
JP 2009-506632 A 2009.2.12

10

(57)【要約】
スキーマパッケージング、配布および可用性を可能にす
るシステムおよび／または方法が開示されている。本発
明の態様によれば、スキーマパッケージのセキュアな定
義を容易にする署名テクノロジが採用されている。この
システムおよび／または方法によれば、スキーマパッケ
ージをリソースとしてクライアント側アセンブリに組み
込むことにより、そのアセンブリを見つけるために使用
されたのと全く同じインフラストラクチャが、スキーマ
パッケージを見つけるときの梃子となり得ることも保証
している。他の態様によれば、スキーマパッケージをサ
テライトアセンブル(satellite assemble)として、また
は別のファイルとして組み込むことを可能にしている。
これらのシナリオにおいて、本発明によれば、クライア
ントが未インストールのスキーマに関してストアとやり
とりするのを可能にするために必要なスキーマパッケー
ジと情報の構築と配布を容易にすることができる。

(2) JP 2009-506632 A 2009.2.12

10

20

30

40

50

【特許請求の範囲】
【請求項１】
スキーマパッケージの可用性を容易にするシステムであって、該システムは、
　　前記スキーマパッケージ対してストロングネームを署名するパッケージングコンポー
ネントと、
　　前記スキーマパッケージの所在を突き止めて、ストアに投入するために前記スキーマ
パッケージの可用性を容易にする配布コンポーネントと、
を備えたことを特徴とするシステム。
【請求項２】
前記パッケージングコンポーネントは、前記スキーマパッケージとクライアント側アセン
ブリとの間に固有の関係を作成することを特徴とする請求項１に記載のシステム。
【請求項３】
前記パッケージングコンポーネントは、署名された前記スキーマパッケージをリソースと
してクライアント側アセンブリに組み込むことを特徴とする請求項２に記載のシステム。
【請求項４】
前記パッケージングコンポーネントは、署名された前記スキーマパッケージをサテライト
アセンブリとして配備することを特徴とする請求項２に記載のシステム。
【請求項５】
前記パッケージングコンポーネントは、署名された前記スキーマパッケージを別のファイ
ルとして配置することを特徴とする請求項２に記載のシステム。
【請求項６】
前記配布コンポーネントは、
　　少なくともその一部が前記クライアント側アセンブリとの固有の関係に基づいて、前
記スキーマパッケージの所在を突き止めることを容易にするディスカバリコンポーネント
と、
　　前記スキーマパッケージへのアクセスを容易にするローディングコンポーネントと、
を含むことを特徴とする請求項２に記載のシステム。
【請求項７】
前記パッケージングコンポーネントは、共通暗号化鍵を使用して前記スキーマパッケージ
と前記クライアント側アセンブリに署名することを特徴とする請求項２に記載のシステム
。
【請求項８】
署名された前記スキーマパッケージを個人と組織の少なくとも一方と関連付ける認証コー
ドコンポーネントを、さらに備えたことを特徴とする請求項２に記載のシステム。
【請求項９】
署名された前記スキーマパッケージコンポーネントを圧縮して、前記スキーマパッケージ
の伝送オーバヘッドを軽減する圧縮コンポーネントを、さらに備えたことを特徴とする請
求項２に記載のシステム。
【請求項１０】
署名された前記スキーマパッケージの暗号化を容易にする暗号化コンポーネントを、さら
に備えたことを特徴とする請求項２に記載のシステム。
【請求項１１】
スキーマを配布するコンピュータ実装方法であって、該コンピュータ実装方法は、
　　暗号化鍵を使用して前記スキーマパッケージに署名し、
　　暗号化鍵を使用してクライアント側アセンブリに署名し、
　　少なくともその一部が暗号化鍵に基づいて前記スキーマパッケージを配布する、
ことを含むことを特徴とするコンピュータ実装方法。
【請求項１２】
署名された前記スキーマパッケージをリソースとして前記クライアント側アセンブリに組
み込むことを、さらに含むことを特徴とする請求項１１に記載のコンピュータ実装方法。

(3) JP 2009-506632 A 2009.2.12

10

20

30

40

50

【請求項１３】
前記スキーマパッケージを前記クライアント側アセンブリに関係するサテライトアセンブ
リとして指定することを、さらに含むことを特徴とする請求項１１に記載のコンピュータ
実装方法。
【請求項１４】
前記スキーマパッケージから別のファイルを生成し、その別のファイルを前記クライアン
ト側アセンブリに関係付けることを、さらに含むことを特徴とする請求項１１に記載のコ
ンピュータ実装方法。
【請求項１５】
配布するアクトは、さらに、
　　少なくともその一部が暗号化鍵に基づいて前記スキーマパッケージを見つけ、
　　アプリケーションによる使用のために前記スキーマパッケージをローディングするこ
とを含むことを特徴とする請求項１１に記載のコンピュータ実装方法。
【請求項１６】
前記スキーマパッケージを特定の個人と組織の少なくとも一方に関連付けることを、さら
に含むことを特徴とする請求項１１に記載のコンピュータ実装方法。
【請求項１７】
配布するアクトに先立って前記スキーマパッケージを圧縮することを、さらに含むことを
特徴とする請求項１１に記載のコンピュータ実装方法。
【請求項１８】
配布するアクトに先立って前記スキーマパッケージを暗号化することを、さらに含むこと
を特徴とする請求項１１に記載のコンピュータ実装方法。
【請求項１９】
スキーマパッケージの配布を容易にするシステムであって、該システムは、
　　暗号化鍵を使用して前記スキーマパッケージに署名する手段と、
　　暗号化鍵を使用してクライアント側アセンブリに署名する手段と、
　　前記スキーマパッケージを前記クライアント側アセンブリのリソースとして前記クラ
イアント側アセンブリに組み込む手段と、
　　アプリケーションによる使用のために前記スキーマパッケージを自動的に見つける手
段と、
を備えたことを特徴とするシステム。
【請求項２０】
前記スキーマパッケージ内に組み込まれたスキーマ化タイプがインスタンス生成されると
、前記スキーマパッケージに自動的にアクセスする手段を、さらに備えたことを特徴とす
る請求項１９に記載のシステム。
【発明の詳細な説明】
【技術分野】
【０００１】
　本発明は、スキーマパッケージング、配布および利用を可能にするシステムおよび／ま
たは方法に関する。
【背景技術】
【０００２】
　コンピューティングシステムにおける技術的進歩は、データの共通性を増大することに
よってマシン間の共有、互換および相互運用を可能にすることを目的としていた。例えば
、周知であるように、ユーザはデータをある装置に置いておき、そのデータを別の装置お
よび／またはアプリケーションと共有することを望むことがよくある。今日では、システ
ムが特定のデータフォーマットとタイプを受け付けるように事前構成されている限り、コ
ンピュータはアプリケーションおよびユーザ間でデータを共有することができる。しかし
、これらの従来システムは拡張可能ではない。即ち、正しいスキーマが送り先装置側に用
意されていないと、データは転送することができない。また、自由なデータ交換を維持す

(4) JP 2009-506632 A 2009.2.12

10

20

30

40

50

るために、ユーザは、同じ追加または変更したタイプが送り先場所（サーバ／クライアン
ト）にインストールされていないと、ユーザは発生元場所（例えば、クライアント／サー
バ）でタイプを追加または変更することができない。即ち、送り先場所（例えば、サーバ
／クライアント）は異種の装置および／またはアプリケーションから到来データを受け取
るように準備されている必要がある（例えば、必要なスキーマ情報を保持している必要が
ある）。
【０００３】
　コンピューティングシステムにおける開発は、データベーステクノロジの利点を利用す
るプラットフォームを採用することを目的としていた。多くの場合、これらの開発では、
これらの利点はファイルシステムに組み込まれている。しかし、これらのシステムにも上
述したのと同じスキーマ互換性の欠点がある。そのために、今日では、データを効果的に
転送し、共有するためには、ファイルシステム内のデータは事前に定義された共通スキー
マに準拠していなければならない。当然のことであるが、スキーマ(schema)とは、データ
のフォーム（例えば、構造）を宣言的方法で記述したものと定義することができる。
新たに出現したファイルシステムでは、オブジェクトはデータベース（例えば、ファイル
システム）に格納することが可能であり、従って、適用可能なスキーマで記述することが
可能になっている。これらのファイルシステム内のデータは特定のスキーマとタイプのイ
ンスタンスであり、タイプはデータの形状（例えば、構造）を定義するスキーマに定義さ
れている。新しいタイプをシステムに追加する必要が起ったときは、例えば、システムが
取り扱うことができる新しいオブジェクトのセットまたは新しいデータのフォームを追加
する必要が起ったときは、開発者はスキーマおよびそのスキーマ内にタイプを作成する必
要がある。次に、プロパティがそのタイプに追加されることになる。
【発明の開示】
【発明が解決しようとする課題】
【０００４】
　データをファイルシステムのストア（または他のデータベース）にセーブする必要があ
るが、そのデータに必要なスキーマ／タイプがまだインストールされていないときのシナ
リオはいくつかが存在する。これは、「ストアダウンレベル(store down-level)」問題と
して知られている。従来のシステムでは、システムアドミニストレータ（システム管理責
任者）および／または特別な権限をもつ人だけがスキーマ情報をインストールすることが
可能であった。
【課題を解決するための手段】
【０００５】
　以下は、本発明のいくつかの態様の基本的理解を容易にするために、本発明の概要を簡
単に説明したものである。以下の簡単な説明は、本発明の概要を網羅的に説明したもので
はない。また、本発明の主要／必須要素を特定することを意図したものでも、本発明の範
囲を限定することを意図したものでもない。本発明の唯一の目的は、後述するより詳細な
説明の序論として本発明のいくつかの概念を簡単に紹介することである。
【０００６】
　ここで説明している本発明は、その一態様によれば、スキーマパケージをリソースとし
てクライアント側アセンブリ(client-side assembly)に組み入れることを容易にしている
。他の態様によれば、スキーマパッケージをサテライトアセンブル(satellite assemble)
としてまたは別のファイルとして組み入れることを可能にしている。当然に理解されるよ
うに、スキーマ定義(schema definition)は、スキーマパッケージと呼ばれるドキュメン
トに収集することができる。例示のシナリオでは、システムは、未インストールのスキー
マに関してクライアントがストアとやりとりするのを可能にするために必要なスキーマパ
ッケージと情報を構築し、配布するのを容易にしている。
【０００７】
　スキーマのジャストインタイム(just-in-time)インストールをサポートするために、署
名されたスキーマパッケージがストアに提示されてインストールされることを可能にして

