

Office de la Propriété
Intellectuelle
du Canada

Un organisme
d'Industrie Canada

Canadian
Intellectual Property
Office

An agency of
Industry Canada

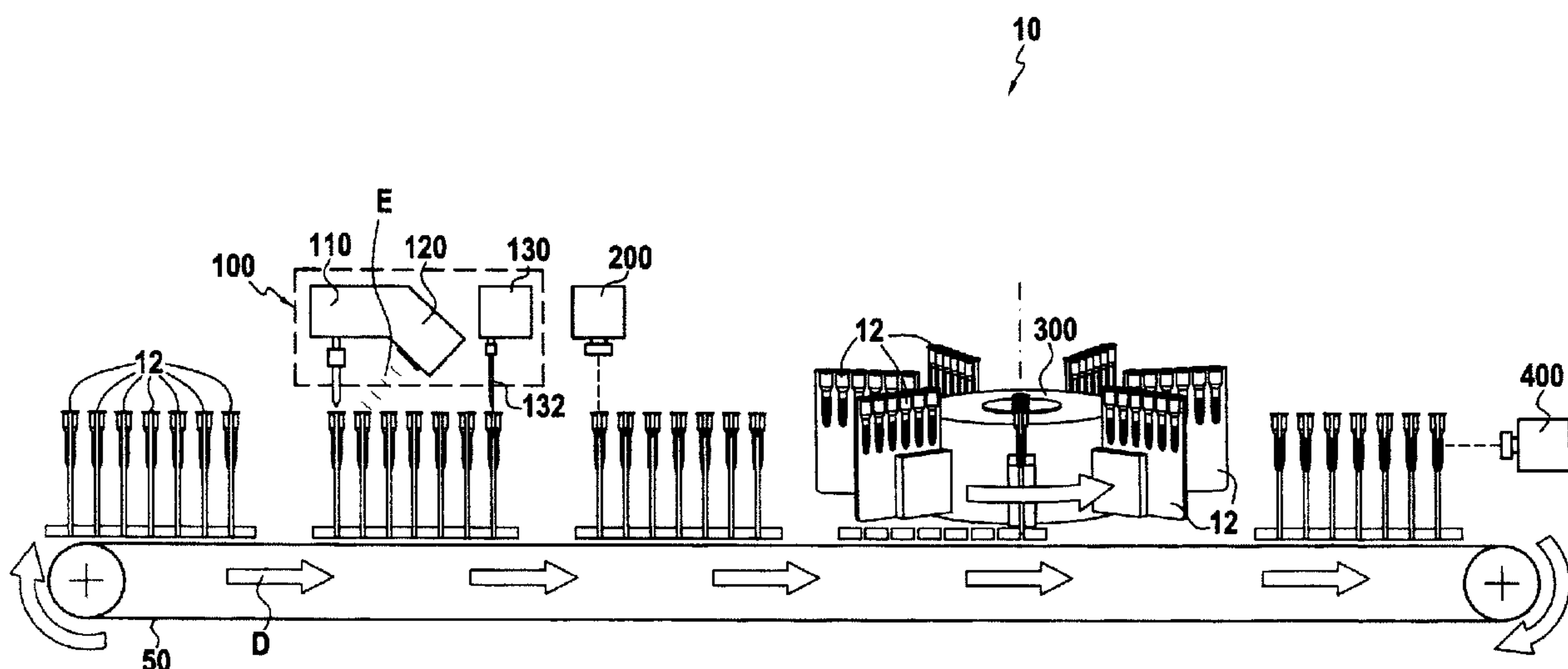
CA 2758226 C 2016/10/11

(11)(21) 2 758 226

(12) BREVET CANADIEN
CANADIAN PATENT

(13) C

(86) Date de dépôt PCT/PCT Filing Date: 2010/03/31
(87) Date publication PCT/PCT Publication Date: 2010/10/14
(45) Date de délivrance/Issue Date: 2016/10/11
(85) Entrée phase nationale/National Entry: 2011/10/07
(86) N° demande PCT/PCT Application No.: FR 2010/050602
(87) N° publication PCT/PCT Publication No.: 2010/116069
(30) Priorité/Priority: 2009/04/08 (FR0952290)


(51) CI.Int./Int.Cl. B65B 3/00 (2006.01)

(72) Inventeurs/Inventors:
BUFFIERE, FREDERIC, FR;
PETIT, SERGE, FR;
BRISEBRAT, JEAN-MICHEL, FR

(73) Propriétaire/Owner:
BIO-RAD INNOVATIONS, FR

(74) Agent: GOUDREAU GAGE DUBUC

(54) Titre : DISPOSITIF DE REMPLISSAGE DE CARTES GEL COMPORTANT UN IONISEUR
(54) Title: GEL CARD FILLING DEVICE COMPRISING AN IONIZER

(57) Abrégé/Abstract:

The invention relates to a device for filling at least one receptacle (12) of gel card type initially sealed by a cap. The invention is characterized by the fact that the filling device comprises a piercing member (110) for perforating the cap, means (120) for eliminating the electrostatic charges capable of being borne by the receptacle, and filling means (130) for filling the receptacle after perforation of the cap and elimination of the electrostatic charges.

(12) DEMANDE INTERNATIONALE PUBLIÉE EN VERTU DU TRAITÉ DE COOPÉRATION EN MATIÈRE DE BREVETS (PCT)

(19) Organisation Mondiale de la Propriété Intellectuelle
Bureau international

(10) Numéro de publication internationale

WO 2010/116069 A3

(43) Date de la publication internationale
14 octobre 2010 (14.10.2010)

PCT

(51) Classification internationale des brevets :
B65B 3/00 (2006.01)

AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(21) Numéro de la demande internationale :
PCT/FR2010/050602(22) Date de dépôt international :
31 mars 2010 (31.03.2010)

(25) Langue de dépôt : français

(26) Langue de publication : français

(30) Données relatives à la priorité :
0952290 8 avril 2009 (08.04.2009) FR(71) Déposant (pour tous les États désignés sauf US) : **BIO-RAD PASTEUR** [FR/FR]; 3 boulevard Raymond Poincaré, F-92430 Marnes La Coquette (FR).

