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THREAD LIVELOCK REDUCTION UNIT 

The present patent application is a Continuation of appli 
cation Ser. No. 10/948,878, filed Sep. 23, 2004, now U.S. Pat. 
No. 7,748,001. 

BACKGROUND 

1. Technical Field 
The present disclosure relates generally to information 

processing systems and, more specifically, to detecting and 
correcting livelock among a plurality of concurrent threads in 
a multi-threaded processing system. 

2. Background Art 
In order to increase performance of information processing 

systems, such as those that include microprocessors, both 
hardware and software techniques have been employed. On 
the hardware side, microprocessor design approaches to 
improve microprocessor performance have included 
increased clock speeds, pipelining, branch prediction, Super 
Scalar execution, out-of-order execution, and caches. Many 
Such approaches have led to increased transistor count, and 
have even, in some instances, resulted in transistor count 
increasing at a rate greater than the rate of improved perfor 
aCC. 

Rather than seek to increase performance strictly through 
additional transistors, other performance enhancements 
involve Software techniques. One software approach that has 
been employed to improve processor performance is known 
as “multithreading. In Software multithreading, an instruc 
tion stream may be divided into multiple instruction streams 
that can be executed in parallel. Alternatively, multiple inde 
pendent Software streams may be executed in parallel. 

In one approach, known as time-slice multithreading or 
time-multiplex (“TMUX) multithreading, a single processor 
switches between threads after a fixed period of time. In still 
another approach, a single processor Switches between 
threads upon occurrence of a trigger event, Such as a long 
latency cache miss. In this latter approach, known as Switch 
on-event multithreading (“SoEMT), only one thread, at 
most, is active at a given time. 

Increasingly, multithreading is Supported in hardware. For 
instance, in one approach, processors in a multi-processor 
system, such as a chip multiprocessor (“CMP) system, may 
each act on one of the multiple software threads concurrently. 
In another approach, referred to as simultaneous multithread 
ing (SMT), a single physical processor is made to appear as 
multiple logical processors to operating systems and user 
programs. For SMT, multiple software threads can be active 
and execute simultaneously on a single processor without 
Switching. That is, each logical processor maintains a com 
plete set of the architecture state, but many other resources of 
the physical processor. Such as caches, execution units, 
branch predictors, control logic and buses are shared. For 
SMT, the instructions from multiple software threads thus 
execute concurrently on each logical processor. 

For a system that Supports concurrent execution of Soft 
ware threads, such as SMT and/or CMP systems, there exists 
the possibility that contention for shared resources among 
two or more concurrent active threads may prevent at least 
one of the threads from making forward progress. This inabil 
ity of a thread to make forward progress due to resource 
contention with another active thread may be referred to as 
“livelock. 

BRIEF DESCRIPTION OF THE DRAWINGS 

Embodiments of the present invention may be understood 
with reference to the following drawings in which like ele 
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2 
ments are indicated by like numbers. These drawings are not 
intended to be limiting but are instead provided to illustrate 
selected embodiments of an apparatus, System and method to 
detect and correct livelock among a plurality of concurrent 
threads in a multi-threaded processing system. 

FIG. 1 is a block diagram of at least one embodiment of a 
processor that includes a plurality of thread livelock units, 
each to determine forward thread progress for one of a plu 
rality of logical processors. 

FIG. 2 is a block diagram illustrating at least one embodi 
ment of a multithreading system capable of performing dis 
closed techniques. 

FIG. 3 is a block diagram illustrating a front end and an 
execution core for at least one embodiment of a processor that 
includes a thread livelock unit for each of a plurality of logical 
processors. 

FIG. 4 is a block diagram illustrating a memory hierarchy 
for at least one embodiment of a processing system that 
includes a thread livelock unit for each of a plurality of logical 
processors. 

FIGS. 5 and 6 are state diagrams illustrating at least one 
embodiment of a method for detecting and alleviating live 
lock among multiple concurrent threads. 

FIG. 7 is a block diagram illustrating reset conditions for 
entry into an idle state for the method illustrated in FIGS. 5 
and 6. 

FIG. 8 is a flowchart illustrating at least on embodiment of 
a method for arbitrating livelock priority requests among a 
plurality of processors. 

FIG. 9 is a block diagram illustrating at least one embodi 
ment of livelock breaker logic shared among thread livelock 
units and a memory livelock unit. 

DETAILED DESCRIPTION 

In the following description, numerous specific details 
Such as processor types, multithreading environments, and 
microarchitectural structures have been set forth to provide a 
more thorough understanding of the present invention. It will 
be appreciated, however, by one skilled in the art that the 
invention may be practiced without Such specific details. 
Additionally, some well known structures, circuits, and the 
like have not been shown in detail to avoid unnecessarily 
obscuring the present invention. 

Method, apparatus and system embodiments disclosed 
herein provide for detection and avoidance of livelock in a 
multithreaded processing system. For at least one disclosed 
embodiment, thread livelock units include a mechanism to 
track retirement of instructions of a software thread for a 
logical processor. Tracking retirement is just one approach for 
tracking whether a thread is making forward progress. 
Although embodiments discussed herein focus on retirement 
of instructions as an indicator of forward progress, one of skill 
in the art will recognize that other embodiments may utilize a 
different, or additional, indicators to determine whether a 
thread is making forward progress. For example, a thread 
progress signal or register may be evaluated, advancement of 
the instruction pointer may be tracked, or any other progress 
indicating signals or indicators may be evaluated. 

FIG. 1 illustrates at least one embodiment of a processor 
104 and an arbitrator 180 to perform multithreading. The 
processor 104 and the arbitrator 180 may reside in a single 
chip package 103. The processor 104 may include multiple 
logical processors 150a-150n to support concurrent multi 
threading. For at least one embodiment, processor 104 uti 
lizes its multiple logical processors 150a-150n to provide 
SMT processing capability. For such embodiments, each 
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logical processor 150a-150n has its own instruction 
sequencer (see, for example, 340, FIG. 3). For such embodi 
ment, the logical processor 150 maintains its own version of 
the architecture state, although execution resources of the 
single processor core 104 may be shared among all concur 
rent SMT software threads. 

For SMT, a plurality of multiple software threads may run 
concurrently, each on one of a plurality of logical processors 
150. The logical processors 150a-150n may also be inter 
changeably referred to herein as “physical threads.” Unless 
otherwise specifically noted, the term “thread” as used herein, 
when not prefaced with “physical or “software', is meant to 
collectively refer to an active logical processor and the asso 
ciated Software instruction stream that the logical processor is 
executing. 

FIG. 1 illustrates that a thread livelock unit (“TLU) 165 
165n may be associated with each of the logical processors 
150a-150m. For at least one embodiment, the TLU 165 is thus 
replicated on a per-thread basis for each physical thread 150a 
150m of the processor 104. The TLU 165 for a particular 
physical thread 150 may sometimes be referred to herein 
simply as the physical threads “TLU.” 

FIG. 1 illustrates that the processor 104 may also include a 
memory livelock unit (“MLU) 166. A memory livelock unit 
166 may 1) detect livelock among memory operations from 
concurrent threads for a single processor 104 based on 
memory livelock indicators, and 2) may take action to resolve 
such livelock. 
The operation of the TLU 165 is discussed in greater detail 

below in connection with FIGS. 5 through 7. Generally, a 
thread livelock unit 165 may 1) determine, based on certain 
thread livelock indicators, that the software thread for its 
associated logical processor is failing to make forward 
progress ("live-locked'), and 2) may take action to resolve 
such livelock. For at least one embodiment, the thread live 
lock unit 165 determines a lack of forward progress by count 
ing the number of cycles since its logical processor has retired 
an instruction or has otherwise demonstrated potential for 
ward progress. One particular condition, among others, that 
the thread livelock unit 165 may detect is referred to as 
“instruction starvation.” Instruction starvation is a condition 
wherein a first thread may block or unduly delay instruction 
fetching for another other thread. As a result, we say that the 
other thread is “instruction starved” or I-starved. A thread 
experiencing instruction starvation is experiencing an 
absence of available instructions for execution it cannot 
make forward progress because it has no instructions to retire. 
When a thread livelock unit 165 takes action in an attempt 

to resolve alivelock, the thread livelock unit 165 is referred to 
herein as “active.” A thread livelock unit 165 may become 
“active' to perform any of several livelock breaker actions, 
which are undertaken in an attempt to stimulate forward 
progress of the thread with which the TLU 165 is associated. 
For example, a first logical processor's 150 TLU 165 may 
take action to request that one or more other logical proces 
sors 150 be stalled, or that the microarchitectural state for one 
or more other logical processors 150 be reset (sometimes 
referred to herein as “nuked'), in response to inability of its 
associated logical processor 150 to make forward progress. 
Also, for example, an active TLU 165 may invoke a livelock 
breaker (see, for example, discussion of shared livelock 
breaker 950 in connection with FIG.9, below) to take actions 
to alleviate instruction starvation. Also, an active TLU 165 
may request priority from the arbitrator 180 if a long-latency 
cache miss is detected. Some embodiments that take Such 
actions are discussed in further detail below, in connection 
With FIGS. 5-7. 
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4 
Thus, according to one embodiment, the TLU's 165-165m, 

along with the arbitrator 180, enforce a priority among the 
logical processors 150a-150n and the MLU 166 for a proces 
sor 104 in order to detect and alleviate livelock conditions 
during execution of SMT software threads. In addition, the 
TLU's 165-165n may themselves enforce a priority among 
the logical processors 150a-150n in order to detect and alle 
viate certain livelock conditions. Finally, for a multi-core 
processing system, the arbitrator 180 may also enforce a 
priority among multiple cores in order to alleviate thread 
livelock. However, invarious different embodiments, some or 
all of these features may or may not be present. 