(5) JP 2009-506632 A 2009.2.12

10

20

30

40

50

いる。スキーマパッケージにはいくつかの利点があるが、パッケージがインストールのた
めに容易に利用可能になっていないと、これらの利点は無意味になってしまう。本発明の
一態様による革新は、セキュアかつオンタイムで利用できることを保証するようにスキー
マパッケージを構築し、配布するシステムおよび方法を目的としている。
【０００８】
　本発明の一態様によれば、スキーマパッケージの構築期間に、ストロングネーム署名(s
trong name signing)オペレーションを採用することを可能にしている。別の態様では、
スキーマパッケージの認証コード署名(authenticode signing)、圧縮および／または暗号
化の採用を可能にしている。スキーマパッケージは、スキーマを実装したものを提供する
クライアント側アセンブリ(client-side assembly)の一部として組み込むことができる。
クライアント側アセンブリは周知の名前で特定することができ、スキーマがプログラミン
グによって使用できるすべての場所でＡＰＩが利用できるようにすることができる。即ち
、クライアントアプリケーションがスキーマ化タイプ(schematized type)のインスタンス
を生成してそのインスタンスがストアに残っているときは、いつでもクライアントはスキ
ーマパッケージにアクセスすることが可能になっている。さらに別の態様では、必要とす
るスキーマがストアに用意されていない場合は、データの提示に先立ってスキーマパッケ
ージをストアにインストールしておくことができる。
【０００９】
　上述した目的および関連目的を達成するために、以下の説明と添付図面を参照して、本
発明のいくつかの態様を例示して以下に説明する。なお、これらの態様は、本発明の原理
を採用できる種々の方法のいつかを例示したものにすぎず、本発明には、かかる態様のす
べておよびその同等態様が含まれるものである。本発明の他の利点と新規特徴は、図面を
参照して以下に説明する本発明の詳細説明の中で明らかにする。
【発明を実施するための最良の形態】
【００１０】
以下、図面を参照して本発明について説明する。図面全体を通して類似の要素は類似の参
照番号を付けて示されている。以下の説明において、本発明の完全な理解を容易にするた
めに、説明の目的上、多数の具体的詳細が示されている。当然のことであるが、本発明は
これらの具体的詳細がなくても実施することが可能である。その他の例では、本発明の説
明を容易にするために、周知の構造と装置が示されている。
【００１１】
　本明細書の中で使用されている「コンポーネント(component)」および「装置(device)
」という用語は、ハードウェアであるか、ハードウェアとソフトウェアの組み合わせであ
るか、ソフトウェアであるか、実行中のソフトウェアであるかに関係なく、コンピュータ
に関係するエンティティのことを指している。例えば、コンポーネントは、プロセッサ上
で実行されるプロセス、プロセッサ、オブジェクト、実行可能形体のもの(executable)、
実行スレッド(thread of execution)、プログラム、および／またはコンピュータにする
ことができるが、これらに限定されない。例示として、サーバ上で実行されるアプリケー
ションおよびサーバは共に、コンポーネントになることができる。１または２以上のコン
ポーネントは、プロセスおよび／または実行スレッド内に置いておくことができ、あるコ
ンポーネントは１つのコンピュータ上に置いておくことも、および／または２または３以
上のコンピュータ間に分散させることも可能である。
【００１２】
　本明細書の中で使用されている「推論する(infer)」または「推論(inference)」という
用語は、一般的に、イベントおよび／またはデータを通して収集した観察の集合からシス
テム、環境、および／またはユーザのステート（状態）について推理(reasoning)、つま
り、ステートを推論(inferring)するプロセスのことを指している。推論は、特定のコン
テキストまたはアクションを特定するために採用することができるが、例えば、ステート
にわたる確率分布を生成することもできる。推論は確率的(probabilistic)にすることが
できる。すなわち、関心のあるステートにわたる確率分布の計算をデータおよびイベント

(6) JP 2009-506632 A 2009.2.12

10

20

30

40

50

の考慮に基づいたものにすることができる。推論は、イベントおよび／またはデータの集
合からより上位レベルのイベントを構成するために採用された手法を指すこともある。か
かる推論の結果として、観察されたイベントおよび／または格納されたイベントデータの
集合から新しいイベントまたはアクションが構築されるが、これらのイベントが時間的に
近接した相関関係にあるかどうか、およびイベントおよびデータが１または複数のイベン
トおよびデータのソースから得られたものかどうかは無関係である。
【００１３】
　最初に図１を参照して説明すると、図１はスキーマのパッケージング、配布および可用
性を容易にするシステム１００を示す図である。一般的に、システム１００は、スキーマ
パッケージングコンポーネント(schema packaging component)１０２とスキーマ配布コン
ポーネント(schema distribution component)１０４を装備することができる。上述した
ように、システム１００は、システム１００のセキュリティと信頼性を維持したまま、該
当スキーマの可用性を実現することができる。
【００１４】
　よくあることであるが、ユーザはデータをあるコンピュータに置いておき、そのデータ
をアプリケーションおよびユーザの間で共有させたいことがある。しかし、事情によって
は、必要なデータ（例えば、スキーマ）が用意されていないため、データの共有が行なえ
ないことがある。従来システムがデータの共有を行なう方法には、いくつかの問題がある
。上述したように、従来システムは拡張不能である。例えば、許可やアクセス上の問題に
起因してタイプを追加することが困難なことがよくある。多くの場合、ファイルシステム
はデータベースの利点を利用し、その利点をストレージファイルシステムに組み込むプラ
ットフォームを採用している。そのために、ファイルシステム内のデータは、事前に定義
され、事前にインストールされたスキーマに準拠することができる。すなわち、宣言的方
法でデータのフォームを記述することができる。
【００１５】
　新たに出現したファイルシステムでは、オブジェクトはデータベース（例えば、ファイ
ルシステム）に格納され、特殊化されたスキーマによって記述されている。これらのファ
イルシステム内のデータはこれらのスキーマのタイプのインスタンスである。すなわち、
タイプは、データの形状を定義しているスキーマ内に定義されている。ここで説明してい
る例と態様はデータベーススキーマのシナリオを目的としているが、当然に理解されるよ
うに、その他のシナリオおよびここで説明している新規機能を実装したものが存在するの
で、適用可能なスキーマで他のドキュメントを記述することができる。これらの代替態様
は、本明細書および明細書に付属する請求項の範囲に含まれるものである。
【００１６】
　本発明の革新によれば、あるマシンから別のマシンへデータを無制限に転送することを
可能にすると共に、データが第２マシンに到着したとき、いつでも、そのデータに関して
必要なメータデータが第２マシンにすでに存在することを可能にしている。さらに、本発
明の革新によれば、スキーマ情報に対してセキュリティを保持しながらスキーマ情報をコ
ンポーネント間で調整することを可能にしている。
【００１７】
　図１に戻って説明すると、本発明の態様は、スキーマのセキュアなパッケージング、配
布および可用性を容易にするシステム１００（および／または方法）を目的としている。
一態様では、スキーマパッケージングコンポーネント１０２によると、スキーマインスト
ールの単位、すなわち、データの構造を記述するスキーマパッケージまたはパッケージだ
け（例えば、スキーマドキュメント）を定義することができる。システム１００によって
取り組むことのできる１つの問題として、重要なことは２つのスキーマが相互に独立して
開発された場合、これらのスキーマが誤って衝突しないことを保証することである。即ち
、重要なことは、送り先マシンから見たとき、２つのタイプのドキュメントが誤って同じ
ドキュメントとして見えないことを保証することである。
【００１８】

