发明名称：双流体喷嘴

摘要

一种可生成液体的细雾状喷液的双流体喷嘴(20)，包括其中第一雾化室(36,36°)的一喷嘴体(10)，一喷头(70,70°)和位于第一雾化室与该喷头之间而形成第二雾化室(55,55°)的板(60,60°,60°)。该板上有若干流道(61,61°,61°)供液体从第一雾化室流入第二雾化室而进一步雾化。该喷嘴可包括多块板(60°,60°,80°,80°)和两个以上的雾化室(36°,36°,55°)，在这些实施例中，每一块板的流道的总截面积比前一块板小。
权利要求书

1、一种双流体喷嘴，包括：
其中有一雾化室的喷嘴体以及所述喷嘴体中把一雾化流体和
一液体导入所述第一雾化室的进口装置；
所述第一雾化室中初步雾化经所述进口装置导入的液体的初步
雾化装置；
位于所述第一雾化室下游的第二雾化室；
装在所述喷嘴体上的一喷头，所述喷头上有若干供雾化喷液喷
出的喷口；
其特征在于，所述双流体喷嘴还包括位于所述第一雾化室与所
述第二雾化室之间的板，所述板上有若干彼此隔开的流道，来自所
述第一雾化室的初步雾化的液体在流入所述第二雾化室之前必须流
经所述流道，从而被进一步雾化。

2、按权利要求1所述的双流体喷嘴，其特征在于，所述进口
装置包括把雾化流体导入所述第一雾化室的第一进口和把液体导入
所述第一雾化室的第二进口；所述初步雾化装置包括一对应所述第
二进口伸入所述第一雾化室的靶子螺栓，所述靶子螺栓有导导入
所述第一雾化室的液体冲撞的表面；所述第一进口的位置布置成
导入所述第一雾化室的雾化流体雾化从所述第二进口导入的液体。

3、按权利要求1所述的双流体喷嘴，其特征在于，所述板上
的所述若干流道互相等距地排成一圆圈。

4、按权利要求3所述的双流体喷嘴，其特征在于，所述板有
一定厚度，而所述流道的长度大于所述厚度。

5、按权利要求1所述的双流体喷嘴，其中，所述板上有一中
心流道，而所述喷头上有一与所述心流道大致对准的喷口。

6、按权利要求5所述的双流体喷嘴，其特征在于，所述板有一定厚度，而所述流道的长度大于所述厚度。

7、按权利要求2所述的双流体喷嘴，其特征在于，进一步包括一衬套，所述衬套、所述板和所述喷头用防腐蚀材料制成。

8、按权利要求1所述的双流体喷嘴，其特征在于，该喷嘴有一纵轴线：所述喷嘴中的所述各喷口与所述纵轴线的夹角约为3－7°，所述各喷口控制该喷液而生成大致锥形的喷液。

9、一种双流体喷嘴，包括：

其中有第一雾化室的一喷嘴体、所述喷嘴体上把一种雾化流体导入所述第一雾化室的第一进口和所述喷嘴体上把一种液体导入所述第一雾化室的第二进口；

所述第一雾化室中初步雾化从所述第二进口导入的液体的初步雾化装置：

一构成所述第一雾化室的前壁的第一板；
位于所述第一板下游的第二板；
所述第一板和所述第二板之间形成第二雾化室；
一装在所述喷嘴体上的喷头，所述喷头中有若干供经雾化的液体喷出的喷口，所述第二板与所述喷头之间形成第三雾化室；

所述第一板中有若干具有第一总横截面积的第一流道，所述第一流道进一步雾化从所述第一雾化室流入所述第二雾化室的经初步雾化的液体；以及

所述第二板中有若干具有第二总横截面积的第二流道，所述第二流道进一步雾化从所述第二雾化室流入所述第三雾化室的液体，所述第一总横截面积大于所述第二总横截面积。
10、按权利要求9所述的双流体喷嘴，其特征在于所述初步雾化装置包括一对准所述第二进口伸入所述第一雾化室的靶子螺栓，所述靶子螺栓有一表面，进入所述第一雾化室的液体冲撞其上，所述第一进口的位置布置成：进入所述第一雾化室的雾化流体雾化从所述第二进口导入的液体。

