Abstract: A method of controlling an operation of a toilet system on-board an aircraft is disclosed. The toilet system includes a toilet bowl, a fluid valve controlling input of fluid into the toilet bowl, a flush switch configured to be activated by a user, and a controller configured to operate the fluid valve. The method includes detecting an activation of the flush switch, monitoring a flush switch activation time period, and determining whether the flush switch activation time period exceeds a preset threshold time period. In response to determining that flush switch activation time period does not exceed the preset threshold time period, a standard flush cycle is initiated. In response to determining that the flush switch activation time period exceeds the preset threshold time period, a maintenance mode is initiated allowing a larger volume of fluid to fill the toilet bowl for maintenance.
Published:

— with international search report (Art. 21(3))

— before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h))
MAINTENANCE MODE FOR AIRCRAFT VACUUM TOILET

Cross-References to Related Applications

[0001] This claims the benefit of U.S. Provisional Patent Application No. 62/140,260, entitled "VACUUM TOILET SYSTEM AND INSTALLATION METHOD THEREOF," and filed on March 30, 2015, the disclosure of which is incorporated herein by reference in its entirety.

Field of the Disclosure

[0002] The present disclosure relates generally to vacuum toilet systems and more particularly, to maintenance modes for such systems.

Background

[0003] Designing a toilet for an aircraft poses challenges that do not generally occur in ground-based toilet designs. For instance, in an aircraft, space and weight are at a premium, and using regular water-flush toilets is not practical. Also, performing routine maintenance and cleaning is much more difficult, since space restrictions make access to plumbing nearly impossible.

[0004] Flushing devices for an aircraft vacuum toilet generally require that after the use of the toilet, a flushing processing is actuated by triggering device. This is then followed by the supply of flushing liquid to the toilet bowl and subsequent opening of a suction valve, so as to pull waste, flushing liquid, and any other impurities into a waste tank.

[0005] Vacuum toilet systems often include a maintenance switch that permits operation for ground maintenance. However, there are drawbacks associated with existing systems. For instance, maintenance switches are often difficult to access.

Drawings

[0006] While the appended claims set forth the features of the present techniques with particularity, these techniques may be best understood from the following detailed description taken in conjunction with the accompanying drawings of which:

[0007] FIG. 1 is a perspective view of a toilet configured according to an embodiment.
FIG. 2 is a perspective view of a toilet operating during a standard flushing sequence according to an embodiment.

FIG. 3 is a perspective view of a toilet operating during a maintenance mode flushing sequence according to an embodiment.

FIG. 4 is a block diagram depicting logic circuitry that may be used in an embodiment.

FIG. 5 is a flow diagram depicting a process that may be carried out in an embodiment.

FIG. 6 is a flow diagram depicting the operation of a toilet system during a standard flush cycle sequence according to an embodiment.

FIG. 7 is a flow diagram depicting the operation of a toilet system during a maintenance mode flush cycle sequence during an embodiment.

Detailed Description

[0014] The following discussion is directed to various exemplary embodiments. However, one possessing ordinary skill in the art will understand that the examples disclosed herein have broad application, and that the discussion of any embodiment is meant only be exemplary of that embodiment, and not intended to suggest that the scope of the disclosure, including claims, is limited to that embodiment.

[0015] Certain terms are used throughout the following description to refer to particular features or components. As one skilled in the art will appreciate, different persons may refer to the same feature or component by different names. This document does not intend to distinguish between components or features that differ in name but not function. The drawing figures are not necessarily to scale. Certain features and components herein may be shown exaggerated in scale or in somewhat schematic form and some details of conventional elements may not be shown in interest of clarity and conciseness.

[0016] The disclosure is generally directed to a method and system for controlling a toilet on board an aircraft. According to an embodiment, a method of controlling an operation of a
toilet system on-board an aircraft is disclosed. The toilet system includes a toilet bowl, a fluid valve controlling input of fluid into the toilet bowl, a flush switch configured to be activated by a user, and a controller configured to operate the fluid valve. The method includes detecting an activation of the flush switch, monitoring a flush switch activation time period, and determining whether the flush switch activation time period exceeds a preset threshold time period. In response to determining that flush switch activation time period does not exceed the preset threshold time period, a standard flush cycle is initiated. In response to determining that the flush switch activation time period exceeds the preset threshold time period, a maintenance mode is initiated allowing a larger volume of fluid to fill the toilet bowl for maintenance.