(7) JP 2009-506632 A 2009.2.12

10

20

30

40

50

　前述した関連アプリケーションの中で説明されているようにスキーマのジャストインタ
イムインストールをサポートするために、スキーマパッケージングコンポーネント１０２
によると、インストールに備えてストアに提示することができる、ユニークに署名された
スキーマパッケージを生成することができる。スキーマパッケージにはいくつかの利点が
あるが、パケージが容易にインストールできるようになっていないと、これらの利点は無
意味になってしまう。配布コンポーネント１０４は、インストールを容易にすることがで
きる。スキーマパッケージングコンポーネント１０２とスキーマ配布コンポーネント１０
４の新規機能は、どちらも以下に詳しく説明する。
【００１９】
　一般的に、本発明による革新は、その一態様によれば、データをストアに格納すること
を容易にするために非アドミニストレータ（非管理責任者）または無権限エージェントが
スキーマをストアに投入できるようにすることを目的としている。具体的には、本発明の
革新によれば、このシナリオが可能であるのは、スキーマがその所有者に対して権限があ
って、そのスキーマが別の所有者によって生成されたスキーマと衝突しない範囲において
である。
【００２０】
　ここで説明している新規機能によれば、あるユーザがスキーマを生成したとき、別のユ
ーザはそのスキーマを採用することができ、そのスキーマが元の所有者に対して権限があ
るものと判断することができる。さらに、ユーザは、そのスキーマがストアに投入された
場合、既存のスキーマまたは別のユーザによって生成されたスキーマに不利な影響を与え
ないことを保証することができる。以上から理解されるように、もう１つの主要な新規概
念は、スキーマパッケージとクライアント側アセンブリとの間の関係である。このような
関係があると、スキーマパッケージをクライアント側アセンブリに対して常時利用可能に
することができる。
【００２１】
　本発明の革新によれば、上述した新規の権限を有し、衝突防止機能を実現するために、
いくつかのテクノロジが組み合わされている。本発明の態様によれば、スキーマパッケー
ジがどのように構築され、配布されてその可用性が保証されるかが説明されている。以下
の図面の説明から明であるように、本発明による革新の一態様の新規特徴は、暗号化して
署名されたスキーマパッケージをクライアント側アセンブリにリンクできること、例えば
、リソースとしてクライアント側アセンブリに組み込むことができることである。
【００２２】
　次に図２を参照して説明すると、図２はシステム１００の代替アーキテクチャを示すブ
ロック図である。新規スキーマパッケージング、配布および可用性システムの態様によれ
ば、スキーマパッケージングコンポーネント１０２によるスキーマパッケージの構造は、
ストロングネーム署名コンポーネント(strong name signing component)２０２を使用し
て、ストロングネーム署名オペレーションを実行することを可能にしている。ここでスト
ロングネーム署名とは、他のすべてのスキーマからスキーマをユニークに定義し、不正変
更チェックを行い、バージョン系統(version lineage)を保護する能力のことである。従
って、ストロングネーム署名に関して、各々のスキーマは、スキーマ自体の定義と緊密に
結合されたユニーク名をもつことができる。異なる定義および／または署名をもつスキー
マが他にもあることから、スキーマがユニークでなければならないのはそのためである。
【００２３】
　スキーマをその元の形体で送信するのではなく、スキーマをスキーマパッケージングコ
ンポーネント１０２によって「パッケージ化」すると、その内容を存続したままスキーマ
にいくつかの望ましい特性を持たせることができる。一態様では、スキーマパッケージは
スキーマ定義言語(schema definition language SDL)ドキュメント（例えば、拡張可能
マークアップ言語(extensible markup language XML)にすることができる。さらに、理
解すべきことは、スキーマパッケージはどのようなカスタムまたは拡張可能コードも含ん
でいないことである。従って、そのようなスキーマはスキーマインストールの唯一の単位

(8) JP 2009-506632 A 2009.2.12

10

20

30

40

50

になっている。図２に図示のように、一態様では、ストロングネームには、スキーマのフ
レンドリネーム、バージョン、カルチャおよびスキーマに署名するために使用される暗号
鍵ペアの公開鍵部分を含めることができる。
【００２４】
　次に図３を参照して説明すると、図３はスキーマのパッケージング、配布および可用性
を容易にする代替システム３００を示す図である。図示のように、ストロングネーム署名
コンポーネント２０２のほかに、スキーマパッケージングコンポーネント１０２は、オプ
ションとして認証コード署名コンポーネント(authenticode signing component)３０２、
圧縮コンポーネント(compression component)３０４、および／または暗号化コンポーネ
ント(encryption component)３０６をスキーマパッケージの構造の一部として採用するこ
とができる。認証コード署名コンポーネント３０２は特定のストロングネームスキーマを
特定の個人または個人の集合に付けることができる。従って、このスキーマはそのストロ
ングネームに対して権限をもつだけでなく、その物理的実際の個人または組織作成者に対
しても権限を持つことができる。従って、認証コードプロバイダは、署名によるストロン
グネームとスキーマの作成者である認証コードエンティティとの間の対応付け(mapping)
を保証することができる。
【００２５】
　圧縮コンポーネント３０４はトランスポートを容易にし、効率化することができる。例
えば、圧縮は、ストアとやりとりする可能性のあるクライアントと一緒に発送される、あ
るいはバックアップをとるために、あるいはインポート／エキスポートオペレーション、
コピーオペレーションまたは同期化のためにデータがストアから取り出されるときデータ
と一緒に発送されるコードにスキーマパッケージを組み入れるときに利用すると、特に便
利である。いずれも場合も、スキーマがデータに付けられるとき、スキーマを圧縮すると
、スキーマをデータと一緒にトランスポートするときのオーバヘッドが軽減されるので特
に好都合である。この圧縮は、オプションとして、圧縮コンポーネント３０４を通して実
行することもできる。
【００２６】
　さらに、暗号化は、オプションとして暗号化コンポーネント３０６を通して採用するこ
とができる。この暗号化は、スキーマがデータと一緒に転送されるときセキュリティを容
易にすることができる。スキーマを所有権主張(proprietary)できるようにすると特に好
都合であるケースがあるときに、暗号化メカニズムを採用することができる。従って、ス
キーマ定義は送信途中にあるときや、スキーマパッケージが検査されることがあるときに
隠されて、見えないようにされる。以上の説明はスキーマパッケージを定義し、本発明の
一態様によるスキーマパッケージのプロパティを明らかにしたものであり、そこでは、パ
ッケージは、上記プロパティ（例えば、認証コード、圧縮、暗号化）の１または２以上を
含むストロングネーム署名スキーマになっている。
【００２７】
　スキーマパッケージが構築されたあと、本発明の新規特徴によれば、そのスキーマパッ
ケージは、スキーマの実装を可能にするクライアント側アセンブリの一部として組み込ま
れる（またはクライアント側アセンブリと関係付けられる）。また、スキーマは周知の名
前で特定されて、スキーマがプログラミングによって使用できるすべての場所でＡＰＩに
利用できるようにされる。
【００２８】
　以上から理解されるように、上述したシステム３００は、クライアントアプリケーショ
ンがスキーマ化タイプのインスタンスを生成してそのインスタンスがストアに残されてい
るときは、いつでもクライアントがスキーマパッケージにアクセスできることを保証する
。必要とするスキーマがそのときストアに利用可能になっていないときは、スキーマパッ
ケージはスキーマ配布コンポーネント１０４を通して見つけられ、利用可能にされたあと
、データをストアに提示する前に、（例えば、前述した関連アプリケーションの中で説明
されているスキーマインストールコンポーネントを通して）最終的にストアにインストー