FIG. 2 is a block diagram illustrating at least one embodi 
ment of a multi-core multithreaded computing system 200 
capable of performing the disclosed techniques to detect and 
alleviate livelock among a plurality of concurrent threads. 
Like elements in FIGS. 1 and 2 bear like reference numerals 

FIG. 2 illustrates that the computing system 200 includes at 
least one processor core 104a and a memory 202. Memory 
202 may store data 240 and instructions 241 for controlling 
the operation of the processors 104a-104n. For at least one 
embodiment, the processor 104a may be one of a plurality of 
processor cores 104a-104n residing in a single chip package 
103. The additional processors, including 104n, are optional. 
The optional nature of the additional processors is denoted by 
ellipses and broken lines in FIG. 2. 

FIG. 2 illustrates that, in addition to the processing cores 
104a-104n, additional logic 280 may reside on the chip pack 
age 103. Such additional logic 280 is sometimes referred to 
herein as the “uncore.” The additional logic 280 may include 
one or more of a cache 251 and arbitration and control logic 
252. The cache 251 may be a last-level shared unified data and 
instruction cache that is shared among the processors 104a 
104n. The arbitration and control logic 252 may include a 
point-to-point communications controller, a global commu 
nications queue, and/or arbitration logic 180 (see FIG. 1). 
The additional logic 280 may also optionally include an 

integrated memory controller 253. The integrated memory 
controller 253 may provide an interface to the off-chip 
memory 202. For such embodiments, a chipset 255 primarily 
supports graphics-related functionality. The chipset 255 may 
also provide connectivity with one or more input/output (I/O) 
devices 290. For at least one embodiment, chipset 255 may 
include one or more chipset devices, with each chipset device 
providing separate interface functionality. For example, one 
of the chipset devices may support graphics functionality 
while another chipset device may support I/O connectivity 
and/or interface with a firmware hub (not shown). 

For embodiments that do not include an integrated memory 
controller 253 in the chip package 103, the chipset 255 may 
provide an interface to the off-chip memory 202. For such 
embodiments, the chipset 255 may also provide, in addition to 
memory control functionality, the graphics, I/O and/or firm 
ware functionality described above. 

Although embodiments of the system 200 are discussed 
herein as having a point-to-point communications controller 
as part of the arbitration and control logic 252, such controller 
is not required for all embodiments. Indeed, one of the skill in 
the art will recognize that embodiments of the livelock detec 
tion and correction mechanism discussed herein may be per 
formed in a system that employs a multi-drop bus or other 
communications topology. 

FIG. 2 illustrates that, as is shown in FIG. 1, at least one 
embodiment of the one or more processor cores 104a-104n of 
the system 200 may be a multithreading core that includes a 
TLU 165 for each logical processor 150a-150n, and also 
includes a memory livelock unit 166. 
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For an embodiment of a processing system 200 that 
includes a plurality of processor cores 104a-104n, a TLU for 
one of the physical processors 150a-150n on a processor core 
104a-104m may signal the arbitration logic 180 if it has taken 
corrective action but its associated physical thread 150 still 
unable to achieve forward progress in the execution of 
instructions for its associated Software thread. In Such cases, 
it may be that actions of another processor core 104 are 
interfering with the first processor core's 104a ability to make 
forward progress. As is explained in further detail below, the 
arbitration logic 180 may grant priority to the requesting core 
104 and/or may take action to “nuke' the other cores. 

Accordingly, the TLU's 165-165n for each processor core 
104, along with the MLU's 166 for each core, and the arbi 
trator 180 may together form a coordinated livelock reducer. 
The livelock reducer may thus include a livelock circuit for 
each core 104, where the livelock circuit may include the 
TLU's 165-165m and the MLU 166 for the core. As is 
described in further detail, below, the livelock reducer may 
receive thread progress information about a thread from a first 
processor 104a core and may adjust activity of a thread of a 
second processor core 104m in response to the thread progress 
information about the first thread from the first processor core 
104a. 
As is explained in further detail below, at least one embodi 

ment of the processor 104 may be designed to invoke action 
logic of the MLU 166 in response to detection, by a TLU 165, 
that a physical thread 150 is unable to make forward progress 
for its current instruction stream. MLU 166 logic may be 
invoked, for example, if a TLU 165 takes action to alleviate 
instruction side (I-side) starvation. (See discussion, below, of 
state 604 of FIG. 6). 

FIG. 3 is a block diagram illustrating further details for at 
least one embodiment of a processor 104 capable of perform 
ing disclosed techniques to detect and alleviate livelock con 
ditions among a plurality of concurrent threads. The proces 
sor 104 may include a front end 320 that prefetches 
instructions that are likely to be executed. 

For at least one embodiment, the front end 320 includes a 
fetch/decode unit 322 that includes logically independent 
sequencers 340a-340n for each of one or more logical pro 
cessors 150a-150m. The fetch decode unit 322 may fetch 
appropriate instructions from an instruction cache (see, for 
example, I-cache 444 in FIG. 4). The fetch/decode unit 322 
may also include decode logic that decodes the instructions 
into a final or intermediate format. 
The physical fetch/decode unit 322 thus includes a plural 

ity of logically independent sequencers 340a-340m, each cor 
responding to a physical thread 150. The sequencer 340 for a 
physical thread 150 determines the next instruction of the 
associated Software instruction stream (also referred to herein 
as a “software thread') to be executed by the physical thread 
150. The sequencers 340a-340n may utilize information from 
a branch predictor (see 432, FIG. 4) to determine which 
instruction is next to be executed. 

FIG.3 illustrates that at least one embodiment of processor 
104 includes an execution core 330 that prepares instructions 
for execution, executes the instructions, and retires the 
executed instructions. The execution core 330 may include 
out-of-order logic to schedule the instructions for out-of 
order execution. The execution core 330 may include one or 
more resources 362 that it utilizes to smooth and re-order the 
flow of instructions as they flow through the execution pipe 
line and are scheduled for execution. These resources 362 
may include one or more of aan instruction queue to maintain 
unscheduled instructions, memory ordering buffer, load 
request buffers to maintain entries for uncompleted load 
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6 
instructions, store request buffers to maintain entries for 
uncompleted store instructions, MLU (see 166, FIG. 1), and 
the like. 
The execution core 330 may include retirement logic that 

reorders the instructions, executed in an out-of-order manner, 
back to the original program order. Such retirement logic may 
include at least one retirement queue 364 to maintain infor 
mation for instructions in the execution pipeline until Such 
instructions are retired. For at least one embodiment, the 
retirement queue 364 may be partitioned among the logical 
processors 150a-150n, such that a portion of the retirement 
queue is allocated to each logical processor 150a-150m. Alter 
natively, a separate retirement queue 364 may be utilized for 
each logical processor 150a-150m. 
The retirement logic may receive the completion status of 

the executed instructions from execution units 360 and may 
process the results so that the proper architectural state is 
committed (or retired) according to the program order. The 
retirement logic may also include thread livelock units 165a 
165n. For at least one embodiment, the processor 104 
includes separate TLU's 165a-165n for each logical proces 
SOr 150-150i. 
Of course, one of skill in the art will recognize that the 

execution core 330 may process instructions in program order 
and need not necessarily provide out-of-order processing. In 
such case, the retirement queue 364 is not a reorder buffer, but 
is merely a buffer that maintains instructions, in program 
order, until such instructions are retired. Similarly, the execu 
tion resources 362 for such an in-order processor do not 
include structures whose function is to re-order and track 
instructions for out-of-order processing. 

