77085012 A2 I} 10 0 00O O O A

=
=

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
26 July 2007 (26.07.2007)

fﬂﬁ A0 0O A

(10) International Publication Number

WO 2007/085012 A2

(51) International Patent Classification:
GOGF 7/499 (2006.01) GOGF 7/533 (2006.01)

(21) International Application Number:

PCT/US2007/060816
(22) International Filing Date: 22 January 2007 (22.01.2007)
(25) Filing Language: English
(26) Publication Language: English

(30) Priority Data:
11/336,358 20 January 2006 (20.01.2006) US

(71) Applicant (for all designated States except US): QUAL-
COMM INCORPORATED [US/US]; ATTN: INTER-
NATIONAL IP ADMINISTRATION, 5775 Morehouse
Drive, San Diego, California 92121 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): DOCKSER,
Kenneth Alan [US/US]; 1108 Walcott Way, Cary, North
Carolina 27519 (US). SEXTON, Bonnie Collett [US/US];
103 Wabash Circle, Cary, NC 27513, Cary, North Carolina
27513 (US).

(74) Agents: OGROD, Gregory D. et al.; ATTN: INTERNA-
TIONAL IP ADMINISTRATION, 5775 Morehouse Drive,
San Diego, Califonia 92121 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS,
JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS,
LT, LU, LV, LY, MA, MD, MG, MK, MN, MW, MX, MY,
MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS,
RU, SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT,
RO, SE, S, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA,
GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to applicant’s entitlement to apply for and be granted a
patent (Rule 4.17(ii))

as to the applicant’s entitlement to claim the priority of the
earlier application (Rule 4.17(iii))

[Continued on next page]

(54) Title: PRE-SATURATING FIXED-POINT MULTIPLIER

//70

INSPECT THE OPERANDS
TO A MULTIPLY OPERATION
PRIOR TO ANY MULTIPLICATION

74

PERFORM THE
MULTIPLICATION AND
OUTPUT THE RESULT

WILL

MULTIPLYING THE
OPERANDS CAUSE AN
OVERFLOW?

(/76
OUTPUT A SATURATED
RESULT WITHOUT
MULTIPLYING THE
ORIGINAL OPERANDS

(57) Abstract: A pre-saturating multiplier inspects the operands to a multiply operation prior to performing any multiplication. If
& the operands will cause an overflow requiring saturation, the multiplier outputs the saturated value without multiplying the original
& operands. In one embodiment, parameters derived from the operands are altered such that when the multiply operation is performed
on the altered parameters, the multiplier produces the saturated result. This may comprise altering a Booth recoded bit group to
select a negative zero instead of a zero as a partial product, and suppressing the addition of the value one to the partial products
(thus effectively subtracting the value one). In another embodiment, when the operands that will cause an overflow are detected, the
output of the multiplier is forced to a predetermined saturation value.

WO 2007/08501.2 A2 {0000 0 0000 0 O

Published: For two-letter codes and other abbreviations, refer to the "Guid-
— without international search report and to be republished ance Notes on Codes and Abbreviations” appearing at the begin-
upon receipt of that report ning of each regular issue of the PCT Gagzette.

WO 2007/085012 PCT/US2007/060816

PRE-SATURATING FIXED-POINT MULTIPLIER

FIELD

[0001] The present disclosure relates generally to the field of digital circuits and in

particular to a pre-saturating, fixed-point multiplier.

BACKGROUND

[0002] Fixed-point multiplication is a fundamental arithmetic operation performed
by digital computational circuits, such as processors. Most processor instruction set
architectures include a variety of fixed-point multiply instructions. A known hazard of
fixed-point multiplication is that under some conditions (as more fully described herein),
a product may exceed the numeric value that can be represented in the available bit
width, a condition known as overflow. In this case, to avoid a gross misrepresentation
of the product, a multiply instruc;[ion will specify a "saturated” output, which is the
largest numerical value that can be represented in the available bit field — in effect, the
closest approximation possible to the actual product. This is known as a saturating
fixed-point multiply instruction. Such instructions typically specify a bit width for the
product that is twice the bit width of the operands.