(9) JP 2009-506632 A 2009.2.12

10

20

30

40

50

ルされることになる。
【００２９】
　即ち、スキーマパッケージは、データを作成および／または操作し、ストレージとやり
とりするアプリケーションであるクライアント側アセンブリ内に組み込むこと（またはそ
のアセンブリとリンクさせること）ができる。特定の一態様では、クライアント側アセン
ブリには、スキーマの定義をリソースとして組み込むことができる。これとは別に、スキ
ーマにアセンブリとの別の固有の関係(intrinsic relationship)を持たせることによって
、見つけやすくし、利用しやすくすることができる。
【００３０】
　図４は、スキーマパッケージング、ディスカバリおよび可用性を容易にするさらに別の
代替システム４００を示す図である。具体的には、図４は、スキーマパッケージ４０２と
クライアント側アセンブリ４０４が、同じストロングネーム署名コンポーネントによって
同じストロングネームで署名できることを示している。このことから理解されるように、
複数タイプのデータを操作するために複数のスキーマが必要になる範囲において、これら
の追加スキーマも、クライアント側アセンブリ内に組み込むこと（またはそのアセンブリ
と関係付けること）ができる。各々のパッケージは、周知の名前、すなわち、スキーマに
署名すると生成されるストロングネームで特定することができる。アプリケーション自体
が実行されるためには、コードが実行されるすべての場所にコードがなければならないの
で、ストアとやりとりするために必要なスキーマパッケージは、コードが利用可能である
ときは、常にパッケージはリソースとしてそのコードの中にあるので、ストアに残ってい
なければならない。
【００３１】
　インスタンスがファイルシステムのストアにセーブされるためには、その前にそのスキ
ーマ（およびそのインスタンスのオブジェクトツリーの中のすべてのタイプのスキーマ）
が存在していなければならない。上述したように、ストアにスキーマが存在しない場合に
は、それをインストールする必要がある。本発明のスキーマパッケージング、配布および
可用性によれば、必要とするスキーマの可用性とインストールはセキュアに行なうことが
できる。
【００３２】
　次に図５を参照して説明すると、図５は本発明の一態様に従ってスキーマにストロング
ネーム署名する方法を示す図である。説明を簡単にする目的上、例えば、図５にフローチ
ャートまたはフロー図の形で示されている１または２以上の方法は一連のアクト(act)と
して示され、説明されているが、当然に理解されるように、あるアクトは、本発明によれ
ば、ここに図示され、説明されているものと異なる順序でおよび／または他のアクトと同
時並行的に実行されることがあるので、本発明はアクトの順序によって制限されない。例
えば、この分野の当業者ならば理解されるように、方法は、例えば、ステート図における
相互に関係する一連のステートまたはイベントとして表わすことも可能である。さらに、
本発明による方法を実現するために図示のアクトすべてが必要になるとは限らない。
【００３３】
　図５に図示のように、ストロングネームでスキームに署名するために、５０２において
、スキームのハッシュ値(hash value)が計算される。一例では、セキュアハッシュアルゴ
リズム(Secure Hash Algorism SHAI)のハッシュを採用することができる。次に、５０４
において、ハッシュ値は秘密鍵(private key)を使用して非対称暗号法(asymmetric ciphe
r)（例えば、ＲＳＡ非対称暗号法）で署名される。５０６において、署名されたハッシュ
値は対応するＲＳＡ公開鍵と一緒にスキーマに格納される。
【００３４】
　次に図６を参照して説明すると、図６にはストロングネームで署名されたスキーマを検
証する方法が示されている。ストロングネームで署名されたスキーマを検証するために、
６０２において、格納されたハッシュ値は格納された鍵（例えば、ＲＳＡ鍵）を使用して
解読される。別のハッシュ値は、６０４においてスキーマの内容から独立に生成される。

(10) JP 2009-506632 A 2009.2.12

10

20

30

40

50

６０６において、２つのハッシュ値が一致しているかどうかの判断が行なわれる。２つの
ハッシュ値が一致していなければ、ストップブロックに到達する。他方、２つのハッシュ
値が一致していれば、検証は６０８において正しいものとみなされる。
【００３５】
　有効なスキーマパッケージは、請求項に記載のストロングネームの有効性、内容の保全
性およびパブリッシャの認証性の程度を保証することができる。即ち、スキーマは元の所
有者に対して権限があるものとみなすことがきる。以上から理解されるように、簡潔性（
例えば、圧縮）および追加セキュリティ（例えば、暗号化および／または認証コード署名
）などのプロパティを達成するために、追加アクト（例えば、図３のオプションのコンポ
ーネントによる）をパッケージング期間に適用することができる。これらの追加態様は、
当然に本明細書の開示事項および明細書に付属の請求項の範囲に含まれるものである。
【００３６】
　コンパイルしてクライアント側アセンブリに組み込まれるファイルを生成するツール（
図示せず）をスキーマ定義言語、この例ではＸＭＬと併用することができる。このクライ
アント側アセンブリは、特定のタイプに定義されたクラスとのリンクになるものである。
即ち、クライアント側アセンブリは、プログラミングによってクラスへのアクセスを可能
にする。
【００３７】
　従って、クライアント側アセンブリとスキーマパッケージの間には非常に緊密な関係を
存在させることができる。即ち、スキーマパッケージは、クライアント側アセンブリに組
み込まれていなければ（例えば、リソースとして）、即時に利用可能にすることができる
。クライアント側アセンブリは、データを見るためにプログラミングによるアクセスを実
現したものであり、スキーマパッケージまたは定義はストアとの契約である。以上を要約
すると、本発明による革新の新規特徴は、タイプを実現するクライアント側アセンブリ（
例えば、コード）とストア内のタイプを記述するスキーマパッケージとの間に固有の関係
(intrinsic relationship)および／またはリンケージをもたせることである。リソースは
この関係を達成する１つのメカニズムである。別の態様では、スキーマパッケージは静的
変数(static variable)に格納することができ、この変数もコンパイルされてアセンブリ
に組み込まれているか、あるいは別のファイルに置かれていて、アセンブリと一緒に配布
されるか、あるいは別の周知の場所またはキャッシュに置かれている。
【００３８】
　次に図７を参照して、引き続きスキーマパッケージングコンポーネント１０２について
説明するが、ファイルシステム（例えば、WinFSブランド）のスキーマの開発には、クラ
イアント側アセンブリとスキーマパッケージの両方の開発が含まれている。互換性を達成
するために、一態様では、クライアント側アセンブリ４０４とスキーマパッケージ４０２
は、共に配備に先立って同じストロングネームを採用することによって署名コンポーネン
ト２０２によって署名することができる。別の態様では、コンパイル時にも事後コンパイ
ル時（遅延署名）にも鍵ペアを見つけて、パッケージに署名するために開発ツール（例え
ば、ディスカバリコンポーネント７０２とローディングコンポーネント７０４）を採用す
ることができる。ここで理解すべきことは、遅延署名(delay signing)環境は、スキップ
リスト(skip list)保守とクエリのためのインフラストラクチャによってサポートできる
ことである。
【００３９】
　以下の説明では、スキーマパッケージ４０２とクライアント側アセンブリ４０４が特定
の共通鍵によって署名されることを提案している。クライアント側アセンブリ４０４とス
キーマパッケージ４０２との間の関係を保証するために、本発明による革新は、同じ鍵を
使用した（例えば、ストロングネーム署名コンポーネント２０２による）クライアント側
アセンブリの署名を要求することによって新規の関係を開示している。このように同じ鍵
を使用すると、クライアント側アセンブリ４０４とスキーマパッケージ４０２の間に固有
の関係が実現される。この鍵は、作成者だけが秘密鍵にアクセスできるので、作成者は、

(11) JP 2009-506632 A 2009.2.12

10

20

30

40

50

スキーマパッケージ４０２がクライアント側アセンブリ４０４に対して権限があることを
確認する秘密鍵にアクセスしている必要があることを示している。
【００４０】
　上述したように、本メカニズムの１つの新規の特徴は、スキーマパッケージ４０２をリ
ソースとしてクライアント側アセンブリ４０４に組み込むことができることである。スキ
ーマパッケージ４０２をクライアント側アセンブリ４０４に組み込んでおくと、クライア
ント側アセンブリが署名されるとき、スキーマパッケージが署名のためにいつでも利用で
きることが保証される。別の態様では、鍵ペアは単一メカニズムを通して開発ツールに提
示することができる。
【００４１】
　コンパイル時署名期間には、アセンブリに署名するために使用された同じ鍵ファイルを
、アセンブリのコンパイル期間にスキーマパッケージに署名するために使用できる。スキ
ーマパッケージはアセンブリ内部のリソースとして見えるので、スキーマパッケージが最
初に署名され、アセンブリに組み込まれてからアセンブリが署名される。ここで理解すべ
きことは、これらのオペレーションはカスタムビルドタスク(custom build task)（例え
ば、MSBuildブランドのタスクを使用して）にラップ(wrap)できることである。さらに、
ユーザインタフェース(user interface - UI)層が用意されていると、上述したアクトの
いくつかを自動化することによってユーザの体験を単純化することができる。
【００４２】
　秘密鍵は非常に保護されているので、開発環境において、遅延署名(delay signing)を
実行するためにスキップリスト(skip list)を使用することができる。遅延署名のとき、
スキーマパッケージングコンポーネント１０２は遅延署名されたパッケージ（すなわち、
正しいハッシュ値なしで構築されたパッケージ）をサポートすることができる。スキップ
リストが用意されていれば、スキーマパッケージスキップリストエントリを記述するため
に利用できる。例を挙げると、スキップリストは別の類似メカニズムのアセンブリスキッ
プリストにすることができる。この態様によれば、スキップリストに記載されているスキ
ーマパッケージは、いずれもインストール時には有効性検査されない。
【００４３】
　この環境では、開発者が秘密鍵にアクセスできなくても、開発者は、秘密鍵にアクセス
していたものとして依然としてシステムで作業することができる。開発が完了すると、最
終的署名プロセスが実行されることにより、クライアント側アセンブリとスキーマパッケ
ージはその鍵を使用して署名することができる。
【００４４】
　以上から理解されるように、スキップリストは、特定のマシン上のアセンブリ、スキー
マまたはその両方を有効性検査するストロングネームチェックに成功すると働くメカニズ
ムである。即ち、スキップリストによれば、ユーザがこのコンポーネントを見たとき、該
当の秘密鍵で署名されなかったことを無視できるシナリオを可能にしている。
【００４５】
　遅延署名開発環境では、アセンブリが最終的に署名されるときでも、アセンブリが署名
される前にスキーマパッケージを完全に署名する必要が起ることがある。別の部門が鍵を
管理し、構築済みのアセンブリに署名する完了ステップを実行するような開発環境では、
スキーマパッケージとそのアセンブリが２ステップのプロセスで署名されることが頻繁に
行なわれている。最初のステップでは、スキーマパッケージは署名のために署名部門に渡
されている。これに応じて、署名パッケージはビルドツリーにチェックインされる。この
チェックインされた署名パッケージは、スキーマ変更がチェックインされるとき、いつで
も新しい署名パッケージで更新することができる。
【００４６】
　チェックインされた署名スキーマパッケージは後続のビルド(build)で使用することが
できる。「ゴールデンビット(Golden Bits)」ビルドは、そのあと、すでに署名スキーマ
パッケージを収めているアセンブリ署名のために署名部門に送られる。別の態様では、こ