FIG. 4 is a block diagram illustrating at least one embodi 
ment of a multi-threaded out-of-order processing system 400 
capable of practicing disclosed techniques. Like elements in 
FIG. 4 and FIGS. 1, 2, and/or 3 bear like reference numerals. 
FIG. 4 illustrates that the processing system may include a 
memory Subsystem 490, a processor 404 and a memory con 
troller 453. 

FIG. 4 illustrates that the processor 404 may include a front 
end 420 along the lines of front end 320 described above in 
connection with FIG. 3. Front end 420 supplies instruction 
information to an execution core 430. For at least one embodi 
ment, the front end 420 may supply the instruction informa 
tion to the execution core 430 in program order. 
The front end 420 may include a fetch/decode unit 322 

having multiple independent logical sequencers 340a-340m, 
one for each of multiple logical processors 150a-150m. For at 
least one embodiment, the front end 420 prefetches instruc 
tions that are likely to be executed. A branch prediction unit 
432 may supply branch prediction information in order to 
help the frontend 420 determine which instructions are likely 
to be executed. 
At least one embodiment the execution core 430 prepares 

instructions for out-of-order execution, executes the instruc 
tions, and retires the executed instructions. The execution 
core 430 may include TLU's 165. The execution resources 
462 for the processor 404 may include the MLU 166, an 
instruction queue, load request buffers and store request buff 
CS. 

The MLU 166 is designed to alleviate livelock related to 
the following design feature: logical processors 150a-150m 
may share resources of a memory system 490. Accordingly, 
an older (in program order) memory instruction from one 
logical processor 150 may be blocked by a younger memory 
instruction from another logical processor 150. The MLU 166 
is designed to detect and correct this situation. The MLU may 
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stall one logical processor So that another logical processor 
can complete one or more memory operations. 
The execution core 430 may include retirement logic that 

reorders the instructions, executed in an out-of-order manner, 
back to the original program order in a retirement queue 464, 
referred to as a reorder buffer (“ROB'). This retirement logic 
receives the completion status of the executed instructions 
from the execution units 360. The execution core 430 may 
include more than one reorder buffer 464. That is, a portion of 
a single partitioned reorder buffer 464 may maintain unretired 
instruction information for all logical processors 150a-150n. 
Alternatively, a separate reorder buffer 464 may be main 
tained for each logical processor 150. 

The execution core 430 may also report branch history 
information to the branch predictor 432 at the front end 420 of 
the processor 404 to impart the latest known-good branch 
history information. 
As used herein, the term “instruction information' is meant 

to refer to basic units of work in a final format that can be 
understood and executed by the execution core 430. Instruc 
tion information may be stored in a cache 425. The cache 425 
may be implemented as an execution instruction cache oran 
execution trace cache. For embodiments that utilize an execu 
tion instruction cache, “instruction information' includes 
instructions that have been fetched from an instruction cache 
444. Such fetched instructions may or may not be decoded 
into micro-operations before they are stored in the execution 
instruction cache. For embodiments that utilize a trace cache, 
the term “instruction information' may include traces of 
micro-operations that have been decoded from macroinstruc 
tions. For embodiments that utilize neither an execution 
instruction cache nor trace cache, “instruction information” 
may also include raw bytes for instructions that may be stored 
in an instruction cache (such as I-cache 444). 
The processing system 400 includes a memory Subsystem 

490 that may include one or more caches 442, 444 along with 
the memory 202. Although not pictured as such in FIG.4, one 
skilled in the art will realize that all or part of one or both of 
caches 442, 444 may be physically implemented as on-die 
caches local to the processor 404. The memory subsystem 
490 may be implemented as a memory hierarchy and may 
also include an interconnect 453 in order to facilitate the 
transfer of information, such as data 240 and/or instructions 
241, from memory 202 to the hierarchy levels. One skilled in 
the art will recognize that various configurations for a 
memory hierarchy may be employed, including non-inclu 
sive hierarchy configurations. 

It will be apparent to one of skill in the art that, although 
only an out-of-order processing system 400 is illustrated in 
FIG. 4, the embodiments discussed herein are equally appli 
cable to in-order processing systems as well. Such in-order 
processing systems typically do not include ROB 464. None 
theless, such in-order Systems may still include a retirement 
queue (see 364, FIG. 3) in order to track unretired instruc 
tions. 

FIGS. 5, 6 and 7 together present a state diagram that 
illustrate at least one embodiment of a method 500 for deter 
mining that a livelock condition exists among a plurality of 
concurrent threads and for taking action to alleviate the live 
lock condition. For at least one embodiment, a thread livelock 
unit, such as TLU 165 illustrated in FIGS. 1-4, may perform 
the method 500. The TLU 165 may be a hardware unit that 
implements the method 500 as a state machine. 

FIG.5 is now discussed with reference to FIGS. 3 and 4. As 
way of background for FIG. 5, it is helpful to understand that, 
for at least one embodiment of an SMT processor, such as 
processors 104 and 404 illustrated in FIGS. 3 and 4, respec 
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8 
tively, each logical processor 150 maintains a complete set of 
the architecture state. In addition, certain features of the pro 
cessor, such as a retirement queue 364 or ROB 464, and 
execution resources 362, 462, may maintain microarchitec 
tural state information for each of the currently active soft 
ware threads. Upon certain conditions, an active thread may 
be stalled and the microarchitectural state for the thread may 
be flushed, or “nuked.” from the SMT logical processor 150. 
By stalling and “nuking the microarchitectural state of non 
selected logical processors (which may well be making for 
ward progress), a selected logical processor may be thus 
afforded relief from current beat patterns and may be able to 
make forward progress without interference from the non 
selected logical processors. 

FIG. 5 illustrates that the method 500 includes an idle State 
502. FIG. 5 further illustrates that the idle state 502 may be 
entered 551 when one or more reset conditions 501 are met. In 
order to simplify FIGS. 5 and 6, the arrow 551 between block 
501 and state 502 indicates satisfaction of any reset condition 
501. One of skill in the art will recognize that, for one or more 
of the reset conditions, transition to state 502 may occur from 
one of the other states 504,506,508,602, 604,606, illustrated 
in FIGS. 5 and 6. However, for the sake of simplicity, arrows 
denoting such transitions are not illustrated in FIGS. 5 and 6. 

Turning to FIG. 7, one can see at least one embodiment of 
the one or more reset conditions 501. FIG. 7 is discussed 
herein with reference to FIGS. 4 and 5. For at least one 
embodiment, reset conditions 501 may be applied in either a 
single-core processing system or a multi-core processing sys 
tem. In the following discussion, the term "current logical 
processor is meant to refer to the logical processor 150 
associated with the TLU 165 performing the method 500 to 
determine whether the reset conditions 501 are true. Thus, 
although one or more of the other TLU's 165-165m in a 
processor 104 may also be concurrently performing the 
method 500, the "current logical processor is the logical 
processor of interest, as opposed to the other logical proces 
sors 150 of a processor 104. 

FIG. 7 illustrates that one or more of the reset conditions 
501 may become true when the TLU 165 is any other state 
illustrated in FIGS. 5 and 6, including states 502,504, 506, 
508,602, 606, and 604. If one or more of the reset conditions 
501 become true, a transition to state 502 is triggered. As is 
stated above, the transition from any other state to state 502 is 
subsumed by arrow 551, which indicates transition to idle 
state 502 from any other state. 

FIG. 7 illustrates that condition A of the reset conditions 
501 indicate that a TLU 165 should remain in/return to the 
idle State 502 if its TLU 165 has been disabled. Such condi 
tion A reflects an assumption that, for at least one embodi 
ment, the TLU 165 may be disabled. For at least one embodi 
ment, for example, the TLU 165 may be disabled during 
execution of an exception-handling routine. During Such rou 
tine, which may be performed by microcode or other firm 
ware, livelock detection may be disabled. One example of an 
exception that might cause a TLU 15 to be disabled is the 
assertion of a signal. Such as a stopclock signal, which indi 
cates that the chipset (see, e.g., 255, FIG.2) has requested that 
the processor 104 transition into a low power state. 

FIG. 7 illustrates that condition B of the reset conditions 
501 indicate that a TLU 165 should remain in/return to the 
idle state 502 if a reset trigger has been detected. Upon detec 
tion of such reset trigger, the TLU 165 effectively resets its 
livelock determination activity by remaining in/returning to 
the idle state 502. For at least one embodiment, a reset trigger 
may be activated by a user-initiated event such as activation of 
an init pin or a power-down reset. 
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FIG. 7 illustrates that condition C of the reset conditions 
501 indicate that a TLU 165 should remain in/return to the 
idle state 502 if its associated logical processor 150 is idle and 
therefore is not currently attempting to execute a Software 
thread. Such condition may be detected by the TLU 165, for 
at least one embodiment, by examining a register than main 
tains a “thread active indicator for the TLU 165. 