11、按权利要求9所述的双流体喷嘴，其特征在于所述各第一流道在所述第一板上排成一圆圈，所述各第二流道在所述第二板上排成一圆圈。

12、按权利要求11所述的双流体喷嘴，其特征在于所述第一流道和所述第二流道的数量相同；所述第二流道的直径小于所述第一流道。

13、按权利要求12所述的双流体喷嘴，其特征在于所述第一流道与所述第二流道互相大致对准。

14、按权利要求13所述的双流体喷嘴，其特征在于所述第一板有第一厚度，所述第二板有第二厚度，所述第一流道的长度大于所述第一厚度而所述第二流道的长度大于所述第二厚度。

15、按权利要求9所述的双流体喷嘴，其特征在于，所述第一板有一位于中心的第一流道，所述第二板有一位于中心的第二流道，所述喷头有一与所述第一和第二中心流道大致对准的喷口。

16、按权利要求15所述的双流体喷嘴，其特征在于，所述第一和第二流道的数量相同，所述第二流道的直径小于所述第一流道。

17、按权利要求16所述的双流体喷嘴，其特征在于，所述
第一流道与所述第二流道互相大致对准。

18、按权利要求9所述的双流体喷嘴，其特征在于，所述第二流道的数量比所述第一流道少，所有所述第一和第二流道的直径均相同。

19、按权利要求18所述的双流体喷嘴，其特征在于，所述第一板有第一厚度，所述第二板有第二厚度，所述第一流道的长度大于所述第一厚度，所述第二流道的长度大于所述第二厚度。

20、按权利要求11所述的双流体喷嘴，其特征在于，进一步包括一衬套；所述第一板、所述第二板和所述喷头用防腐蚀材料制成。

21、按权利要求9所述的双流体喷嘴，其特征在于，该喷嘴有一纵轴线，所述喷嘴中的所述各喷口与所述纵轴线的夹角约为3°-7°，所述各喷口控制该喷液而生成大致锥形的喷液。

22、一种生成乳浆的雾化喷液的方法，包括下列步骤：
把一含有粒子的液体导入一双流体喷嘴的第一雾化室；
使该液体冲撞所述第一雾化室中的一初步雾化装置而初步雾化该液体；
将初步雾化的一液体和导入第一雾化室的雾化液体混合；
使经初步雾化的液体和雾化液体流过一把所述第一雾化室和第二雾化室隔开的一板上的若干流道而进一步雾化该经初步雾化的液体并降低经初步雾化的液体和雾化液体进入所述第二雾化室的流速，所述板面对该初步雾化装置；所述粒子的直径小于所述流道的直径的约一半；并且
使第二雾化室中进一步雾化的液体流过所述喷嘴的一喷头中的
若干喷口而喷出雾化的液滴。

2.3 按权利要求2.2所述的方法，其特征在于，所述粒子为石灰乳浆粒子，所述雾化流体为压缩空气，所述流道的最小直径约为3.0mm，所述石灰乳浆粒子的最大直径约为1.5mm。

2.4 按权利要求2.2所述的方法，其特征在于，所述雾化喷液中的绝大部分经雾化的液滴的直径小于约150微米。

2.5 按权利要求2.4所述的方法，其特征在于，所述雾化喷液大致以锥形从所述喷头喷出。

2.6 一种生成乳浆的雾化喷液的方法，包括下列步骤：
把一含有粒子的液体导一双流体喷嘴的第一雾化室中；
在所述第一雾化室中初步雾化该液体；
使该初步雾化的液体流过构成所述第一雾化室的下游壁的第一板中的若干第一流道而流入第二雾化室而进一步雾化该初步雾化的液体；所述第一流道具有第一直径和第一总横截面积；
使该液体从第二雾化室经所述第一板下游的第二板中的若干第二流道流入第三雾化室而进一步雾化该液体，所述第二流道具有第二直径和比所述第一总横截面积小的第二总横截面积；所述粒子的最大直径小于所述第一和第二直径的约一半；并且
使该液体从所述第三雾化室经所述喷嘴的喷头中的若干喷口喷出而生成雾化液滴。
说明书

双流体喷嘴

发明领域

本发明涉及喷嘴，特别涉及适于产生细雾状喷液的双流体喷嘴。

现有技术简述

在许多喷液场合，希望生成液剂的细雾状液滴。在用来清除因烧煤或烧垃圾而产生的酸性烟气之类有害气体的半干燥清洗系统中，粒度分布受控的小液滴可以使液剂和烟气充分混合而提高该气体清洁工艺的性能。小液滴还更容易汽化，从而喷射液体的反应室的尺寸可减小，同时防止腐蚀性物质沉积在反应室的壁上。