(12) JP 2009-506632 A 2009.2.12

10

20

30

40

50

のプロセスは１ステップのプロセスで行なうことも可能である。例えば、署名部門に渡さ
れたアセンブリは、遅延署名されたが、完全に署名されていないスキーマパッケージをリ
ソースとしてすでに収めていることも可能である。この態様によれば、署名部門は、スキ
ーマパッケージを抽出し、そのパッケージに署名し、署名されたパッケージをアセンブリ
に再挿入し、最終的にアセンブリに署名するツールを使用することも可能である。
【００４７】
　次に、クライアント側アセンブリがどこに格納され、それがスキーマパッケージと一緒
にどのようにしてロードできるかを説明するが、図７は、ディスカバリコンポーネント７
０２とローディングコンポーネント７０４がスキーマ配布コンポーネント１０４と一体に
なっているシステム７００を示す図である。これらのコンポーネントの各々の新規機能は
以下に詳しく説明する。
【００４８】
　クライアントアプリケーションがスキーム化タイプのインスタンスを生成してそのイン
スタンスをストアに残しておくとき、クライアントは、例えば、必要なスキーマがまだス
トアに利用可能になっていない場合には、データを提示する前にスキーマパッケージをス
トアに提示しなければならないことがある。スキーマパッケージを提示するには、クライ
アントはそのスキーマパッケージを見つけて、ロードできなければならない。
【００４９】
　ローディングコンポーネント７０４に関しては、採用できるメカニズムには、スタティ
ックバインディング(static binding)とダイナミックバインディング(dynamic binding)
の２タイプがある。しかし、スキーマパッケージは、ストアに入れて残しておくためには
、その前に所在を突き止めること（例えば、見つけること）が必要である。従って、グロ
ーバルアクセスキャッシュ(global access cache GAC)やローカルストアまたはローカル
ファイルシステムに置かれているクライアント側アセンブリおよび/またはパッケージを
見つけるためにディスカバリコンポーネント７０２を採用することができる。即ち、例示
の態様では、ユーザがアプリケーションをどこに配備できるかには２つの選択が可能であ
る。すなわち、ＧＡＣまたはローカルである。場所の判断要因としては、どれだけのユー
ザをアプリケーションから見えるようにするかがある。同様に、アプリケーションを特定
タイプに対してどのようにコーディングするかについても、２つの選択がある。これらの
シナリオの各々は以下に説明する。
【００５０】
　配備のための第１の選択はＧＡＣであり、これはアセンブリがいつでもすべてのユーザ
に見えるようにされることを意味する。ＧＡＣまたはグローバルアセンブリキャッシュは
、アプリケーション（またはその一部）がそこに配備されて、すべてのユーザがそのアプ
リケーション（またはその一部）にアクセスして使用できるようにするグローバルリソー
スである。第２の選択はローカル(Local)であり、これはアプリケーション（またはその
一部）が特定の場所にセーブされ、アクセスと使用に関してシングルユーザ（または有限
のユーザグループ）に限定されることを意味している。
【００５１】
　コーディングに関しては、スタティックバインディングとダイナミックバインディング
の２つの選択が用意されている。ユーザがタイプについて分かっていて、その分かってい
るタイプに対してコードを明示的に書く場合は、このことはスタティックバインディング
と呼ばれる。他方、ダイナミックバインディングとは、ユーザは特定のタイプについて分
かっていないが、コードが実行されるとき、特定のタイプを見つけるためにシステムにク
エリできる（例えば、ディスカバリコンポーネント７０２を通して）状況のことである。
タイプが見つかると、ユーザはそのタイプに対してダイナミックにプログラミングするこ
とができる。
【００５２】
　下表は、ディスカバリコンポーネント７０２とローディングコンポーネント７０４の新
規機能が２つの判断のいずれかの相互セクションに適用できることを示している。

(13) JP 2009-506632 A 2009.2.12

10

20

30

40

50

【００５３】
【表１】

【００５４】
　以上から理解されるように、共通言語ランタイム(common language runtime CLR)プラ
ットフォーム上で開発されたコードがコンピュータにまたがって複数のアプリケーション
によって共有されるときは、そのコードはＧＡＣと呼ばれるマシンワイドキャッシュ(mac
hine-wide cache)に置かれていることがよくある。ＧＡＣに置かれているアセンブリは、
異なるコードバージョンを並行に実行させることを可能にする特定のバージョン管理スキ
ーム(versioning scheme)に準拠している必要がある。
【００５５】
　この態様において、ＧＡＣにインストールされたアプリケーションに要求されることは
、安全かつマシングローバルな方法でクライアント側アセンブリとスキーマパッケージの
両方を配備することである。このことから理解されるように、ＣＬＲは上記要件をＧＡＣ
とそのインストールサービスの形で満足させるサービスを提供しなければならない。さら
に理解されるように、これらのサービスは、ＧＡＣが採用されない場合には、スキーマパ
ッケージ用に複製されている必要がある。
【００５６】
　別の態様に関しては、ローカルアプリケーションはそのアセンブリを周知の場所にイン
ストールしている。かかるアプリケーションのスキーマパッケージは、理論的には同じ場
所に置いておくことが可能である。しかし、実際には、当然に理解されるように、アプリ
ケーションは一連の異なるコンポーネントから構築することができる。各々のコンポーネ
ント自体は、１または２以上の周知場所にインストールすることができる。ＣＬＲには複
雑なバインディングルールが存在するので、これらの複数場所から特にシームレスな方法
でこれらのアセンブリのディスカバリとローディングを容易にしている。このことから理
解されるように、バインディングインフラストラクチャは、既存のインフラストラクチャ
が活用できない場合には、スキーマパッケージ用に複製されている必要がある。
【００５７】
　スタティックにバインドされたアプリケーションはコンパイル時にクラスをインスタン
ス生成する。すなわち、これらのアプリケーションは、特定クラスの変数を宣言し、その
クラスの新しいインスタンスを作成するために新しいオペレータ（演算子）を使用する明
示のコードラインを収めている。これらのクラスについては、特定タイプのバインディン
グはリンク時に完全修飾されたストロングネームアセンブリ(fully-qualified, strong-n
amed assembly)に分解され、これは後にロードされる（フュージョンローディングポリシ
(fusion loading policy)に従って）。スタティックアプリケーションは、特定のアセン
ブリのセットにバインドされる時に、つまり、リンク時に特定のスキーマパッケージの集

(14) JP 2009-506632 A 2009.2.12

10

20

30

40

50

合にバインドされる。
【００５８】
　他方、ダイナミックにバインドされたアプリケーションは、その時の条件に基づいてラ
ンタイム時にルーチンまたはオブジェクトにリンクされる。ダイナミックアプリケーショ
ンは、ユーザ発意によるディスカバリの結果としてタイプをダイナミックにロードする。
例えば、Visual Studioブランドのアプリケーションは、コントロールを収めたアセンブ
リを、フォーム設計フェーズ期間にユーザが選択することを可能にしている。この例では
、アセンブリがロードされ、そのあと、コントロールはコントロールツールバーを通して
インスタンス生成することができる。
【００５９】
　また、ダイナミックアプリケーションはタイプをプログラミングでロードできることが
しばしばである。例を挙げると、Ｗｏｒｄブランドのアプリケーションは、登録されたア
ドイン(Add-In)のリストを維持することができる。そのあと、各々のアドインはプログラ
ミングでそのリストからロードされ、そのあとインスタンス生成される。
【００６０】
　オペレーション時には、ダイナミックアプリケーションは、ランタイム時にのみ特定の
スキーマパッケージの集合にバインドされる。さらに、このスキーマパッケージの集合は
、あるランから次のランまでおよび同じランにおいて経時的に、常に流動的にすることが
できる。どちらのタイプのアプリケーションの場合も、例えば、スタティックアプリケー
ションまたはダイナミックアプリケーションでは、あるタイプのスキーマパッケージは、
クライアント側アセンブリがディスカバリ可能であるすべての事情において、ディスカバ
リ可能でなければならない。これは本メカニズムの新規特徴である。即ち、本発明による
革新の新規特徴によれば、スキーマパッケージをクライアント側アセンブリに組み込むこ
とによって、そのアセンブリを見つけるために使用された全く同じインフラストラクチャ
がスキーマパッケージを見つけるときに梃子にできることが保証されている。
【００６１】
　正しくオペレーションするためには、アプリケーションは、インスタンス生成すること
が予想されるすべてのタイプについてクライアント側アセンブリとスキーマパッケージを
配備しなければならない。インストールおよび配備インフラストラクチャは、アセンブリ
をＧＡＣとローカルの両方に配備することができる。当然に理解されるように、あるアプ
リケーションのスキーマパッケージの配備に失敗すると、クロスレベルのバージョン管理
シナリオ(cross-level versioning scenario)において、すなわち、必要とするスキーマ
が置かれていないストアにインスタンスが持続的に置かれるようなシナリオにおいて、ア
プリケーションが失敗することになる。
【００６２】
　クロスレベルバージョン管理シナリオは、その性質上前向きであり、複雑さと費用を伴
うために、ソフトウェア出荷前に十分にテストされるのがまれのことがときどきある。ソ
フトウェア開発プロセスが設計時にクロスレベルバージョン管理シナリオに要求条件を課
していない場合には、その要求条件はテスト時と開発時の期間に看過されると、未テスト
のシナリオでは現場でソフトウェアに障害が起ることがある。そのために、ソフトウェア
開発プロセスが設計時に十分な制約条件を課していて、ここで用意されたインフラストラ
クチャを使用したこれらのシナリオでは配備が容易にされ、エラーのないようにすること
が設計上の要求条件になっている。スキーマパッケージをクライアント側アセンブリに組
み込むと、アセンブリの配備のための全く同じインフラストラクチャが梃子になってスキ
ーマパッケージが配備されることが保証される。以上から理解されるように、開発者およ
び配備ツールは、アセンブリ配備によって起る問題に精通していることがよくある。開発
時間チェックを含めると、スキーマパッケージが正しくコンパイルされて、クライアント
側アセンブリにリソースとして組み込まれたことを保証することができる。ランタイムチ
ェックも同じような理由で好都合である。
【００６３】