FIG. 7 illustrates that condition D of the reset conditions 
501 indicate that a TLU 165 should remain in/return to the 
idle state 502 if another logical processor 150 of the processor 
core 104 is in an exclusive access mode. During exclusive 
access mode, one logical processor may be taking action of 
which all other logical processors need to be aware. For 
example, there may be times when one logical processor is 
executing an instruction that effects re-partitioning of a 
shared resource, such as the ROB 464. Or, for example, one 
logical processor may execute an instruction that makes a 
global change Such as setting a cache disable bit in a control 
register. In such circumstances, all other logical processors 
should stall execution until the exclusive access operation has 
been completed. During such time, a stalled TLU 165 should 
not expect its logical processor to make forward progress, and 
should therefore remain in/return to the idle state 502. For at 
least one embodiment, the TLU 165 may determine whether 
condition D is met by examining a shared signal (which may 
be reflected, for instance, in a microarchitectural register) to 
determine whether another logical processor 150 of the pro 
cessor 104 is in an exclusive access mode. 

FIG. 7 illustrates that condition E of the reset conditions 
501 indicate that a TLU 165 should remain in/return to the 
idle state 502 if the TLU's 165 logical processor 150 has 
transitioned out of the I-side starvation action state 604 (FIG. 
6). Such transition indicates that Successful actions (dis 
cussed below in connection with state 604) have been taken in 
an attempt to alleviate I-side starvation on the current logical 
processor 150, and the TLU 165 should therefore return to the 
idle state 502 to begin a new livelock detection sequence in 
order to give the starvation-avoidance actions time to take 
effect. 

FIG. 7 further illustrates that condition F of the reset con 
ditions 501 indicate that a TLU 165 should remainin/return to 
the idle state 502 if the memory livelock unit 166 is currently 
active. Via this condition F, the TLU 165 concedes priority to 
the memory livelock unit 166. Such prioritization scheme is 
useful in order to prevent a livelock that is induced by con 
tention between a TLU 165 and the MLU 166. That is, as is 
stated above, the MLU 166 may stall one logical processor's 
150 memory operation(s) so that another logical processor 
can complete one or more memory operations. Without reset 
condition F, the stalled logical processor may erroneously 
determine that it is unable to make forward progress due to an 
undesirable livelock condition. Condition F assures that, in 
such situations, the TLU 165 gives priority to the MLU 166. 
Accordingly, reset condition Fassures that each TLU 165 and 
the MLU 166 are aware of, and work cooperatively with, each 
other. 

FIG. 7 further illustrates that condition G of the reset con 
ditions 501 indicate that a TLU 165 should remainin/return to 
the idle state 502 if a “nuke' action has been asserted for its 
logical processor. A nuke action for a logical processor 150 
has the following result: the current instruction, as well as any 
other instructions necessary to fully complete execution of 
the current macro-operation, are completed. All further 
instruction execution is stalled and all pipelines, and associ 
ated microarchitectural state, for the logical processor 150 are 
flushed. In this manner, not only is processing for the thread 
stalled, but its microarchitectural state is flushed. 
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10 
Condition G for a current logical processor may be true, for 

example, if an all-nuke' action has been initiated by another 
of the logical processors 150a-150m. Such condition could be 
satisfied, for example, if another logical processor has insti 
tuted an all-nuke action as a result of completion of state 
606. In such case, the current logical processor will, for at 
least one embodiment, be stalled and its microarchitectural 
state will be flushed; the TLU 165 for the current logical 
processor should therefore return to the idle state 502. 

Alternatively, condition G could be satisfied for a particu 
lar logical processor even if another logical processor has not 
completed state 606. Instead, a “nuke' action for the current 
logical processor 150 may be initiated by any of several other 
events in the processor that are not otherwise associated with 
the states of method 500. For example, the “nuke' event could 
be asserted as a result of an interrupt on the current logical 
processor 150 in order to provide for precise exception-han 
dling for an out-of-order processor 104. 

FIG. 7 further illustrates that condition H of the reset con 
ditions 501 indicates that a TLU 165 should remain in/return 
to the idle state 502 if another logical processor's TLU 165 
has become “active' and is in the process of taking livelock 
breaker action. By virtue of condition H, a second TLU 165 is 
designed to yield to a first TLU 165, if the first TLU 165 has 
transitioned from a detection stage (see 502, 504,506) to a 
stage (see 508,602, 606, 604) for which the first TLU 165 is 
“active' in the sense that it takes some type of corrective 
action to attempt to alleviate alivelock condition. Satisfaction 
of condition H necessitates that each TLU 165 beaware of the 
state of the other TLU's 165 on the processor (FIG. 3 illus 
trates that, for at least one embodiment, all TLU's 165a-165n 
communicate with each other). 

There could arise a “tie' situation in which more than one 
TLU 165 attempts to transition into an active state during the 
same clock cycle. In such case, priority may be given to only 
one of the requesting TLU's 165. For example, priority may 
be assigned to the lowest-numbered TLU (i.e. 165a has 
higher priority than 165b, so 165b goes back to the idle state 
502). Alternatively, many other priority selection mecha 
nisms may be utilized. For at least one embodiment, the 
priority mechanism is enforced by an arbitrator (see, e.g., 180 
of FIG. 1). The arbitration policy utilized to assign priority in 
Such cases may be, but need not necessarily be, the same 
policy utilized at block 806 described in below in connection 
with FIG. 8. 

FIG. 7 further illustrates that condition I of the reset con 
ditions 501 indicate that a TLU 165 should remainin/return to 
the idle state 502 if it has exhibited greedy behavior and is 
thus likely to be contributing to a livelock condition on 
another logical processor 150. Such greedy behavior may be 
identified in any of several ways. That is, a TLU 165 should 
not necessarily remain in a non-idle state if its logical proces 
sor's 150 ROB 364 portion is empty for a reason other than 
I-side starvation, such as a processor 150 whose ROB 364 
portion is empty because one of its execution resources is full 

For example, a logical processor 150 may be exhibiting 
greedy behavior by issuing a series of store instructions that 
tie up the system's memory bandwidth and cause the store 
buffer for the current logical processor 150 to be full of store 
instructions. For at least one embodiment, a logical proces 
sor's 150 processing of instructions may be stalled until the 
execution resource (Such as for example, a store buffer) is no 
longer full. During the time that the logical processor 150 is 
thus stalled, ROB 364 portion for the current logical proces 
Sor may be empty, but another execution resource (i.e., the 
store buffer) is full. Thus, for condition I, the greedy behavior 
may be identified when the allotted portion of the ROB 364 
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for the current logical processor 150 is empty, but its store 
buffer (or any other specified execution resource) is full of 
retired store instructions whose data has not yet been com 
mitted to a cache or memory. In Such case, the current logical 
processor 150 returns to the idle state 502 and implicitly 
yields priority in case another logical processor's TLU 165 
needs to go active. 

FIG. 7 further illustrates that condition J of the reset con 
ditions 501 indicate that a TLU 165 should remainin/return to 
the idle state 502 if the TLU's 165 logical processor has 
instructions available for execution and another logical pro 
cessor is performing a high-priority lock sequence. A high 
priority lock sequence may be, for example, an atomic 
instruction. For an atomic instruction, the memory logic of 
the processor works only on the locked thread until the locked 
operation is completed, no matter how longittakes. This type 
of high-priority lock sequence may represent the highest pri 
ority in the processor. Accordingly, reset condition Jenforces 
this priority by remaining in/returning to the idle state 502 if 
another logical processor is currently processing this type of 
high-priority lock operation. If the other processor is per 
forming a series of high-priority lock operations, such that the 
current logical processor 150 cannot execute one of its own 
memory instructions for a long period of time, then the MLU 
166 will presumably be invoked to allow the current logical 
processor to execute its memory instruction. Thus, in light of 
competing memory instructions between two logical proces 
sors, the MLU 166 can protect one logical processor from 
being stalled for an unacceptably long amount of time due to 
a series of high-priority locks on another logical processor. 

However, reset condition J is not satisfied if the current 
logical processor has no instructions to execute (i.e., the cur 
rent logical processor's ROB 464 portion is empty). That is, if 
another logical processor is currently processing a high-pri 
ority lock operation, but the current logical processor's ROB 
464 portion is empty, then the TLU 165 does not return to the 
idle state 502. If the ROB portion 464 is empty, the current 
logical processor has no instructions to process. Thus, the 
MLU 166 cannot be relied upon to protect the current logical 
processor from being Subject to a series of high-priority lock 
operations performed by another logical processor. In Such 
case, the TLU 165 is responsible for protecting the current 
logical processor from being stalled too long in the face of 
Sucha series of high priority lock operations. Accordingly, the 
current TLU 165 should proceed to determine whether it 
should perform I-side starvation avoidance actions at stage 
506, if the current logical processor 150 has an empty ROB 
464 portion and there is a high-priority lock in progress on 
another thread. 