[0017] In an embodiment, the system includes a toilet bowl body comprising a toilet bowl and a shroud; a fluid valve configured to control the flow of fluid into the toilet bowl; a flush switch configured to be activated by an input from a user; and a controller configured to control the operation of the fluid valve; wherein the controller, upon detecting activation of the flush switch in a first sequence, controls the fluid valve to introduce a first amount of fluid into the toilet bowl for a first period of time; and the controller, upon detecting activation of the flush switch in a second sequence different from the first sequence, controls the fluid valve to introduce a second amount of fluid into the toilet bowl for a second period of time.

[0018] The term "logic circuitry" as used herein means a circuit (a type of electronic hardware) designed to perform complex functions defined in terms of mathematical logic. Examples of logic circuitry include a microprocessor, a controller, an application-specific integrated circuit, and a field-programmable gate array.

[0019] Turning to FIG. 1, a toilet configured according to an embodiment is shown. The toilet, generally labelled 100, is configured to be deployed on an aircraft, and may be housed within an external housing (not shown). The toilet 100 includes a bowl 102 attached to a frame 104. The toilet 100 also includes a waste pipe 106 attached at the waste outlet of the bowl 102 and a motor 108 attached to the frame 104. The motor 108 drives a mechanical actuator to open or close a door to the waste outlet.
The toilet 100 further includes a controller 118 attached to the frame 104. The controller 118 contains logic circuitry that controls the operation of the toilet 100. Although depicted on the back left side of the frame 104, the controller 118 may be attached to the frame 104 at other locations, such as the back right side (e.g., location 119). A cable 116 is attached to the controller 118 and to the motor 108. The cable 116 provides a transmission medium for electrical signals to travel from the controller 118 to the motor 108 (e.g., power and data) and for electrical signals to travel from the motor 108 to the controller 118 (e.g., data). For example, the logic circuitry in the controller 118 can transmit control signals to the motor 108 by way of the cable 116, and the motor 108 can transmit position signals to the logic circuitry by way of the cable 116. During operation, the door to the waste outlet is normally closed. When the logic circuitry in the controller 118 receives an activation signal (e.g., a signal generated by a "flush" switch on the toilet 100), the logic circuitry sends a control signal to the motor 108 to open the door to the waste outlet. A pressure difference between the air in the waste pipe 106 and the air around the outside of the toilet 100 creates a suction at the waste outlet, which draws the waste from inside the bowl 102 out of the waste outlet and into the waste pipe 106. After a predetermined period of time, the motor 108 drives the mechanical actuator to close the door.

Referring now to FIG. 2, a toilet system 200 configured according to the embodiment is shown. The toilet system 200 includes the toilet bowl 102, the fluid valve 130 controlling input of fluid into the toilet bowl, a flush switch 206 configured to be activated by a user, and the controller 118 configured to operate the fluid valve 130. The fluid valve 130 and the controller 118 are covered by the toilet shroud 202 as shown in FIG. 2. As can be seen in FIG. 2, the toilet bowl 102 is filled with fluid from the fluid valve 130 up to a level A during a standard mode flushing sequence.

FIG. 3 shows a toilet system 300 configured according to an embodiment operating during a maintenance mode flushing sequence. The toilet system 300 includes the toilet bowl 102, the fluid valve 130 controlling input of fluid into the toilet bowl, a flush switch 206 configured to be activated by a user, and the controller 118 configured to operate the fluid valve 130. The fluid valve 130 and the controller 118 are covered by the toilet...
shroud 202 as shown in FIG. 2. As can be seen in FIG. 3, the toilet bowl 102 is filled with fluid from the fluid valve 130 up to a level B during a maintenance mode flushing sequence.

[0023] Turning now to FIG. 4, the operation of the toilet 100 is explained with reference to Figs. 2 and 3. As can be seen in Figs. 2 and 3, when a user activates the flush switch 206, fluid is transported into the toilet bowl 102 via the fluid valve 130. The controller is configured to monitor an activation sequence. At block 410, the controller 118 detects whether the flush switch 206 has been activated.