(15) JP 2009-506632 A 2009.2.12

10

20

30

40

50

　別の態様では、上述したように、複数スキーマパッケージをクライアント側アセンブリ
内に組み込むことができる。従って、リソースの名前付けに関しては、いずれかの特定ス
キーマに対応するスキーマパッケージは、その特定スキーマパッケージのために使用され
たストロングネームに基づくリソース名との１対１の対応付けによって特定することがで
きる。
【００６４】
　以上から理解されるように、複数スキーマパッケージのシナリオでは、クライアント側
アセンブリとスキーマパッケージとの間を関係付けるためには、マッチングと署名プロパ
ティ(matching and signing properties)が満たされることになる。即ち、異なるストロ
ングネームをもつ複数スキーマパッケージが存在する場合であっても、クライアント側ア
センブリとスキーマとの間の関係を保持するために、すべてが同じ鍵で署名することが可
能になっている。すなわち、アセンブリに署名するために１つの鍵だけが使用できる。
【００６５】
　前述したように、オプションとして、別の態様に対して圧縮、暗号化および認証コード
署名を採用することができる。スキーマファイルはサイズが大きくなる可能性があるので
、ファイルサイズの管理をしやすくするために圧縮が採用されることがよくある。別の態
様では、圧縮はスキーマが署名される前でも、後でも適用することができる。スキーマに
署名した後で圧縮を適用することが特に好ましい理由として、少なくとも次の２つがある
。第１の理由は、オリジナルのＸＭＬ内容についてハッシュが行なわれるのが通常である
からである。第２の理由は、タイミングのために署名ブロックも圧縮されるので、圧縮が
良好化するのが通常であるからである。スキーマ検証期間には、スキーマパッケージは最
初に圧縮復元（伸張）されてから検証される。
【００６６】
　代替態様によれば、スキーマパッケージはサテライトアセンブリ(satellite assembly)
にすることができる。このアプローチでは、スキーマはクライアント側アセンブリに直接
に組み込まれていない。むしろ、スキーマは公然のリソース(manifest resource)として
別のサテライトアセンブリになっている。署名プロセスでは、メインアセンブリとサテラ
イトアセンブリは共に署名部門に渡すことができ、署名部門は最初にスキーマファイルに
署名し、次にサテライトアセンブリ全体にハッシュするメインアセンブリに署名する。
【００６７】
　別の代替態様では、スキーマパッケージは別のファイルとして維持することが可能にな
っている。スキーマパッケージ自体は開発者によって別のビルドステップとして作成され
、インストーラによって別ファイルとして配備され、ローダ／バインダによって別々に見
つけられることになる。開発プロセスは、本発明ではシームレスに行なうことができた別
々のステップを開発者に実行させる必要があることが理由で、支障が生じる可能性がある
。さらに、この態様の配備プロセスは、同期の乱れが生じる可能性のある余計なステップ
が必要になることが理由で、支障が生じる可能性がある。スキーマパッケージの正しい配
備にこのようなミスマッチがあったり、無視されたりすると、多くの場合、出荷前に十分
にテストされないようなシナリオにおいてはアプリケーションの一部に障害が起ることに
なる。ディスカバリプロセスでは、グローバル配備とダイナミックディスカバリという問
題に取り掛かるためには追加のインフラストラクチャが必要になる。これらの代替態様は
、当然のことながら、本明細書の開示事項および本明細書に付属の請求項の範囲内に含ま
れるものである。
【００６８】
　上述したように、上述したシステムによれば、どのような公開／秘密暗号化鍵ペアでも
採用することができる。１つの例において、公開鍵暗号化手法はスキーマパッケージに名
前を付けるために（および署名するために）採用することができる。ここで公開鍵暗号化
とは、公開部分と秘密部分を含む、２部分の鍵（例えば、ユニークなコード）を使用する
暗号化方法と言うことができる。メッセージを暗号化するためには、送信者だけに分かっ
ている未公開の秘密鍵が使用される。従って、メッセージを解読するには、受信側は送信

(16) JP 2009-506632 A 2009.2.12

10

20

30

40

50

側の公開された秘密鍵を使用する。即ち、公開鍵とは、２部分の公開鍵暗号化システムの
公開された部分と言うことができる。
【００６９】
　鍵ペアの秘密部分は所有者にだけ分かっている。従って、スキーマ作成者は未公開の秘
密鍵を使用して、スキーマパッケージを暗号化して署名することができる。この暗号化セ
キュリティ方法は、スキーマ情報の認証性と保全性を大幅に向上することができる。この
ことから当然に理解されるように、データにユニークな名前を付けおよび／または署名す
るどのような方法も、本発明および請求項の精神と範囲から逸脱しない限り採用すること
が可能である。
【実施例】
【００７０】
　次に図８を参照して説明すると、図８は、スキーマパッケージング、配布および可用性
の開示されたアーキテクチャを実行するために動作可能であるコンピュータを示すブロッ
ク図である。本発明の種々態様を詳しく説明するために、図８と以下の説明は、本発明の
種々態様を実現することができる適当なコンピューティング環境８００の概要を要約した
ものである。本発明は、１または２以上のコンピュータ上で実行されるコンピュータ実行
可能命令の一般的コンテキストの中で上述されているが、この分野の精通者ならば理解さ
れるように、本発明は他のプログラムモジュールと組み合わせておよび／またはハードウ
ェアとソフトウェアの組み合わせとして実現することも可能である。
【００７１】
　一般的に、プログラムモジュールには、特定のタスクを実行する、または特定の抽象デ
ータ型を実現するルーチン、プログラム、コンポーネント、データ構造などが含まれてい
る。さらに、この分野の精通者ならば理解されるように、本発明の方法は他のコンピュー
タシステム構成と共に実施することが可能であり、その中には、シングルプロセッサまた
はマルチプロセッサコンピュータシステム、ミニコンピュータ、メインフレームコンピュ
ータだけでなく、パーソナルコンピュータ、ハンドヘルドコンピューティング装置、マイ
クロプロセッサベースまたはプログラマブルコンシューマエレクトロニクスなどが含まれ
ており、これらの各々は１または２以上の関連装置に動作可能に結合することが可能にな
っている。
【００７２】
　本発明の図示態様は分散コンピューティング環境で実施されることもあり、そこでは、
ある種のタスクは通信ネットワークを通してリンクされたリモート処理装置によって実行
されている。分散コンピューティング環境では、プログラムモジュールは、ローカルとリ
モートの両方のメモリストレージ装置に置いておくことができる。
【００７３】
　コンピュータは種々のコンピュータ可読媒体を備えているのが代表的である。コンピュ
ータ可読媒体は利用可能であれば、コンピュータによってアクセス可能である、どのよう
な媒体にすることも可能であり、その中には、揮発性と不揮発性の両方の媒体、取り外し
可能媒体と取り外し不能媒体が含まれている。例を挙げると、コンピュータ可読媒体には
、コンピュータ記憶媒体と通信媒体があるが、これらに限定されない。コンピュータ記憶
媒体には、コンピュータ可読命令、データ構造、プログラムモジュールまたは他のデータ
などの情報を格納するための、いずれかの方法またはテクノロジで実現された揮発性と不
揮発性の両方の取り外し可能媒体と取り外し不能媒体が含まれている。コンピュータ記憶
媒体としては、ＲＡＭ、ＲＯＭ、ＥＥＰＲＯＭ、フラッシュメモリや他のメモリテクノロ
ジ、ＣＤ－ＲＯＭ、デジタルビデオディスク（ＤＶＤ）や他の光ディスクストレージ、磁
気カセット、磁気テープ、磁気ディスクストレージや他の磁気ストレージ装置、あるいは
必要とする情報を格納するために使用でき、コンピュータによってアクセス可能である他
の媒体がある。
【００７４】
　通信媒体は、コンピュータ可読命令、データ構造、プログラムモジュールまたは他のデ