(72) Inventeurs; et

(75) Inventeurs/Déposants (pour US seulement) : **BUFFIERE, Frédéric** [FR/FR]; 32 rue des Lavandières, F-33600 Pessac (FR). **PETIT, Serge** [FR/FR]; Route de Roanne, F-42640 Noailly (FR). **BRISEBRAT, Jean-Michel** [FR/FR]; Le Bourg, Rue de la Mairie, F-42460 Villers (FR).(74) Mandataires : **BALESTA, Pierre** et al.; Cabinet BEAU DE LOMENIE, 158, rue de l'Université, F-75340 Paris Cedex 07 (FR).

(81) États désignés (sauf indication contraire, pour tout titre de protection nationale disponible) : AE, AG, AL, AM,

(84) États désignés (sauf indication contraire, pour tout titre de protection régionale disponible) : ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), eurasien (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), européen (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Publiée :

- avec rapport de recherche internationale (Art. 21(3))
- avant l'expiration du délai prévu pour la modification des revendications, sera republiée si des modifications sont reçues (règle 48.2.h))

(88) Date de publication du rapport de recherche internationale :

16 décembre 2010

(54) Title : GEL CARD FILLING DEVICE COMPRISING AN IONIZER

(54) Titre : DISPOSITIF DE REMPLISSAGE DE CARTES GEL COMPORTANT UN IONISEUR

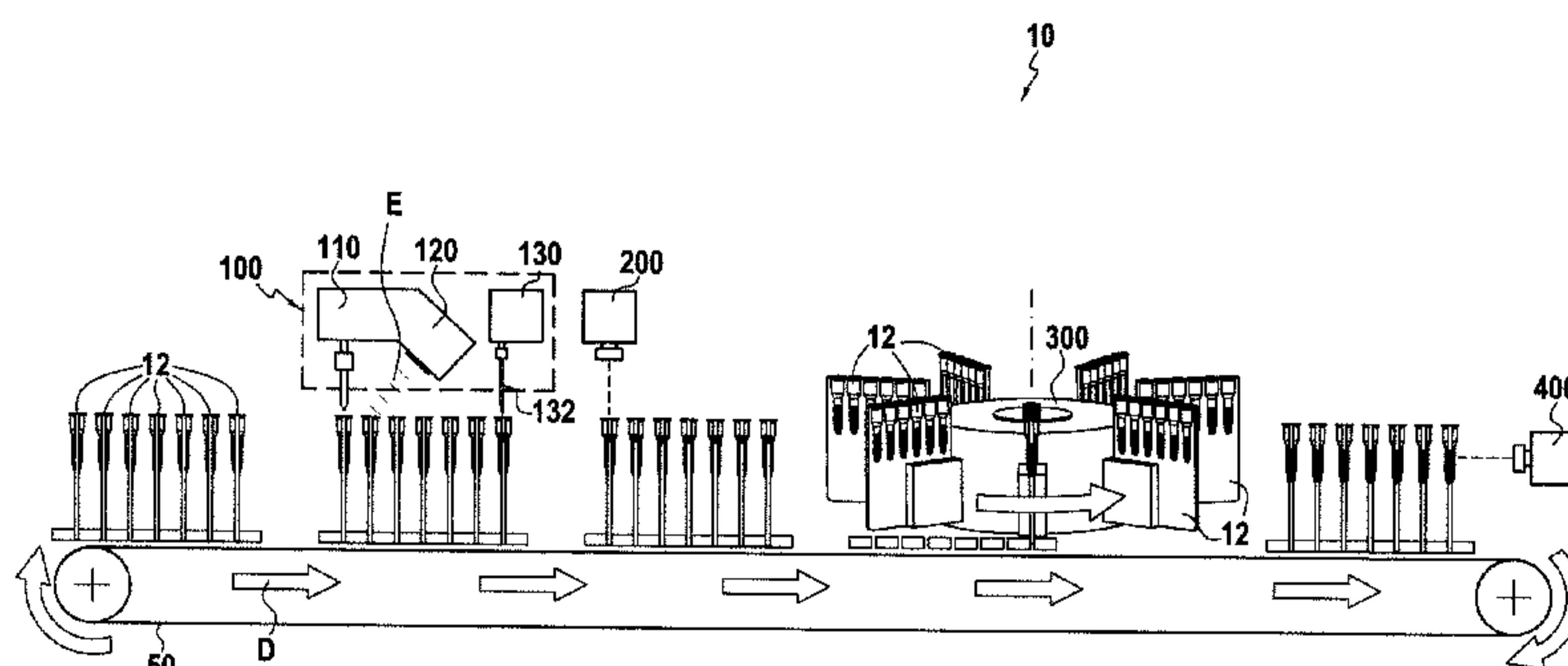


FIG.1

(57) **Abstract** : The invention relates to a device for filling at least one receptacle (12) of gel card type initially sealed by a cap. The invention is characterized by the fact that the filling device comprises a piercing member (110) for perforating the cap, means (120) for eliminating the electrostatic charges capable of being borne by the receptacle, and filling means (130) for filling the receptacle after perforation of the cap and elimination of the electrostatic charges.

(57) **Abrégé** : L'invention concerne un dispositif de remplissage d'au moins un réceptacle (12) de type carte gel initialement fermé par un opercule. L'invention se caractérise par le fait que le dispositif de remplissage comporte un organe de perçage (110) pour percer l'opercule, des moyens (120) pour supprimer les charges électrostatiques susceptibles d'être portées par le réceptacle, et des moyens de remplissage (130) pour remplir le réceptacle après perforation de l'opercule et suppression des charges électrostatiques.

WO 2010/116069 A3

Gel card filling device comprising an ionizer

The present invention relates to the field of devices for performing medical analyses.

5 Traditionally, such devices, also called analysis machines, make it possible to automate certain protocols, such as for example pipetting liquids into gel cards. This protocol consists of pouring a predetermined quantity of liquid into a reactive well of a gel card containing one or more reagents. This liquid can for example be a blood sample, or any other type of human sample.

10 In a known manner, a gel card is a receptacle containing one or more reactive wells that are initially sealed by a cap. After having pierced the cap and poured the liquid, chemical reactions occur between the poured liquid and the reagent(s) of the card.