FIG. 7 further illustrates that condition K of the reset con 
ditions 501 indicate that a TLU 165 should remainin/return to 
the idle state 502 if the current logical processor 150 has 
received long-latency data. For at least one embodiment, 
condition Kissatisfied when a logical processor that has been 
waiting for data or instructions as a result of a cache miss 
finally receives the data or instructions. At Such time, the 
current logical processor should return to the idle state 502. 
This is because, if the current logical processor 150 does not 
return to the idle state 502 in response to satisfaction of 
condition K, the logical processor 150 might erroneously 
proceed to send a cache-miss-related priority request 530 to 
the arbitrator 180 (FIGS. 1 and 2) (see discussion of state 506, 
below). 

FIG. 7 further illustrates that condition L of the reset con 
ditions 501 indicate that a TLU 165 should remainin/return to 
the idle state 502 if the current logical processor 150 has 
retired at least one final-format instruction during the relevant 
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time frame. For at least one embodiment, the final-format 
instruction is a micro-operation, and the relevant time period 
is a single clock cycle. If condition L is satisfied, then we say 
that the current logical processor 150 has made forward 
progress in the execution of its thread instruction stream. 
Accordingly, no livelock condition exists, and the TLU 165 
should return to or remain in the idle state 502. 

FIG. 7 further illustrates that condition M of the reset 
conditions 501 indicate that a TLU 165 should remain in/re 
turn to the idle state 502 if the ability of the logical processor 
to send a priority request 530 to the arbitrator (180, FIGS. 1 
and 2) (see discussion of state 506, below) has been disabled. 
When the ability of the logical processor 150 to send a priority 
request 530 to the arbitrator 180 (FIGS. 1 and 2) is disabled, 
we say that a “defeature' is true. Condition M may be satisfied 
when 1) any condition that might otherwise lead to sending of 
a priority request 530 from state 506 is true and 2) the defea 
ture is true. In Such case, even if the conditions for sending the 
priority request 530 from state 506 is true, the logical proces 
Sor 150 cannot send the request. Accordingly, the logical 
processor 150 should remain in/return to the idle state 502, 
rather than transitioning to/remaining in the special cases 
state 506 (discussed below). 

For at least one embodiment, the first part of condition M 
(namely, “1) any condition that might otherwise lead to send 
ing of a priority request 530 from state 506 is true”) may be 
satisfied if the logical processor 150 is experiencing an on 
core cache miss (data or instruction) and is waiting for 
instructions or data from an off-core source (such as, for 
example, off-core shared cache 251 or off-chip memory 202). 
Such miss may occur, for example, if 1) a cache miss occurred 
for a load instruction, and the load instruction is at retirement, 
but cannot retire because the load data is not available on the 
processor core 104 (i.e., is not available in any on-core cache 
nor in the Load Buffers (LDRBs)). Such miss may also 
occur, for example, if 2) the logical processor 150 is experi 
encing an on-core miss for an instruction fetch, and is waiting 
for the instruction information from an off-core source (such 
as, for example, off-core shared cache 251 or off-chip 
memory 202), OR 3) the logical processor 150 is experienc 
ing an on-core miss for a STA micro-op (which may be a 
final-format Store-Address micro-operation related to a Store 
macroinstruction) and is therefore waiting for an off-core 
retrieval of the memory location indicated by the Store-Ad 
dress micro-operation. 

Again, such third condition is satisfied if the STA micro-op 
is at retirement, but cannot retire because the memory loca 
tion (Store-Address) to which the data associated with the 
Store instruction is to be written, is not on the processor core 
104, either in a cache or the Store Buffers (“STRB’s”). Ordi 
narily, any of these three conditions would cause the TLU 165 
to transition to the special cases state 506. However, if the 
defeature is true, reset condition Mindicates that such tran 
sition should not occur, because the ability of the logical 
processor 150 to send a priority request 530 under such con 
ditions has been disabled. 

Returning to FIG. 5, one can see the other states 504, 506 
that may be entered by the TLU 165 to determine whether a 
livelock condition exists. Such states 504,506, along with the 
idle state 502, are referred to herein as “detection' states. 
While the TLU 165 is in such a detection state 502,504,506, 
it is not considered to be “active” because it is merely moni 
toring for certain conditions and is not taking any affirmative 
action to attempt to break a livelock. As such, the logical 
processor 150, while in one of the detection states 502, 504, 
506, will not trigger reset condition H of the reset conditions 
501 discussed in connection with FIG. 7, and will therefore 
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not cause the other logical processors, see 150a-150n, to 
concede priority to the current logical processor 150. 

Entry into the two remaining detection states, 504 and 506, 
is differentiated by whether or not the condition that has 
caused the logical processor 150 to transition out of the idle 
state 502 is 1) one that might eventually benefit from sending 
of a priority request 530 to the arbitrator 180 (FIGS. 1 and 2) 
OR2) the case that the logical processor 150 may be suffering 
from I-side starvation but is blocked from taking action by 
high-priority lock on another thread (Such conditions are 
referred to herein as “special cases'). If so, then the TLU 165 
transitions 552 from the idle state 502 to the special cases 
state 506. Otherwise, the TLU 165 transitions 553 from the 
idle state 502 to the initial counting state 504. Each of these 
states 504, 506 is discussed in further detail, separately, 
below. 

The special cases state 506 is entered 552 from the idle 
state 502 when 1) none of the reset conditions 501 are true, 
AND 2) 

a. the logical processor 150 is experiencing an on-core 
cache miss OR 

b. the logical processor 150 has an empty ROB 464 but 
there is a high-priority (“HP) lock in progress on 
another logical processor. 

In the latter case (condition 2b), the current logical proces 
sor 150 may be experiencing I-side starvation. However, the 
current logical processor 150 is also subject to a stall because 
another thread is performing a high-priority lock operation. 
Accordingly, until the high-priority lock operation is lifted, 
the current logical processor 150 should not proceed to any 
“active' state. 

In the former case, (2a) the logical processor 150 is expe 
riencing an on-core cache miss. For at least one embodiment, 
Such on-core cache miss may be determined by examining the 
three conditions discussed above in connection with condi 
tion M of the reset conditions 501: at-retirement load or STA 
instruction, or instruction fetch that cannot complete. Of 
course, one of skill in the art will realize that such embodi 
ment should not be taken to be limiting, and that detection of 
an on-core cache miss may be determined for other embodi 
ments by evaluating other, or additional, conditions. In any 
event, when a logical processor 150 is experiencing an on 
core cache miss (and the defeature is not true), then the TLU 
165 transitions 552 to the special cases state 506 in order to 
allow for sending of a priority request signal 530, to the 
arbitrator 180, which is minimally disruptive to other logical 
processors, rather than transitioning directly to a more severe 
action state, such as stall assertion state 508, which expressly 
interferes with processing of other logical processors. 

During the special cases state 506, the TLU 165 may utilize 
a counter to count the number of clock cycles that have 
elapsed since entering the special cases state 506. For alter 
native embodiments, any other approach for measuring 
elapsed time may be employed rather than, or in addition to, 
the counting of clock cycles. After expiration of a predeter 
mined number of clock cycles (X), the TLU 165 may assert a 
priority request 530. The priority request 530 is issued if 1) 
the current logical processor 150 is experiencing a cache 
miss, and 2) the predetermined amount of time (X) has 
elapsed since the TLU 165 entered this occurrence of the 
special cases state 506. 
The priority request 530 goes to the arbitrator 180 (FIGS. 1 

and 2), and requests that the arbitrator 180 give memory 
requests for the current logical processor 150 higher priority 
than memory requests from other logical processors (see 
150a-150n). Alternatively, the priority request 530 may 
request that the arbitrator 180 give memory requests for the 
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current processor core 104 priority over other processor cores 
in a multi-core embodiment (see 104a-104n, FIG. 2). For the 
latter embodiment, the priority request 530 is not useful in a 
single-core system (see FIG. 1). Accordingly, the optional 
nature of a core-specific priority request 530 for a single-core 
embodiment is denoted by dotted lines in FIG.5. After issuing 
the priority request 530, the TLU 165 may remain in the 
special cases state 506 until one of the exit conditions dis 
cussed below becomes true. 
The logical processor remains 555 in the special cases state 