(17) JP 2009-506632 A 2009.2.12

10

20

30

40

50

ータを、搬送波や他のトランスポートメカニズムなどの変調データ信号で具現化している
のが代表的であり、その中には、あらゆる情報配信媒体が含まれている。ここで「変調デ
ータ信号(modulated date signal」という用語は、その特性の１つまたは２つ以上が信号
の中で情報を符号化するようにセットまたは変更された信号を意味している。例を挙げる
と、通信媒体には、ワイヤド（有線）ネットワークや直接ワイヤドコネクションのような
ワイヤド媒体、および音響、ＲＦ、赤外線などのワイヤレス（無線）媒体や他のワイヤレ
ス媒体が含まれているが、これらに限定されない。上記に挙げたものを任意に組み合わせ
たものも、コンピュータ可読媒体の範囲に含まれることは当然である。
【００７５】
　再び図８を参照して説明すると、本発明の種々態様を実現するための例示環境８００に
はコンピュータ８０２が含まれており、コンピュータ８０２は処理ユニット８０４、シス
テムメモリ８０６およびシステムバス８０８を装備している。システムバス８０８は、シ
ステムメモリ８０６（これに限定されない）を含むシステムコンポーネントを処理ユニッ
ト８０４に結合している。処理ユニット８０４は、商用化されている種々のプロセッサの
いずれにすることもできる。処理ユニット８０４としてデュアルマイクロプロセッサおよ
び他のマルチプロセッサアーキテクチャを採用することも可能である。
【００７６】
　システムバス８０８はいくつかのタイプのバス構造のいずれにすることも可能であり、
このバス構造は、商用化されている種々のバスアーキテクチャのいずれかを使用したメモ
リバス（メモリコントローラの有無に関係ない）、周辺バス、およびローカルバスにさら
に相互接続することが可能になっている。システムメモリ８０６には、リードオンリメモ
リ８１０およびランダムアクセスメモリ８１２が含まれている。基本入出力システム(BIO
S)は、ＲＯＭ、ＥＰＲＯＭ、ＥＥＰＲＯＭなどの不揮発性メモリ８１０に格納されており
、ＢＩＯＳは、スタートアップ時のようにコンピュータ内の要素間の情報転送を支援する
基本ルーチンから構成されている。ＲＡＭ８１２には、データをキャッシュするスタティ
ックＲＡＭのような、高速ＲＡＭも含まれている。
【００７７】
　コンピュータ８０２は、内部ハードディスクドライブ（ＨＤＤ）８１４（例えば、ＥＩ
ＤＥ、ＳＡＴＡ）（なお、この内部ハードディスクドライブは適当なシャーシ（図示せず
）内で外部使用するように構成されていることもある）、磁気フロッピディスクドライブ
（ＦＤＤ）８１６（例えば、取り外し可能ディスケット８１８との間で読み書きする）お
よび光ディスクドライブ８２０（例えば、ＣＤ－ＲＯＭディスク８２２を読み取り、ある
いはＤＶＤのような他の高容量光媒体との間で読み書きする）をさらに装備している。ハ
ードディスクドライブ８１４、磁気ディスクドライブ８１６および光ディスクドライブ８
２０は、それぞれハードディスクドライブインタフェース８２４、磁気ディスクドライブ
インタフェース８２６および光ドライブインタフェース８２８によってシステムバス８０
８に接続可能になっている。外部ドライブ装着用のインタフェース８２４には、ユニバー
サルシリアルバス(USB)およびＩＥＥＥ１３９４インタフェーステクノロジのうちの少な
くとも一方または両方が含まれている。その他の外部ドライブ接続テクノロジは本発明の
意図する範囲に含まれるものである。
【００７８】
　これらのドライブおよびそれぞれの関連コンピュータ可読媒体は、データ、データ構造
、コンピュータ実行可能命令などを格納しておく不揮発性ストレージである。コンピュー
タ８０２の場合には、これらのドライブおよび媒体は、いずれかのデータを適当なデジタ
ルフォーマットで格納するのに適している。上述したコンピュータ可読媒体の説明では、
ＨＤＤ、取り外し可能磁気ディスケット、およびＣＤやＤＶＤのような取り外し可能光媒
体が挙げられているが、この分野の精通者ならば当然に理解されるように、Ｚｉｐドライ
ブ、磁気カセット、フラッシュメモリカード、カートリッジなどのように、コンピュータ
によって読み取り可能である他のタイプの媒体も、例示動作環境で使用することが可能で
あり、さらに、そのような媒体のいずれにも、本発明の方法を実行するためのコンピュー

(18) JP 2009-506632 A 2009.2.12

10

20

30

40

50

タ実行可能命令を収めておくことが可能である。
【００７９】
　複数のプログラムモジュールをドライブおよびＲＡＭ８１２に格納しておくことができ
、その中には、オペレーティングシステム８３０、１または２以上のアプリケーションプ
ログラム８３２、その他のプログラムモジュール８３４およびプログラムデータ８３６が
含まれている。オペレーティングシステム、アプリケーション、モジュール、および／ま
たはデータのすべてまたは一部をＲＡＭ８１２にキャッシュすることもできる。以上から
理解されるように、本発明は、商用化されている種々のオペレーティングシステムまたは
オペレーティングシステムの組み合わせで実現することができる。
【００８０】
　ユーザは、１または２以上のワイヤド（有線）／ワイヤレス（無線）インプット装置、
例えば、キーボード８３８およびマウス８４０などのポインティング装置を通してコマン
ドと情報をコンピュータ８０２に入力することができる。他のインプット装置（図示せず
）としては、マイクロホン、ＩＲリモートコントロール、ジョイスティック、ゲームパッ
ド、スタイラスペン、タッチスクリーンなどがある。これらのインプット装置および他の
インプット装置は、多くの場合、システムバス８０８に結合されたインプット装置インタ
フェース８４２を通して処理ユニット８０４に接続されているが、パラレルポート、ＩＥ
ＥＥ１３９４シリアルポート、ゲームポート、ＵＳＢポート、ＩＲインタフェースなどの
、他のインタフェースによって接続することも可能である。
【００８１】
　モニタ８４４または他のタイプのディスプレイ装置も、ビデオアダプタ８４６などのイ
ンタフェースを介してシステムバス８０８に接続されている。モニタ８４４のほかに、コ
ンピュータは、スピーカ、プリンタなどの他の周辺アウトプット装置（図示せず）を備え
ているのが代表的である。
【００８２】
　コンピュータ８０２は、リモートコンピュータ８４８のような１または２以上のリモー
トコンピュータとの論理的コネクションをワイヤドおよび／またはワイヤレス通信を通し
て使用するネットワーキング環境で動作することができる。リモートコンピュータ８４８
はワークステーション、サーバコンピュータ、ルータ、パーソナルコンピュータ、ポータ
ブルコンピュータ、マイクロプロセッサベースのエンターテイメントアプライアンス、ピ
ア装置または他の共通ネットワークノードにすることができ、コンピュータ８０２に関連
して上述した要素の多くまたはすべてを装備しているのが代表的である。なお、図には説
明を簡略化するために、メモリ／ストレージ装置８５０だけが示されている。図示の論理
的コネクションには、ローカルエリアネットワーク（ＬＡＮ）８５２および／または例え
ば、ワイドエリアネットワーク（ＷＡＮ）８５４のような大規模ネットワークが含まれて
いる。このようなＬＡＮおよびＷＡＮネットワーキング環境はオフィスおよび企業では普
通になっており、イントラネットのような社内コンピュータネットワークを容易にし、こ
れらのすべては、例えば、インターネットのようなグローバル通信ネットワークに接続さ
れていることがある。
【００８３】
　ＬＡＮネットワーキング環境で使用されるときは、コンピュータ８０２は、ワイヤドお
よび／またはワイヤレス通信ネットワークインタフェースまたはアダプタ８５６を通して
ローカルネットワーク８５２に接続されている。アダプタ８５６はＬＡＮ８５２とのワイ
ヤドまたはワイヤレス通信を容易にし、ＬＡＮ８５２には、ワイヤレスアダプタ８５６と
通信するためのワイヤレスアクセスポイントが置かれていることもある。
【００８４】
　ＷＡＮネットワーキング環境で使用されるときは、コンピュータ８０２はモデム８５８
を装備することができるが、さもなければＷＡＮ８５４上の通信サーバに接続されている
か、あるいはインターネットなどを介してＷＡＮ８５４上の通信を確立するための他の手
段を備えている。モデム８５８は内蔵型と外付け型があり、ワイヤドまたはワイヤライン