但现有双流体喷嘴在产生细雾状液滴时一般总存在若干技术问题。在喷嘴中，流体流道的直径从而是滚动横截面积影响着雾化液滴的粒度分布。该流道越细，喷出的液滴一般也就越小。因此，现有双流体喷嘴通过减小该流道直径来降低雾化液滴的平均粒度而产生细雾状喷液。

产生细雾状喷液的这一方法由于若干原因而存在着不足之处，如在雾化乳液时，液体流道直径的减小使得该流道很快被乳浆粒子堵塞。直径减小的流道有效地过滤掉这些粒子而限制了所能通过流道的粒子的最大粒度。尽管对于大多数液体来说，总存在有悬浮粒子而有时会造成堵塞，但雾化乳浆材料时的一个主要问题是堵塞问题。

因此，选择喷嘴中流道的大小即是在可接受的液滴粒度分布与喷嘴不致过早堵塞之间取得平衡。对于乳浆来说，堵塞现象非常严重，因此无法用现有双流体喷嘴获得所需的液滴粒度分布，因为所需的流道直径太小而无法正常工作。

除了容易造成堵塞外，乳浆材料对用来制作喷嘴的现有材料还有很大的腐蚀性。

为了在喷射乳浆时减小喷嘴流道的堵塞，理论上可提高雾化流体以及所携带
的乳浆粒子的流速。虽然这种办法理论上减少了堵塞，至少在乳浆粒子比流道直径小时，但由于流速的提高同时使流道迅速受到腐蚀，因此实际上还存在不足。因此流速实际上限定了喷嘴的磨损快慢。若在防止堵塞所需速度下腐蚀得太快，则由于喷嘴有效寿命的缩短而使更换成本的提高，提高流速的办法在经济上仍行不通。

而且，用双流体喷嘴雾化乳浆属能量密集型，导致提高雾化液的流速只是进一步提高了能耗，因为它提高了把雾化液和乳浆输入喷嘴所需的能量。

因此，鉴于现有双流体喷嘴的这些不足之处，需要有一种双流体喷嘴，它能生成乳浆的细雾状喷液，但所需能量降低，且喷嘴不易遭腐蚀。

本发明概述

鉴于现有喷嘴的上述不足而提出了本发明，其目的在于提供一种以低能量生成乳浆的细雾状喷液的双流体喷嘴。

本发明的另一个目的是提供一种双流体喷嘴，它可生成乳浆的细雾状喷液而其喷嘴不易腐蚀。

本发明的其它目的和优点可从下面的详述和附图或通过本发明的实施而显然看出。

为实现本发明的这些目的，本发明一优选实施例的双流体喷嘴包括其中有第一雾化室的喷嘴体、该喷嘴体的把雾化流体导人第一雾化室的第一进口和外壁上把待雾化液体导人第一雾化室的第二进口。

第一雾化室中有一初步雾化装置，初步雾化经第二进口导人第一雾化室的液体。

该喷嘴体上装有一喷头。该喷头上有若干供雾化喷液喷出的喷口。

该双流体喷嘴还包括一构成第一雾化室的前壁的板。该板和该喷头形成位于第一雾化室下游的第二雾化室。该板上有若干供初步雾化的液体从第一雾化室流入第二雾化室而进一步雾化的流道。
按照本发明的另一优选实施例，该双流体喷嘴沿着喷嘴长度方向有若干板而形成多个雾化室。后面的板的流程的总横截面积最好比前面的板小，从而雾化流体和液体的流速在依次流过各板时逐步提高。

附图的简要说明

在附图中：

图1 为放置在一气体导管中的本发明一优选实施例的双流体喷嘴的示意剖面图；

图2 为图1 喷嘴的正视图，示出喷头中喷口的布置；

图3 为构成喷嘴第一雾化室前壁的板的正视图，示出该板中各流程的布置；

图4 为本发明另一优选实施例的双流体喷嘴的示意剖面图；

图5 为沿图4 中5 ～5 线剖取的剖面图；

图6 为沿图4 中6 ～6 线剖取的剖面图；

图7 为图6 所示板的另一实施例；

图8 为图3 所示板的另一实施例；以及

图9 为沿图8 中9 ～9 线剖取的剖面图。

优选实施例详述

参看各附图，图1 示出本发明一优选实施例的双流体喷嘴。该喷嘴利用一雾化流体产生一液体的雾化喷液。

所示喷嘴2 0 放置在其中有气流“G” 的一导管1 0 中。该喷嘴特别可用来生成诸如由石灰和水构成的石灰乳浆之类一定成份的乳浆的细雾状喷液。石灰乳浆通常在半干燥气体清洗系统中用作清洗介质。所示气流可以是电厂烧煤或焚化工厂烧废物生成的烟气。如图所示，喷嘴产生的雾化喷液“S” 与烟气反应而清除
二氧化硫、盐酸和氮酸之类有害成分。