506 as long as the portion of the ROB 464 associated with the 
TLU's 165 logical processor 150 is empty, and any other 
logical processor, see 150a-150m, for the processor core 104 
is performing a high-priority lock operation. If, however, the 
TLU 165 determines during the special cases state 506 that 
the HP lock-in-progress indicator for another logical proces 
sor has transitioned from true to false, then the TLU 165 exits 
the special cases state 506 and enters 554 an “active' state, the 
stall assertion state 508, during which the current logical 
processor 150 may assert a stall to other logical processors. 
The initial counting state 504 is thus bypassed if the ROB 464 
portion is empty. The transition 554 from state 506 to state 
508 implements high-priority processing when the ROB 464 
portion is empty because it does not take time to perform the 
initial countdown state 504. The countdown takes too long if 
the ROB 464 is empty; the logical processor doesn’t have any 
instructions in this case, and the TLU 165 is thus designed to 
get more instructions into the ROB 464 as soon as possible. 
FIG.5 illustrates that the TLU 165 may also transition 556 

out of the special cases state 506 if it determines that the 
memory livelock unit 166 for its core 104 has been triggered. 
In such case, the TLU 165 transitions 556 from the special 
cases state 506 to the initial counting state 504. Under such 
operation, the TLU 165 concedes temporary priority to the 
MLU 166, in order to allow the MLU 166 logic to attempt to 
break the potential livelock that is developing as a result of the 
long-latency on-core cache miss that the logical processor 
150 may be experiencing (see condition 2a, discussed above, 
for entry into special cases state 506). During its processing, 
the MLU 166 may assign priority to a particular thread. By 
conceding priority to the MLU 166 at transition 556, the TLU 
165 avoids effectively assigning priority to the current logical 
processor while the TLU 166 has assigned priority to a dif 
ferent logical processor 150. In this manner, the TLU's 165 
and the MLU 166 work together to assign priority to only one 
thread at a time. The TLU 165 thus transitions 556 to the 
initial counting state 504 in order to allow the MLU 166 the 
full predetermined time period Y (see further discussion of 
state 504 below) before determining that the MLU 166 has 
not been able to alleviate the memory livelock, and that the 
current logical processor 150 is still unable to make forward 
progress after an acceptable amount of time. 

It should be noted that, in accordance with reset condition 
K discussed above in connection with FIG. 7, the TLU 165 
transitions 551 back to the idle State 502 from the initial 
counting state 504 if the MLU 166 is able to successfully 
break the memory livelock such that the missed cache infor 
mation (data or instructions) is finally received. 

It should also be noted that, in accordance with reset con 
dition K, transition 551 from special cases state 506 back to 
the idle state 502 can also occur without assistance from the 
MLU 166 if, as part of normal processor operations, the 
requested data or fetched instructions are finally received. 
As is stated above, if neither of the special case conditions 

exist (on-core cache miss or empty ROB+HP lock) and none 
of the reset conditions 501 are true, then the TLU 165 transi 
tions 553 from the idle state 502 to the initial counting state 
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504. During the initial counting state, the TLU 165 maintains 
a timer to determine if the TLU 165 has been in the initial 
counting state 504 for a predetermined amount of time, Y. 
This predetermined amount of time, Y, may be determined to 
reflect that amount of time after which, if the current logical 
processor 150 has been unable to make forward progress, it is 
assumed that the current logical processor 150 is experienc 
ing a livelock condition. 

For at least one embodiment, the TLU 165 maintains dur 
ing the initial counting state 504 a count-down timer, where 
the timer is set to the predetermined amount of time, Y, and 
then decrements the counter every clock cycle. If the counter 
reaches 0 (or Some other predetermined minimum value), the 
logical processor 150 may be in a livelock condition, and 
transition to an “active' state may be warranted. The count 
down of the timer from the predetermined timer value, Y, to 
the predetermined minimum value thus represents, for at least 
one embodiment, a predetermined number of clock cycles for 
which lack of forward progress will be tolerated. 

It should be noted that, if any reset condition 501 becomes 
true during the initial counting state 504, the TLU 165 will 
transition to the idle state 502 and the counter utilized during 
the initial counting state 504 may be re-initialized. One such 
reset condition, condition L, is the retirement of a final-format 
instruction. If such retirement does not occur during the initial 
counting stage 504, then the current logical processor is not 
making forward progress in the execution of its instructions. 
The other reset conditions, A-K and M, may provide some 
other indication of likely forward progress. If none of the reset 
conditions occur during the predetermined number of clock 
cycles, then the TLU 165 transitions 557 from the initial 
counting state 504 to the stall assertion state 508. 

FIG. 5 thus illustrates that the stall assertion state 508 may 
be entered from either the initial counting state 504 (see 
transition 557) or the special cases state 506 (see transition 
554). During the stall assertion state 508, the TLU 165 asserts 
a stall signal to every logical processor 150a-150n of the 
processor 104, except its own logical processor (i.e., the cur 
rent logical processor). Such action enforces a priority among 
all logical processors 150a-150n for a processor 104. For at 
least one embodiment, the stall signal asserted during the stall 
assertion state 508 renders the other logical processors (see 
150a-150m) unable to issue instructions to the execution units 
360 while the stall signal is asserted. The TLU 165 remains in 
the stall assertion state, and continues to assert the stall signal 
to every other logical processor 150 of the processor 104, 
until one of the following exit conditions is met. 

FIG. 5 illustrates that at least one embodiment of the TLU 
165 may exit 558 the stall assertion state 508 when a prede 
termined time period, which may be reflected as a number, Z. 
of clock cycles, has expired AND the portion of the ROB 464 
associated with the current logical processor is not empty. In 
such case, because the appropriate ROB 464 portion is not 
empty, the current logical processor 150 is not experiencing 
instruction starvation. Nonetheless, the current logical pro 
cessor 150 has been asserting a stall signal to all other logical 
processors for a period of Z clock cycles and still has been 
unable to experience forward progress. Stalling the other 
logical processors has not permitted the current logical pro 
cessor 150 to make forward progress, and additional action is 
therefore required in order to attempt to alleviate the livelock 
condition. The TLU 165 thus transitions 558 to State 602 of 
FIG. 6 when such exit condition is true. 

If, on the other hand, the designated portion of the ROB 464 
for the current logical processor 150 is empty, then the first 
exit condition for state 508 discussed immediately above is 
not true. Since the ROB 464 portion is empty, the current 
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logical processor 150 may be experiencing instruction star 
vation. Accordingly, the if the ROB 464 portion is empty, the 
TLU 165 waits a predetermined amount of time, Z, before 
transitioning 559 to state 604 of FIG. 6, where the logical 
processor 150 may take actions to alleviate instruction star 
Vation. 

Turning to FIG. 6, which is discussed herein with reference 
to FIG. 4, one can see that the I-side starvation actions state 
604 may be entered 559 from stall assertion state 508 in 
response to its ROB 464 portion being empty for at least the 
predetermined amount of time, Z. During the I-side starva 
tion actions state 604, the TLU 165 takes one or more actions 
to attempt to get more instructions into the current logical 
processor's ROB 464 portion. These actions are referred to 
herein as starvation avoidance actions. During state 604, the 
TLU 165 de-asserts the stall signal, which was asserted dur 
ing state 508, to the other logical processor(s) 150a-150n. 
During Such assertion, the current logical processor 150 has 
failed to make forward progress; the stall has not helped and 
the current logical processor 150 is still experiencing a lack of 
instructions (i.e., its ROB 464 is still empty). Indeed, at the 
entry of state 604 it may be the case that the stall signal 
asserted during state 508 has been preventing another logical 
processor from completing execution of a macroinstruction, 
which may have prevented release of a resource needed by the 
current logical processor 150. 
At the time of entry into state 604, it is assumed that the 

current logical processoris indeed suffering from instruction 
side starvation (i.e., it lacks available instructions to execute). 
Such starvation may be due to any of several factors. For at 
least one embodiment, such factors may include: its instruc 
tion fetch request is being blocked at the memory instruction 
arbitration logic (not shown); one or more other logical pro 
cessor(s) have been performing a series of high priority lock 
operations, or the current logical processor's 150 instruction 
fetch has repeatedly received a “not acknowledged response 
from any structure utilized to process requests to the memory 
system. 

During the I-side starvation state 604, the TLU 165 may 
take the following actions: 1) de-assert the stall signal to all 
other logical processors 150a-150n of the processor core 104; 
and 2) request that the current logical processor be given 
“thread priority.” The “thread priority” request may be made 
to thread priority logic (not pictured). When the current logi 
cal processor assumes thread priority, the MLU 166 may be 
invoked. 