15 Generally, the quantity of liquid poured is very small, in the vicinity of several microliters, so that one generally refers to a "dose." What is more, the filling of the wells must respect certain quality criteria. Among these criteria, we will more particularly mention those relative to the creation of an air gap between the dose of liquid dispensed into the well and the reagent previously present at the bottom of the well, as well as the criterion relative to the absence of liquid splashes on the 20 inner wall of the well. Splashes most often come from more or less significant, but still random, fracturation of the dispensed dose of liquid.

25 The presence of an air gap has the effect of provisionally prohibiting physical contact between the dispensed dose of liquid and the reagent. One interest is of controlling the moment from which the chemical reaction must begin. In practice, the gel cards are incubated and centrifuged after dispensing the liquid dose thereby leading to the chemical reaction.

The absence of splashes in turn is necessary in order to prevent a fraction of the dose of liquid from remaining stuck to the walls of the well and thus being removed from the incubated and centrifuged reactive mixture.

30 To resolve the first problem, document US 5 780 248 proposes the use of consumable accessories made from plastic, said accessory being formed by an insert provided with six cavities with a pointed lower end. Moreover, the lower ends of the cavities are provided with a very small hole. This accessory is intended to be manually planted in a gel card, the ends of the cavities perforating the cap sealing 35 the wells of the gel card. Each of the cavities of the accessory is housed in a well of the gel card. Then, a dose of liquid is dispensed into each of the cavities of the accessory. Using that accessory, the operator does not need to worry about whether an air gap is formed, inasmuch as the cavity isolates the dispensed liquid dose from

the reagent contained at the bottom of the well. It also appears that the use of such accessories makes it possible to decrease the presence of splashes.

However, this solution has several drawbacks: the accessories must be purchased, stored and handled. What is more, the installation of the accessories on 5 the gel cards must necessarily be done manually, which is inconvenient and not very fast.

One aim of the present invention is to propose a device for filling at least one receptacle of the gel card type initially sealed by a cap, allowing automatic filling while resolving the aforementioned drawbacks.

10 The invention achieves its aim by the fact that the filling device includes a piercing member to perforate the cap, means for eliminating the electrostatic charges that may be borne by the receptacle, and filling means to fill the receptacle after perforation of the cap and elimination of the electrostatic charges.

15 The inventors have in fact noted that the elimination of the electrostatic charges on the receptacle makes it possible to clearly avoid the formation of splashes on the inner walls of the receptacle. In fact, it happens that the electrostatic charges borne by the receptacle tend to dislocate the liquid dose when it leaves the filling means. It follows that certain fractions of the dose adhere against the inner wall of the receptacle, due to the attraction forces created by the electrostatic charges.

20 It is therefore understood that the filling device according to the invention advantageously makes it possible to prevent splashes from forming. Furthermore, the present invention does not require the use of consumables, unlike the prior devices. Another interest of the present invention is that it allows automatic filling.

25 What is more, the formation of the air gap is favored by the absence of electrostatic force tending to deflect the dose released by the filling means.

Preferably, the receptacle is a card, of the gel card type, which includes a plurality of wells sealed by the cap, each of the wells containing one or more reagents.

30 Advantageously, the piercing member includes a piercing rake provided with a plurality of piercing tips that are intended to penetrate the wells while passing through the cap.

One interest of the rake is that it makes it possible to pierce several holes in the cap all at once, these holes being those through which the filling means pour the liquid into the wells.

35 Preferably, the rake includes as many tips as the number of wells of the gel card, as a result of which the operation for piercing the cap of a gel card is performed a single time.

Particularly advantageously, the means for eliminating the electrostatic charges comprise an ionizer. The latter generates a flow of alternatingly positively and negatively charged ions, this ion flow being sent toward the receptacle, preferably after the cap has been perforated. This alternation makes it possible to 5 eliminate the electrostatic charges borne by the wells of the gel card.

Preferably, the ionizer can and is intended to generate an electrical field producing a corona effect. Said corona effect, known in itself, is also called crown effect.

According to one preferred embodiment, the filling device has an intake 10 direction for the receptacles toward the piercing member and the ionizer is made up of at least one ionization ramp extending transversely relative to said intake direction. Said ramp is preferably arranged as close as possible to the piercing zone in order to ionize the gel card right after the cap is pierced.

Furthermore, the ionizer preferably includes a plurality of electrodes targeting 15 a zone in which the receptacle is intended to be located during piercing of the cap of said receptacle.

Without going beyond the scope of the present invention, it would also be possible to use an ionizer provided with means for blowing ionized air toward the gel card.

20 Preferably, the ionization ramp extends between the two mobile arms that bear the piercing rake, owing to which it is possible to ionize the gel card immediately after the piercing operation.

The invention also relates to a medical analysis machine to analyze the 25 chemical reactions taking place in at least one receptacle that comprises a plurality of wells containing one or more reagents while being sealed by at least one cap, said machine including a filling device according to the invention, means for bringing said receptacle toward said filling device, and means for analyzing the chemical reactions that can occur in the wells of the receptacle after the filling means have poured a quantity of liquid into each of the wells.

30 The machine preferably includes a plurality of receptacles made up of similar or different gel cards.

Advantageously, the machine according to the invention also includes a checking station to verify the positioning of the liquid poured into the wells by the filling means.

35 Preferably, said checking station includes a camera as well as image processing means making it possible to identify the presence or absence of an air gap and any splashes.

The invention also relates to a method for filling a receptacle of the gel card type provided with a plurality of wells sealed by a cap, comprising:

- a step of piercing the cap of the receptacle in order to open the wells;
- a step of eliminating electrostatic charges that may be borne by the receptacle; and
- a filling step during which a quantity of liquid is poured into each of the wells of the receptacle.

Preferably, this method is implemented by the filling device according to the present invention.

Advantageously, the step of eliminating the electrostatic charges consists of ionizing the wells of the receptacle by generating an electrical field producing a corona effect.

Preferably, but not necessarily, the step for eliminating electrostatic charges is carried out after the piercing step. One interest is to be able to ionize the air contained inside the wells.

Advantageously, the step for filling the wells is carried out with at least one pipette, and during said filling step, said pipette extends coaxially to one of the wells.