本发明的喷嘴20包括一喷嘴体30。该喷嘴体最好呈圆柱形并包括一由金属材料制成的外壳31。该外壳31由一对相对侧壁33, 34和后壁35构成，从而形成第一雾化室36。一由耐腐蚀陶瓷之类材料制成的衬套32衬在外壳31中。

一雾化流体供应管37接至该喷嘴下游端处的后壁35。一管接头38把该雾化流体供应管37牢固固定在该喷嘴体口。该雾化流体供应管有一直径减小部分39与衬套32上的一孔40相通。该孔40直接通向第一雾化室36。

雾化流体最好为加压空气，喷嘴中也可使用蒸汽之类的其它流体。

一液体供应管41用一管接头42牢固固定到该喷嘴体的侧壁34上。如图所示，该管接头42有一直径减小部分43与衬套32中的一孔44相通。该孔44直接通向第一雾化室36。该管接头42的内螺纹45与液体供应管41上的相应螺纹46啮合。

按照本发明，喷嘴20包括初步雾化装置，从而在液体经过液体供应管41流入第一雾化室36后初步雾化该液体。该初步雾化装置最好为一可调节地固定在喷嘴体的侧壁33上而与孔44相对的靶子螺栓50。该靶子螺栓包括一底座51，其上有外螺纹52，以啮合侧壁33上供该靶子螺栓穿过的一开口的壁上的内螺纹（未画出）。螺纹53伸入第一雾化室中而其表面54与孔44对准，从孔44流入第一雾化室中的液体直接冲撞表面54而碎成液丝和大液滴。

靶子螺栓50最好用陶瓷之类防磨损材料制成。

所生成的液丝和大液滴进一步由从孔40流入第一雾化室36中的雾化流体流粉碎。当雾化流体流过表面54时，它把该乳浆剪切成较小的粒子，雾化流体与受剪切粒子混合后带着它们流过第一雾化室。

第一雾化室36还有一由一板60构成的前壁。该板60与喷嘴喷出端的一喷头70之间形成第二雾化室。

按照本发明，该板60上有若干从乳浆粒子从第一雾化室36流入第二雾化室55的流道61。从图3中可见，该板上最好有排成一圆圈的5个流道61。
流道6 1 在乳浆粒子进入第三雾化室之前进一步剪切并减小乳浆粒子的大小。在流过流道6 1 后，乳浆粒子和雾化流体在第三雾化室中进一步混合。

流道6 1 的直径最好约大于从孔4 4 流入第一雾化室3 6 的最大乳浆粒子的两倍直径，在流道的这一直径之下，可基本上防止两个或多个乳浆粒子在流道中发生桥接。

作为防止流道堵塞的另一手段，乳浆在流入第一雾化室3 6 之前最好过滤掉大于流道6 1 直径的大约一半的粒子。石灰乳浆粒子过滤到约1 . 5 m m 的最大直径，从而流道6 1 的直径最好不小于约3 m m 。

板6 0 上的流道数可以不是5 ，各流道在板上的布置也可不同。例如从图8 可见，板6 0 ° 上包括四个排成一圈的流道和位于中心的第5 流道。板6 0 ° 可与图4 所示有一中心喷口7 1 ° 的喷头7 0 ° 之类的喷头一起使用。

在把雾化室3 6 与5 5 隔开的板6 0 上形成若干流道较之其板上只有一个流道的现有喷嘴提高了喷嘴2 0 的性能，更确切说，在一定的雾化流体流速下以及喷嘴的一定能量输入下，本发明的双流体喷嘴可生成平均粒度较小的雾化喷嘴以及由较小的最小和最大粒子形成的粒度分布。该能量输入决定于把雾化流体和液体输入该喷嘴的流速以及雾化流体和液体的压力。该双流体喷嘴可在低速雾化流体从而不易腐蚀和在较低能量要求下生成同样粒度的雾化粒子和差不多同样粒度的粒度分布。