[0003] Both integer and fractional values can be represented in fixed-point digital
form, depending on the convention used. Commonly all modern processors use the
two's complement format to represent positive and negative integers in fixed-width
digital representations. Thé two's complement format is common. In two's
complement representation, integers are "signed." That is, whether an integer is
positive or negative may be determined by inspection of the Most Significant Bit (MSB),
or the "sign bit." Additionally, in two's complement representation, binary arithmetic

operations on signed integers yield the correct two's complement results.

WO 2007/085012 PCT/US2007/060816

[0004] Positive two's complement numbers are represented in simple binary form,
with a zero sign bit. Consequently, the largest positive number that can be represented
in two's complement format is 2™'-1, where n is the bit width of the digital
representation. Negative two's complement numbers are represented as the binary
number that when added to a positive number of the same magnitude equals zero.
Negative two's complement numbers have a sign bit of one. Since the two's
complement representation of negative numbers may utilize all n bits of the digital
representation, the largest negative number that can be represented in two's
complement format is 2", which is one larger in magnitude than the largest positive
two's complement number. Thus, for example, the range of signed integer values that
may be represented in a 32-bit field is -2%! (0x8000 0000) to +2%'-1 (0x7FFF FFFF).
[0005] The negation of any two’s compliment number may be formed by bit-wise
inverting the number (yielding the one's complement), and adding one. Hence, one
way to calculate the two's complement representation of a negative number is to invert
the binary representation of the corresponding positive number (which is the one's
compliment form of that positive number) and add one. The sole exception to this
algorithm for negation is the largest negative number than can be represented.
Performing a two’s compliment negation on that number results in the same number,
which is an overflow error. Note also that negating the two’s compliment of zero yields
zero — inverting all the bits yields all ones, and adding one yields zero (when the carry
out is discarded).

[0006] Fractional values may be represented in fixed-width digital form using the
so-called Q format notation. In Qn.x format notation, the bits of a value are interpreted
as: one sign bit, n integer bits and x fraction bits. A common Q format for digital signal
processing is Q0.x (or simply Q.x) indicating that there is one sign bit, no integer bits
and x fraction bits. A number in Q.31 notation would be expressed in 32 bits and would

have values ranging from -1 (0x8000 0000) to 1-2"*' (ox7FFF FFFF).

WO 2007/085012 PCT/US2007/060816

[0007] When multiplying numbers in Q format, it is important to account for the
binary point. For example, multiplying a Q.15 times a Q.15 will yield a result in Q2.30.
However, it is desirable to keep the value in Q.x format. To handle this, the
multiplication operations include a multiplication by a factor of 2 — which is equivalent to
a left shift operation — to produce a Q.31 result. Multiplying two n-bit values together
will always produce a value that can be represented in 2n bits. Doubling this product
will produce a value that can be represented in 2n bits in all but one case: the
maximum negative value. The maximum negative value in two’s complement is a sign
bit (MSB) of one with all other bits zero. Shifting this value left resulis in an overflow.
[0008] An example is the following multiplication of two 16-bit operands to generate
a 32-bit product. Each of the operands is negative (sign bit of one), and their product

should be a positive number.

0x8000 x 0x8000 = 0x4000 0000 Multiplication
0x4000 0000 x Ox2 = 0x8000 0000 Doubling (incorrect result; should be positive)
0x8000 0000 — 1 = Ox7FFF FFFF Saturated Result (largest positive value)

In this example, the two operands are each the largest negative number that can be
represented in 186 bits in two’s complement format. Their product should yield a large
positive value. However, the actual result of the doubling multiply instruction is the
largest negative value. Hence, a ‘1’ must be subtracted from this value to obtain the
saturation value of 0x7FFFFFFF — a zero sign bit with all ones in the other bit positions.
[0009] Conventional saturating multipliers detect an overflow condition only after
the multiplication is performed, and must then take steps to correct the overflow
condition by saturating the output. In some implementations, this may require halting
the processor, such as by causing an exception. This adversely impacts processor
performance and causes increased power consumption. Even where the overflow is
saturated in hardware, doing so after the multiplication completes adversely impacts

performance.