One interest is to prevent the end of the pipette from coming into contact with droplets of reagent that can be located on the inner wall of the well, and therefore to avoid any contamination of the pipette.

According to the invention, a complementary manner of avoiding the contamination of the pipette is to place the lower end of the pipette slightly below the cap during the filling step. Preferably, the lower end of the pipette is placed several millimeters under the cap.

Preferably, during the filling step, an air gap is created between the poured liquid and another liquid previously present in the wells. In other words, an air gap is created between the reagent contained in each of the wells and the poured doses.

Lastly and advantageously, the method according to the invention also includes a step of verifying the positioning of the liquid poured at the end of the filling step. One primarily verifies the proper production of the air gaps.

The invention will be better understood and its advantages will better appear upon reading the following detailed description, of an embodiment illustrated as a non-limiting example. The description refers to the drawings, in which:

- figure **1** diagrammatically illustrates a medical analysis machine according to the invention, which includes a filling device according to the invention;
- figure **2** is a frontal view of a receptacle intended to be used with the machine of figure **1**;

- figure **3** is a perspective view of one preferred embodiment of the filling device according to the invention;
- figure **4** is a detailed view of the ionization ramp of the filling device of figure **3**; and
- 5 - figure **5** shows the formation of an air gap between the reagent contained in a well of the receptacle of figure **2** and a dose of liquid dispensed by a pipette of the machine of figure **1**.

Figure **1** shows a very diagrammatic and non-limiting illustration of a medical analysis machine **10** according to the invention.

10 This machine **10** uses consumable receptacles, in this case gel cards **12** provided with wells **14**, also well known. Figure **2** shows that each of the gel cards **12** of this example includes six wells **14** emerging in an upper wall **12a** of the gel card. These wells **14** therefore have openings **16** formed in the upper wall **12a** of the gel card, these openings **16** initially being sealed by a cap **18** that extends in a longitudinal direction **L** of the gel card **12**. In that example, the cap **18** consists of a thin strip sealed to the upper wall of the gel card **12**.

15 As understood using figure **2**, each well **14** of the gel card **12** contains, in a known manner, a reagent **R**, said reagent being able to be different from one well to the next.

20 More specifically, each well **14** is formed by a substantially cylindrical upper cavity **14a** connected to a lower cavity **14b** that is also substantially cylindrical via a tapered intermediate cavity. The upper cavity **14a** has a diameter substantially larger than that of the lower cavity **14b**, and the upper **14a** and lower **14b** cavities are coaxial with a shared axis **A**. As shown in figure **2**, the reagent is contained in the lower cavity **14b**, the reagent level being situated slightly below the upper end of the lower cavity **14b**, while the upper cavity **14a**, initially empty, emerges in the upper wall **12a** of the gel card **12**.

25 It happens that the gel cards **12**, made from plastic, have a propensity to bear electrostatic charges **C⁺**, **C⁻**; it is thought that they are generated during impacts that the gel cards **12** may undergo during handling thereof.

30 Referring again to figure **1**, one sees that the machine includes a conveyor **50** that makes it possible to move the gel cards **12** of the machine **10** in an intake direction **D**. Of course, any other type of conveyor can be used without going beyond the scope of the present invention.

35 Considered in the intake direction **D**, the machine **10** successively includes a filling device **100** according to the invention, an audit station **200** to verify the position of the liquid poured into the wells by the filling device, a compressor impeller

300, then means 400 for analyzing the chemical reactions likely to occur in the wells of the gel card.

The gel cards 12 are first conveyed toward the filling device 100, the latter being intended to fill the wells of the gel cards 12 with a liquid in a predetermined 5 quantity.

To that end, the filling device 100 according to the invention first includes a piercing member 110 to perforate the caps 18 of the gel cards.

According to one essential aspect of the invention, the filling device 100 also includes means 120 for eliminating the electrostatic charges that may be borne by 10 the gel cards. And of course, the filling device also includes filling means 130 to fill the wells of the gel cards after perforation of the cap and elimination of the electrostatic charges. It is specified that, according to the preferred embodiment of the invention, the filling means 140 are automatic. However, and without going beyond the scope of the present invention, they may also be made up of a manual 15 pipette handled by an operator.

The piercing member 110 and the means 120 for eliminating the electrostatic charges will first be described in more detail using figures 3 and 4.

The piercing member 110 includes a piercing rake 112 that is provided with six tips 114, these tips being intended to penetrate the wells of the gel card while 20 passing through the cap 18 so as to create a series of holes 17 in the cap. The gel cards 12 also including six wells 14, it is understood that the rake 112 makes it possible to produce six holes 17 at once in the cap of each of the gel cards 12.

As seen in figure 3, this rake 112 extends transversely relative to the intake direction D.

25 What is more, the tips 114 of the rake 112 preferably have flats 114a in order to favor the piercing of the cap 18.

Furthermore, a pair of spring blades 116 extending between the tips 114 is provided to facilitate the disengagement of the piercing rake 112 after perforating the cap 18.

30 Lastly, it is specified that the rake 112 is locked to a rake holder 113 by a locking member 118 making it possible to disassemble the rake 112. Furthermore, this rake holder 112 includes two mobile arms 113a, 113b between which the rake 112 extends, these arms being connected to pivoting connecting rods 115 that make it possible to bring the rake 112, following a circular translational movement, 35 from an idle position (shown in figure 3) toward a working position in which the tips 114 perforate the cap 18 of the gel card.

According to one advantageous aspect of the invention, the means **120** for eliminating the electrostatic charges comprise an ionizer **122** here made up by an ionization ramp that is powered by traditional power means not shown here.

This ionization ramp **122** is immobile relative to the machine and extends 5 transversely relative to the intake direction **D** between the arms cavities **113a** and **113b** of the rake holder **113**. As seen in figure **3**, the ionization ramp **122** is situated below the tips **114** of the rake **112** when the latter is in its idle position. Said ramp **122** is also arranged so that the tips **114** of the rake **112** do not touch the rake during movement of the rake **112** toward its working position.

10 Furthermore, figure **3** shows that the ionization ramp **122** includes several electrodes **124**, in this case five, protruding from the bottom of a longitudinal groove **126**.