Brief reference to FIG. 9 illustrates certain features of the 
TLU165 and MLU 166 that may work together during at least 
one embodiment of the I-side starvation actions state 604 
(FIG. 6). FIG.9 is discussed herein with reference to FIGS. 3, 
5 and 6. FIG. 9 illustrates that each TLU 165a-165n may 
include a livelock detector 920 and alivelockbreaker 930. For 
at least one embodiment, the livelock detector 920 monitors 
for the reset conditions 501 and performs the detection stages 
502,504,506. The livelock breaker 930 is responsible, for at 
least one embodiment, of performing the actions of the 
“active' states 508, 602, 604 and 606. 

FIG. 9 illustrates that the MLU 166 includes a memory 
livelock breaker 940. The memory livelock breaker 940 is 
responsible, for at least one embodiment, for taking actions to 
alleviate a memory livelock condition, such as a prolonged 
on-core cache miss condition as discussed above. 

FIG. 9 illustrates that the memory livelock breaker 940 of 
the MLU 166 may include shared livelock breaker logic 950. 
The shared livelock breaker logic 950 may be invoked during 
the I-side starvation action state 604, in response to the cur 
rent logical processor gaining “thread priority. The shared 
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livelockbreaker logic 950 may beinvoked by the TLU 165 for 
any logical processor 150a-150n on the processor core 104. 

Returning to FIG. 6, it can be seen that the I-side starvation 
actions state 604 may be exited when the logical processor 
150 suffering I-side starvation has had thread priority 
assigned to it for a contiguous predetermined time N (which 
may reflect a number of clock cycles) since the current logical 
processor was first given “thread priority. In Such case, the 
TLU 165 transitions 651 to nuke State 606. 

It should be noted that the transition 651 is made only when 
the actions taken during the I-side starvation actions state 604 
are unsuccessful. For example, repeated detection of Self 
Modifying Code (SMC) initiated by another logical proces 
sor my force the starved thread to continually discard and 
refetch instructions, thus keeping its ROB 464 portion empty. 
However, the I-side starvation avoidance actions taken during 
state 604 may well be successful in alleviating the instruction 
starvation condition. If so, then instructions will be fetched 
and will be sent to the allotted portion of the ROB 464 for the 
current logical processor 150. In Such case, the current logical 
processor 150 will have, for at least one embodiment, transi 
tioned out of an instruction-starvation condition. Accord 
ingly, reset condition E (see 501, FIG. 7) will be true, and the 
TLU 165 will transition 501 from the I-side starvation actions 
state 604 to the idle state 502 (see FIG. 5). 

FIG. 6 illustrates nuke countdown state 602 may be entered 
558 from stall assertion state 508. During the nuke count 
down state 602, again, the TLU 165 de-asserts the stall signal, 
which was asserted during state 508, to the other logical 
processor(s) 150a-150m. During such assertion, the current 
logical processor 150 has failed to make forward progress; the 
stall has not helped. Indeed, at the entry of state 602 it may be 
the case that the stall signal asserted during state 508 has been 
preventing another logical processor 150 from completing 
execution of a macroinstruction, which may have prevented 
release of a resource needed by the current logical processor 
150. However, the stall may have perturbed the timing of the 
other logical processors, which may prove beneficial in help 
ing the current logical processor 150 make forward progress. 
When the nuke countdown state 602 is entered, the current 

logical processor 150 may be in a state that will eventually 
lead to forward progress. For example, the current logical 
processor 150 may be undergoing a memory livelock for 
which the MLU 166 is currently active, but needs more time 
to complete its livelock-breaker processing. During the nuke 
countdown state 602, the TLU 165 waits for a predetermined 
amount of time (which may be reflected, for example, as a 
count of M cycles) in hopes that the current logical processor 
150 will achieve one of the reset conditions 501. For at least 
one embodiment, the M and N counts illustrated in FIG. 6 
may be the same number, though such equality is not required 
for all embodiments. 

FIG. 6 illustrates that, for at least one embodiment, the 
TLU 165 transitions 652 from the nuke countdown state 602 
to the nuke state 606 upon the following condition: The cur 
rent logical processor has been assigned “thread priority” and 
has held thread priority for a contiguous time frame, M. 
During this time, the current logical processor 150, despite its 
thread priority, has been unable to make forward thread 
progress. As is stated above, the TLU 165 may also transition 
651 to the nuke state 606 if the current logical processor is 
instruction-starved; that is, if the I-side starvation actions 
taken during state 604 were not successful. 

During state 606, the TLU 165 issues a core-internal 
“nuke' signal to each of the other logical processors (see 
150a-150m) of the processor core 104. It is hoped that, as a 
result of such action, the current logical processor 150 will 
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now be able to make forward progress. For a single-core 
embodiment, such as that illustrated in FIG. 1, processing for 
the method 500 may transition 654 to the idle state 502 from 
state 606 (see connector “C”). 

FIG. 6 illustrates that the nuke state 606 may also be 
entered 655, in response to an outside event, rather than as a 
result of one of the state transitions discussed above. Such 
outside event may be, for instance, receipt of an all-thread 
nuke request generated by a TLU 165 on another core at 
optional state 608 (discussed below). 
From state 606, an optional state transition 653 may occur 

if the core-internal all-thread “nuke' signals issued during 
state 606 does not result in forward progress for the current 
logical processor 150 within a predetermined amount of time, 
P. It will be noted that state 608 is denoted with dotted lines in 
FIG. 6. Such is the case because transition 653 and state 608 
are optional in the sense that they only apply for multi-core 
embodiments, such as the embodiment 200 illustrated in FIG. 
2. At state 608, an all-core nuke request is sent to the arbitrator 
180 (FIGS. 1 and 2). In response to the request generated at 
state 608, at least one embodiment of the arbitrator 180 ini 
tiates the following actions: all queues maintained by the 
arbitrator 180 are drained for all threads 150a-150m (except 
the current logical processor) on all cores 104a-140m. Also, 
all new all-core nuke requests are blocked (see block 806 of 
FIG. 8), except those emanating from the current logical 
processor 150. Finally, an all-thread nuke request (see discus 
sion of state 508, above) is issued for every other processor 
core 104a-104m and is also issued for every other thread 
150a-150m (except the current logical processor) on the pro 
cessor core 104 associated with the current logical processor 
150. (As is stated above, such nuke request, when received by 
the logical processors of the other processor cores, may cause 
the TLU's 165 for such logical processors to enter state 606— 
see above discussion of block 620). From state 608, the TLU 
165 returns to the idle state (see connector “D). 

FIG. 8 is a flowchart illustrating a method 800 for process 
ing all-core nuke requests such as those issued during state 
608 for a multi-core embodiment. For at least one embodi 
ment, the method 800 may be performed by an arbitrator, 
such as arbitrator 180 illustrated in FIGS. 1 and 2. The arbi 
trator may be, for at least one embodiment, included as part of 
an off-core portion 280 (FIG. 2) of logic referred to herein as 
an “uncore. 

FIG. 8 illustrates that the method 800 begins at block 802 
and proceeds to block 804. If a single all-core nuke request 
has been generated (i.e., from a TLU 165 on a first processor 
core 104a), then processing proceeds to block 806. As is 
described above in connection with the processing associated 
with state 608, the requesting core 104a is assigned priority at 
block 806, and all subsequent all-core nuke requests from the 
remaining cores 104a-104n disregarded. 

Processing proceeds from block 806 to block 808. At block 
808, an all-thread nuke request is initiated to all other cores 
104a-104n, except the core from which the original all-core 
nuke request originated. Such request may be received by the 
other cores and cause them to transition to the nuke state 606 
(see block 620, FIG. 6). Processing then ends at block 814. 

If, however, two or more simultaneous all-core nuke 
requests are received from multiple cores, then processing 
proceeds to block 810 from block 804. At block 810, the 
method 800 applies an arbitration policy to select one of the 
multiple requesting cores as the priority core. For at least one 
embodiment, the requesting core may supply, along with the 
nuke request, a core ID to the arbitrator. The arbitrator 180 
may then apply a simple selection algorithm, such as select 
ing the core with the highest or lowest ID, as the priority core. 
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From block 810, processing proceeds to block 808 and then to 
block 814, as is described in the preceding paragraph. 

The foregoing discussion describes selected embodiments 
of methods, systems and apparatuses to coordinate thread 
priority among a plurality of threads in order to allow forward 
progress in the execution of thread instructions, while also 
maintaining priority among livelockbreaker logic, I-side star 
Vation avoidance logic, and high-priority lock processing. 
The mechanisms described herein may be utilized with 
single-core or multi-core multithreading systems. In the pre 
ceding description, various aspects of methods, system and 
apparatuses have been described. For purposes of explana 
tion, specific numbers, examples, systems and configurations 
were set forth in order to provide a more thorough under 
standing. However, it is apparent to one skilled in the art that 
the described method and apparatus may be practiced without 
the specific details. In other instances, well-known features 
were omitted or simplified in order not to obscure the method 
and apparatus. 