WO 2007/085012 PCT/US2007/060816

SUMMARY

[0010] According to one or more embodiments, a pre-saturating multiplier
inspects the operands to a multiply operation prior to performing any multiplication. If
the operands will cause an overflow requiring saturation, the multiplier outputs the
saturated value without multiplying the operands.

[0011] In one embodiment, parameters derived from the operands are altered such
that when the multiply operation is performed on the altered parameters, the multiplier
produces the saturated result. This may comprise altering a Booth recoded bit group to
select a negative zero instead of a zero as a partial product, and suppressing the
addition of the value one to the partial products (thus effectively subtracting the value
one). In another embodiment, when the operands that will cause an overflow are
detected, the output of the multiplier is forced to a predetermined saturation value.
[o012] One embodiment relates to a method of performing a fixed point saturating
multiply operation for which at least one known set of operands, comprising a multiplier
and a multiplicand, will cause an overflow requiring saturation. The operands that will
cause an overflow are detected prior to performing any multipl.y operation, and a
saturated result is output without multiplying the operands.

[0013] Another embodiment relates to pre-saturating multiplier that includes a
multiplier circuit operative to multiply two operands, comprising a multiplier and a
multiplicand, and to output their product. The pre-saturating multiplier also includes an
overflow pre-detect circuit operative to detect operands that will cause an overflow in

the multiplier circuit.

BRIEF DESCRIPTION OF DRAWINGS

[0014] Figure 1 is a functional block diagram of a pre-saturating multiplier

according to one embodiment.

WO 2007/085012 PCT/US2007/060816

[0015] Figure 2 is a functional block diagram of a pre-saturating multiplier
according to another embodiment.
[0016] Figure 3 is a flow diagram of a method of performing a pre-saturating

multiply operation.

DETAILED DESCRIPTION

[0017] A multiplier detects operands to a multiply operation that will result in an
overflow condition if the multiply were performed. In response to this detection, the
multiplier outputs a saturated value. In one embodiment, the multiplier outputs a
saturated value by altering the operands in such a way that the multiply operation will
result in the saturated value as the product. Figure 1 depicts a pre—saturating. multiplier
40 according to this embodiment. A GPR register 42 contains multiplier (MR) and
multiplicand (MD) operands. The multiplier is input to a Booth recoder circuit 44.
[0018] Booth recoding (sometimes referred to as modified Booth recoding) is a
technique for reducing the number of partial products to be added in performing a
multiply operation. Rather than consider each bit in the multiplier and generate a
corresponding shifted partial product comprising either the multiplicand or zero, the
multiplier bits are considered in groups, and shifted partial products comprising +/-
multiples of the multiplicand are added. This technique reduces the number of partial
products to be added. For example, in radix-4 Booth Recoding, the multiplier bits are
considered in groups of two, along with the MSB of the previous group (with a zero
appended to the first group). Partial products are then generated based on the value of

the bit groups, according to the following table:

WO 2007/085012 PCT/US2007/060816

Bit Group Partial Product

000 0

001 1 x multiplicand
010 1 x multiplicand
011 2 x multiplicand
100 -2 X multiplicand
101 -1 x multiplicand
110 -1 x multiplicand
111 0