喷头7 0 ° 中有若干喷口7 1 ° 在液体喷入大气之前地雾化液体。这些喷口还可控制雾化乳浆的喷雾形状，而产生大致为锥形的喷雾“S”。为获得这一喷雾形状，如图1 所示，喷口7 1 ° 与喷嘴纵轴线的夹角最好为3 ° - 7 ° 。

如图2 所示，该双流体喷嘴2 0 ° 的喷头7 0 ° 上有排成一圆圈的8 个喷口7 1 ° 。该喷头的喷口数可不同，喷口的布置也可不同，以便生成不同形状的喷雾。

喷头7 0 ° 最好用陶瓷之类抗腐蚀、抗磨损材料制成。该喷头可从该喷嘴体上卸下，以便必要时更换板。

图4 示出本发明喷嘴的另一实施例2 0 ° 。喷嘴2 0 ° 中有第一板6 0 ° 和第二板8 0 ° 而形成三个雾化室3 6 ° 、3 6 ° 和5 5 ° 。第一板6 0 ° 把第一雾化室3 6 ° 与第二雾化室3 6 ° 隔开，而第二板8 0 ° 和喷头7 0 ° 形成第三
雾化室5 5'。

第一板6 0' 和第二板8 0' 上各有若干流道6 1' 和8 1'。每一板上的各流道的直径最好相同，而流道8 1' 的直径最好小于流道6 1'。因此，若板6 0' 和8 0' 有相同数量的流道，则流道8 1' 的总模截面积较小，从而雾化流体流过流道8 1' 的流速大于流过流道6 1' 的流速。并且，喷嘴7 1' 的直径比流道8 1' 小，因此喷嘴7 1' 的总模截面积小于流道8 1' 的总模截面积。因此，雾化流体流过喷嘴7 1' 的流速大于流过流道8 1' 的流速。

也可在板6 0' 和8 0' 上使用同样大小的流道但减少板8 0' 上的流道8 1' 的数而使流道6 1' 的总模截面积较大。

按照本发明，该喷嘴也可包括两块以上的板而形成三个以上雾化室。在这些实施例中可沿该喷嘴的下游方向，依次减小各板上的流道的总模截面积。

按照本发明，把雾化室3 6 与5 5 间隔的板6 0' 的流道的周边可作尖而有利于雾化。如图9 所示，图8 所示流道6 1' 因有突壁部6 3' 而从板6 0' 的前表面“F”向前伸出。流道6 1' 的尖度超过板6 0' 的尖度。

如图5 和图6 所示，流道6 1' 和8 1' 在板6 0' 和8 0' 上排成相同的一圆圈。因此，如图4 所示，当把板6 0' 和8 0' 一起使用在该喷嘴中时，各流道6 1' 和8 1' 相互大致对准。

图4 还示出板6 0' 和8 0' 上有相互对准并与喷嘴7 0' 上的中心喷口7 1' 对准的中心流道6 1' 和8 1'。

相邻两板上的流道也可不相对对准。图7 示出可与板6 0' 一起使用的板8 0'。如图所示，板8 0' 上的若干流道8 1' 的角位与流道8 1' 不同。因此，当板8 0' 与板6 0' 一起使用时，流道8 1' 和6 1' 并不互相对准。

按照本发明，该喷嘴可有用来对准各板上的流道的装置。如图5 7 所示，板6 0' 、8 0' 和8 0' 分别有外部平面6 2' 、8 2' 和8 2' 以确保各板装入喷嘴中时各相邻板中的流道位于一定角位上。在板6 0' 与8 0' 一起使用时平面6 2' 和8 2' 使流道6 1' 与8 1' 对准，而在板6 0' 和8 0' 一起使用时平面6 2' 和8 2' 使流道6 1' 与8 1' 不对准。

本发明双流体喷嘴可生成各种液体的细雾状喷液，从而可广泛地用于各种场
合。但该喷嘴特别适用于雾化乳浆，如上所述，现有双流体喷嘴由于易发生堵塞、易受腐蚀和需要的能量大而一般无法生成各种乳浆的细雾状喷液。

为了表明本发明的若干优点，进行了五种雾化试验A～E。对这些试验的下述说明绝不应看成对本发明的范围有所限制。

在这些试验中，使用了图3所示双流体喷嘴。该喷嘴包括两个雾化室和一把这二个室隔开的板，用水作为液体，用加压空气作为雾化流体。

在试验A、C和D中，该板上只有一个其直径为12.7 m m (0.5英寸)、横截面积为127 m m² (0.2平方英寸)的中心流道。

在试验B和E中，该板上有5个流道以表明在板上作出若干流道所具有的优点，5个流道的直径都为5.6 m m (7/32英寸)，因此横截面积为123 m m² (0.19平方英寸)。这5个流道如图3所示那样等距地排成一圆圈。