[0024] At block 420, the controller 118 monitors a time period for which the flush switch 206 has been activated. At block 430, the controller 118 makes a determination whether the flush switch 206 has been activated for a time period exceeding a preset threshold time period. In an embodiment, the preset threshold time period is set to be 2 seconds. Persons skilled in the art will understand that the preset threshold time period may be set for any desired amount of time.

[0025] In response to determining that the flush activation time period of the flush switch 206 does not exceed the preset threshold time period at block 430, the controller 118 initiates a standard flush cycle at block 440. In particular, the controller 118 sends a control signal to the motor 108 to open the door to the waste outlet. A pressure difference between the air in the waste pipe 106 and the air around the outside of the toilet 100 creates a suction at the waste outlet, which draws the waste from inside the bowl 102 out of the waste outlet and into the waste pipe 106. After a predetermined period of time, the motor 108 drives the mechanical actuator to close the door. According to an embodiment, the controller 118 then controls the fluid valve 130 to allow fluid input into the toilet bowl for a first period of time. As seen in FIG. 2, the toilet bowl 102 is filled with fluid reaching a preset level A to rinse the bowl 102 with the fluid. Finally, the controller 118 controls the door to the waste outlet to evacuate the contents of the bowl 102.

[0026] Alternatively, in response to determining that the flush activation time period of the flush switch 206 does exceed the preset threshold time period at block 430, the controller 118 initiates a maintenance mode flush cycle at block 450. In this instance, the controller 118 controls the fluid valve 130 to allow fluid input into the toilet bowl for a second period of time that is longer than the first period of time (during the standard flush
cycle). As seen in FIG. 3, the toilet bowl 102 is filled with fluid reaching a preset level B to rinse the bowl 102 with the fluid where the preset level B is higher than the preset level A during the standard flush cycle. Finally, the controller 118 controls the door to the waste outlet to evacuate the contents of the bowl 102. Finally, the process ends at block 470 when the flush cycle is completed and the toilet is ready for use.

[0027] In an embodiment, the controller 118 monitors an activation sequence when activation of flush switch 206 is detected. In one embodiment, the controller 118 has preset activation sequences stored thereon. The controller 118 initiates a standard flush sequence when the user activates the flush switch 206 in accordance with a first sequence. The first sequence may be predetermined and stored in the controller 118 using known methods. In an embodiment, the controller 118 includes a processor configured to execute software stored on a non-transitory computer readable medium such as ROM, RAM, EEPROM, etc. In an embodiment, the predetermined first sequence may comprise activation of the flush switch 206 for a regular mode flushing time period. The regular mode flushing time period may be set to be any desired time duration. For instance, the regular mode flushing time period may be set to be 2 seconds in one embodiment.

[0028] The controller 118 initiates a maintenance mode flush sequence when the user activates the flush switch 206 in accordance with a second sequence. In an embodiment, the second sequence may comprise activation of the flush switch 206 for a maintenance mode flushing time period that is longer than the regular mode flushing time period. In another embodiment, second sequence of activation of the flush switch 206 may comprise activation of the flush switch for a period of 15 to 20 seconds. If the flush switch 206 is activated for less than 15 seconds, or for more than 20 seconds, a standard flush cycle may be initiated. In another embodiment, the second sequence of activation of the flush switch comprises alternatively pressing and releasing the flush switch a preconfigured number of times.

[0029] The maintenance mode flush sequence in accordance with the various embodiments discussed above may be initiated while the aircraft is in air or on the ground. In an embodiment, when the toilet system 300 is operating in a maintenance mode, the controller 118 may control the fluid valve 130 to allow fluid flow into the toilet bowl 102 while the flush switch 206 is pressed. In an embodiment, a sensor 204 may be provided at a
rim portion of the toilet bowl 102. According to an embodiment, the controller 118 may be configured to close the fluid valve 130 when a fluid level in the toilet bowl is a predetermined distance away from the sensor 204 in order to prevent overflow.