Table 1: Radix-4 Booth Recoding

[0019] For each Booth recoded bit group in the multiplier, the multiplicand is
multiplied by the indicated factor, and the resulting partial product is shifted to the
position of the bit group within the multiplier. The partial products are then summed to
yield the product. When multiplying signed values, radix-4 Booth recoding may reduce
the number of partial products by up to half.
[0020] In this implementation, the outputs of the Booth recoder 44 select partial
products for the Wallace Tree 50 (or other adder) via Booth multiplexers 48. The Booth
multiplexers 48 select the appropriately modified multiplicand from shift/invert logic 49,
and each mux 48 is aligned to the recoded bit group position in the muliiplier. The
shift/invert logic 49 generates the modified multiplicands specified in the Table 1 as
follows:

¢ 0 substitutes all zeros for the multiplicand bits;

e x1 passes the multiplicand bits directly;

o X2 left-shifts the mu!tiplicand bits one bit position; and

e anegation performs a bit-wise invert (one’s compliment) on the muitiplicand,

shifted multiplicand, or zero value.

[0021] Note that the negation is not complete until a ‘1’ is added at the LSB to the
partial products within the Wallace Tree 50 (per the two’s compliment rule for negation:
one’s compliment + 1). The Wallace Tree 50 sums the partial products, outputting a

sum and carry, which are added in a carry propagate adder 52, and the product is

WO 2007/085012 PCT/US2007/060816

latched at 54. Those of skill in the art will recognize that the output of the Booth
recoder and the outputs of the Booth multiplexers 48 (or the multiplicand value) may be
latched to allow for pipelining.

[0022] An overflow detect circuit 56 monitors the multiplier and multiplicand at the
beginning of each multiply operation, detecting values of the operands that will result in
an overflow requiring saturation. When a pending overflow is detected, the overflow
detect circuit 56 signals the Booth recoder 44 to alter the recoding of the multiplier bits,
and signals the Wallace Tree 50 to alter the summation of partial products, in such a
way that the multiply operation will result in a saturated value for the product. This is
feasible because a limited number of operands will cause an overflow, and these
operands are known in advance.

[0023] In particular, in one embodiment, only the case of the multiplier and the
multiplicand both comprising the largest negative value will cause an overflow requiring
saturation. When this condition is detected, overflow detect circuit 56 directs a signal
to the Booth recoder 44 to alter the Booth recoding. In response, the Booth recoder 44
madifies the least significant Booth recoded bit group (which, having a value of 000,
would normally select a zero) to select negative zero. The shif/invert logic 49 provides
the one’s compliment of zero (i.e., all ones), and signals the Wallace Tree 50 to add a
‘1’ to the partial products. The overflow detect circuit 56 additionally directs a
suppression signal to the Wallace Tree 50 to suppress adding the ‘1’ associated with
the negation of zero (note that in a pipelined implementation, the “suppress +1” signal
would be latched). Accordingly, the sign-extended one’s compliment of zero (0xFFFF
FFFF)is added as a partial product, but the corresponding ‘1’ is not — effectively

subtracting a ‘1’ from the result. For example:

i

0x8000 x 0x8000 = 0x40000000 Multiplication of two most negative values

0x40000000 x 0x2 = 0x80000000 Doubling

0x80000000 + OxFFFFFFFF =

OX7TFEFFEFF Saturated Result (effectively subtract ‘1°)

WO 2007/085012 PCT/US2007/060816

[0024] This saturated result is output by the carry propagate adder 52, and latched
as the product at 54. According to this embodiment, the timing of the saturating
multiply operation is the same as that for operands that do not cause an overflow and
thus require saturation. In particular, no delay is added to the output of the multiplier
40. Hence, this embodiment may find particular applicability where the timing of the
multiplication operation is critical, and no additional delay may be tolerated at the
multiplier 40 oufput.