Embodiments of the methods described herein may be 
implemented in hardware, hardware emulation Software or 
other software, firmware, or a combination of Such imple 
mentation approaches. Embodiments of the invention may be 
implemented for a programmable system comprising at least 
one processor, a data storage system (including Volatile and 
non-volatile memory and/or storage elements), at least one 
input device, and at least one output device. For purposes of 
this application, a processing system includes any system that 
has a processor, Such as, for example, a digital signal proces 
Sor (DSP), a microcontroller, an application specific inte 
grated circuit (ASIC), or a microprocessor. 
A program may be stored on a storage media or device 

(e.g., hard disk drive, floppy disk drive, read only memory 
(ROM), CD-ROM device, flash memory device, digital ver 
satile disk (DVD), or other storage device) readable by a 
general or special purpose programmable processing system. 
The instructions, accessible to a processor in a processing 
system, provide for configuring and operating the processing 
system when the storage media or device is read by the 
processing system to perform the procedures described 
herein. Embodiments of the invention may also be considered 
to be implemented as a machine-readable storage medium, 
configured for use with a processing system, where the Stor 
age medium so configured causes the processing system to 
operate in a specific and predefined manner to perform the 
functions described herein. 
At least one embodiment of an example of such a process 

ing system is shown in FIG. 4. Sample system 400 may be 
used, for example, to detect livelock conditions and to take 
corrective action to attempt to alleviate such conditions. 
Sample system 400 is representative of processing systems 
based on the Pentium(R), Pentium(R) Pro, PentiumR II, Pen 
tium RIII, Pentium(R)4, and Itanium(R) and Itanium(R2 micro 
processors available from Intel Corporation, although other 
systems (including personal computers (PCs) having other 
microprocessors, engineering workstations, personal digital 
assistants and other hand-held devices, set-top boxes and the 
like) may also be used. For one embodiment, sample system 
may execute a version of the WindowsTM operating system 
available from Microsoft Corporation, although other oper 
ating systems and graphical user interfaces, for example, may 
also be used. 

Referring to FIG. 4, sample processing system 400 may 
include a memory system 490 and a processor 404. Memory 
system 490 may store instructions 241 and data 240 for con 
trolling the operation of the processor 404. 
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Memory system 490 is intended as a generalized represen 

tation of memory and may include a variety of forms of 
memory, such as a hard drive, CD-ROM, random access 
memory (RAM), dynamic random access memory (DRAM), 
static random access memory (SRAM), flash memory and 
related circuitry. Memory system 490 may store instructions 
241 and/or data 240 represented by data signals that may be 
executed by processor 404. The instructions 241 and/or data 
240 may include code for performing any or all of the tech 
niques discussed herein. 

While particular embodiments of the present invention 
have been shown and described, it will be obvious to those 
skilled in the art that changes and modifications can be made 
without departing from the present invention in its broader 
aspects. For example, the counter values X, Y, Z1, Z2, M, N, 
P discussed above may be utilized as count-up or count-down 
counter values. Each Such counter value may, but need not, be 
a different value. For example, for at least one embodiment, 
PdM, Pd-N, Z1>Y, Z2DY, P-Z1, Pd-Z2, and X>Z1. 
Defaults for such counter values may be set in hardware. For 
Some embodiments, default counter values may be program 
mable such that, for example, they may be modified by micro 
code or other firmware or software code. 

Accordingly, one of skill in the art will recognize that 
changes and modifications can be made without departing 
from the present invention in its broader aspects. The 
appended claims are to encompass within their scope all Such 
changes and modifications that fall within the true scope of 
the present invention. 

What is claimed is: 
1. A method of assigning priority among a plurality of 

threads in a first multi-threaded processor and a memory 
livelock unit, the method comprising: 

determining if among the memory livelock unit and at least 
two threads of the processor, the at least two threads 
including a first thread and a set of remaining threads, a 
plurality of livelock conditions are satisfied; 

determining, based on satisfaction of said plurality of live 
lock conditions, whether the first thread is live-locked; 

assigning priority to the first thread and not to any of the set 
of remaining threads in response to determining the first 
thread is live-locked; 

determining, based on satisfaction of said plurality of live 
lock conditions, whether a memory livelock reset con 
dition is true; and 

assigning priority to the memory livelock unit and not to 
any of said at least two threads in response to determin 
ing the memory livelock reset condition is true. 

2. The method of claim 1, further comprising: 
determining the first thread has been live-locked for at least 

a predetermined length of time. 
3. The method of claim 1, further comprising: 
taking an action to stimulate forward progress of the first 

thread. 
4. The method of claim3, wherein taking an action further 

comprises: 
issuing a stall to at least one of the remaining threads. 
5. The method of claim3, wherein taking an action further 

comprises: 
invoking a livelockbreaker in response to determination of 

instruction-side starvation. 
6. The method of claim 5, further comprises: 
evaluating whether a portion of a retirement queue is 

empty. 
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7. The method of claim3, wherein taking an action further 
comprises: 

issuing a priority request to an arbitrator in response to a 
cache miss. 

8. The method of claim3, wherein taking an action further 
comprises: 

issuing a stall request to a second multi-threaded processor 
coupled in a system including the first multi-threaded 
processor. 

9. The method of claim 1, further comprising: 
determining, based on a change in said plurality of livelock 

conditions, whether a reset condition is true; and 
withdrawing priority from the first thread. 
10. A multithreaded processor comprising: 
a plurality of threads each having a thread livelock unit to 

detect livelock conditions and to monitor reset condi 
tions; 

a memory livelock unit; and 
an arbitrator coupled with the plurality of threads and the 
memory livelock unit and based on a determination that 
among the memory livelock unit and at least two threads 
of the plurality of threads, the at least two threads includ 
ing a first thread and a set of remaining threads, a plu 
rality of livelock conditions are present, said arbitrator is 
to assign priority to the first thread and not to any of the 
set of remaining threads in response to determining that 
the first thread is live-locked; wherein 

based on a determination that said plurality of livelock 
conditions includes a memory livelock reset condition, 
the arbitrator is to assign priority to the memory livelock 
unit and not to any of said at least two threads in response 
to determining the memory livelock reset condition is 
true. 

11. The multithreaded processor of claim 10, wherein 
based on a change in which a reset condition becomes true, 
said priority is withdrawn from the first thread. 

12. The multithreaded processor of claim 10, wherein a 
first thread livelock unit of the first thread is activated to take 
an action to stimulate forward progress of the first thread in 
response to determining that the first thread is live-locked. 

13. The multithreaded processor of claim 12, wherein tak 
ing an action comprises: 

issuing a stall to at least one of the remaining threads. 
14. The multithreaded processor of claim 12, wherein tak 

ing an action comprises: 
invoking a livelockbreaker in response to determination of 

instruction-side starvation. 
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15. The multithreaded processor of claim 14, further com 

prises: 
evaluating whether a portion of a retirement queue is 

empty. 
16. The multithreaded processor of claim 12, wherein tak 

ing an action comprises: 
issuing a priority request to an arbitrator in response to a 

cache miss. 
17. A computing system comprising: 
a system memory; and 
a multithreaded processor comprising: 

a cache memory to cache data from said system 
memory; 

a plurality of threads each having a thread livelock unit 
to detect livelock conditions and to monitor reset con 
ditions; 

a memory livelock unit at least to break potential live 
lock conditions resulting from a long-latency cache 
miss; and 

an arbitrator coupled with the plurality of threads and the 
memory livelock unit and based on a determination 
that among the memory livelock unit and at least two 
threads of the plurality of threads, the at least two 
threads including a first thread and a set of remaining 
threads, a plurality of livelock conditions are present, 
said arbitrator is to assign priority to the first thread 
and not to any of the set of remaining threads in 
response to determining that the first thread is live 
locked, wherein 

based on a determination that said plurality of livelock 
conditions includes a memory livelock condition, the 
arbitrator is to assign priority to the memory livelock 
unit and not to any of said at least two threads in 
response to determining the memory livelock condi 
tion is true. 

18. The computing system of claim 17, wherein a first 
thread livelock unit of the first thread is activated to take an 
action to stimulate forward progress of the first thread in 
response to determining that the first thread is live-locked. 

19. The computing system of claim 18, wherein taking an 
action comprises: 

issuing a stall to at least one of the remaining threads. 
20. The computing system of claim 18, wherein taking an 

action comprises: 
invoking a livelockbreaker in response to determination of 

instruction-side starvation. 

k k k k k 