(19) JP 2009-506632 A 2009.2.12

10

20

30

40

50

装置としてシリアルポートインタフェース８４２を介してシステムバス８０８に接続され
ている。ネットワーキング環境では、コンピュータ８０２に関連して図示したプログラム
モジュールまたはその一部は、リモートメモリ／ストレージ装置８５０に格納しておくこ
とができる。以上から理解されるように、図示のネットワークコネクションは例示であり
、コンピュータ相互間に通信リンクを設定する他の手段を使用することができる。
【００８５】
　コンピュータ８０２は、ワイヤレス通信で動作可能に配置された、いずれかのワイヤレ
ス装置またはエンティティと通信するように動作可能であり、そのような装置として、例
えば、プリンタ、スキャナ、デスクトップおよび／またはポータブルコンピュータ、ポー
タブルデータアシスタント、通信衛星、ワイヤレスに検出可能なタグと関連付けられた機
器部品または場所（例えば、キオスク、ニューススタンド、レストルーム）、および電話
がある。この中には、少なくともWi-FiおよびBluetooth（登録商標）ワイヤレステクノロ
ジが含まれている。従って、通信は従来のネットワークの場合と同様に事前定義の構造に
することも、あるいは単純に少なくとも２装置間のアドホック(ad hoc)通信にすることも
可能である。
【００８６】
　Wi-Fi、つまり、Wireless Fidelityは、自宅のソファー、ホテルルームのベッド、また
は作業中の会議室からワイヤレスにインターネットに接続することを可能にしている。Wi
-Fiは、セル電話で使用されて、前記装置、例えば、コンピュータが基地局の範囲内のど
こにいても、室内および室外でデータを送受信することを可能にするテクノロジに類似し
たワイヤレステクノロジである。Wi-FiネットワークはＩＥＥＥ802.11(a,b,gなど)と呼ば
れる無線テクノロジを使用して、セキュアで信頼性のある高速のワイヤレス接続性が得ら
れるようにしている。Wi-Fiネットワークは、コンピュータを相互に接続し、インターネ
ットに接続し、ワイヤドネットワーク（IEEE 802.3またはイーサネット(登録商標）を使
用）に接続するために使用することができる。Wi-Fiネットワークは無認可の2.4および5
GHz無線バンドにおいて、例えば、11 Mbps(802.11a)または54 Mbps(802.11b)データレー
トで、または両バンドを含むプロダクトと共に動作し、多くのオフィスで使用されている
基本10BaseTワイヤドイーサネット(登録商標）ネットワークにほぼ同等のリアルワールド
のパフォーマンスがネットワークから得られるようにする。
【００８７】
　次に図9を参照して説明すると、図９は本発明のスキーマパッケージング、配布および
可用性システムによる例示コンピューティング環境900を示す概略ブロック図である。シ
ステム９００には、１または２以上のクライアント９０２が含まれている。クライアント
９０２はハードウェアおよび／またはソフトウェア（例えば、スレッド、プロセス、コン
ピューティング装置）にすることができる。クライアント９０２には、例えば、本発明を
採用することによってクッキー(cookie)および／または関連コンテキスト情報を収容する
ことができる。
【００８８】
　システム９００には、１または２以上のサーバ９０４も含まれている。サーバ９０４も
、ハードウェアおよび／またはソフトウェア（例えば、スレッド、プロセス、コンピュー
ティング装置）にすることができる。サーバ９０４には、例えば、本発明を採用すること
によって変換(transformation)を実行するスレッドを収容することができる。クライアン
ト９０２とサーバ９０４との間の１つの可能な通信は、２または３以上のコンピュータプ
ロセス間で送信されるのに適したデータパケットの形にすることができる。データパケッ
トには、例えば、クッキーおよび／または関連コンテキスト情報が含まれていることがあ
る。システム９００には、クライアント９０２とサーバ９０４との間の通信を容易にする
ために採用できる通信フレームワーク９０６（インターネットのようなグローバル通信ネ
ットワーク）が含まれている。
【００８９】
　通信はワイヤド（光ファイバを含む）および／またはワイヤレステクノロジを通して容

(20) JP 2009-506632 A 2009.2.12

10

20

30

易にすることができる。クライアント９０２は、クライアント９０２に特有の情報（例え
ば、クッキーおよび／または関連コンテキスト情報）を格納するために採用できる１また
は２以上のクライアントデータストア９０８に動作可能に接続されている。同様に、サー
バ９０４は、サーバ９０４に特有の情報を格納するために採用できる１または２以上のサ
ーバデータストア９１０に動作可能に接続されている。
【００９０】
　以上、本発明のいくつかの例を含めて説明してきた。当然のことながら、本発明を説明
するためにコンポーネントまたは方法の想到し得る組み合わせをすべて説明することは不
可能であるが、通常の知識を有するものならば理解されるように、本発明のさらに多くの
組み合わせと置換が可能である。従って、本発明は、請求項に記載の本発明の精神と範囲
に属するすべての変更、改良および変形を包含することを意図している。さらに、「含む
(include)」という用語が詳細な説明または請求項の中で用いられている限りにおいて、
この用語は、「含むまたは備えた(comprising)」という用語が請求項の中で移行語として
使用されるときに解釈されるように、「comprising」と同じように包含的なものである。
【図面の簡単な説明】
【００９１】
【図１】本発明の一態様に従ってスキーマのパッケージング、配布および可用性を容易に
するシステムを示すブロック図である。
【図２】本発明による革新の一態様に従ってスキーマデータに署名するストロングネーム
署名コンポーネントを採用したシステムを示すブロック図である。
【図３】本発明による革新の一態様に従ってオプションとして認証コードコンポーネント
、圧縮コンポーネントおよび暗号化コンポーネントを採用したシステムを示すブロック図
である。
【図４】本発明による革新の一態様に従ってスキーマパッケージとクライアント側アセン
ブリの同じ暗号化署名を採用したシステムを示す図である。
【図５】本発明の一態様に従ってスキーマのストロングネーム署名を実行する方法の例示
フローを示す図である。
【図６】本発明の一態様に従ってストロングネーム署名されたスキーマの解読を実行する
方法の例示フローを示す図である。
【図７】本発明による革新の一態様に従ってスキーマの配布を実行するためにディスカバ
リコンポーネントとローディングコンポーネントを採用したシステムを示すブロック図で
ある。
【図８】開示されているアーキテクチャを実行するように動作可能であるコンピュータを
示すブロック図である。
【図９】本発明による例示コンピューティング環境を示す概略ブロック図である。

(21) JP 2009-506632 A 2009.2.12

【図１】 【図２】

【図３】 【図４】

(22) JP 2009-506632 A 2009.2.12

【図５】 【図６】

【図７】 【図８】

(23) JP 2009-506632 A 2009.2.12

【図９】

(24) JP 2009-506632 A 2009.2.12

10

20

30

40

【国際調査報告】

(25) JP 2009-506632 A 2009.2.12

10

20

30

40

(26) JP 2009-506632 A 2009.2.12

10

20

30

40

(27) JP 2009-506632 A 2009.2.12

10

フロントページの続き

(81)指定国　　　　 AP(BW,GH,GM,KE,LS,MW,MZ,NA,SD,SL,SZ,TZ,UG,ZM,ZW),EA(AM,AZ,BY,KG,KZ,MD,RU,TJ,TM),
EP(AT,BE,BG,CH,CY,CZ,DE,DK,EE,ES,FI,FR,GB,GR,HU,IE,IS,IT,LT,LU,LV,MC,NL,PL,PT,RO,SE,SI,SK,TR),OA(BF,
BJ,CF,CG,CI,CM,GA,GN,GQ,GW,ML,MR,NE,SN,TD,TG),AE,AG,AL,AM,AT,AU,AZ,BA,BB,BG,BR,BW,BY,BZ,CA,CH,CN,CO,
CR,CU,CZ,DE,DK,DM,DZ,EC,EE,EG,ES,FI,GB,GD,GE,GH,GM,HN,HR,HU,ID,IL,IN,IS,JP,KE,KG,KM,KN,KP,KR,KZ,LA,L
C,LK,LR,LS,LT,LU,LV,LY,MA,MD,MG,MK,MN,MW,MX,MZ,NA,NG,NI,NO,NZ,OM,PG,PH,PL,PT,RO,RS,RU,SC,SD,SE,SG,SK
,SL,SM,SY,TJ,TM,TN,TR,TT,TZ,UA,UG,US,UZ,VC,VN,ZA,ZM,ZW

(72)発明者 ディヴィッド　ジェイ．ネトルトン
 アメリカ合衆国　９８０５２　ワシントン州　レッドモンド　ワン　マイクロソフト　ウェイ　マ
 イクロソフト　コーポレーション内
(72)発明者 ソン　シュエ
 アメリカ合衆国　９８０５２　ワシントン州　レッドモンド　ワン　マイクロソフト　ウェイ　マ
 イクロソフト　コーポレーション内
Ｆターム(参考) 5B017 AA08 BA09
　　　　 　　 5J104 AA08 AA09 JA03 JA21 LA02 LA03 LA06 NA02 NA12 NA27
　　　　 　　 NA37 NA38 PA14

	biblio-graphic-data
	abstract
	claims
	description
	drawings
	search-report
	overflow