15 In reference now to figure **4**, one can see that the ionization ramp **122** is mounted on a holder **128** having a fastening foot **129**. The ramp is tilted by about 60° relative to the vertical so that the electrodes **124** of the ramp target a zone in which the gel card is located during the piercing operation of the cap **18**. Preferably, the distance between the ionization ramp and the openings **16** of the wells **14** is 20 between 15 and 30 mm. In this particular case, the electrodes **124** of the ionization ramp **122** serve to generate an electrical field **E**, of the corona type, around wells **14** of the gel card **12**. To that end, one can for example choose a power supply of the auto-transformer type delivering a sinusoidal wave, with a frequency of 50 Hz, with a potential difference of 4 KV and fan-out of 2.5 mA on each electrode.

We will now explain the filling method used by the filling device **100** according 25 to the invention.

As shown in figure **3**, the gel cards **12** are successively brought near the piercing member **110**, in a housing **102** extending transversely relative to the intake direction **D**, so that, during the piercing operation, the gel card **12** is maintained in a vertical plane transverse to the intake direction **D**.

When the piercing member **110** is actuated, the rake **112** tilts in its working 30 position following the circular translational movement described above, so that the tips **114** of the rake **112** perforate the cap **18**. Then, the rake **112** is brought back into its idle position as shown in figure **3**. At the end of the piercing step, the cap **18** is pierced with six holes **20** at the wells **14**.

After this piercing step, the ionization ramp is activated so as to generate an 35 electrical field with a corona effect around the wells **14**. As explained above, this corona effect electrical field generates ionized air that results in eliminating the electrostatic charges **C⁺**, **C⁻** that may be borne by the wells of the gel cards **12**. Preferably, the ionization duration of the wells **14** is between 1 and 1.5 second.

After the ionization step, the gel card **12** is brought toward the filling means **170**. The latter include at least one pipette **132** visible in figure **5**. As shown in that figure, the pipette **132** is successively inserted into each of the upper cavities **14a** of the wells **14** through the holes **20** formed in the cap **18** following the piercing operation. During the insertion of the pipette into one of the wells **14** through the hole **20**, the lower end **132a** of the pipette is brought to several millimeters below the cap, while the pipette is arranged coaxially relative to said well.

Then, the pipette **132** pours a dose **134** of liquid, that is to say about 10 μ l, into the upper cavity **14a**, as shown in figure **5** for the wells situated close to the left edge of the gel card **12**.

Very preferably, an air gap **136** is created between the dose **134** and the reagent contained in the lower cavity **14b** of the wells **14**. This air gap is situated essentially below the tapered intermediate cavity.

At the end of the filling step, the gel card **12** is brought into the checking station **200** in order to verify the presence of air gaps **136**.

After this, the gel card **12** is incubated, then centrifuged owing to the compressor impeller **300**.

The result of the chemical reactions taking place in the wells **14** is then analyzed using means **400** for analyzing chemical reactions. Such means, otherwise known, generally include a reader making it possible to visualize the result of the reaction(s) in the wells **14** of the gel card **12**.

CLAIMS

1. A device (100) for filling at least one receptacle (12) of the gel card type initially sealed by a cap (18), said device including a piercing member (110) to perforate the cap, means (120) for eliminating the electrostatic charges that may be borne by the receptacle, and filling means (130) to fill the receptacle after perforation of the cap and elimination of the electrostatic charges (C⁺, C⁻).
5
2. The filling device according to claim 1, wherein the receptacle is a card (12), which includes a plurality of wells (14) sealed by the cap (18), each of the wells containing one or more reagents (R).
10
3. The filling device according to claim 2, wherein the piercing member (120) includes a piercing rake (112) provided with a plurality of piercing tips (114) that are intended to penetrate the wells while passing through the cap.
15
4. The filling device according to claim 2 or 3, wherein the filling means comprise at least one pipette (132).
20
5. The filling device according to any one of claims 1 to 4, wherein the means for eliminating the electrostatic charges (120) comprise an ionizer (122).
6. The filling device according to claim 5, having an intake direction (D) for the receptacle toward the piercing member, wherein the ionizer is made up of an ionization ramp (122) extending transversely relative to said intake direction.
25
7. The filling device according to claim 5 or 6, wherein the ionizer (122) includes a plurality of electrodes (134) targeting a zone in which the receptacle (12) is intended to be located during piercing of the cap of said receptacle.
30
8. The filling device according to any one of claims 5 to 7, wherein the ionizer (122) is intended to generate an electrical field (E) producing a corona effect.
- 35 9. A medical analysis machine (10) for analyzing chemical reactions taking place in at least one receptacle (12) that comprises a plurality of wells (14) containing one or more reagents while being sealed by at least one cap (18), said machine including a filling device (100) according to any one of claims 1

to **8**, means (50) for bringing said receptacle toward said filling device, and means (400) for analyzing the chemical reactions that can occur in the wells of the receptacle after the filling means (130) have poured a quantity of liquid into each of the wells.

5

10. The machine according to claim **9**, also including a checking station (200) to verify the positioning of the liquid poured into the wells by the filling means (130).

10

11. A method of filling a receptacle (12) of the gel card type provided with a plurality of wells sealed by a cap, comprising:

- a step of piercing the cap of the receptacle in order to open the well;
- a step of eliminating electrostatic charges that may be borne by the receptacle; and
- a filling step during which a quantity of liquid is poured into each of the wells of the receptacle.