[0030] Turning to FIG. 5, in an embodiment, the controller 118 includes logic circuitry 502 that generally controls the operation of the toilet 100, and the motor 108 includes logic circuitry that controls the operation of the motor 108. The fluid valve 130 includes logic circuitry 508. The controller 118 is also communicatively coupled to the sensor 204 as shown in FIG. 5. The logic circuitry 502 communicates with logic circuitry 504 of the motor 108, the sensor 206, the flush switch 206, and logic circuitry 508 of the fluid valve 130. In an embodiment, when the logic circuitry 502 of the toilet 100 carries out a start-up operation (e.g., a standard flush cycle sequence or a maintenance mode flush cycle sequence), the logic circuitry 502 communicates with the logic circuitry 504 of the motor 108, the sensor 206, the flush switch 206, and the logic circuitry 508 of the fluid valve 130 in accordance with the various embodiments described above. Although the above embodiment describes the controller 118 controlling the operation of the flush switch 206 directly, in other embodiments, the flush switch 206 may include additional logic circuitry 506 which interacts with the controller 118.

[0031] FIG. 6 is a flowchart describing an exemplary embodiment of the operation of the toilet system 200 during a standard flush cycle sequence 600. At block 610, a standard flush cycle is initiated. The controller 118 delays opening of flush valve for 2 seconds after the standard flush cycle is initiated to allow vacuum pressure differential to build up in the waste tank at block 620. At block 630, the controller 118 operates the fluid valve 130 to allow fluid input into the toilet bowl 102. 1.8 seconds after the standard flush cycle is initiated and introduce a flow of potable water to rinse the toilet bowl. Finally, at block 640, the controller 118 opens the door to the waste outlet for a period of 4 seconds to evacuate the contents of the toilet bowl 102, and then closes the door again. Persons skilled in the art will understand that the time periods discussed above are merely examples, and that the relevant time periods may be set as desired at the controller 118 using known methods.
FIG. 7 is a flowchart describing an exemplary embodiment of the operation of the toilet system 300 during a maintenance mode flush cycle sequence 700. At block 710, a maintenance mode flush cycle is initiated. At block 720, the controller 118 operates the fluid valve 130 to allow fluid input into the toilet bowl 102 for a period of 15 seconds or until the flush switch is released after the maintenance mode flush cycle is initiated. In an embodiment, the controller 118 introduces up to 4 liters of potable water to rinse the toilet bowl 102. Finally, at block 730, the controller 118 opens the door to the waste outlet for a period of 20 seconds to evacuate the contents of the toilet bowl 102, and then closes the door again. Persons skilled in the art will understand that the time periods discussed above are merely examples, and that the relevant time periods may be set as desired at the controller 118 using known methods.

The use of any and all examples, or exemplary language (e.g., "such as") provided herein, is intended merely to better illuminate the invention and does not pose a limitation on the scope of the invention unless otherwise claimed. Numerous modifications and adaptations will be readily apparent to those of ordinary skill in this art without departing from the spirit and scope of the invention as defined by the following claims. Therefore, the scope of the invention is defined not by the detailed description of the invention but by the following claims, and all differences within the scope will be construed as being included in the invention.

The particular implementations shown and described herein are illustrative examples and are not intended to otherwise limit the scope of the disclosure in any way. For the sake of brevity, conventional electronics, control systems, software development and other functional aspects of the systems (and components of the individual operating components of the systems) may not be described in detail.

The steps of all methods described herein are performable in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. No item or component is essential to the practice of the invention unless the element is specifically described as "essential" or "critical". It will also be recognized that the terms "comprises," "comprising," "includes," "including," "has," and "having," as used herein, are specifically intended to be read as open-ended terms of art. The use of the terms "a" and "an" and "the"
and similar referents in the context of describing the invention (especially in the context of the following claims) are to be construed to cover both the singular and the plural, unless the context clearly indicates otherwise. In addition, it should be understood that although the terms "first," "second," etc. may be used herein to describe various elements, these elements should not be limited by these terms, which are only used to distinguish one element from another. Furthermore, recitation of ranges of values herein are merely intended to serve as a shorthand method of referring individually to each separate value falling within the range, unless otherwise indicated herein, and each separate value is incorporated into the specification as if it were individually recited herein.
CLAIMS

1. A toilet bowl system for use on-board an aircraft, the system comprising:
 a toilet bowl body comprising a toilet bowl and a shroud;
 a fluid valve configured to control the flow of fluid into the toilet bowl;
 a flush switch configured to be activated by an input from a user;
 a controller configured to control the operation of the fluid valve; wherein
 the controller, upon detecting activation of the flush switch in a first sequence,
 controls the fluid valve to introduce a first amount of fluid into the toilet bowl for a first
 period of time; and
 the controller, upon detecting activation of the flush switch in a second sequence
 different from the first sequence, controls the fluid valve to introduce a second amount of
 fluid into the toilet bowl for a second period of time.