[0025] Figure 2 depicts another embodiment of a pre-saturating multiplier 40,
wherein corresponding components are numbered accordingly. In this embodiment,
the overflow detect circuit 56 monitors the multiplier and multiplicand, detecting the
known operands that will result in an overflow requiring saturation. When these
operands are detected, the overflow detect circuit 56 outputs a signal that substitutes a
saturated result for the multiplier 40 product output. For example, the overflow detect
circuit 56 may output a multiplexer select signal that directs the multiplexer 60 to select
a predetermined saturation output in lieu of the output of the carry propagate adder 52.
The predetermined saturation output may comprise a hard-wired value (i.e., with bit
positions tied to high or low voltage rails), or alternatively may comprise the output of a
storage location such as a register. In an embodiment where a plurality of operands
may cause overflows requiring different saturation values, the overflow detect circuit 56
may output a multi-bit multiplexer select signal, which chooses between a plurality of
predetermined saturation values and the output of the adder 52. The overflow detect
circuit 56 output may be latched in a pipelined implementation.

[0026] In this embodiment, the multiply operation may be suppressed (that is, the
Booth Recoder 44, logic block 49, Wallace Tree 50, carry propagate adder 52, and
other multiplier circuits may be disabled) to reduce power consumption. Alternatively,
the multiplication of the operands may be allowed to proceed through the multiplier 40,

and the result simply discarded, as the saturated result is latched at 54 instead. In this

WO 2007/085012 PCT/US2007/060816

embodiment the delay of the multiplexer 60 is added to every multiply operation
performed by the multiplier 40, although this delay may be mitigated by using an
unused leg of an existing multiplexer, using a mux-latch, or by other techniques known
in the art. The overflow condition is determined very early, and the decision to select a
saturated value is not part of the critical path.

[0027] Figure 3 depicts a method of performing a fixed-point saturating multiply
operation for which at least one known set of operands will cause an overflow requiring
saturation. Initially (i.e., prior to performing any multiplication), the operands are
inspected (block 70). The operands are compared to known values that will cause an
overflow (block 72). For example, in some cases, if both operands comprise the
largest negative value that may be represented within the operand bit field, an overflow
will result. If multiplying the operands will not cause an overflow (block 72), the
multiplication is performed and the resulis are output (block 74). If multiplying the
operands will result in an overflow requiring saturation (block 72), then according to
one or more embodiments, the saturated result is output without multiplying the original
operands (block 76).

[0028] In one embodiment, this comprises altering parameters generated from the
operands in such a manner that performing the multiply operation on the altered
parameters results in the saturated value as the product of the multiply operation. In
another embodiment, outputting the saturated result comprises selecting a
predetermined saturation value as the output in lieu of the product from the multiply
operation.

[0029] In both embodiments (j.e., those depicted in Figures 1 and 2), the operands
that will cause an overflow are detected early, and the multiplier 40 outputs a saturated
result directly. This represents a significant performance improvement and power
savings over the conventional methodology of only detecting the overflow by inspecting

the product, and subsequently substituting a saturated value for the product. The

WO 2007/085012 PCT/US2007/060816

10

multiplier 40 according to one or more embodiments disclosed herein is particularly
suited for high-speed processors, and/or processors where low power consumption is a
critical factor, such as for battery-powered portable electronic devices.

[0030] Although the present inventive concepts have been described herein with
respect to particular features, aspects and embodiments thereof, it will be apparent that
numerous variations, modifications, and other embodiments are possible within the
broad scope of the present teachings. The present embodiments are therefore to be
construed in all aspects as illustrative and not restrictive and all changes coming within
the meaning and equivalency range of the appended claims are intended to be

embraced therein.

WO 2007/085012 PCT/US2007/060816

11
CLAIMS
What is claimed is:
1. A method of performing a fixed point saturating multiply operation for which at

least one known set of operands, comprising a multiplier and a multiplicand, will cause
an overflow requiring saturation, comprising:
detecting the operands that will cause an overflow prior to performing any
multiply operation; and

outputting a saturated result without multiplying the operands.

2. The method of claim 1 wherein the operands that will cause an overflow are the

largest negative numbers that can be represented in the operand bit field.

3. The method of claim 1 further comprising:
adjusting one or more parameters derived from the operands so that a multiply
operation will generate the saturated result; and

performing a multiply operation with the adjusted parameters.