15

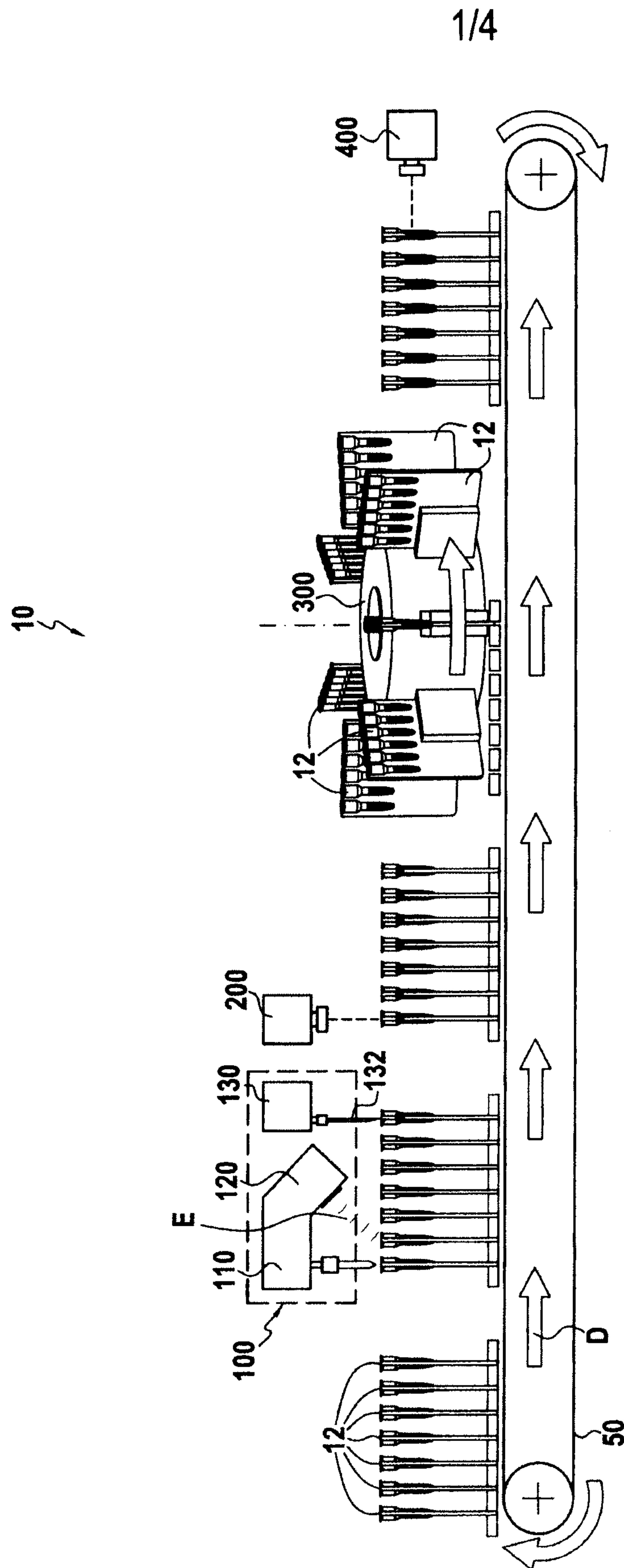
12. The filling method according to claim **11**, wherein the step for eliminating the electrostatic charges consists of ionizing the well of the receptacle by generating an electrical field producing a corona effect.

20

13. The filling method according to claim **11** or **12**, wherein the step of eliminating the electrostatic charges is carried out after the piercing step.

25

14. The filling method according to any one of claims **11** to **13**, wherein the step of filling the wells is carried out with at least one pipette, and, during said filling step, said pipette extends coaxially to one of the wells.


30

15. The filling method according to any one of claims **11** to **14**, wherein the filling step is carried out with at least one pipette having a lower end, and in that, during said filling step, the lower end is placed slightly below the cap.

35

16. The filling method according to any one of claims **11** to **15**, wherein, during the filling step, an air gap is created between the poured liquid and another liquid previously present in the wells.

17. The filling method according to any one of claims **11** to **16**, further including a step of verifying the positioning of the liquid poured at the end of the filling step.