2. The system of claim 1, wherein
 the first period of time is shorter than the second period of time, and
 the first amount of fluid is less than the second amount of fluid.

3. The system of claim 1, wherein
 the first sequence of activation of the flush switch comprises activation of the flush
 switch for a regular mode flushing time period.

4. The system of claim 3, wherein the second sequence of activation of the flush switch
 comprises activation of the flush switch for a maintenance mode flushing time period that is
 longer than the regular mode flushing time period.

5. The system of claim 3, wherein the second sequence of activation of the flush switch
 comprises alternatively pressing and releasing the flush switch a preconfigured number of
 times.

6. The system of claim 1, further comprising:
a sensor positioned at a rim portion of the toilet bowl, wherein the controller is configured to close the fluid valve when a fluid level in the toilet bowl is a predetermined distance away from the sensor.

7. The system of claim 1, wherein the control is configured to close the fluid valve after at least one of i) the second period of time has elapsed or ii) the second amount of fluid has been introduced into the toilet bowl.

8. A method of controlling an operation of a toilet system on-board an aircraft, the toilet system including a toilet bowl, a fluid valve controlling input of fluid into the toilet bowl, a flush switch configured to be activated by a user, and a controller configured to operate the fluid valve, the method comprising:
 detecting an activation of the flush switch;
 monitoring a flush switch activation time period;
 determining whether the flush switch activation time period exceeds a preset threshold time period;
 in response to determining that flush switch activation time period does not exceed the preset threshold time period, initiating a standard flush cycle and controlling the fluid valve to allow fluid input into the toilet bowl for a first period of time; and
 in response to determining that the flush switch activation time period exceeds the preset threshold time period, initiating a maintenance mode, wherein
 in the maintenance mode, the controller is configured to control the fluid valve to allow fluid input into the toilet bowl for a second period of time, the second period of time being longer than the first period of time.
FIG. 1
Detect an activation of the flush switch

Monitor a flush switch activation time period

Does flush activation time period exceed a predetermined time?

NO

440
Initiate a standard flush cycle including controlling the fluid control valve to allow fluid input into the toilet bowl for a first period of time

YES

450
Initiate a maintenance mode

Control the fluid control valve to allow fluid input into the toilet bowl for a second period of time, the second period of time being longer than the first period of time

460

End Flush Cycle and Prepare for Next Cycle

470

FIG. 4
FIG. 6

600
Initiate Standard Flush Cycle Sequence

610
Delay opening of the door to the waste outlet by 2 seconds after standard flush cycle is initiated

620

630
Open the fluid valve 1.8 seconds after standard flush cycle is initiated

640
Open the door to the waste outlet for 4 seconds
FIG. 7

710 Initiate Maintenance Mode Flush Cycle Sequence

720 Maintenance mode fill initiated for a period of 12 seconds or until Flush switch is released. Open the Fluid valve for 12 seconds or until Flush switch is released.

730 Open the door to the waste outlet for 15 seconds
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER
IPC(8) - B64D 11/02, E03D 11/00, E03D 5/00, E03D 9/04, E03D 5/10 (2016.01)
CPC - B64D1 1/02, E03D1 1/00, E03D5/00, E03D9/04, E03D5/10

B. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>US 2014/0041 109 A1 (Stauber et al.) 13 February 2014 (13.02.2014), entire document, especially Fig. 1, 2, 3, 7, 8; para[0022]; para[0024]; para[0031]; para[0028]; para[0027]; para[0037];</td>
<td>1-7</td>
</tr>
<tr>
<td>A</td>
<td>US 6,981,285 B2 (Sigler et al.) 03 January 2006 (03.01.2006), entire document, especially Fig. 1, 4, 8; col 3, In 61-65; col 4, In 4-8; col 4, In 8-16; col 4, In 56-61; col 5, In 24-29; col 5, In 57-62;</td>
<td>1-7</td>
</tr>
<tr>
<td>A</td>
<td>US 8,687,370 B2 (Hoang et al.) 17 December 2013 (17.12.2013), entire document, especially Fig. 10; col 3, In 6-1; col 3, In 15-17; col 1, In 62-67;</td>
<td>8</td>
</tr>
<tr>
<td>A</td>
<td>US 3,719,957 A (Riedel) 13 March 1973 (13.03.1973), entire document, especially Fig. 1, 2; col 2, In 16-20; col 2, In 35-38; col 2, In 44-50; col 3, In 50-57; col 3, In 58-66;</td>
<td>8</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C.