在所有试验A～E中，喷头的结构均相同，即如图2所示那样有8个等距排成一圆圈的喷口。每一个喷口的直径为3.6 m m (9/64英寸)，因此总横截面积为81 m m² (0.12平方英寸)。

试验A、C和D的喷嘴的板上的单个流道和喷头上的8个喷口的总周长130 m m (5.1英寸)大大小于试验B和E的喷嘴的板上的5个流道和8个喷口的总周长179 m m (7.0英寸)。

由于在两类试验中流道和喷口的总横截面积相同而雾化流体以相同的加压空气的流率大致相同地流过两板，因此可显示出改变流道总周长的效果。

由于喷口的总横面积较小，因此加压空气流过喷头喷口的流速比流过板的流速大。

试验A～E的结果示出在下表1中。表1示出雾化水粒的Sauter平均直径以及直径大于150微米的雾化水粒的百分比。Sauter平均直径为体积与表面积之比等于所有水滴的总体积与总表面积之比的水滴的直径。表1的最后一栏给出喷射8公斤水的能耗。试验结果表明，本发明双流体喷嘴优于现有双流体喷嘴。由于本喷嘴的板上多个流道和喷头喷口的总周长增大，因此提高了对液体的剪切和雾化。若从流体流过喷嘴喷口的较高流速来比较试验A和B的结
果，在试验 B 中，由于直径大于 150 微米的粗水粒的比例从 17.2 % 降为 11.8 %，因此剪切效果提高了约 31 %。

比较使用只有一个流道的板的试验 C 的结果和使用有 5 个流道的板的试验 B 的结果，在空气和水的进口压力大大减小从而能耗减少约 25 % 的情况下即可获得相同的水滴平均直径。

最后，试验 D 和 E 的结果表明，喷出的水粒的平均直径近似相等，而大于 150 微米的水粒的比例和能耗大大减小。试验 D 和 E 的空气流率相同，而在试验 E 中水的流率减小 60 %，能耗降低 31 %。

本发明优选实施例的上述说明只是例示出本发明原理，并不是把本发明限制在所述特定实施例上。本发明范围应理解成由后附权利要求包含的所有实施例及其等同物限定。
<table>
<thead>
<tr>
<th>试验号</th>
<th>板中的流道数</th>
<th>空气进口压力 (PSIG)</th>
<th>空气进口压力 (kPa)</th>
<th>水的进口压力 (PSIG)</th>
<th>水的进口压力 (kPa)</th>
<th>空气流率 (SCFM)</th>
<th>空气流率 (Nm³/hr)</th>
<th>水的流率 (GPM)</th>
<th>水的流率 (l/hr)</th>
<th>喷出水粒的 Sauter 平均直径 (微米)</th>
<th>大于150 微米的喷出水粒 (%)</th>
<th>能耗 (whr/kg水)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>77</td>
<td>531</td>
<td>82</td>
<td>565</td>
<td>70</td>
<td>110</td>
<td>3.25</td>
<td>738</td>
<td>77</td>
<td>17.2</td>
<td>13</td>
</tr>
<tr>
<td>B</td>
<td>5</td>
<td>75</td>
<td>517</td>
<td>80</td>
<td>552</td>
<td>70</td>
<td>110</td>
<td>3.25</td>
<td>738</td>
<td>64</td>
<td>11.8</td>
<td>13</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>93</td>
<td>641</td>
<td>96</td>
<td>662</td>
<td>85</td>
<td>134</td>
<td>3.25</td>
<td>738</td>
<td>64</td>
<td>11.3</td>
<td>17</td>
</tr>
<tr>
<td>D</td>
<td>1</td>
<td>66</td>
<td>455</td>
<td>66</td>
<td>455</td>
<td>70</td>
<td>110</td>
<td>2.50</td>
<td>568</td>
<td>68</td>
<td>16.4</td>
<td>16</td>
</tr>
<tr>
<td>E</td>
<td>5</td>
<td>84</td>
<td>579</td>
<td>95</td>
<td>655</td>
<td>70</td>
<td>110</td>
<td>4.00</td>
<td>908</td>
<td>69</td>
<td>12.3</td>
<td>11</td>
</tr>
</tbody>
</table>