四

2/4

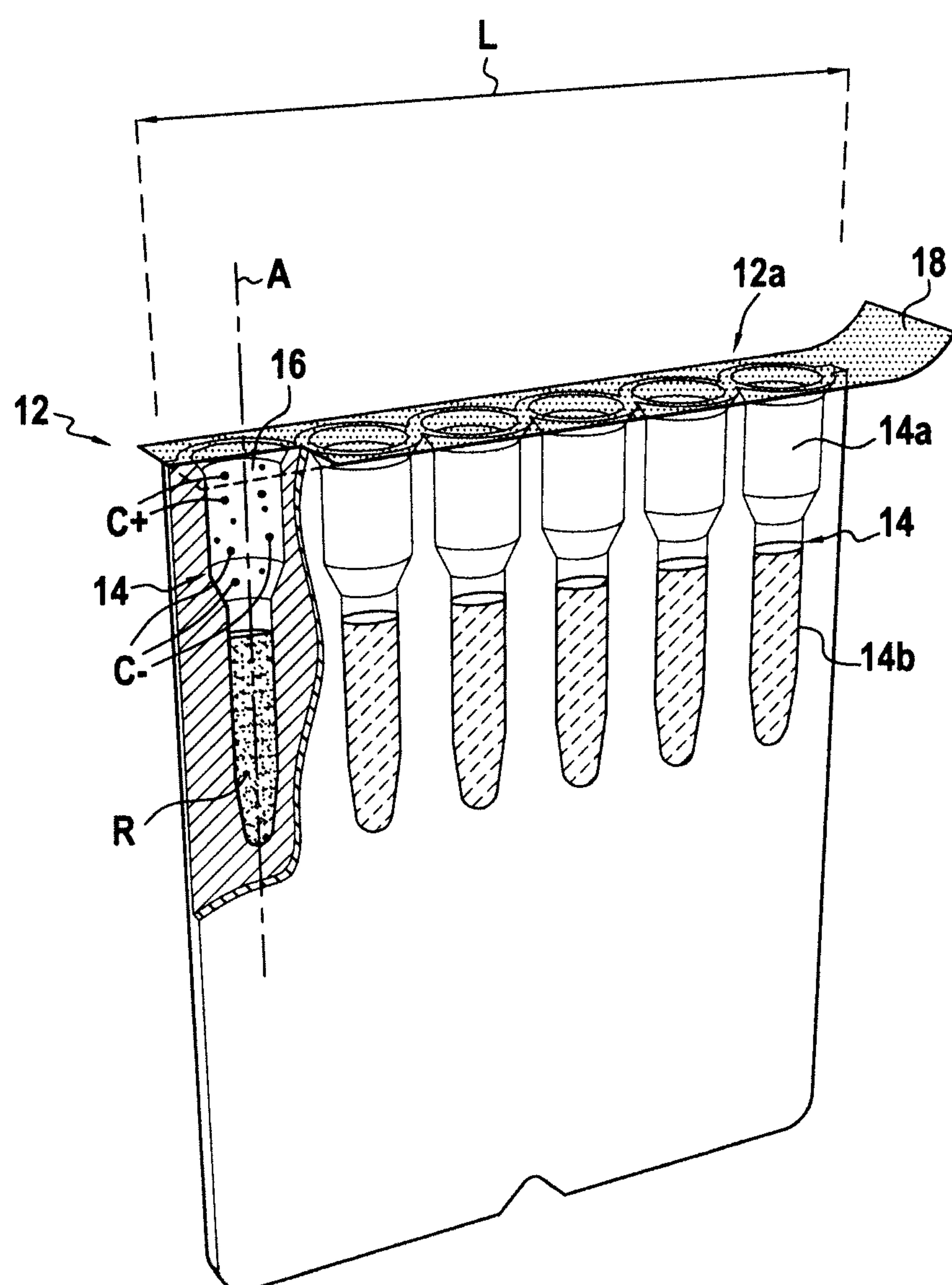


FIG.2

4/4

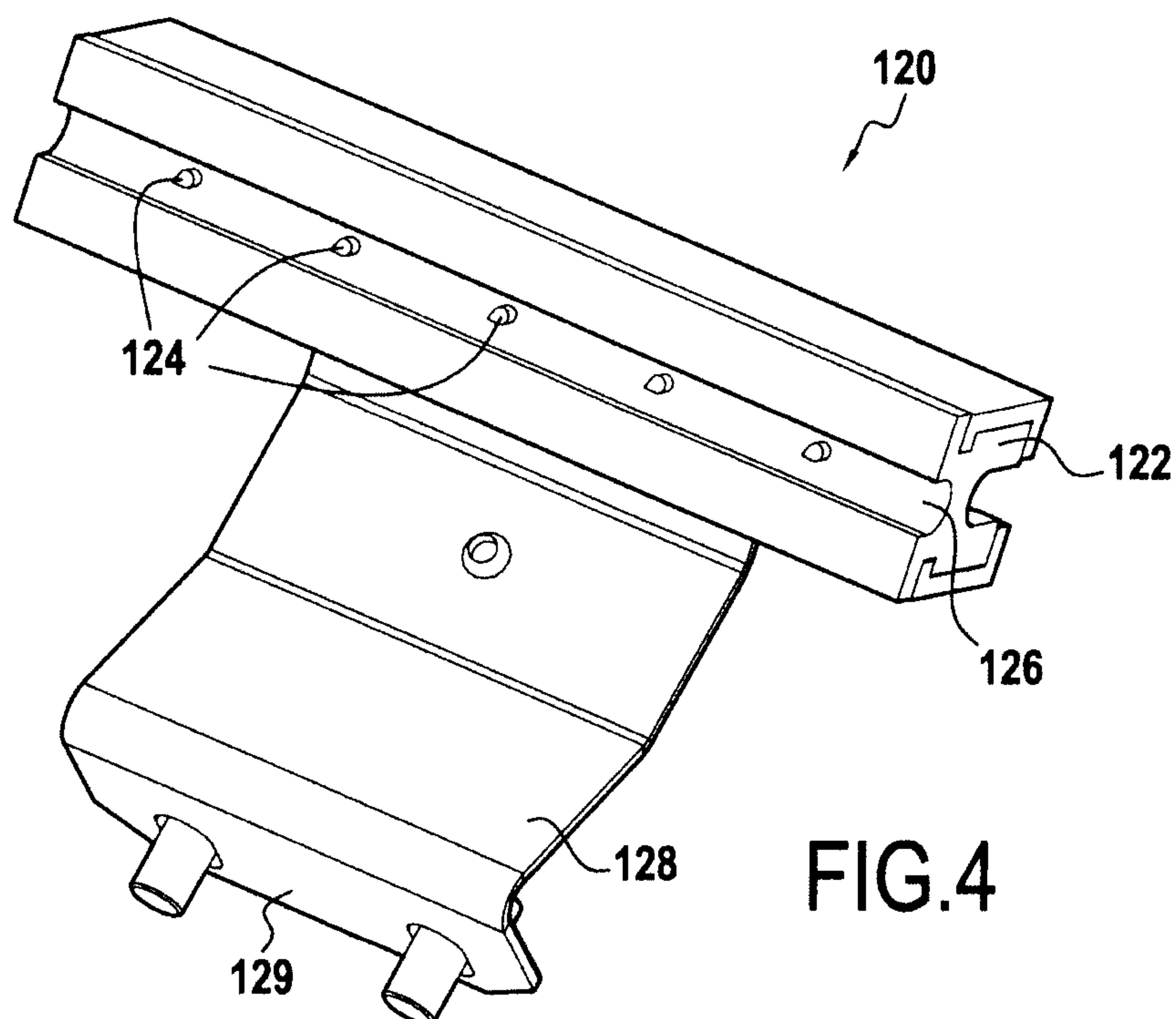