- Special categories of cited documents:
 - "A" document defining the general state of the art which is not considered to be of particular relevance
 - "E" earlier application or patent but published on or after the international filing date
 - "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 - "O" document referring to an oral disclosure, use, exhibition or other means
 - "P" document published prior to the international filing date but later than the priority date claimed

- "I" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
- "G" document member of the same patent family

Date of the actual completion of the international search: 19 July 2016
Date of mailing of the international search report: 16 AUG 2016

Name and mailing address of the ISA/US
Mail Stop PCT, Attn: ISA/US, Commissioner for Patents
P.O. Box 1450, Alexandria, Virginia 22313-1450
Facsimile No. 571-273-8300

Authorized officer: Lee W. Young
PCT Helpdesk: 571-272-4300
PCT OSP: 571-272-7774

Form PCT/ISA/210 (second sheet) (January 2015)
INTERNATIONAL SEARCH REPORT

Box No. II Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. ☐ Claims Nos.:
 because they relate to subject matter not required to be searched by this Authority, namely:

2. ☐ Claims Nos.:
 because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

3. ☐ Claims Nos.:
 because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box No. III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

This application contains the following inventions or groups of inventions which are not so linked as to form a single general inventive concept under PCT Rule 13.1. In order for all inventions to be examined, the appropriate additional examination fees must be paid.

Group 1: Claims 1-7 directed to a toilet bowl system for use on-board an aircraft.

Group 2: Claim 8 directed to a method of controlling an operation of a toilet system on-board an aircraft.

The inventions listed as Groups 1-2 do not relate to a single general inventive concept under PCT Rule 13.1 because, under PCT Rule 13.2, they lack the same or corresponding special technical features for the following reasons:

— Continued in supplemental box —

1. ☒ As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.

2. ☐ As all searchable claims could be searched without effort justifying additional fees, this Authority did not invite payment of additional fees.

3. ☐ As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:

4. ☐ No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest ☒ The additional search fees were accompanied by the applicant's protest and, where applicable, the payment of a protest fee.

☐ The additional search fees were accompanied by the applicant's protest but the applicable protest fee was not paid within the time limit specified in the invitation.

☒ No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet (2)) (January 2015)
SPECIAL TECHNICAL FEATURES

The invention of Group II includes the special technical features of a method of controlling an operation of a toilet system on-board an airplane, including monitoring a flush switch activation time period, determining if the flush switch activation time period exceeds a preset threshold time period, initiating a standard flush cycle, and controlling the fluid valve if the time period does not exceed the threshold time period, and initiating a maintenance mode if it does exceed the threshold time period, not required by the claims of Group I.

COMMON TECHNICAL FEATURES

The inventions of Groups I-II share the technical features of a toilet bowl system for use on-board an aircraft, the system comprising: a toilet bowl body comprising a toilet bowl and a shroud; a fluid valve configured to control the flow of fluid into the toilet bowl; a flush switch configured to be activated by an input from a user; a controller configured to control the operation of the fluid valve; wherein the controller, upon detecting activation of the flush switch in a first sequence, controls the fluid valve to introduce a first amount of fluid into the toilet bowl for a first period of time; and the controller, upon detecting activation of the flush switch in a second sequence different from the first sequence, controls the fluid valve to introduce a second amount of fluid into the toilet bowl for a second period of time. Specifically, Groups I and II are related as an apparatus (Group I) and methods for using the apparatus (Group II). The apparatus is known in prior art as shown in US 2014/0041 109 A1 to Staubet al. (hereinafter "Staub") in view of US 6,981,285 B2 to Sigler et al. (hereinafter "Sigler"). Therefore, Groups I and II lack unity since the shared technical features do not represent a contribution over Staub in view of Sigler.

