
executed by processor 404. The instructions 241 and/or data
240 may include code for performing any or all of the tech
niques discussed herein.

While particular embodiments of the present invention
have been shown and described, it will be obvious to those
skilled in the art that changes and modifications can be made
without departing from the present invention in its broader
aspects. For example, the counter values X, Y, Z1, Z2, M, N,
P discussed above may be utilized as count-up or count-down
counter values. Each Such counter value may, but need not, be
a different value. For example, for at least one embodiment,
PdM, Pd-N, Z1>Y, Z2DY, P-Z1, Pd-Z2, and X>Z1.
Defaults for such counter values may be set in hardware. For
Some embodiments, default counter values may be program
mable such that, for example, they may be modified by micro
code or other firmware or software code.

Accordingly, one of skill in the art will recognize that
changes and modifications can be made without departing
from the present invention in its broader aspects. The
appended claims are to encompass within their scope all Such
changes and modifications that fall within the true scope of
the present invention.

What is claimed is:
1. A method of assigning priority among a plurality of

threads in a first multi-threaded processor and a memory
livelock unit, the method comprising:

determining if among the memory livelock unit and at least
two threads of the processor, the at least two threads
including a first thread and a set of remaining threads, a
plurality of livelock conditions are satisfied;

determining, based on satisfaction of said plurality of live
lock conditions, whether the first thread is live-locked;

assigning priority to the first thread and not to any of the set
of remaining threads in response to determining the first
thread is live-locked;

determining, based on satisfaction of said plurality of live
lock conditions, whether a memory livelock reset con
dition is true; and

assigning priority to the memory livelock unit and not to
any of said at least two threads in response to determin
ing the memory livelock reset condition is true.

2. The method of claim 1, further comprising:
determining the first thread has been live-locked for at least

a predetermined length of time.
3. The method of claim 1, further comprising:
taking an action to stimulate forward progress of the first

thread.
4. The method of claim3, wherein taking an action further

comprises:
issuing a stall to at least one of the remaining threads.
5. The method of claim3, wherein taking an action further

comprises:
invoking a livelockbreaker in response to determination of

instruction-side starvation.
6. The method of claim 5, further comprises:
evaluating whether a portion of a retirement queue is

empty.

US 8,276,149 B2
21

7. The method of claim3, wherein taking an action further
comprises:

issuing a priority request to an arbitrator in response to a
cache miss.

8. The method of claim3, wherein taking an action further
comprises:

issuing a stall request to a second multi-threaded processor
coupled in a system including the first multi-threaded
processor.

9. The method of claim 1, further comprising:
determining, based on a change in said plurality of livelock

conditions, whether a reset condition is true; and
withdrawing priority from the first thread.
10. A multithreaded processor comprising:
a plurality of threads each having a thread livelock unit to

detect livelock conditions and to monitor reset condi
tions;

a memory livelock unit; and
an arbitrator coupled with the plurality of threads and the
memory livelock unit and based on a determination that
among the memory livelock unit and at least two threads
of the plurality of threads, the at least two threads includ
ing a first thread and a set of remaining threads, a plu
rality of livelock conditions are present, said arbitrator is
to assign priority to the first thread and not to any of the
set of remaining threads in response to determining that
the first thread is live-locked; wherein

based on a determination that said plurality of livelock
conditions includes a memory livelock reset condition,
the arbitrator is to assign priority to the memory livelock
unit and not to any of said at least two threads in response
to determining the memory livelock reset condition is
true.

11. The multithreaded processor of claim 10, wherein
based on a change in which a reset condition becomes true,
said priority is withdrawn from the first thread.

12. The multithreaded processor of claim 10, wherein a
first thread livelock unit of the first thread is activated to take
an action to stimulate forward progress of the first thread in
response to determining that the first thread is live-locked.

13. The multithreaded processor of claim 12, wherein tak
ing an action comprises:

issuing a stall to at least one of the remaining threads.
14. The multithreaded processor of claim 12, wherein tak

ing an action comprises:
invoking a livelockbreaker in response to determination of

instruction-side starvation.

5

10

15

25

30

35

40

45

22
15. The multithreaded processor of claim 14, further com

prises:
evaluating whether a portion of a retirement queue is

empty.
16. The multithreaded processor of claim 12, wherein tak

ing an action comprises:
issuing a priority request to an arbitrator in response to a

cache miss.
17. A computing system comprising:
a system memory; and
a multithreaded processor comprising:

a cache memory to cache data from said system
memory;

a plurality of threads each having a thread livelock unit
to detect livelock conditions and to monitor reset con
ditions;

a memory livelock unit at least to break potential live
lock conditions resulting from a long-latency cache
miss; and

an arbitrator coupled with the plurality of threads and the
memory livelock unit and based on a determination
that among the memory livelock unit and at least two
threads of the plurality of threads, the at least two
threads including a first thread and a set of remaining
threads, a plurality of livelock conditions are present,
said arbitrator is to assign priority to the first thread
and not to any of the set of remaining threads in
response to determining that the first thread is live
locked, wherein

based on a determination that said plurality of livelock
conditions includes a memory livelock condition, the
arbitrator is to assign priority to the memory livelock
unit and not to any of said at least two threads in
response to determining the memory livelock condi
tion is true.

18. The computing system of claim 17, wherein a first
thread livelock unit of the first thread is activated to take an
action to stimulate forward progress of the first thread in
response to determining that the first thread is live-locked.

19. The computing system of claim 18, wherein taking an
action comprises:

issuing a stall to at least one of the remaining threads.
20. The computing system of claim 18, wherein taking an

action comprises:
invoking a livelockbreaker in response to determination of

instruction-side starvation.

k k k k k