FIG.4

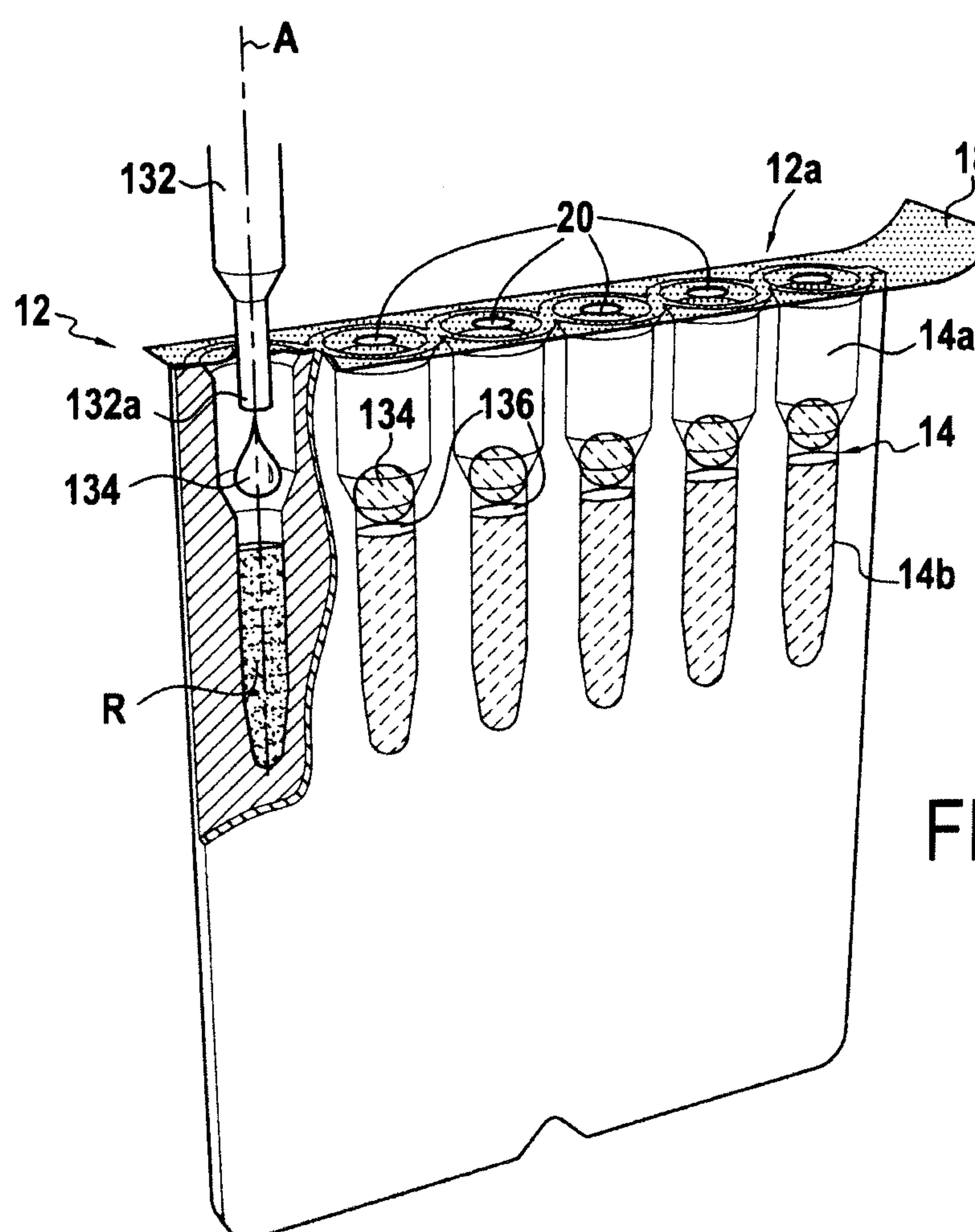
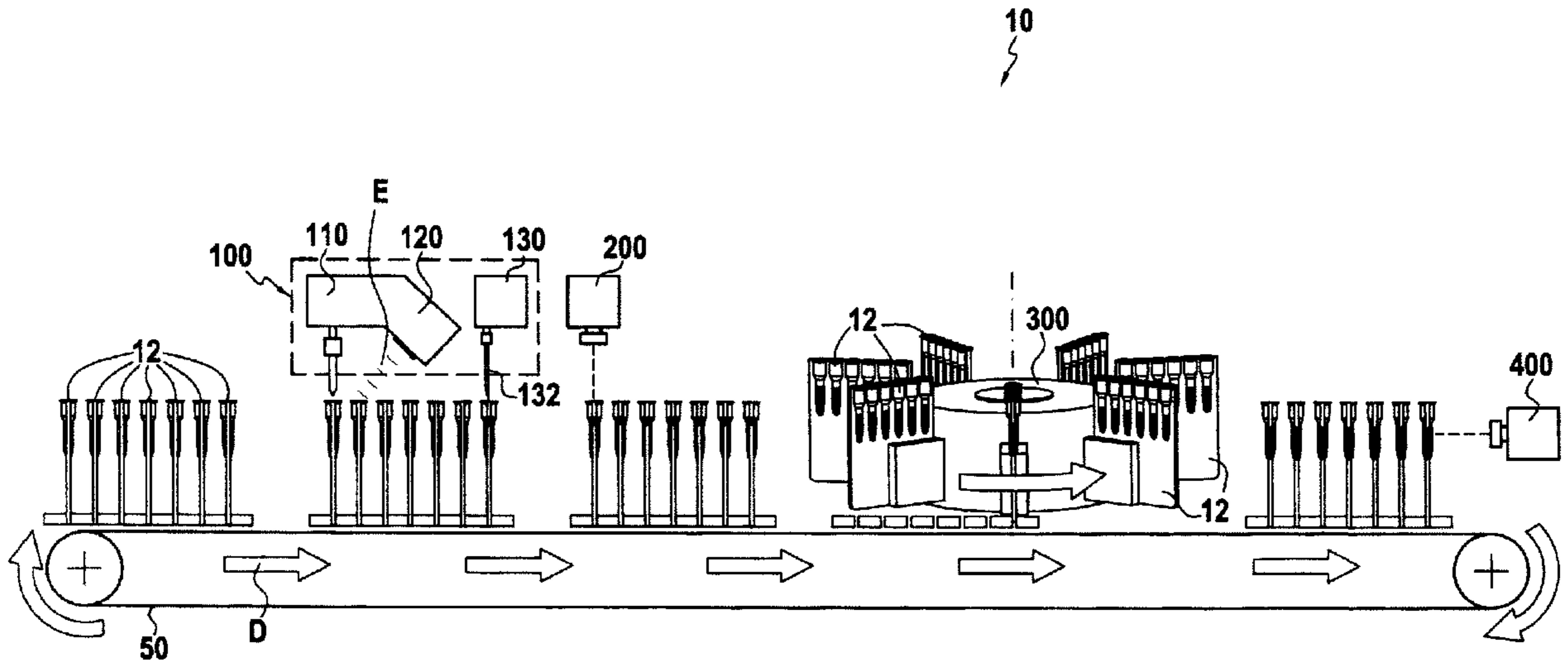



FIG.5