Regarding claim 1, Staub discloses a toilet bowl system (10, Fig. 1, 7; para[0022], "a toilet 10") for use on-board an aircraft (Fig. 1 - see how the toilet 10 is capable of being used on an aircraft) (Note: "for use on-board an aircraft" is considered an intended use and carries no patentable weight. Staub's toilet system is considered capable of "for use on-board an aircraft" since the toilet is compact and capable of being installed anywhere), the system comprising: a toilet bowl body (Fig. 1 - see toilet bowl body of toilet 10) comprising a toilet bowl (16, Fig. 1, 2, 3; para[0024], "a bowl 16") and a shroud (Fig. 1, 2 - see toilet 10 shroud/cover disposed above the bowl 16); a fluid valve (54, Fig. 3, 7; para[0031], "the solenoid valve 54 illustrated in Fig. 7 as separate rim supply valve 54a and fill valve 54b") configured to control the flow of fluid into the toilet bowl (Fig. 3, 7 - see how the fluid valve 54 controls the flow of fluid from inlet line 52 to the bowl 16; para[0028], "the inlet line 52 is connected to a solenoid valve 54"); a flush switch panel (70, 72, Fig. 1, 7 - see flush switch panel comprises switches 70 and 72; para[0031], "a short flush button 70 and a long flush button 72") configured to be activated by an input from a user (Fig. 1, 7 - see how the user activates the flush cycles); ABSTRACT, "operable in either a short or long flush sequence selectable by a user"); a controller (28, Fig. 7; para[0031], "the control board 28") configured to control the operation of the fluid valve (Fig. 7 - see how the control board/controller 28 controls the fluid valve 54; para[0031], "the control board 28 is electrically coupled to the solenoid valve 54"); wherein the controller (28, Fig. 7), upon detecting activation of the flush switch panel for a first button (70, 7, 7 - see how the controller is linked to the flush button 70 for activating a short flush cycle 900), controls the fluid valve to introduce a first amount of fluid into the toilet bowl for a first period of time (900, Fig. 9 - see short flush cycle 900 which is activated when the first button 70 is activated, see how the first amount of fluid introduced into the bowl 16 for a first, short period of time is done so quickly to rinse the bowl; para[0039], "a short flush sequence 900"); and the controller (28, Fig. 7), upon detecting activation of the flush switch panel for a second button (70, 7, 7 - see how the controller 28 is linked to the flush button 70 for activating a long flush cycle 800), controls the fluid valve to introduce a second amount of fluid into the toilet bowl for a second period of time. However, Sigler discloses a toilet system (10, Fig. 1; col. 3, 81-85, "an exemplary toilet 10") comprises a flush switch (16, Fig. 1, 4 - see flush switch 16 and how it controls the electrical switch disposed at the end of housing 19; col. 4, 4-8, "the actuating lever 16") configured to control the flow of fluid into the toilet bowl (Fig. 1, 4; col. 4, 8-16 - see how the flush switch 16 controls the fluid flow to the toilet bowl since it controls whether the toilet performs a flush function or add water function); a controller (Fig. 1, 8 - see controller/microprocessor: col. 4, 56-61, "which are controlled by the microprocessor"); wherein the controller, upon detecting activation of the flush switch in a first sequence (Fig. 1, 3 - see first sequence which include moving the lever 16 clockwise), performs a first function (Fig. 1, 3, 8; col. 4, 4-8, "the flushing lever assembly 15 includes a shaft that may be rotated in either clockwise (flush""); col. 5, 24-29 - see what happens when the switch 16 is rotated clockwise, triggering the flush cycle); and the control, upon detecting activation of the flush switch in a second sequence different from the first sequence (Fig. 1, 3 - see second sequence which includes moving the lever 16 counter-clockwise), performs a second function (Fig. 1, 3, 8; col. 4, 4-8, "or counterclockwise (add water)"); col. 5, 57-62 - see what happens when the switch 16 is rotated counterclockwise, triggering the addition of water cycle). Accordingly, it would have been obvious to one of ordinary skill in the art to have modified the flush switch arrangement of Staub's toilet system by employing the single flush switch to control both flush functions as taught by Sigler, in order to have allowed for a simpler and more efficient flushing switch and process. As the common technical features were known in the art at the time of the invention, these cannot be considered special technical feature that would otherwise unify the groups.

Therefore, Groups I-II lack unity under PCT Rule 13 because they do not share a same or corresponding special technical feature.