4. The method of claim 3 wherein adjusting one or more parameters derived from
the operands comprises altering one or more Booth recoded bit groups derived from

the multiplier.

5. The method of claim 4 wherein altering a Booth recoded bit group comprises
changing the selection of a Booth recoded bit group from zero to negative zero and
suppressing the addition of the value 1 to partial products derived from the

multiplicand.

WO 2007/085012 PCT/US2007/060816

12

6. The method of claim 3 wherein adjusting one or more parameters derived from
the operands comprises adding the value negative one to partial products derived from

the operands.

7. The method of claim 1 wherein outputting the saturated result comprises forcing
the output of a multiply operation to a saturated result regardless of the product of the

multiply operation.

8. The method of claim 7 wherein forcing the output of a multiply operation to a
saturated result comprises selecting between the multiply operation output and the

saturated result in response to detecting the operands that will cause an overflow.

9. A pre-saturating multiplier, comprising:
a multiplier circuit operative to multiply two operands, comprising a multiplier
and a multiplicand, and to output their product; and
an overflow pre-detect circuit operative to detect operands that will cause an

overflow in the multiplier circuit.

10. The multiplier of claim 9 wherein the overflow pre-detect circuit detects the

largest negative values that can be represented in the operand bit fields.

11. The multiplier of claim 9 wherein the multiplier circuit comprises a Booth recoder
operative to recode the multiplier into bit groups, each bit group selecting a positive or
negative multiple of the multiplicand as a partial product, the Booth recoder further
operative to alter one or more bit groups to produce a saturated result in the multiplier,

in response to the overflow pre-detect circuit.

WO 2007/085012 PCT/US2007/060816

13

12. The multiplier of claim 11 wherein the Booth recoder is operative to force the
least significant recoded bit group to select negative zero in response to the overflow

pre-detect circuit.

13. The multiplier of claim 11 further comprising a parallel adder operative to add
the partial products and to add the value one for negative partial products selected by
the Booth recoded bit groups, the parallel adder further operative to suppress the
addition of the value one for a negative zero in response to the overflow pre-detect

circuit.

14. The multiplier of claim 9 wherein the multiplier circuit is operative to subtract the

value one from the product in response to the overflow pre-detect circuit.

15. The multiplier of claim 9 further comprising an output selector operative to
output either the product from the multiplier circuit or a predetermined saturated result

in response to the overflow pre-detect circuit.

WO 2007/085012

40

1/3

PCT/US2007/060816

42
MR MD
® | * . 4
OVER |26
FLOW
4 DETECT v 49
BOOTH |
RECODER 0 +X1,xx2, 20
SUPPRES
+1
~50
o
48 48
WALLACE
TREE

FIG. 1

CARRY SUM

vy

52
ADDER a

* 54
PRODUCT [

WO 2007/085012 PCT/US2007/060816

2/3
40\\
42
MR MD
® l * L
OVER |26
FLOW
44 DETECT v 49
BOOTH
RECODER +x1,xx2,+0
50
X /< b_/;_(/. ..
>
48 48
WALLACE
TREE

CARRY SUM

v

ADDER

é\ ¢ /<60

54

52

PRODUCT

FIG. 2

WO 2007/085012 PCT/US2007/060816

3/3

/70

INSPECT THE OPERANDS
TO A MULTIPLY OPERATION
PRIOR TO ANY MULTIPLICATION

WILL
MULTIPLYING THE
OPERANDS CAUSE AN
OVERFLOW?

Jaihi 76
PERFORM THE OUTPUT A SATURATED
MULTIPLICATION AND RESULT WITHOUT
OUTPUT THE RESULT MULTIPLYING THE
ORIGINAL OPERANDS

FIG. 3

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - claims
	Page 14 - claims
	Page 15 - claims
	Page 16 - drawings
	Page 17 - drawings
	Page 18 - drawings

